

1 **PLCG2 as a Risk Factor for Alzheimer's Disease.**

2

3 Andy P. Tsai¹, Chuanpeng Dong², Christoph Preuss³, Miguel Moutinho¹, Peter Bor-Chian Lin¹,

4 Nicole Hajicek⁴, John Sondek⁴, Stephanie J. Bissel^{1,6}, Adrian L. Oblak^{1,7}, Gregory W. Carter³,

5 Yunlong Liu², Gary E. Landreth^{1,5}, Bruce T. Lamb^{1,6}, Kwangsik Nho^{7*}

6

7 ¹. Stark Neurosciences Research Institute, IUSM, Indianapolis, IN, USA.

8 ². Department of Medical and Molecular Genetics, Center for Computational Biology and

9 Bioinformatics, IUSM, Indianapolis, IN, USA.

10 ³. The Jackson Laboratory, Bar Harbor, ME, USA

11 ⁴. Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC,

12 USA

13 ⁵. Department of Anatomy and Cell Biology, IUSM, Indianapolis, IN, USA.

14 ⁶. Department of Medical and Molecular Genetics, IUSM, Indianapolis, IN, USA.

15 ⁷. Department of Radiology & Imaging Sciences, IUSM, Indianapolis, IN, USA

16

17 **Corresponding Author:** *For correspondence contact Kwangsik Nho, Department of Radiology
18 & Imaging Sciences, IUSM, Indianapolis, IN, USA, Methodist GH4101, RADY, Indianapolis, IN,
19 46202, USA. Phone: +1-317-963-7503; Email: knho@iupui.edu

20

21 **Abstract**

22 Alzheimer's disease (AD) is characterized by robust microgliosis and phenotypic
23 changes that accompany disease pathogenesis. Indeed, genetic variants in microglial genes are
24 linked to risk for AD. Phospholipase C γ 2 (PLCG2) participates in the transduction of signals
25 emanating from immune cell-surface receptors that regulate the inflammatory response and is
26 selectively expressed by microglia in the brain. A rare variant in PLCG2 (P522R) was previously

27 found to be protective against AD, indicating that *PLCG2* may play a role in AD
28 pathophysiology. Here, we report that a rare missense variant in *PLCG2* confers increased AD
29 risk ($p=0.047$; OR=1.164 [95% CI=1.002-1.351]). Additionally, we observed that *PLCG2*
30 expression levels are increased in several brain regions of AD patients, correlating with brain
31 amyloid deposition. This provides further evidence that *PLCG2* may play an important role in AD
32 pathophysiology. Together, our findings indicate that *PLCG2* is a potential new therapeutic
33 target for AD.

34 **Introduction**

35 Late-onset Alzheimer's disease (LOAD) is the most common form of AD, with symptoms
36 typically arising after age 65¹. Age, sex, and the apolipoprotein ε4 (*APOE* ε4) allele are the
37 three greatest risk factors for LOAD²⁻⁴. The risk for LOAD doubles every five years after age 65,
38 and over 60% of AD patients are female^{2,5}. The mechanisms underlying the development of
39 LOAD are incompletely understood, but recent large-scale genome-wide association studies
40 (GWAS) have identified that more than 30 genetic variants are associated with LOAD^{6,7}.

41 Importantly, approximately 40% of the identified genes are immune- and microglia-
42 related, suggesting that microglia are involved in modulating AD pathology⁸. Among these
43 microglia-related genetic factors, a rare variant in *PLCG2* (phospholipase C γ 2), P522R
44 (rs72824905-G), was found to be associated with reduced LOAD risk⁹. *PLCG2* is a membrane-
45 associated enzyme that catalyzes the conversion of phospholipid PIP2 (1-phosphatidyl-1D-myo-
46 inositol 4,5-bisphosphate) to IP3 (1D-myo-inositol 1,4,5-trisphosphate) and DAG
47 (diacylglycerol), which plays a crucial role in cell-surface receptor signal transduction¹⁰.
48 Specifically, *PLCG2* is necessary for immune cell function and is highly expressed in microglia.
49 Genomic deletions (exon 19, Δ19, or exon 20 through 22, Δ20-22) or somatic mutations
50 (R665W or S707Y) within the regulatory domain of *PLCG2* resulted in constitutive activation and
51 resistance to treatment by inhibition of its upstream activator, BTK (Bruton's tyrosine kinase), in
52 leukemia^{11,12}. Interestingly, a missense M28L variant in *PLCG2* that does not alter the

53 constitutive activity of the enzyme following Rac2 GTPase stimulation has been identified in
54 BTK-inhibitor-resistant patients ¹³. BTK inhibition reduces phagocytosis and inhibits the uptake
55 of synaptic structures in rodent microglia, indicating a role for the BTK-PLCG2 pathway in
56 microglial function ¹⁴.

57 Here, we report that expression levels of *PLCG2* are increased in AD, and that the M28L
58 variant is associated with elevated LOAD risk. Similarly, *Plcg2* is highly expressed in the brain of
59 an AD mouse model. Importantly, upregulated expression of *PLCG2* is associated with
60 increased amyloid plaques, which was validated in an amyloid mouse model. Elucidating the
61 different effects of *PLCG2* variants on LOAD risk will expand our understanding of the function
62 of microglia in AD pathophysiology.

63 **Results**

64 **The *PLCG2* M28L Variant Confers a Higher Risk for LOAD.**

65 Using previously published large-scale GWAS summary statistics ⁶, we identified that the
66 missense variant M28L in *PLCG2* is associated with LOAD. The minor allele (T) of M28L in
67 *PLCG2* significantly increased risk for LOAD ($p=0.047$, $OR=1.164$ [95% CI=1.002-1.351])
68 (**Table 1**). *PLCG2* possesses a set of core domains common to most other isoforms of PLC,
69 including an N-terminal PH domain, two pairs of EF hands, a catalytic TIM barrel composed of
70 the X- and Y-boxes, and a C2 domain (**Fig. 1a**). The PLCG isozymes elaborate on this core with
71 a unique array of regulatory domains, including a split PH (sPH) domain, two SH2 domains, and
72 an SH3 domain. Two substitutions that modulate risk for LOAD, M28L, and P522R, were
73 mapped onto a protein structure homology model of *PLCG2* ¹⁵ (**Fig. 1b**). M28 is buried in the
74 core of the PH domain but is not visible in a space-filling model (**Fig. 1c**). The PH domain is
75 essential for membrane association of *PLCG2*.

76 ***PLCG2* Expression Levels are Increased in LOAD.**

77 We performed gene expression analysis using RNA-Seq data generated from seven
78 brain regions. The demographic information of the participants included in this study is

79 summarized in **Table 2**. We found that *PLCG2* was over-expressed in LOAD in the temporal
80 cortex (logFC=0.27, p=4.56E-02; **Fig. 2a**), parahippocampal gyrus (logFC=0.55, p=1.74E-03;
81 **Fig. 2b**), superior temporal gyrus (logFC=0.46, p=2.55E-02; **Fig. 2c**), and inferior prefrontal
82 gyrus (logFC=0.36, p=1.38E-02; **Fig 2d**) with age and sex as covariates (**Table 3**). However, we
83 did not find any diagnosis group differences in the cerebellum (**Fig. 2e**), frontal pole (**Fig. 2f**),
84 and dorsolateral prefrontal cortex (**Fig. 2g**) (**Table 3**). With age, sex, and *APOE* ε4 carrier status
85 as covariates, *PLCG2* remained over-expressed in LOAD in the parahippocampal gyrus
86 (logFC=0.57, p=2.02E-03), superior temporal gyrus (logFC=0.42, p=4.95E-02), and inferior
87 prefrontal cortex (logFC=0.33, p=2.60E-02) (**Table 3**). In the parahippocampal gyrus, superior
88 temporal gyrus, and inferior prefrontal gyrus, *PLCG2* was over-expressed in LOAD with and
89 without *APOE* ε4 carrier status as an additional covariate. We investigated whether *PLCG2*
90 expression levels were associated with expression levels of microglia-specific marker genes
91 (*AIF1* and *TMEM119*). Our analysis revealed that expression levels of *AIF1* and *TMEM119* were
92 significantly associated with *PLCG2* expression levels in the frontal pole (*AIF1*: $\beta=0.258$,
93 $p=1.09E-06$; *TMEM119*: $\beta=0.518$, $p=1.28E-15$), superior temporal gyrus (*AIF1*: $\beta=0.33$,
94 $p=8.98E-07$; *TMEM119*: $\beta=0.71$, $p<2E-16$), parahippocampal gyrus (*AIF1*: $\beta=0.419$, $p=5.43E-07$;
95 *TMEM119*: $\beta=0.806$, $p<2E-16$), and inferior prefrontal gyrus (*AIF1*: $\beta=0.257$, $p=6.15E-06$;
96 *TMEM119*: $\beta=0.582$, $p=6.64E-15$) (**Table 4**).

97 **Increased *PLCG2* Expression Levels are Associated with Amyloid Plaque Density in the
98 Human Brain.**

99 We performed an association analysis of *PLCG2* expression levels with mean amyloid
100 plaque densities measured in four brain regions. Expression levels of *PLCG2* in the human
101 brain was associated with amyloid plaques in three brain regions (**Table 4**). Increased *PLCG2*
102 expression was associated with increased amyloid plaques in the parahippocampal gyrus
103 ($\beta=0.027$, $p=5.22E-05$; **Fig. 3a**), superior temporal gyrus ($\beta=0.026$, $p=2.02E-04$; **Fig. 3b**), and

104 inferior prefrontal cortex ($\beta=0.017$, $p=2.73E-03$; **Fig. 3c**), but not in the frontal pole ($\beta=0.01$,
105 $p=0.08$; **Fig. 3d**).

106 **PLCG2 Expression Levels are Increased in a Mouse Model of Amyloid Pathology.**

107 *Plcg2* expression was increased in a mouse model of amyloid pathology, which is in
108 accordance with the results from our analysis of human LOAD. In the 5xFAD mice, *Plcg2*
109 expression was increased in the cortex (**Fig. 4a**) and hippocampus (**Fig. 4b**) of four-, six -and
110 eight-month-old mice (4-month: 1.39-fold in the cortex, 1.37-fold in the hippocampus; 6-month:
111 2.37-fold in the cortex, 1.96-fold in the hippocampus; and 8-month: 2.43-fold in the cortex and
112 2.67-fold in the hippocampus) (**Fig. 4**). Furthermore, our analysis showed a disease
113 progression-dependent increase in *Plcg2* expression in mice with amyloid pathology (**Fig. 4**).

114 **Common Single Nucleotide Polymorphisms in PLCG2 are Associated with PLCG2
115 Expression Levels.**

116 We performed an expression quantitative trait loci analysis (eQTL) analysis of *PLCG2*
117 expression levels using common SNPs, including ± 20 kb from the gene boundary; minor allele
118 frequency (MAF) $> 5\%$, from whole-genome sequencing. The eQTL analysis identified several
119 variants that are associated with *PLCG2* expression levels. In particular, rs4420523 was most
120 significantly associated with *PLCG2* expression levels in the superior temporal gyrus ($p=2.43E-$
121 06, **Fig. 5a**). Individuals with minor alleles of rs4420523 (C) have higher *PLCG2* expression
122 levels compared to those without minor alleles (**Fig. 5b**). The eQTL association of rs4420523
123 was replicated in the temporal cortex of the MAYO cohort (**Fig. 5c and Fig. 5d**). Furthermore,
124 using the GTEx eQTL database, we found that rs4420523 is significantly associated with
125 *PLCG2* expression levels in several brain regions and other organs (**Fig. 5e**).

126 **Discussion**

127 In this study, we report the first evidence that a missense variant (M28L) in *PLCG2* is
128 associated with increased risk for LOAD. The results indicated that different genetic variants in
129 *PLCG2* may be either advantageous or deleterious in LOAD, suggesting a potentially important

130 role of this gene in modifying AD risk. The M28L variant was previously found to be associated
131 with leukemia and mechanistically linked to disease pathogenesis by its resistance to inhibition
132 of its upstream kinase activator BTK¹³. *PLCG2* activity can be regulated by several
133 mechanisms, including phosphorylation by kinases such as BTK^{16,17}, PH domain-dependent
134 regulation¹⁸⁻²⁰, SH2 domain-containing components regulation²¹, and autoregulation of the
135 intrinsic inhibition region^{21,22}. The methionine 28 is buried within the N-terminal PH domain, and
136 the substitution likely leads to a less well-packed PH domain with a concomitant loss of domain
137 stability. The instability of the PH domain may affect the protein-protein interactions that regulate
138 enzymatic activity. Additionally, the conformational change may disrupt *PLCG2*-BTK or other
139 protein interactions, leading to ibrutinib resistance. *PLCG2* is selectively expressed by microglia
140 in the brain²³, and the M28L mutation likely induces a dysfunctional microglial phenotype with
141 significant implications in AD pathology. Conversely, the P552R *PLCG2* variant has been found
142 to reduce AD risk^{9,24-27}. Therefore, determining how the M28L and P522R variants affect
143 enzyme activity and microglial phenotype will provide valuable insights into the role of *PLCG2* in
144 AD. Importantly, further analysis of the *PLCG2* M28L variant using human datasets is limited
145 due to the very low frequency of this variant. Specifically, it was not possible to investigate the
146 interaction of the *PLCG2* M28L variant with *PLCG2* expression, amyloid plaques, and *APOE* ε4.
147 Therefore, larger cohorts are required to confirm our observation and perform a more
148 comprehensive study of the role of the *PLCG2* M28L variant in microglia-mediated AD
149 pathology.

150 Furthermore, we found that *PLCG2* expression increases in several brain regions of
151 LOAD patients, which correlates with brain amyloid plaque density and expression levels of
152 microglial markers *AIF1* and *TMEM119*²⁸⁻³⁰. These results highlight an important relationship
153 between amyloid plaques and *PLCG2* expression, which is further supported by increased
154 levels of *Pi*cg2 throughout disease progression in the 5xFAD mice, a well-studied model of
155 amyloid pathology²². *PLCG2* expression is also upregulated in the amyloid models TgCRND8

156 and App^{NL-G-F/NL-G-F} mice³¹. Interestingly, microglia surrounding cortical plaques in TgCRND8
157 mice express *Plcg2*²³, further implicating *PLCG2* in microglial response to A β . Nonetheless,
158 further studies are necessary to investigate the role of *PLCG2* in plaque-associated microglia.

159 eQTL analysis was performed to gain insight into the relationship between genetic
160 variants and *PLCG2* expression levels. The SNP most significantly associated with *PLCG2*
161 expression levels was rs4420523, an intronic variant. Within the same haplotype blocks³²,
162 about ten variants that significantly increased *PLCG2* expression were strongly correlated with
163 rs4420523, including a synonymous *PLCG2* variant, rs1143688. Further studies to investigate
164 whether increased gene expression by the *PLCG2* variants is related to AD pathogenesis are of
165 great interest.

166 In conclusion, we identified a novel association between a missense variant in *PLCG2*
167 (M28L) and an increased risk for LOAD. Additionally, we showed that *PLCG2* expression was
168 increased in several brain regions of LOAD patients and strongly correlated with brain amyloid
169 burden in LOAD patients and AD animal models. Our results provide further evidence that
170 *PLCG2* may play an important role in AD pathophysiology. Future studies investigating how the
171 M28L and P522R variants in *PLCG2* modulate its function and microglia phenotypes in AD
172 could lead to the identification of potential therapeutic strategies focused on *PLCG2* activity.

173 **Materials and Methods**

174 **Human participants and RNA-Seq**

175 RNA-Seq and whole-genome sequencing data were obtained from the Accelerating
176 Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium, where all individuals
177 used in the analysis were participants of the Mayo Clinic Brain Bank cohort, the Mount Sinai
178 Medical Center Brain Bank (MSBB) cohort, and the Religious Orders Study and Memory and
179 Aging Project (ROSMAP) cohort.

180 In the Mayo Clinic RNA-Seq dataset³³, RNA was isolated from the temporal cortex (TCX)
181 and cerebellum (CER). The RNA-Seq-based whole transcriptome data were generated from

182 human samples of 151 TCX (71 cognitively normal older adult controls (CN) and 80 LOAD) and
183 151 CER (72 CN and 79 LOAD). LOAD had a Braak score of ≥ 4.0 and met neuropathological
184 criteria for AD, while CN had a Braak score of ≤ 3.0 and without neurodegenerative diagnoses.
185 The quality of the samples was selected to be RNA integrity number (RIN) ≥ 5.0 for inclusion in
186 the study.

187 In the MSBB dataset³⁴, RNA was isolated from the top two most vulnerable regions of
188 LOAD, parahippocampal gyrus (PHG) and inferior frontal gyrus (IFG), and the ranked 7th and
189 14th most vulnerable brain regions of LOAD, superior temporal gyrus (STG) and frontal pole
190 (FP).

191 The assessment of dementia and cognitive status was conducted using a clinical
192 dementia rating scale (CDR)³⁵. LOAD had a CDR score of ≥ 0.5 , while mild cognitive
193 impairment (MCI) had a CDR score of 0.5, and CN had a CDR score of 0 without any significant
194 memory concern of their daily activity. This study included 108 participants (16 CN, 14 MCI, and
195 78 AD) for PHG, 137 participants (21 CN, 18 MCI, and 98 LOAD) for STG, 136 participants (18
196 CN, 16 MCI, and 102 LOAD) for IFG, and 153 participants (22 CN, 20 MCI, and 111 LOAD) for
197 FP.

198 In the ROSMAP dataset³⁶, RNA-Seq was performed on dorsolateral prefrontal cortex
199 from 241 participants (86 CN and 155 LOAD). The diagnosis is based on the assessment of
200 clinical diagnosis of cognitive status, which followed the criteria of the joint working group of the
201 National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's
202 Disease and Related Disorders Association.

203 **Whole Genome Sequencing (WGS)**

204 Pre-processed whole-genome sequencing data were obtained from the Accelerating
205 Medicines Partnership for Alzheimer's Disease (AMP-AD) Consortium^{33,34,36-38}. Whole-genome
206 sequencing libraries were prepared using the KAPA Hyper Library Preparation Kit per the
207 manufacturer's instructions. Libraries were sequenced on an Illumina HiSeq X sequencer using

208 pair-end read chemistry and read lengths of 150bp. The paired-end 150bp reads were aligned
209 to the NCBI reference human genome (GRCh37) using the Burrows-Wheeler Aligner (BWA-
210 MEM)³⁹ and processed using the GATK best practices workflow that marks potential duplicates,
211 locally realigns any suspicious reads, and re-calibrates the base-calling quality scores using
212 Genome Analysis Toolkit (GATK)⁴⁰. The resulting BAM files were analyzed to identify variants
213 using the HaplotypeCaller module of GATK for multi-sample variant callings⁴¹.

214 **Statistical analysis**

215 To investigate the diagnosis group difference of *PLCG2* expression between CN, MCI,
216 and LOAD, we used the *limma* software⁴² to perform a differential expression analysis³⁶. Age,
217 sex, and *APOE* ε4 carrier status were used as covariates. To investigate the relationship
218 between *PLCG2* expression levels and amyloid plaque density or expression levels of microglia
219 specific markers (*AIF1* and *TMEM119*), we used general linear models with *PLCG2*
220 expression levels as a dependent variable and plaque density or microglia specific markers as
221 well as age, sex, and *APOE* ε4 carrier status as explanatory variables. The regression was
222 performed with the "glm" function from the stats package in R (version 3.6.1).

223 In the mouse study, statistical analyses were performed using GraphPad Prism (Version
224 8.4.2). Experiments at the 2-, 4-, 6- and 8-month time points were performed independently, so
225 statistical comparisons between wild-type and 5xFAD AD mice were performed by unpaired t-
226 test. Graphs represent the mean, and error bars denote the SEM.

227 **Mice**

228 All wild-type and 5XFAD mice used in this study were maintained on the C57BL/6J
229 background and purchased from Jackson Laboratory (JAX MMRRC Stock# 034848). All mice
230 were bred and housed in specific-pathogen-free conditions. Both male and female mice were
231 used in this study.

232 **Mouse RNA isolation for qPCR**

233 Mice were anesthetized with Avertin and perfused with ice-cold PBS. The cortical and
234 hippocampal regions from the hemisphere were micro-dissected and stored at -80-degree C.
235 Frozen brain tissue was homogenized in buffer containing 20 mM Tris-HCl (pH=7.4), 250 mM
236 sucrose, 0.5 mM EGTA, 0.5 mM EDTA, RNase-free water, and stored in an equal volume of
237 RNA-Bee (Amsbio, CS-104B) at -80-degree C until proceeding to RNA extraction. RNA was
238 isolated by using chloroform extraction and purified by using the Purelink RNA Mini Kit (Life
239 Technologies). The cDNA was prepared from 750 ng of RNA by using high-capacity of RNA-to-
240 cDNA kit (Applied Biosystems), and the qPCR was performed by using the StepOne Plus Real-
241 Time PCR system (Life Technologies) with Taqman Gene Expression Assay (Mm01242530_m1
242 from the Life Technologies). The relative gene expression was determined by using $\Delta\Delta CT$ and
243 assessed relative to GAPDH (Mm99999915_g1). A Student's t test was performed for qPCR
244 assays, comparing the results of wild-type and 5XFAD animals.

245 **Expression quantitative trait loci (eQTL) analysis**

246 To perform an eQTL analysis of *PLCG2* expression levels, we used common SNPs
247 (± 20 kb from the gene boundary; minor allele frequency (MAF) > 5%) from whole-genome
248 sequencing. Only non-Hispanic Caucasian participants were selected. In addition, age and sex
249 were used as covariates. The results of the eQTL analysis were plotted with LocusZoom⁴³.

250 **Homology Modeling**

251 The model of *PLCG2* structure containing all residues from amino acid 14-1190 was built
252 by using the template of *PLCG1* model⁴⁴. The cartoons with substitutions of M28L and P522R
253 were generated with PyMol (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger,
254 LLC).

255 **Author contributions**

256 A.P.T, J.S, S.J.B, A.L.O, G.W.C, Y.L, G.E.L, B.T.L, and K.N designed the study. A.P.T,
257 C.D, C.P, M.M, P.B.L, N.H, and K.N performed the experiments and analyzed the data. A.P.T,

258 M.M, G.E.L, and K.N wrote the manuscript. All authors discussed the results and commented on
259 the manuscript.

260 **Acknowledgments**

261 We thank Louise Pay for critical comments on the manuscript and Alison Goate (Icahn School
262 of Medicine), Thomas Wingo (Emory University), and Aliza Wingo (Emory University) for
263 discussion. This work was supported by NIA grant RF1 AG051495 (B.T.L and G.E.L), NIA grant
264 RF1 AG050597 (G.E.L), NIA grant U54 AG054345 (B.T.L et al.), NIA grant R03 AG 063250
265 (K.N), and NIH grant NLM R01 LM012535 (K.N)

266 **References**

267

268 1. Isik, A.T. Late onset Alzheimer's disease in older people. *Clin Interv Aging* **5**, 307-11
269 (2010).

270 2. Riedel, B.C., Thompson, P.M. & Brinton, R.D. Age, APOE and sex: Triad of risk of
271 Alzheimer's disease. *J Steroid Biochem Mol Biol* **160**, 134-47 (2016).

272 3. Reiman, E.M. *et al.* Exceptionally low likelihood of Alzheimer's dementia in APOE2
273 homozygotes from a 5,000-person neuropathological study. *Nat Commun* **11**, 667
274 (2020).

275 4. Kim, J., Basak, J.M. & Holtzman, D.M. The role of apolipoprotein E in Alzheimer's
276 disease. *Neuron* **63**, 287-303 (2009).

277 5. Corrada, M.M., Brookmeyer, R., Paganini-Hill, A., Berlau, D. & Kawas, C.H. Dementia
278 incidence continues to increase with age in the oldest old: the 90+ study. *Ann Neurol* **67**,
279 114-21 (2010).

280 6. Kunkle, B.W. *et al.* Genetic meta-analysis of diagnosed Alzheimer's disease identifies
281 new risk loci and implicates Abeta, tau, immunity and lipid processing. *Nat Genet* **51**,
282 414-430 (2019).

283 7. Efthymiou, A.G. & Goate, A.M. Late onset Alzheimer's disease genetics implicates
284 microglial pathways in disease risk. *Mol Neurodegener* **12**, 43 (2017).

285 8. Karch, C.M. & Goate, A.M. Alzheimer's disease risk genes and mechanisms of disease
286 pathogenesis. *Biol Psychiatry* **77**, 43-51 (2015).

287 9. Sims, R. *et al.* Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-
288 mediated innate immunity in Alzheimer's disease. *Nat Genet* **49**, 1373-1384 (2017).

289 10. Hernandez, D., Egan, S.E., Yulug, I.G. & Fisher, E.M. Mapping the gene that encodes
290 phosphatidylinositol-specific phospholipase C-gamma 2 in the human and the mouse.
291 *Genomics* **23**, 504-7 (1994).

292 11. Ombrello, M.J. *et al.* Cold urticaria, immunodeficiency, and autoimmunity related to
293 PLCG2 deletions. *N Engl J Med* **366**, 330-8 (2012).

294 12. Woyach, J.A. *et al.* Resistance mechanisms for the Bruton's tyrosine kinase inhibitor
295 ibrutinib. *N Engl J Med* **370**, 2286-94 (2014).

296 13. Walliser, C. *et al.* The Phospholipase Cgamma2 Mutants R665W and L845F Identified in
297 Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the
298 Rho GTPase Rac2 Protein. *J Biol Chem* **291**, 22136-22148 (2016).

299 14. Keaney, J., Gasser, J., Gillet, G., Scholz, D. & Kadiu, I. Inhibition of Bruton's Tyrosine
300 Kinase Modulates Microglial Phagocytosis: Therapeutic Implications for Alzheimer's
301 Disease. *J Neuroimmune Pharmacol* **14**, 448-461 (2019).

302 15. Laskowski, R.A., Stephenson, J.D., Sillitoe, I., Orengo, C.A. & Thornton, J.M. VarSite:
303 Disease variants and protein structure. *Protein Sci* **29**, 111-119 (2020).

304 16. Hajicek, N., Charpentier, T.H., Rush, J.R., Harden, T.K. & Sondek, J. Autoinhibition and
305 phosphorylation-induced activation of phospholipase C-gamma isozymes. *Biochemistry*
306 **52**, 4810-9 (2013).

307 17. Peng, Q. *et al.* TREM2- and DAP12-dependent activation of PI3K requires DAP10 and is
308 inhibited by SHIP1. *Sci Signal* **3**, ra38 (2010).

309 18. Hurley, J.H. & Grobler, J.A. Protein kinase C and phospholipase C: bilayer interactions
310 and regulation. *Curr Opin Struct Biol* **7**, 557-65 (1997).

311 19. Falasca, M. *et al.* Activation of phospholipase C gamma by PI 3-kinase-induced PH
312 domain-mediated membrane targeting. *EMBO J* **17**, 414-22 (1998).

313 20. Matsuda, M. *et al.* Real time fluorescence imaging of PLC gamma translocation and its
314 interaction with the epidermal growth factor receptor. *J Cell Biol* **153**, 599-612 (2001).

315 21. Wang, J., Sohn, H., Sun, G., Milner, J.D. & Pierce, S.K. The autoinhibitory C-terminal
316 SH2 domain of phospholipase C-gamma2 stabilizes B cell receptor signalosome
317 assembly. *Sci Signal* **7**, ra89 (2014).

318 22. Everett, K.L. *et al.* Characterization of phospholipase C gamma enzymes with gain-of-
319 function mutations. *J Biol Chem* **284**, 23083-93 (2009).

320 23. Magno, L. *et al.* Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective
321 variant is a functional hypermorph. *Alzheimers Res Ther* **11**, 16 (2019).

322 24. van der Lee, S.J. *et al.* A nonsynonymous mutation in PLCG2 reduces the risk of
323 Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and
324 increases the likelihood of longevity. *Acta Neuropathol* **138**, 237-250 (2019).

325 25. Kleineidam, L. *et al.* PLCG2 protective variant p.P522R modulates tau pathology and
326 disease progression in patients with mild cognitive impairment. *Acta Neuropathol* (2020).

327 26. Conway, O.J. *et al.* ABI3 and PLCG2 missense variants as risk factors for
328 neurodegenerative diseases in Caucasians and African Americans. *Mol Neurodegener*
329 **13**, 53 (2018).

330 27. Dalmasso, M.C. *et al.* Transethnic meta-analysis of rare coding variants in PLCG2,
331 ABI3, and TREM2 supports their general contribution to Alzheimer's disease. *Transl
332 Psychiatry* **9**, 55 (2019).

333 28. Hopperton, K.E., Mohammad, D., Trepanier, M.O., Giuliano, V. & Bazinet, R.P. Markers
334 of microglia in post-mortem brain samples from patients with Alzheimer's disease: a
335 systematic review. *Mol Psychiatry* **23**, 177-198 (2018).

336 29. Kaiser, T. & Feng, G. Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for
337 Labeling and Manipulating Microglia. *eNeuro* **6**(2019).

338 30. Satoh, J. *et al.* TMEM119 marks a subset of microglia in the human brain.
339 *Neuropathology* **36**, 39-49 (2016).

340 31. Castillo, E. *et al.* Comparative profiling of cortical gene expression in Alzheimer's
341 disease patients and mouse models demonstrates a link between amyloidosis and
342 neuroinflammation. *Sci Rep* **7**, 17762 (2017).

343 32. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states,
344 conservation, and regulatory motif alterations within sets of genetically linked variants.
345 *Nucleic Acids Res* **40**, D930-4 (2012).

346 33. Allen, M. *et al.* Human whole genome genotype and transcriptome data for Alzheimer's
347 and other neurodegenerative diseases. *Sci Data* **3**, 160089 (2016).

348 34. Wang, M. *et al.* The Mount Sinai cohort of large-scale genomic, transcriptomic and
349 proteomic data in Alzheimer's disease. *Sci Data* **5**, 180185 (2018).

350 35. Morris, J.C. The Clinical Dementia Rating (CDR): current version and scoring rules.
351 *Neurology* **43**, 2412-4 (1993).

352 36. Bennett, D.A. *et al.* Religious Orders Study and Rush Memory and Aging Project. *J*
353 *Alzheimers Dis* **64**, S161-S189 (2018).

354 37. Carrasquillo, M.M. *et al.* Genetic variation in PCDH11X is associated with susceptibility
355 to late-onset Alzheimer's disease. *Nat Genet* **41**, 192-8 (2009).

356 38. De Jager, P.L. *et al.* A multi-omic atlas of the human frontal cortex for aging and
357 Alzheimer's disease research. *Sci Data* **5**, 180142 (2018).

358 39. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
359 transform. *Bioinformatics* **26**, 589-95 (2010).

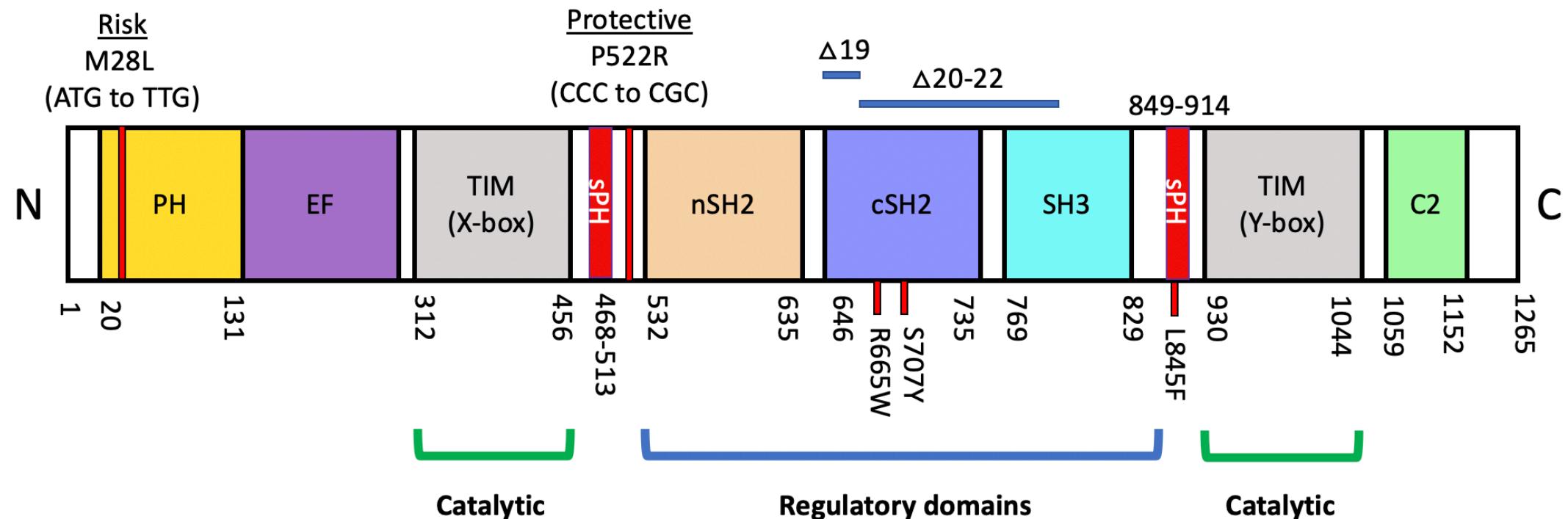
360 40. DePristo, M.A. *et al.* A framework for variation discovery and genotyping using next-
361 generation DNA sequencing data. *Nat Genet* **43**, 491-8 (2011).

362 41. Nho, K. *et al.* Comparison of Multi-Sample Variant Calling Methods for Whole Genome
363 Sequencing. *IEEE Int Conf Systems Biol* **2014**, 59-62 (2014).

364 42. Ritchie, M.E. *et al.* limma powers differential expression analyses for RNA-sequencing
365 and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).

366 43. Pruij, R.J. *et al.* LocusZoom: regional visualization of genome-wide association scan
367 results. *Bioinformatics* **26**, 2336-7 (2010).

368 44. Hajicek, N. *et al.* Structural basis for the activation of PLC-gamma isozymes by
369 phosphorylation and cancer-associated mutations. *Elife* **8**(2019).
370


Table 1: *PLCG2* M28L confers a higher risk of LOAD

<i>PLCG2</i> M28L (rs61749044)
p=0.047
OR=1.164 [95% CI=1.002-1.351]

OR *odds ratio*, CI *confidence interval*

Fig. 1 *PLCG2* M28L variant in PH domain

a

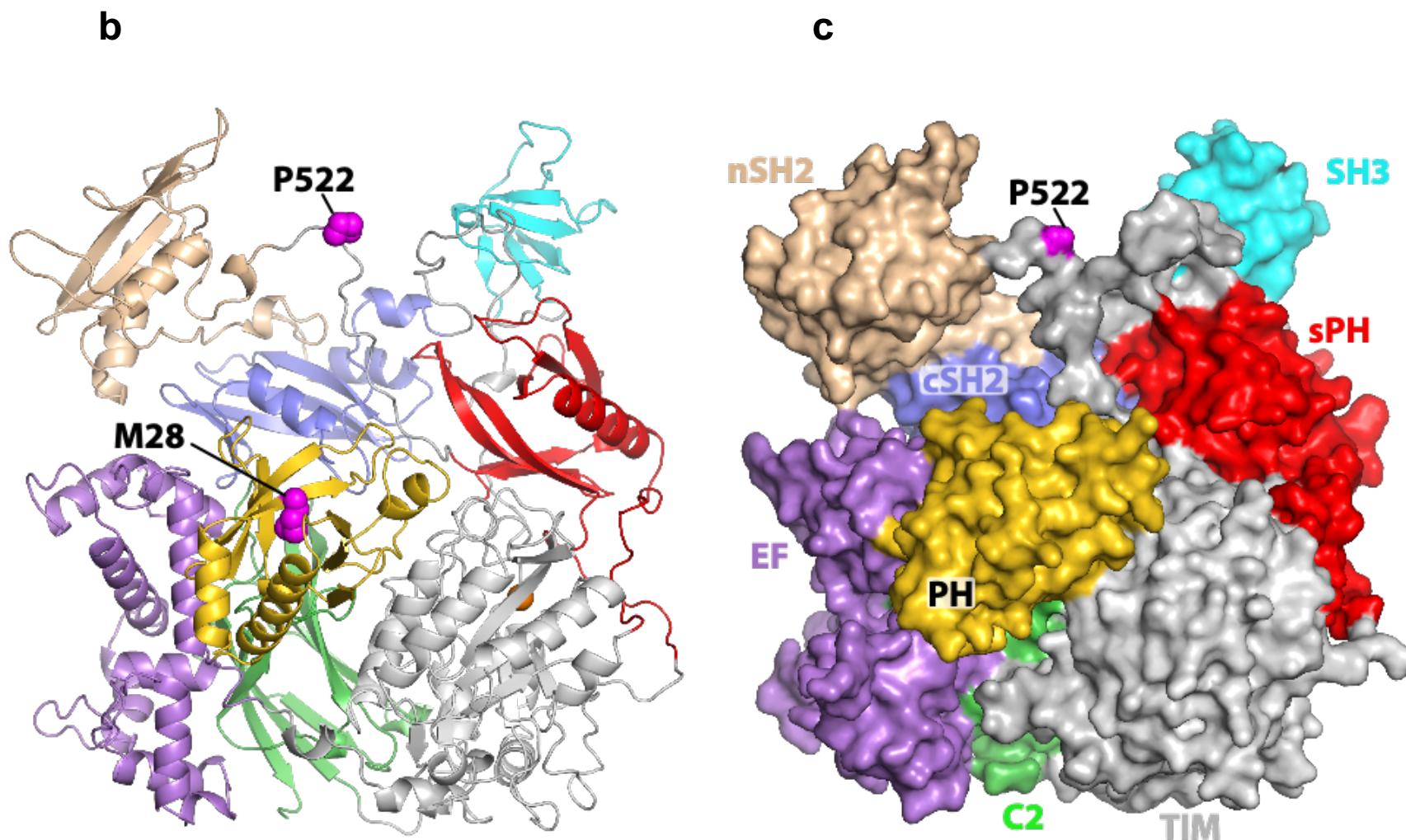


Fig 1. *PLCG2* M28L variant in PH domain.

Domain architecture of *PLCG2* drawn to scale. Genomic deletions (exon 19, $\Delta 19$, or exon 20-22, $\Delta 20-22$) or somatic mutations (R665W or S707Y) in *PLCG2* within the regulatory domains are shown in the domain architecture. *PLCG2* M28L (risk) and P522R (protective) variants are shown in the domain architecture (a) and mapped onto the structure of *PLCG2* (magenta spheres) in both homology model (b) and space-filling model (c).

N amino-terminus, C carboxyl-terminus, PH pleckstrin homology domain, EF EF hand motif, TIM TIM barrel, sPH split PH domain, nSH2 n-terminus Src Homology 2 domain, cSH2 c-terminus Src Homology 2 domain, SH3 SRC Homology 3 domain, C2 C2 domain

Fig. 1

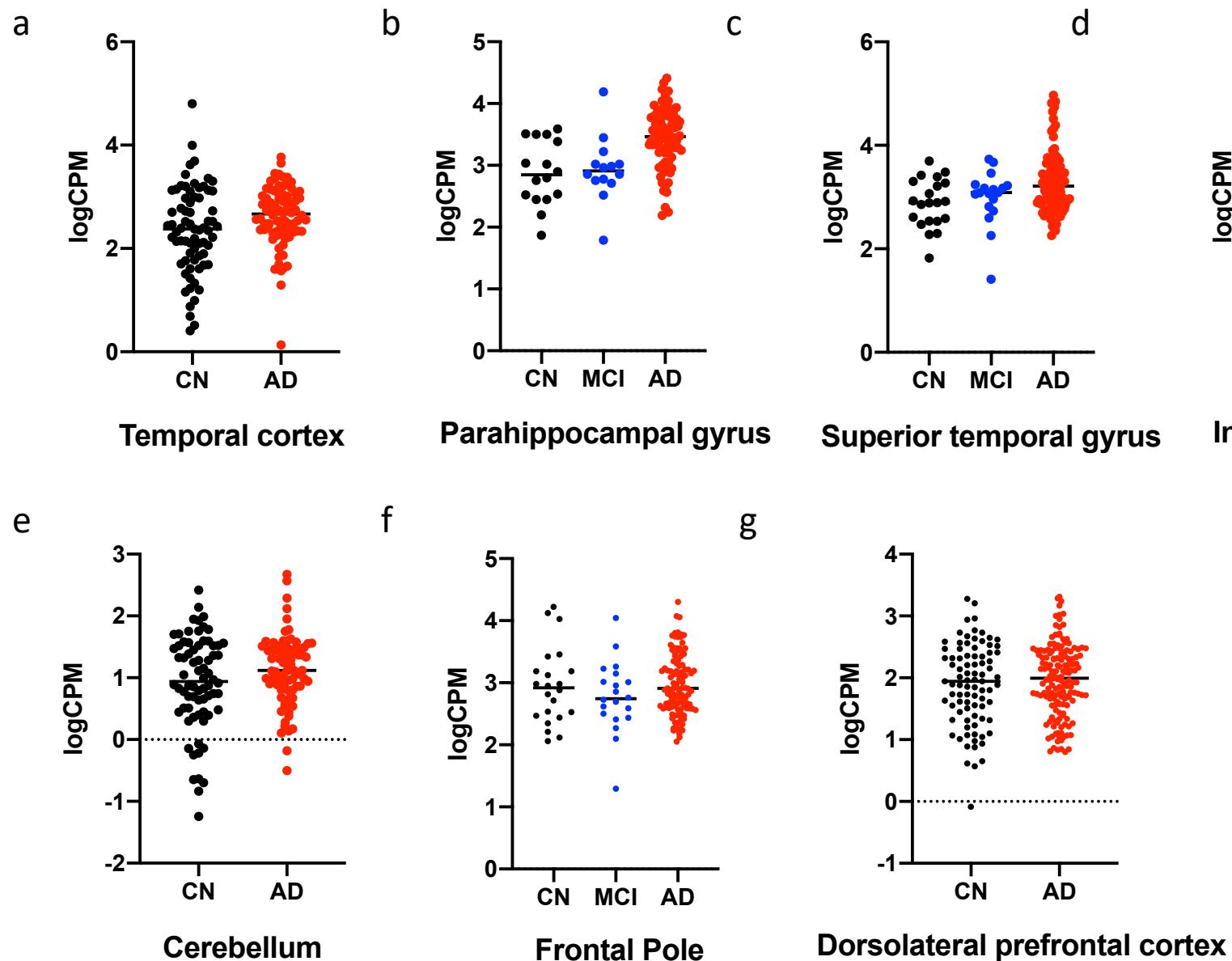


Table 2. Demographic information of the participants included in this study

Brain region	TCX		PHG			STG			IFG			FP			CER		DLPFC	
Diagnosis	CN	AD	CN	MCI	AD	CN	MCI	AD	CN	MCI	AD	CN	MCI	AD	CN	AD	CN	AD
No. of participants	71	80	16	14	78	21	18	98	18	16	102	22	20	111	72	79	86	155
Sex (Female/Male)	35/36	49/31	11/5	7/7	54/25	16/5	11/7	65/33	12/6	7/9	69/33	16/6	11/9	75/36	35/37	47/32	47/39	109/46
Mean age at death (SD), years	82.7 (8.5)	82.6 (7.7)	83.5 (8.9)	80.6 (10.8)	85.5 (6.1)	83.8 (8.1)	82.1 (10.4)	84.5 (6.7)	83.2 (8.6)	80.8 (10.5)	85.4 (6.0)	83.1 (7.7)	83.2 (9.8)	85.4 (5.9)	82.3 (8.3)	82.5 (7.7)	83.4 (5.9)	88.2 (3.1)
Mean RIN (SD)	7.7 (1.0)	8.6 (0.6)	7.1 (0.9)	6.7 (0.7)	6.5 (0.9)	6.4 (1.0)	6.4 (0.8)	6.3 (0.9)	8.7 (1.4)	8.8 (1.6)	8.0 (1.8)	6.8 (0.9)	7.0 (1.0)	6.8 (0.9)	7.7 (1.0)	8.4 (0.7)	7.3 (1.0)	6.9 (0.9)
APOE genotype (ϵ 4+/ ϵ 4-)	62/9	38/42	14/2	9/5	57/21	17/4	12/6	65/33	16/2	8/8	72/30	19/3	13/7	70/41	62/10	38/41	77/9	91/64

TCX *temporal cortex*, PHG *parahippocampal gyrus*, STG *superior temporal gyrus*, IFG *inferior temporal gyrus*, FP *frontal pole*, CER *cerebellum*, DLPFC *dorsolateral prefrontal cortex*, CN *cognitively normal*, AD *Alzheimer's disease*, MCI *mild cognitive impairment*, RIN *RNA integrity number*, APOE ϵ 4+/- *carriers and non-carriers of the APOE ϵ 4 allele*

Fig 2. Relative quantification of the *PLCG2* expression in the studied participants

Fig 2. Relative quantification of *PLCG2* expression in the studied participants. Gene expression is showed as logCPM values. (a) Temporal cortex (TCX)-Mayo, (b) Parahippocampal gyrus (PHG)-MSBB, (c) Superior temporal gyrus (STG)-MSBB, (d) Inferior prefrontal gyrus (IFG)-MSBB, (e) Cerebellum (CER)-Mayo, (f) Frontal pole (FP)-MSBB, (g) Dorsolateral prefrontal cortex (DLPFC)-ROSMAP

CN cognitively normal , AD Alzheimer's disease, MCI mild cognitive impairment

Table 3. *PLCG2* expression levels were increased in LOAD

Brain Regions	TCX	PHG			STG			IFG		
Covariate	Age and Sex	Age and Sex			Age and Sex			Age and Sex		
Contrast	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD
logFC	0.27056314	0.07196964	0.473066378	0.550085612	0.127793252	0.34416553	0.45549039	0.076802391	0.29211474	0.35622471
p-value	4.56E-02	9.99E-01	6.74E-02	1.74E-03	1.00E+00	1.29E-01	2.55E-02	1.00E+00	5.72E-02	1.38E-02
Covariate	Age, Sex, and APOE $\epsilon 4$ status	Age, Sex, and APOE $\epsilon 4$ status			Age, Sex, and APOE $\epsilon 4$ status			Age, Sex, and APOE $\epsilon 4$ status		
Contrast	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD
logFC	0.248525854	0.02041513	0.492722546	0.569868694	0.097484106	0.329619141	0.415487533	0.007469606	0.300240428	0.33069001
p-value	1.03E-01	1.00E+00	8.71E-02	2.20E-03	1.00E+00	1.73E-01	4.95E-02	1.00E+00	5.96E-02	2.60E-02
Brain Regions	CER	FP			DLPFC					
Covariate	Age and Sex	Age and Sex			Age and Sex					
Contrast	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. AD					
logFC	0.207937827	-0.188185731	0.178098774	0.02365209	-0.080816649					
p-value	9.34E-02	9.85E-01	4.56E-01	9.67E-01	4.53E-01					
Covariate	Age, Sex, and APOE $\epsilon 4$ status	Age, Sex, and APOE $\epsilon 4$ status			Age, Sex, and APOE $\epsilon 4$ status					
Contrast	CN vs. AD	CN vs. MCI	MCI vs. AD	CN vs. AD	CN vs. AD					
logFC	0.2365597	-0.228761625	0.18490708	0.01861041	-0.094639191					
p-value	8.46E-02	9.53E-01	4.73E-01	9.82E-01	4.53E-01					

Table 3 shows the *p*-value for the gene expression analysis performed by *limma* using RNA-Seq data from AMP-AD Consortium.

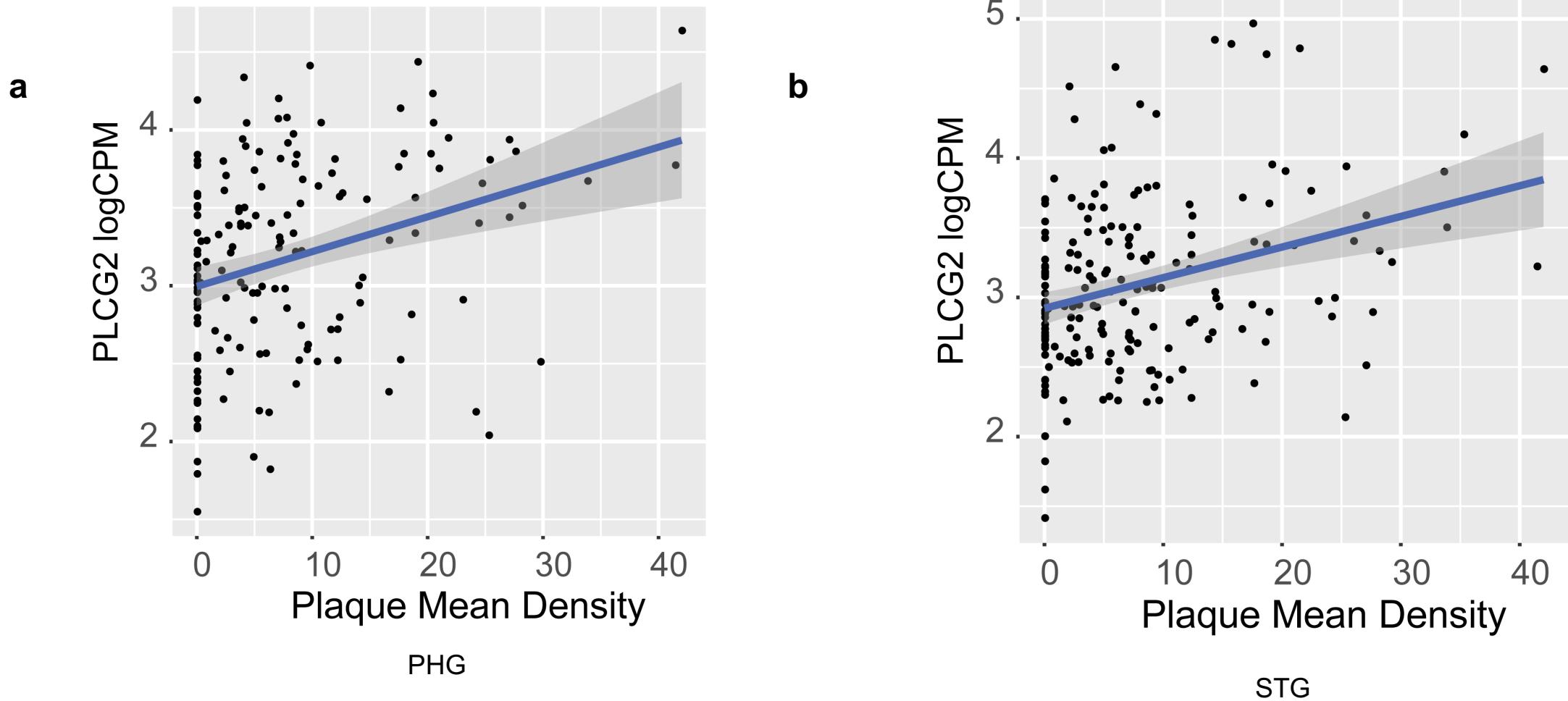

TCX temporal cortex, PHG parahippocampal gyrus, STG superior temporal gyrus, IFG inferior temporal gyrus, FP frontal pole, CER cerebellum, DLPFC dorsolateral prefrontal cortex, CN cognitively normal, AD Alzheimer's disease, MCI mild cognitive impairment, logFC log fold-change

Table 4. *PLCG2* expression levels were associated with amyloid plaque density and expression levels of microglia specific markers

Brain Regions (MSBB)	Frontal Pole			Parahippocampal Gyrus			Superior Temporal Gyrus			Inferior Frontal Gyrus		
	β	SE	<i>p</i> -value	β	SE	<i>p</i> -value	β	SE	<i>p</i> -value	β	SE	<i>p</i> -value
Plaque Mean Density	0.01	0.005	8.45E-02	0.027	0.006	5.22E-05	0.026	0.006	2.02E-04	0.017	0.006	2.73E-03
<i>AIF1</i>	0.258	0.051	1.09E-06	0.419	0.078	5.43E-07	0.33	0.063	8.98E-07	0.257	0.054	6.15E-06
<i>TMEM119</i>	0.518	0.057	1.28E-15	0.806	0.066	<2E-16	0.71	0.064	<2E-16	0.582	0.065	6.64E-15

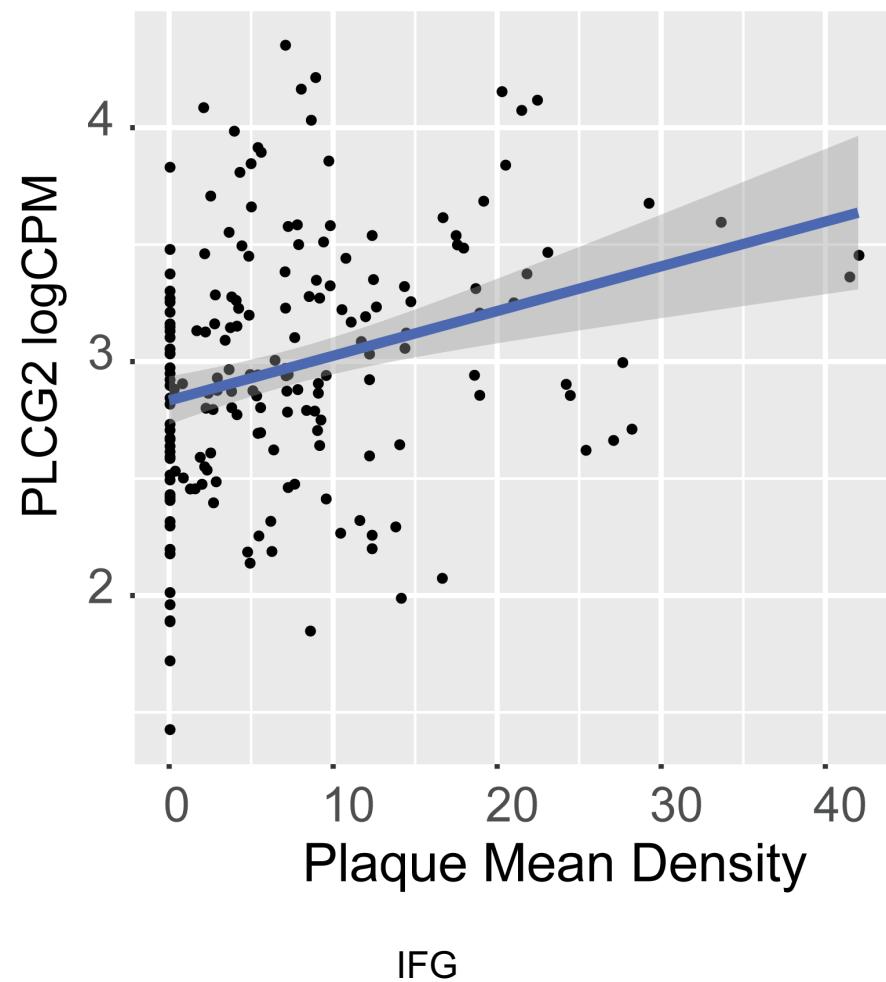
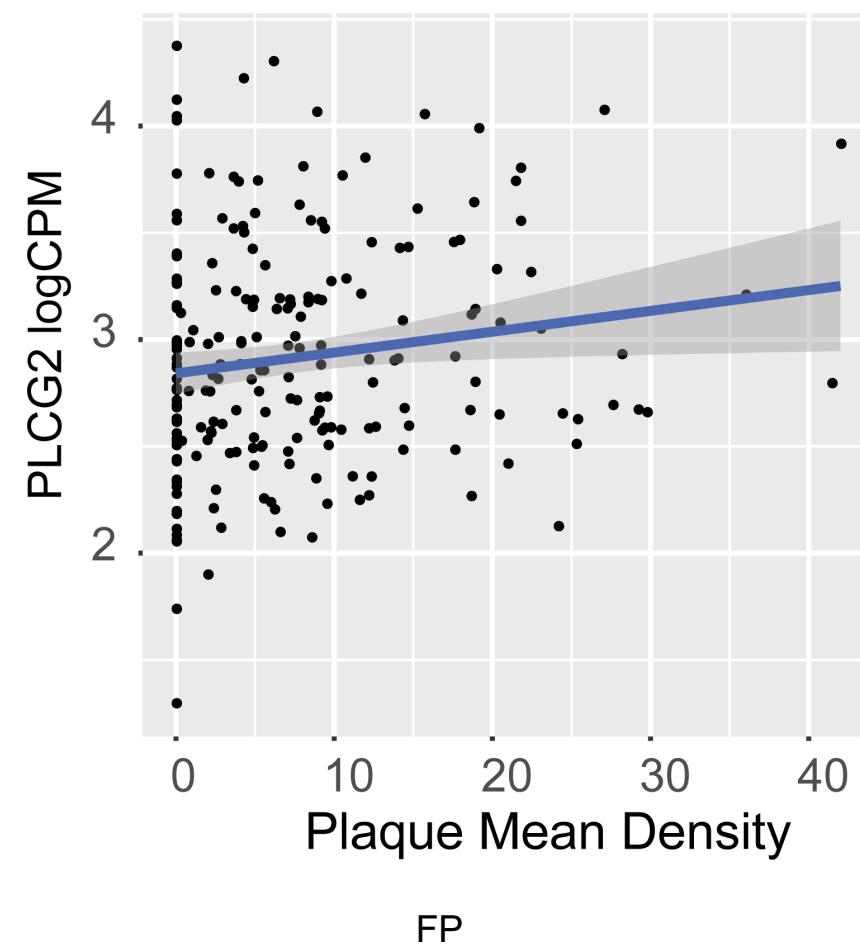


Table 4 shows the β coefficient (β), standard error (SE), and *p*-value for the association analysis between *PLCG2* expression levels and amyloid plaque density or expression levels of microglia specific markers, *AIF1* and *TMEM119* by general linear models.

Fig 3. Associations of *PLCG2* expression with amyloid plaque mean density

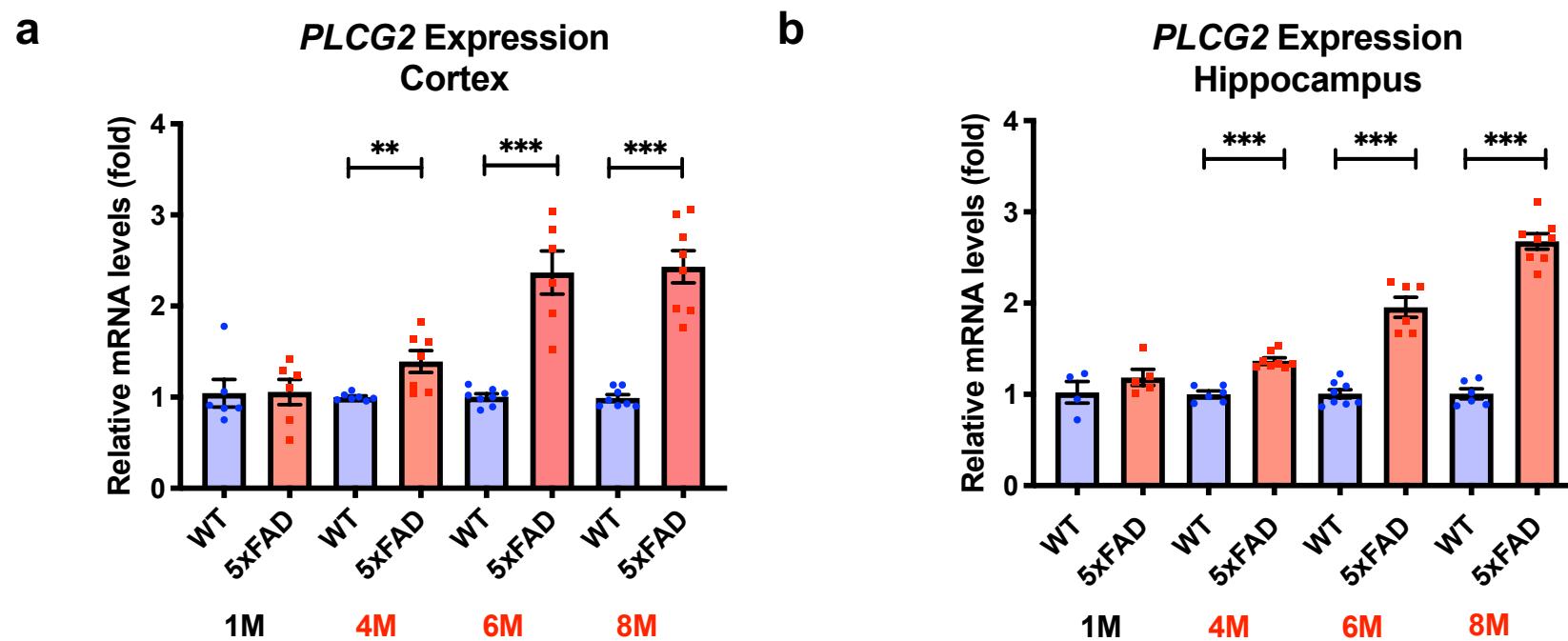


Fig 3. Associations of *PLCG2* expression with amyloid plaque mean density.

The scatter plots show the positive association between *PLCG2* expression and plaque mean density in (a) parahippocampal gyrus, (b) superior temporal gyrus and (c) inferior prefrontal gyrus, and (d) frontal pole from MSBB cohort.

c**d**

Fig 4. *Plcg2* expression levels were increased in a mouse model of amyloid pathology.

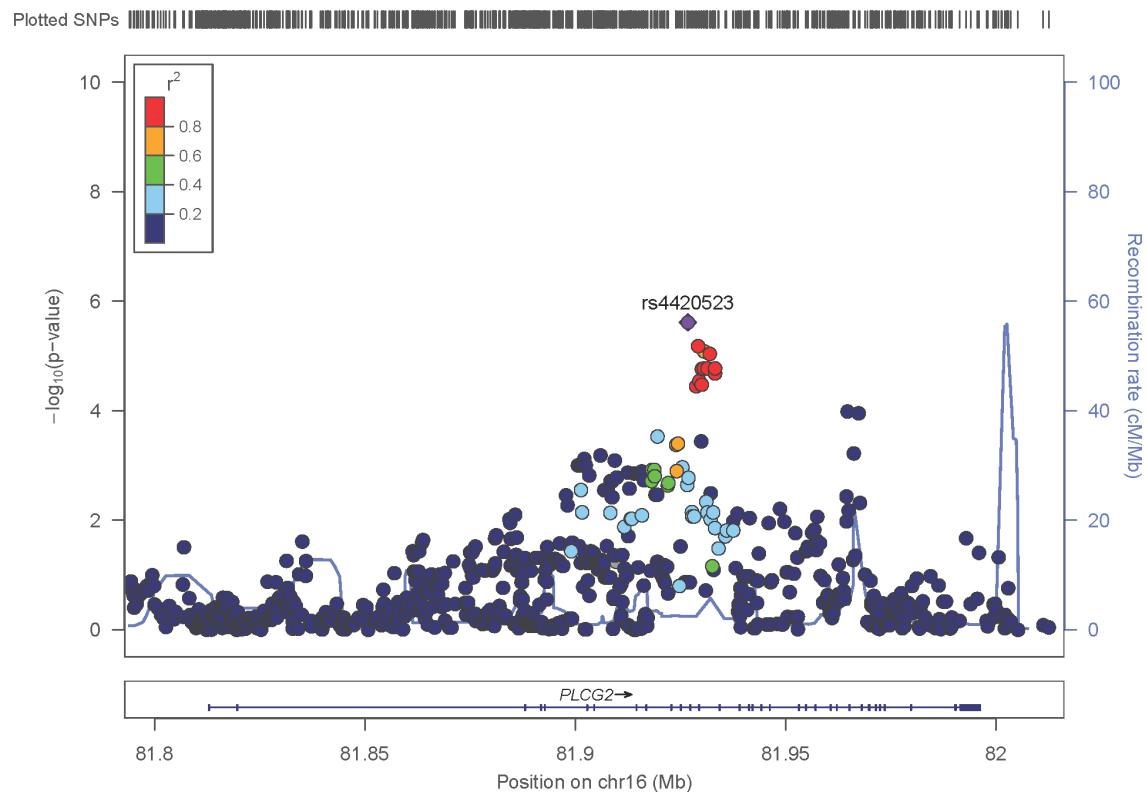
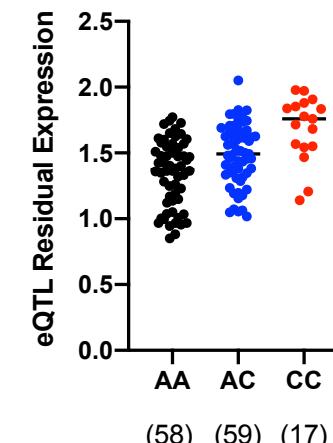
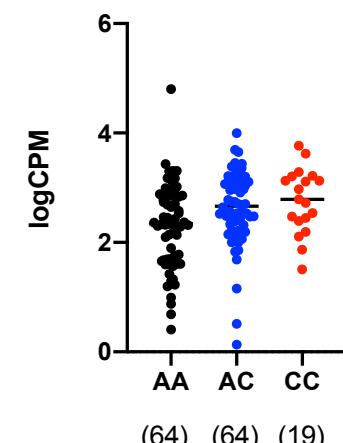


Fig 4. *Plcg2* expression levels were increased in a mouse model of amyloid pathology.

Plcg2 RNA levels were assessed in cortical and hippocampal lysates from 5xFAD mice. There were significant changes in the *PLCG2* gene expression in both cortex (a) and hippocampus (b) at 4 months, 6 months, and 8 months of age (n=4-8 mice). **p<0.01; ***p<0.001

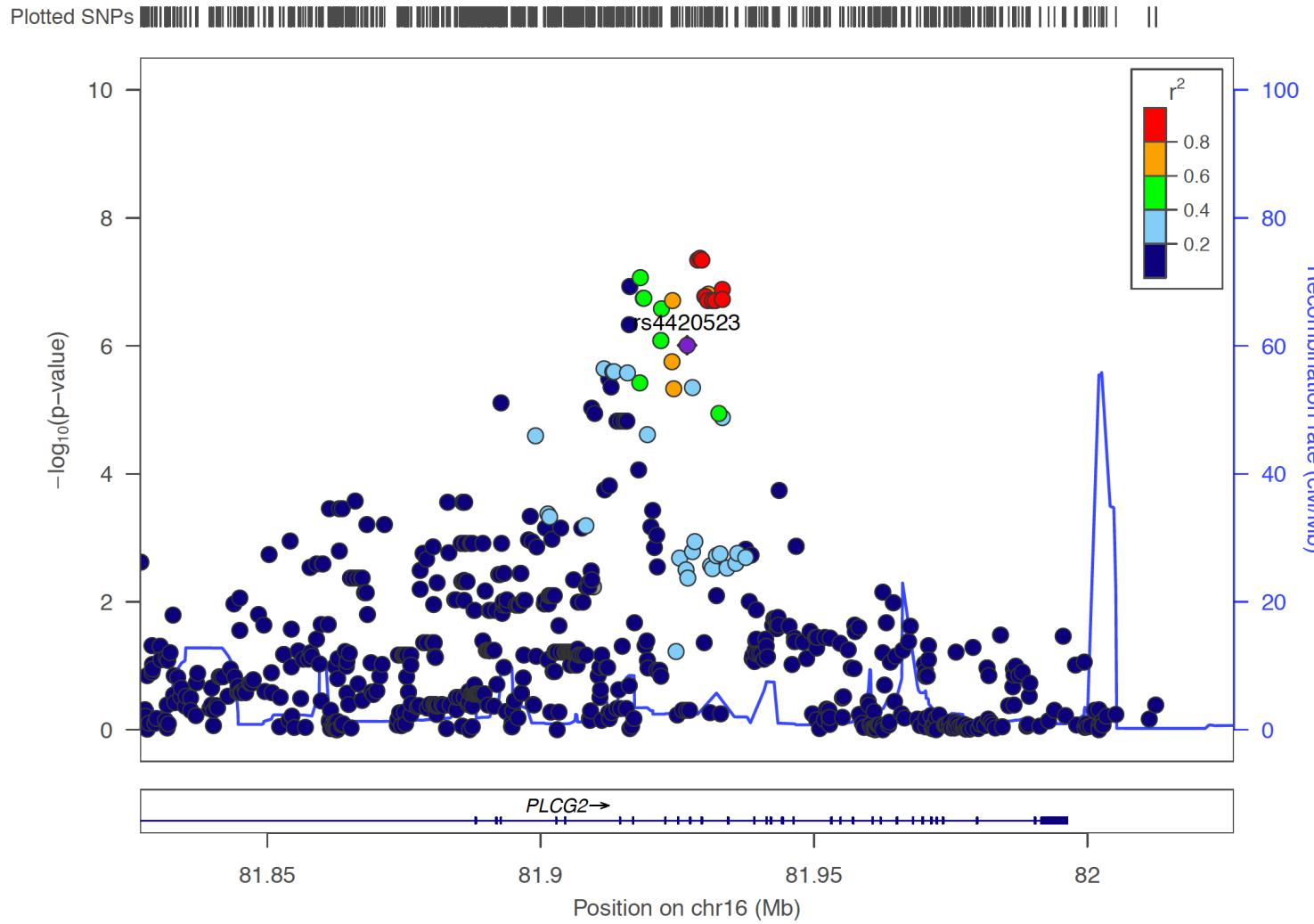
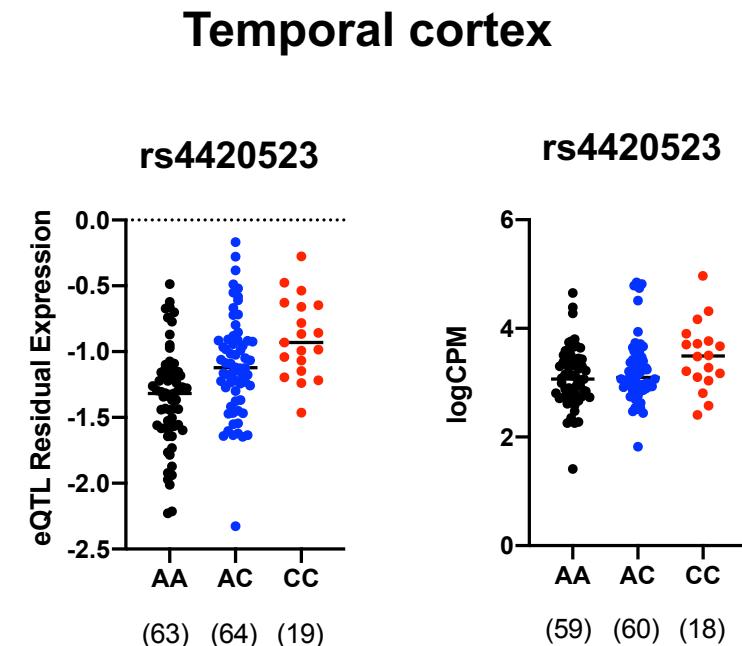
Fig. 5 eQTL analysis of *PLCG2*

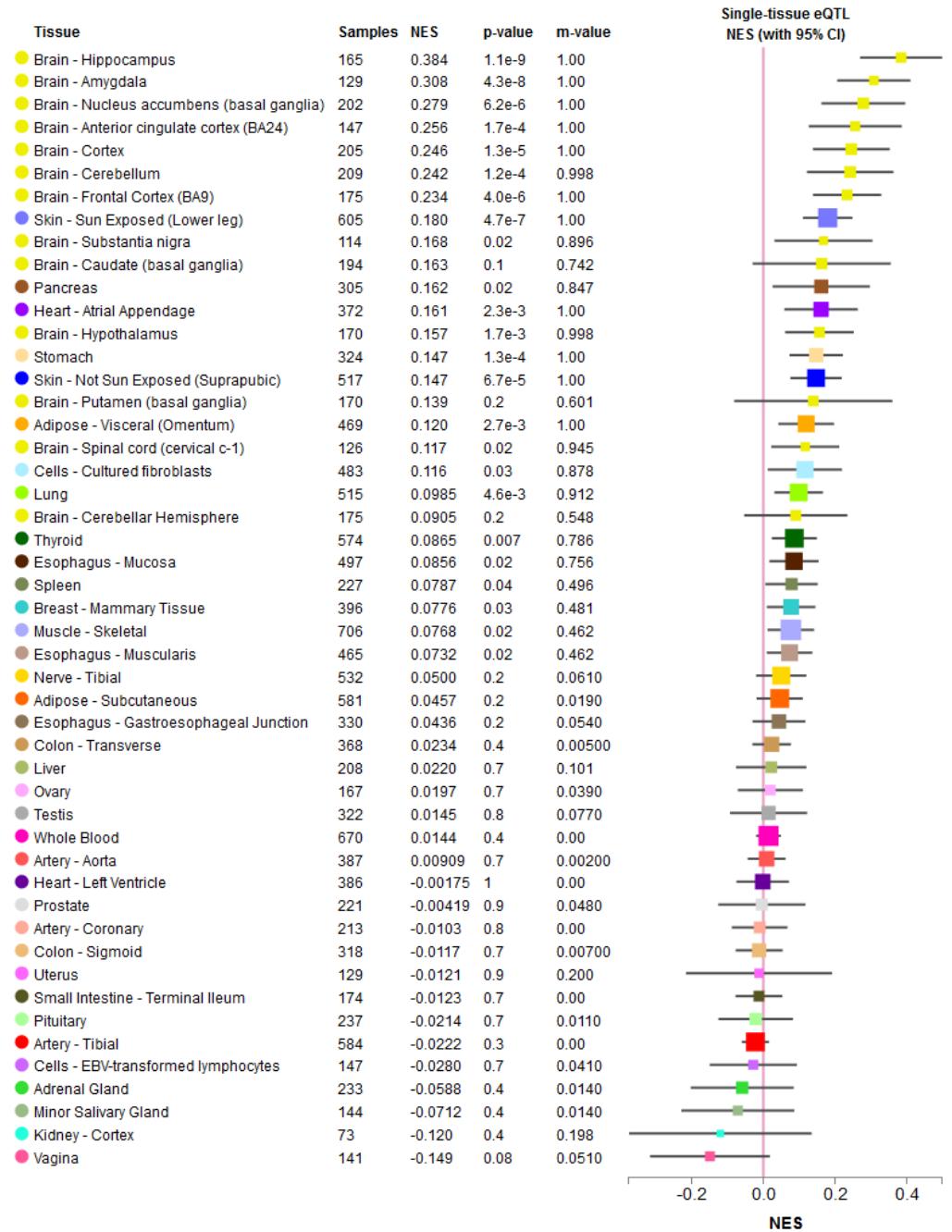

a


b

Superior temporal gyrus

rs4420523



rs4420523


Fig 5. eQTL analysis of *PLCG2*.

SNP positions on chromosome 16 and their color-coded association with *PLCG2* expression from (a) superior temporal gyrus and (c) temporal cortex are plotted by LocusZoom. The SNP (rs4420523) with lowest *p*-value is indicated. The *PLCG2* expression levels of participants with or without rs4420523 are showed as both eQTL residual expression and logCPM value from superior temporal gyrus (b) and temporal cortex (d). The numbers of participants are shown below the genotypes. The results of single-tissue eQTL analysis for rs4420523 are presented in (e).

NES normalized effect size, chr16 chromosome 16, eQTL expression quantitative trait loci analysis, Major allele A, Minor allele C

C**D**

e

