

1 **Metagenomic identification of diverse animal hepaciviruses and**
2 **pegiviruses**

3

4

5 Ashleigh F. Porter¹, John H.-O. Pettersson^{1,2}, Wei-Shan Chang¹, Erin Harvey¹, Karrie Rose³,
6 Mang Shi⁵, John-Sebastian Eden^{1,4}, Jan Buchmann¹, Craig Moritz⁶, Edward C. Holmes¹

7

8

9 1. Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and
10 Environmental Sciences and School of Medical Sciences, The University of Sydney,
11 Sydney, Australia.
12 2. Zoonosis Science Center, Department of Medical Biochemistry and Microbiology,
13 Uppsala University, Uppsala, Sweden.
14 3. Australian Registry of Wildlife Health, Taronga Conservation Society Australia,
15 Mosman, Australia.
16 4. Centre for Virus Research, Westmead Institute for Medical Research, Westmead,
17 Australia.
18 5. School of Medicine, Sun Yat-sen University, Guangzhou, China.
19 6. Research School of Biology, and Centre for Biodiversity Analysis, Australian National
20 University, Acton, ACT, Australia.

21

22

23 Address correspondence to:

24 Edward C. Holmes,
25 Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and
26 Environmental Sciences and School of Medical Sciences, The University of Sydney,
27 Sydney, Australia
28 edward.holmes@sydney.edu.au

29 **Abstract**

30

31 The RNA virus family *Flaviviridae* harbours several important pathogens of humans and
32 other animals, including Zika virus, dengue virus and hepatitis C virus. The *Flaviviridae* are
33 currently divided into four genera - *Hepacivirus*, *Pegivirus*, *Pestivirus* and *Flavivirus* – each
34 of which have a diverse host range. Members of the genus *Hepacivirus* are associated with
35 a diverse array of animal species, including humans and non-human primates, other
36 mammalian species, as well as birds and fish, while the closely related pegiviruses have
37 been identified in a variety of mammalian taxa including humans. Using a combination of
38 meta-transcriptomic and whole genome sequencing we identified four novel hepaciviruses
39 and one novel variant of a known virus, in five species of native Australian wildlife,
40 expanding our knowledge of the diversity in this important group of RNA viruses. The
41 infected hosts comprised native Australian marsupials and birds, as well as a native gecko
42 (*Gehyra lauta*). The addition of these novel viruses led to the identification of a distinct
43 marsupial clade within the hepacivirus phylogeny that also included an engorged *Ixodes*
44 *holocyclus* tick collected while feeding on Australian long-nosed bandicoots (*Perameles*
45 *nasuta*). Gecko and avian associated hepacivirus lineages were also identified. In addition,
46 by mining the short-read archive (SRA) database we identified another five novel members
47 of *Flaviviridae*, comprising three new hepaciviruses from avian and primate hosts, as well as
48 two primate-associated pegiviruses. The large-scale phylogenetic analysis of these novel
49 hepacivirus and pegivirus genomes provides additional support for virus-host co-
50 divergence over evolutionary time-scales.

51 **Introduction**

52 As the vast majority of emerging infectious disease in humans are caused by viral zoonoses
53 [1], the identification and characterization of animal viruses is critical for identifying potential
54 disease reservoirs and providing models for the study of human viruses [2,3]. Two related
55 groups of viruses that have recently received considerable attention are the genera
56 *Hepacivirus* and *Pegivirus* from the family *Flaviviridae* of single-strand positive-sense RNA
57 viruses. Hepaciviruses infect a broad range of vertebrate hosts, including humans, non-
58 human primates [4,5], and a variety of other mammals including rodents [6-10], horses [11],
59 bats [12], and cows [13,14]. Hepaciviruses have also been detected in birds [15, 16], fish
60 and a variety of other vertebrates [17, 18]. Additionally, two hepatitis C virus-like sequences
61 have been identified in arthropods (a mosquito and tick), although their true host is
62 uncertain [19, 20]. Despite such a wide diversity of animal hosts, hepatitis C viruses remain
63 synonymous with liver infection, with the most notable example being human hepatitis C
64 virus (HCV). While some non-primate hepatitis C viruses have been well characterized,
65 particularly equine hepatitis C virus (also known as Hepacivirus AK, or non-primate hepatitis C virus,
66 NPHV) and canine hepatitis C virus (CHV), it seems likely that HCV, along with NPHV and CHV,
67 arose from a currently unknown zoonotic source, with rodents and bats suggested as
68 possible reservoirs [21-24].

69

70 The genus *Pegivirus* contains 11 defined virus species known to infect humans and a variety
71 of other mammals. In addition, a novel avian pegivirus was recently identified in a Common
72 myna bird (*Acridotheres tristis*) [25]. Human pegivirus (HPgV), previously known as GB virus
73 C, is known to infect humans but with an unproven link with clinical illness [26], despite
74 being identified in the brain tissue of patients with encephalitis [27]. Non-human primate
75 pegiviruses have been identified in both New World monkeys [28, 29] and Old World apes,
76 including chimpanzees [30-32], the latter of which (SPgV_{cpz}) are closely related to HPgV
77 [33]. Other pegiviruses have been found in horses [34], bats [12, 35] and rodents [7,8].

78

79 Despite their broad host range, all hepatitis C viruses and pegiviruses described to date possess
80 a single-strand positive-sense RNA genome and a large open reading frame encoding a
81 single polyprotein flanked by untranslated regions. Although this structure is common
82 among the *Flaviviridae* [36, 37], a more diverse set of genome structures, including
83 segmented forms, have been identified in invertebrate flaviviruses [18]. The multifunctional
84 polyprotein is cleaved by proteases to create ten proteins: three structural (core, E1, E2)
85 and seven non-structural (NS1, NS2, NS3, NS4a, NS4b, NS5a, NS5b) [24]. It is important to

86 note that while many members of the genus *Flavivirus* are transmitted via arthropod
87 vectors, and it has been hypothesised that biting arthropod vectors may transmit some
88 hepaciviruses [37], there is currently no evidence of vector-borne transmission in either the
89 *Hepacivirus* or *Pegivirus* genera. Recently, however, a novel hepacivirus, Brushtail possum
90 hepacivirus, was discovered in brush-tailed possums (*Trichosurus vulpecula*), a native
91 Australian marsupial [38]. Similarly, Collins beach hepacivirus was identified in a tick (*Ixodes*
92 *holocyclus*) feeding on another Australian marsupial (long-nosed bandicoot, *Perameles*
93 *nasuta*) [19]. These data suggest that Australian native wildlife harbour a diversity of
94 hepaciviruses worthy of further exploration.

95

96 As hepaciviruses have traditionally been difficult to culture, the recent expansion of animal
97 hepaciviruses is largely due to the advent of unbiased high-throughput sequencing. This
98 expansion has greatly impacted our understanding of the diversity and evolution of this
99 important genus. Herein, we used a bulk RNA-sequencing (meta-transcriptomic) approach
100 to identify additional novel hepaciviruses in Australian wildlife and determine their
101 abundance. This approach has previously proven successful in an Australian context,
102 identifying a variety of viruses in Australian wildlife, including native Australian and invasive
103 species [19, 38-43]. To supplement this analysis, we mined the sequence read archive
104 (SRA) database for hepacivirus-like sequences. Previously generated RNA sequencing
105 data, such as those found in the SRA, are a relatively untapped resource for novel virus
106 discovery [44]. Through SRA-mining we identified three novel hepaciviruses and two novel
107 pegiviruses, again highlighting the power of genomics to identify novel viral sequences.

108

109

110 **Materials and Methods**

111 *Animal ethics*

112 The magpie lark and pelican were handled under a series of NSW Office of Environment
113 and Heritage Licences to Rehabilitate Injured, Sick or Orphaned Protected Wildlife
114 (#MWL000100542). Samples were collected under the Opportunistic Sample Collection
115 Program of the Taronga Animal Ethics Committee, and scientific licence SL100104 issued
116 by the NSW Office of Environment and Heritage. Ticks were removed from the long-nosed
117 bandicoot under the approval of the NSW Office of Environment and Heritage Animal Ethics
118 Committee (#000214/05) and scientific license SL100104.

119

120 *Sample collection*

121 The samples analysed here were collected from a variety of sources (Table 1). Gecko
122 hepacivirus (RNASeq library VERT7) was obtained from a liver sample (#CCM0247) of a
123 seemingly healthy gecko (*Gehyra lauta*) collected at West Leichardt Station, Queensland in
124 2013 [45]. Pelican hepacivirus (RNASeq library VERT5) was obtained from the liver
125 (Australian Registry of Wildlife Health #9381.1) of an Australian pelican (*Pelecanus*
126 *conspicillatus*) collected at Blackwall Bay, New South Wales (NSW) in 2013. The pelican
127 presented with an ongoing syndrome of profound weakness, diarrhoea, dyspnoea, and
128 death, consistently associated with myocardial degeneration to necrosis. Magpie lark
129 hepacivirus (Australian Registry of Wildlife Health #9585.8) was obtained from brain
130 (RNASeq library VERT14) and heart samples (RNASeq library VERT 15) of an injured
131 juvenile magpie lark (*Grallina cyanoleuca*) collected at Warigee, NSW in 2013 [46]. Collins
132 Beach virus 1 was identified from three engorged female ticks (*Ixodes holocyclus*) collected
133 while feeding on a healthy long-nose bandicoot (*Perameles nasuta*) at North Head, NSW in
134 2016. These individual tick samples were part of a larger pool of ticks (RNASeq library
135 TICK08, SRA projects SRS3932533 and SRS3932534) used to identify the partial genome
136 sequence of Collins Beach virus [19]. The Koala hepacivirus was identified during our initial
137 SRA mining of marsupial transcriptomes (Supplementary Table 1). In this case, the mRNA
138 library (SRX501262) was prepared from the liver RNA of a deceased Australian koala
139 (*Phascolarctos cinereus*) “Pacific Chocolate” that was known to be infected with chlamydia
140 [46]. As viral coverage was incomplete due to the poly-A selection method, the original
141 tissue sample (#M.45022.004) was kindly provided by the Australian Museum and
142 subjected to total RNA sequencing (i.e. rRNA-depletion only) along with our other cases.

143

144 **Table 1.** Sample information for the novel hepaciviruses identified here, including the host species, library, region isolated, host pathology,
 145 and assembly data.

146

Virus name	Acronym	Host (common)	Host (scientific)	RNA Library (Tissue)	Region	Pathology	Viral reads per library (abundance %)	Host marker reads per library (abundance %)*
Magpie lark hepacivirus	MaHV	Magpie lark	<i>Grallina cyanoleuca</i>	VERT14 (Brain); VERT15 (Heart)	Nowra, NSW	Hepatic rupture, urate nephrosis, ventricular haemorrhage, thin	VERT14 = 26 (0.00005%) VERT15 = 172 (0.00045%)	VERT14 = 3,095 (0.0063%) VERT15 = 5,140 (0.013%)
Collins beach virus 1	BaHV	Long-nosed bandicoot	<i>Perameles nasuta</i>	TICK07 (Tick); TICK08 (Tick); TICK10 (Tick); INVERT13 (Tick)	Sydney, NSW	Healthy	TICK07 = 6 (0.00001%) TICK08 = 430 (0.00079%) TICK10 = 6 (0.00001%) INVERT13 = 43 (0.00014%)	TICK07 = 19,752 (0.035%) TICK08 = 33,706 (0.062%) TICK10 = 6,274 (0.012%) INVERT13 = 12,207 (0.041%)
Koala hepacivirus	KHV	Koala	<i>Phascolarctos cinereus</i>	VERT20 (Liver)	Port Macquarie, NSW	Severe chlamydiosis	VERT20 = 29,391 (0.10%)	VERT20 = 3,205 (0.011%)
Pelican hepacivirus	PeHV	Australian pelican	<i>Pelecanus conspicillatus</i>	VERT5 (Liver); VERT44 (Liver)	Blackwall Bay, NSW	Profound weakness, diarrhoea, dyspnoea, and death, associated with myocardial degeneration to necrosis	VERT5 = 172 (0.00034%) VERT44 = 362 (0.0014%)	VERT5 = 8,642 (0.017%) VERT44 = 2,978 (0.011%)
Gecko hepacivirus	GHV	House gecko	<i>Gehyra lauta</i>	VERT7 (Liver)	West Leichhardt Station, QLD	Healthy	VERT7 = 762 (0.0018%)	VERT7 = 6,651 (0.015%)

147

148 *Abundance of host determined using Ribosomal Protein L13a (RPL13A).

149
150 *RNA extraction, library preparation and sequencing*
151 Viral RNA was extracted from individual tissues of animal samples using the RNeasy Plus
152 Mini Kit (Qiagen, Germany). RNA concentration and integrity were determined using a
153 NanoDrop spectrophotometer (ThermoFisher) and TapeStation (Agilent). RNA samples were
154 pooled in equal proportions based on animal tissue types and syndrome (maximum eight
155 individuals per library). Illumina TruSeq stranded RNA libraries were prepared on the pooled
156 samples following rRNA depletion using a RiboZero Gold kit (Epidemiology) at the
157 Australian Genome Research Facility (AGRF), Melbourne. The rRNA depleted libraries were
158 then sequenced on an Illumina HiSeq 2500 system (Paired end 100 bp or 125 bp reads) to
159 depths of between 13-28 million paired reads.

160
161 *Viral discovery pipeline*
162 We employed an established meta-transcriptomic pipeline developed for RNA virus
163 discovery [18, 19, 47]. RNA sequences were trimmed of low-quality bases and adapter
164 sequences with Trimmomatic v0.36 [48] before *de novo* assembly using Trinity 2.5.1 [49].
165 The assembled contigs were then compared against the NCBI nucleotide (nt) and non-
166 redundant (nr) protein databases with Blastn v2.7.1+ [50] and Diamond v0.9.18 [51],
167 respectively, with an e-value threshold of 1E-5. Contig abundance was estimated by
168 calculating the number of reads in each library that mapped to the hepacivirus genome
169 divided by the number of total reads (Supplementary Table 2). Similarly, host abundance
170 was compared by mapping reads to a reference gene - ribosomal protein L13a (RPL13A).
171 Low abundance viruses (i.e. those that could not be assembled) were identified by aligning
172 the trimmed reads against either NCBI viral RefSeq or a curated hepacivirus/pegivirus
173 protein database using Diamond v.0.9.18, with an e-value threshold of 1E-4. Curated
174 hepacivirus/pegivirus databases were regularly updated with novel viruses to increase read
175 alignment for divergent viral species.

176
177 *PCR confirmation and whole-genome sequencing*
178 To confirm the presence of novel viruses in individual samples, RT-PCR was performed
179 using primers designed to amplify a short region of the viral genome (<300bp). Briefly,
180 Superscript IV VILO master mix was used to generate cDNA from individual RNA samples
181 before RT-PCR screening with Platinum SuperFi. Following the confirmation of viruses to
182 individual samples, long (2-4kb) overlapping PCRs were designed to amplify the available
183 viral genome (i.e. complete or partial) for the hepaciviruses identified and sequenced using

184 the Nextera XT library prep kit and Illumina MiSeq sequencing (150nt paired reads). Viral
185 genomes were then assembled using MegaHit v1.1.3 [52].

186

187 *SRA mining*

188 To identify hepacivirus- and pegivirus-like viruses present in the SRA, we screened
189 primates (excluding *Homo sapiens*), birds (excluding *Gallus gallus*) and marsupials. We
190 focused on these taxonomic groups because (i) although HCV is clearly a virus of humans,
191 it is unclear whether it is present in other non-human primates (which may be indicative of
192 virus-host co-divergence), (ii) a number of novel hepacivirus- and pegivirus-like viruses
193 have recently been identified in avian hosts suggesting that these might be a rich source of
194 novel viruses, and (iii) to confirm the presence of a marsupial specific-lineage as suggested
195 by our previous studies. Accordingly, three different sets of single- and paired-end RNA
196 sequencing SRAs were analysed: one included 2,312 avian SRAs (Supplementary Table 3),
197 a second that included 3,902 primate data sets (Supplementary Table 4) and finally a
198 marsupial data set of 330 SRAs (Supplementary Table 1). SRAs were fetched with the NCBI
199 SRA toolkit using fastq-dump and analysed using our virus discovery pipeline, with the
200 exception that the initial viral screening was performed by aligning the downloaded reads to
201 our curated hepacivirus/pegivirus protein database with Diamond v.0.9.18. SRAs that
202 contained hepacivirus-like and/or pegivirus-like reads were then assembled and annotated
203 as above.

204

205 Three virus fragments were identified in three runs (SRR1325073, SRR1325072,
206 SRR1325074) from SRA project SRX565268, isolated from Eurasian blue tit (*Cyanistes*
207 *caeruleus*) from Germany. These three fragments were concatenated into a single genome,
208 Blue tit hepacivirus (BtHV). The three fragments, and their respective coding regions, are
209 shown in Supplementary Figure 1.

210

211 *Genome annotation*

212 The hepaciviruses identified from our samples and via SRA mining were subjected to an
213 online sequence similarity search using NCBI blastx as well as a conserved domain (CDD)
214 search. ORFs of verified contigs were included in a phylogenetic analysis as described
215 below. Genome annotation of the 10 novel virus sequences was performed using Geneious
216 Prime (version 2019.2.1) [53]. Specifically, using the Live Annotate and Predict tool, each
217 novel hepacivirus genome was screened for hepacivirus-specific gene annotations utilising
218 previously identified annotations in hepacivirus genomes downloaded from NCBI (n = 145).

219 To maximise the identification of hypothetical genes, even in divergent genomes, the gene
220 similarity cut-off was set to 25%, with predicted genes then manually annotated.

221

222 *Phylogenetic analysis*

223 To investigate the evolutionary relationships among the hepaciviruses and pegiviruses we
224 collated the amino acid sequences for the complete polyprotein of each genome from the
225 ten novel viruses identified here (see Results), and from hepaciviruses and pegiviruses
226 taken from NCBI Refseq database including Brushtail possum hepacivirus and Collins
227 Beach hepacivirus (n =110, accession numbers available in Supplementary Table 5). These
228 sequences were aligned using the E-INS-i algorithm in MAFFT v7 [54], with ambiguous
229 regions removed using GBlocks [55]. The final sequence alignment comprised 110
230 sequences of 1345 amino acid residues in length. ProtTest v3.4 [56] was used to determine
231 the most appropriate model of amino acid substitution for these data. From this, we
232 estimated a phylogenetic tree using the maximum likelihood method in IQ-TREE, version
233 1.6.12 [57], employing the LG model of amino acid substitution with invariable sites and
234 gamma model (4 categories), along with a bootstrap resampling analysis using 1000
235 replicates. Two additional phylogenetic trees were estimated using the NS2/3 (549 amino
236 acid residues) and NS5 (407 amino acid residues) regions using the same procedure as
237 described above (although with 100 bootstrap replicates).

238

239 **Results**

240 *Novel hepaciviruses discovered in Australian wildlife*

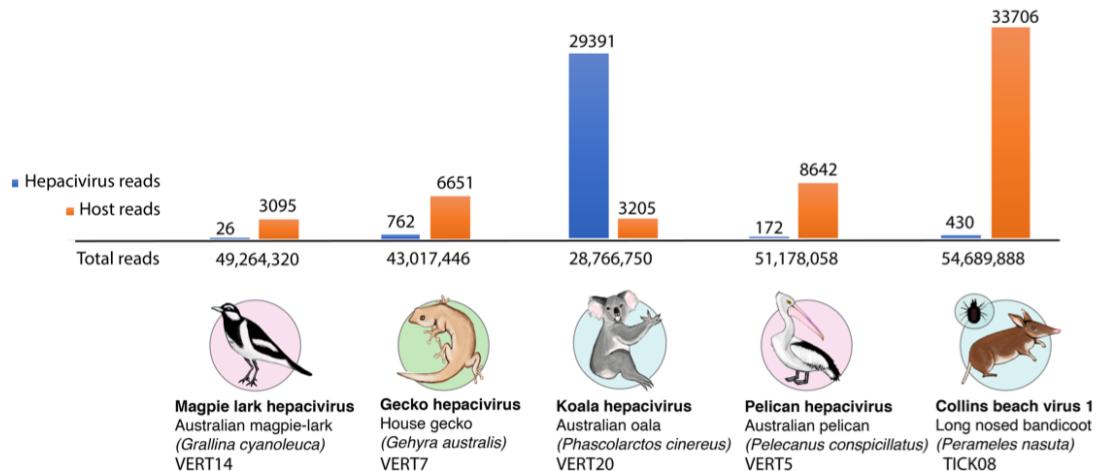
241 We identified four novel hepaciviruses and one new hepacivirus variant from five meta-
242 transcriptomic libraries obtained from a variety of Australian wildlife samples (Table 1). The
243 four novel hepac-like genomes comprised: (i) Koala hepacivirus (denoted KHV); (ii) Pelican
244 hepacivirus (PeHV), (ii) Magpie lark hepacivirus (MaHV); and (iv) Gecko hepacivirus (GHV). In
245 addition, we identified a variant of the previously identified Collins beach virus isolated from
246 ticks feeding on long-nosed bandicoots [19]. In accordance with the naming convention for
247 hepacivirus variants [58] we term this Collins beach virus 1 (CBV1). The relative abundance
248 of hepacivirus-like sequences in each library was low (Figure 1 and Table 1), with the
249 abundance of the host RPL13A gene shown for comparison (Figure 1). The Koala
250 hepacivirus was the most abundant, comprising 0.1% of the total reads and a complete
251 genome could be assembled at a mean coverage depth of 386X. Reads associated with
252 CBV1 were at an abundance <1% in all tick libraries. The abundance levels for the
253 remaining novel hepaciviruses ranged from 0.0018-0.00001% of the reads in their

254 respective libraries, and most of the genomes were in-complete. Therefore, for these
255 remaining viruses, we used a long, overlapping amplicon-based sequencing approach to fill
256 gaps in the RNASeq data and from this produce complete or near-complete genomes for
257 further analysis.

258

259 *Novel hepaciviruses and pegiviruses discovered from SRA data mining*
260 Three hepacivirus sequences and two pegivirus sequences were identified by mining the
261 SRA (Table 2). The hepacivirus genomes identified were isolated from (i) a Diademed sifaka
262 (*Propithecus diadema*) sampled in Toamasina province, Madagascar, and termed Sifaka
263 hepacivirus (SfHV-mad), (ii) a Senegal bushbaby (*Galago senegalensis*) virus termed
264 Bushbaby hepacivirus (BbHV), and (iii) three hepacivirus-like fragments recovered from a
265 Eurasian blue tit (*Cyanistes caeruleus*) in Montpellier, France, that were compiled into a viral
266 single genome termed Blue tit hepacivirus (BtHV). The two pegivirus sequences were
267 isolated from a (i) Common marmoset (*Callithrix jacchus*) termed Marmoset pegivirus (MHV),
268 and (ii) two pegivirus-like fragments recovered from a South African Vervet monkey
269 (*Chlorocebus pygerythrus*) that were assembled into a single viral genome termed Simian
270 pegivirus (SPV-saf). The only marsupial hepacivirus-like sequence identified in the SRA
271 screen was the partial fragment of the Koala hepacivirus identified in library SRX501262
272 that we re-sequenced to obtain a complete viral genome (VERT20). All individual sequence
273 fragments are described in the Supplementary materials.

274

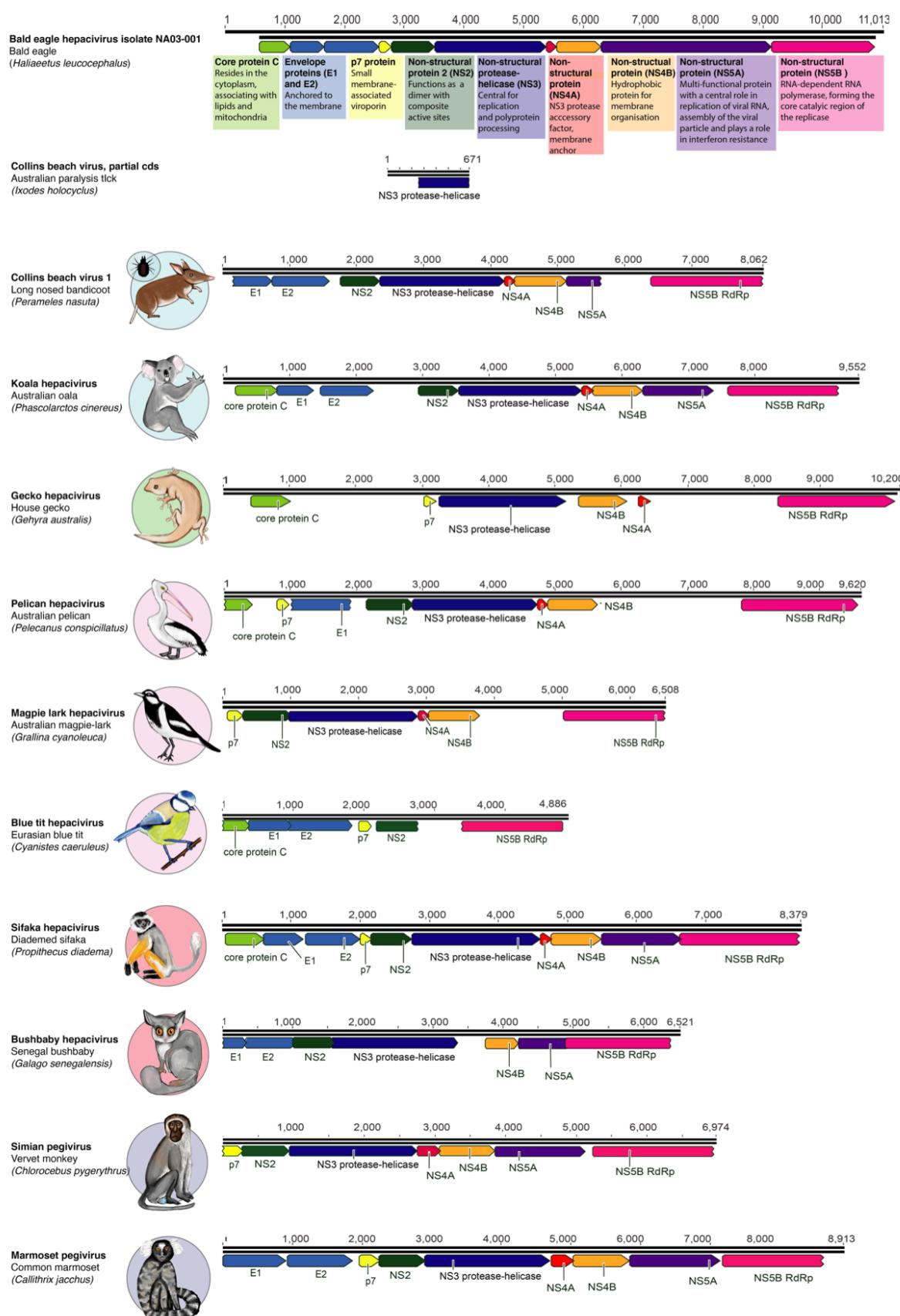

275

276 **Table 2.** The five novel hepaciviruses and pegiviruses identified from SRA-mining, including
277 host information, project runs (SRR) and SRA project.

278

Virus name	Acronym	Host (common)	Host (scientific)	Runs (SRR)	SRA project
Blue tit hepacivirus	BtHV	Eurasian blue tit	<i>Cyanistes caeruleus</i>	SRR1325073, SRR1325072, SRR1325074	SRX565268
Bushbaby hepacivirus	BbHV	Senegal bushbaby	<i>Galago senegalensis</i>	SRR361358	SRX104357
Sifaka hepacivirus	SfHV-mad	Diademed sifaka	<i>Propithecus diadema</i>	SRR3131110	SRX1550742
Marmoset pegivirus	MPV	Common marmoset	<i>Callithrix jacchus</i>	SRR1758976	SRX843207
Simian pegivirus	SPV-saf	Vervet monkey	<i>Chlorocebus pygerythrus</i>	SRR1046735, SRR1046733	SRX389659

279


280

281 **Figure 1. Abundance of hepacivirus-like contigs in each RNA-Seq library.** The relative
282 abundance of hepacivirus-like contigs (shown in blue) is presented as the number of
283 hepacivirus-like reads compared to the number of host reads (based on the RPL13A gene,
284 shown in orange) and the total number of reads each library (shown on the horizontal axis).

285

286 *Genome annotation of novel viruses*

287 Each of the novel hepaciviruses identified here, as well as the variant of Collins Beach
288 hepacivirus, underwent genome annotation and were compared (Figure 2) to the fully
289 annotated Bald eagle hepacivirus as a reference [16]. All of the novel viruses encoded near-
290 complete polyproteins (described in Figure 2, highlighted in boxes). Two relatively well
291 conserved *Flaviviridae* proteins, the NS5B protein that contains RNA-dependent RNA
292 polymerase (RdRp) function and the NS3 protease-helicase protein (Figure 2, highlighted in
293 pink and blue, respectively), were present in all the novel flavivirus polyproteins. The
294 remaining flavivirus proteins, comprising the core protein C, protein p7, envelope protein
295 E1, envelope protein E2, NS2, NS4A, NS4b, NS5A were identified in most novel virus
296 genomes, although were unable to successfully identify and annotate NS5A (highlighted in
297 purple, Figure 2) in any of the novel bird or reptile hepaciviruses at our threshold levels
298 (25% sequence similarity). Two of the SRA derived viral sequences - Blue tit hepacivirus
299 and Simian pegivirus - comprised partial genomes only and hence do not include all
300 annotations. The more divergent Gecko hepacivirus was similarly not fully annotated. The
301 genome regions missing from the annotation were the envelope proteins (E1 and E2) and
302 the non-structural proteins NS2 and NS5A (Fig 2). Despite these seemingly incomplete
303 annotations, all of the novel viruses have near-complete polyprotein encoding regions,
304 suggesting that successful annotation has simply been prevented by high levels of
305 sequence divergence in some genes.

306

307 **Figure 2. Genome annotation of the novel viruses identified in this study.** The genome
 308 annotation of each virus is shown in comparison to Bald eagle hepacivirus (isolate NA03-
 309 001, accession MN062427) as a reference. The conserved *Flaviviridae* polyprotein is

310 cleaved into several distinct protein products, represented in the diagram as coloured
311 arrows. A short description of the function of each protein [59, 60] is shown underneath the
312 Bald eagle hepacivirus genome, highlighted in coloured boxes that refer to each protein.
313 Core protein C (light green), envelope proteins (light blue), p7 (yellow), NS2 (dark green),
314 NS3 (purple), NS4A (red), NS4B (orange), NS5A (purple) and NS5B (pink).

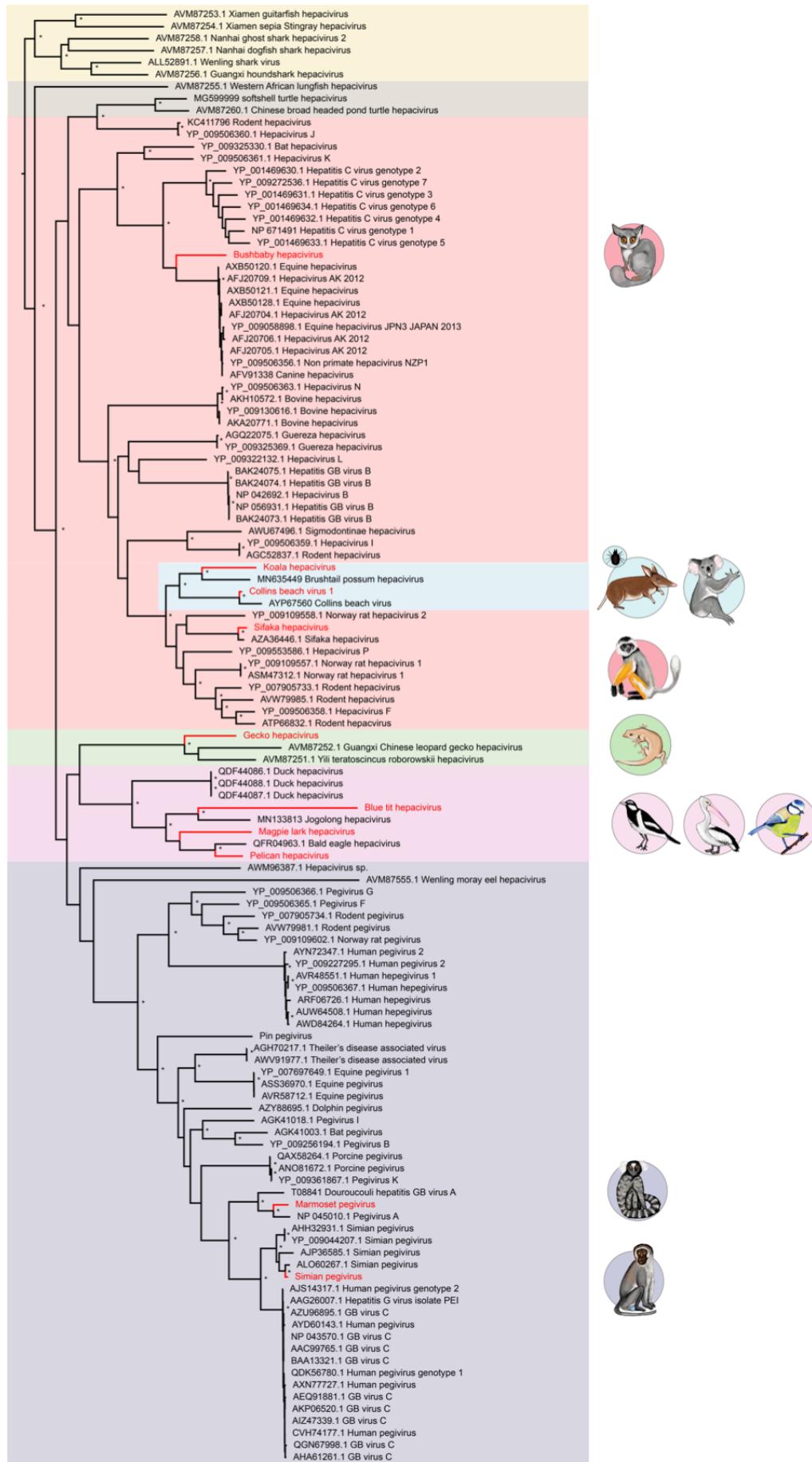
315

316 *Phylogenetic relationships of the novel viruses*

317 To determine the evolutionary relationships of the novel hepac- and pegiviruses identified
318 here we utilised the amino acid sequences of complete polypeptides from each genome in
319 an alignment with other known pegiviruses and hepaciviruses (n = 110) (Figure 3). Maximum
320 likelihood phylogenetic analysis revealed that the Australian Magpie lark hepacivirus (MaHV)
321 and Pelican hepacivirus (PeHV) fall with known bird hepaciviruses, as does Blue tit
322 hepacivirus (BtHV) (highlighted in the pink box, Figure 3). The three variants of previously
323 identified duck hepacivirus (DuHV) [15] fall into a distinct, closely-related cluster within this
324 clade, as do Bald eagle hepacivirus [15,16], MaHV, PeHV and BtHV, and Jogolong
325 hepacivirus, recently isolated from a mosquito feeding on a bird host (see below) in
326 Western Australia [20]. The existence of such an avian-specific clade is compatible with the
327 notion that there has been some virus-host co-divergence across the hepaciviruses as a
328 whole, particularly if the tree is rooted (as here) using the fish-associated hepacivirus that
329 represent the most phylogenetically divergent host species [17] (Figure 3). For example, the
330 lungfish hepacivirus falls as a sister-group to the tetrapod hepaciviruses as expected under
331 virus-host co-divergence, and two turtle-infecting hepaciviruses, Softshell turtle hepacivirus
332 and Chinese broad-headed pond turtle hepacivirus, are the sister-group to the mammalian
333 hepaciviruses (highlighted in the brown box, Figure 3), although it is notable that two rodent
334 hepaciviruses cluster anomalously with them. In this respect, it is noteworthy that the newly
335 identified Gecko hepacivirus falls alongside other known gecko hepaciviruses - Yili
336 teratoscincus roborowskii hepacivirus and Guangzi Chinese leopard gecko hepacivirus,
337 both sampled in China - in a distinct gecko clade (highlighted in the green box, Figure 3).

338

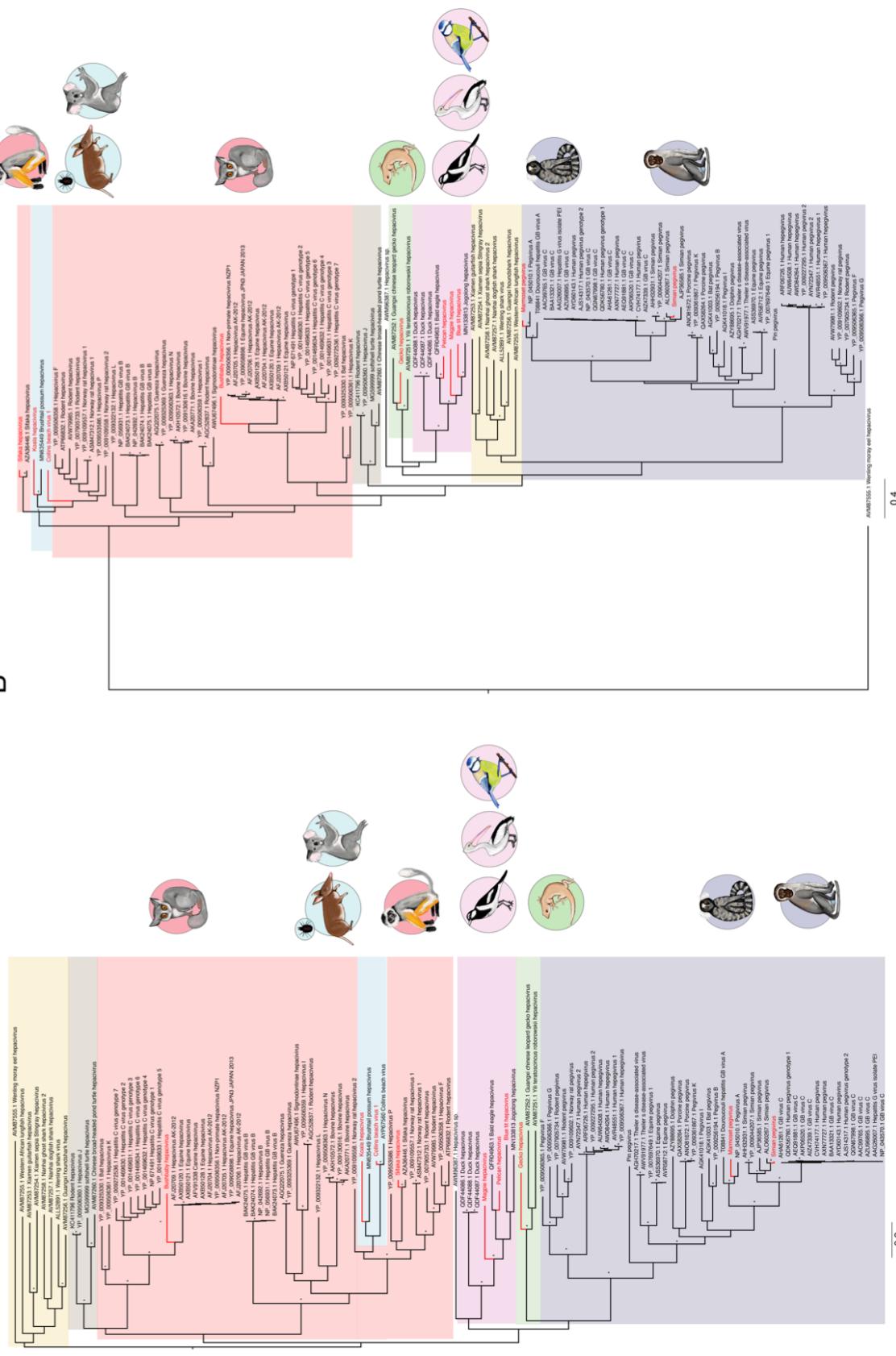
339 The mammalian hepacivirus clade is the largest and best characterised and contains four of
340 the novel viruses identified in this study. First, the two novel primate hepaciviruses
341 identified via SRA mining fall within this clade, although they occupy different phylogenetic
342 positions (Figure 3, red box). Sifaka hepacivirus (SfHV-mad) groups with a previously
343 identified SfHV strain [61], and both viruses were isolated from different samples of
344 *Propithecus diadema* and share 91% amino acid identity. These two viruses then cluster


345 with a group of rodent hepaciviruses. In contrast, Bushbaby hepacivirus (BbHV), sampled
346 from a Senegal bushbaby, groups with the equine hepaciviruses (termed NPHV, equine
347 hepaciviruses or Hepacivirus AK) and canine hepaciviruses (CHV). Notably, sequences of
348 the human pathogen HCV fall as a sister-group to this clade. Importantly, however, as the
349 tree is poorly supported on the Bushbaby hepacivirus branch, it is still uncertain whether
350 Bushbaby hepacivirus is more closely related to the equine/canine hepaciviruses or to HCV.

351

352 The remaining novel hepaciviruses identified in the mammalian clade were obtained from
353 marsupial hosts, the Australian koala and long-nosed bandicoot, although via tick
354 bloodmeal in the case of Collins Beach virus 1. These viruses fall in a distinct marsupial
355 cluster that is most closely related to the hepaciviruses identified in rodents and the sifaka.
356 In addition to these two novel marsupial hepaciviruses, the previously identified Brushtail
357 possum hepacivirus and Collins beach hepacivirus fall into this clade. Notably, the partial
358 sequence of Collins beach hepacivirus was found in the same pooled tick libraries as the
359 Collins beach virus 1 described here and share relatively high sequence similarity (74%
360 nucleotide identity, 89% amino acid identity). The ticks that made up these libraries were
361 sampled from long-nosed bandicoots in New South Wales, Australia [19].

362


363 Two novel pegiviruses were identified from the SRA - Simian pegivirus (SPV-saf) and
364 Marmoset pegivirus (Table 2). These fall in distinct positions within the pegivirus clade of
365 the phylogenetic tree in a manner that seems to follow the evolutionary relationships of their
366 hosts (Figure 3). Specifically, Simian pegivirus, identified in a Vervet monkey sample, falls
367 close to other Old World primate-associated pegiviruses, including Simian pegiviruses
368 isolated from Yellow baboons (*Papio cynocephalus*) from Tanzania [62], African green
369 monkey (*Chlorocebus sabaeus*) from Gambia, and Red colobus monkey (*Piliocolobus*
370 *tephrosceles*) from Uganda [63]. In contrast, Marmoset pegivirus, isolated from a common
371 marmoset, falls with New World primate-associated pegiviruses (Pegivirus A, Douroucouli
372 hepatitis GB virus A), identified in tamarin monkeys (*Saguinus labiatus*), mystax monkeys
373 (*Saguinus mystax*) and owl monkeys (*Aotus trivirgatus*) [64].

375 **Figure 3.** Phylogenetic analysis of the novel viruses identified in this study, identified by
376 animal symbols, along with 106 known hepaciviruses and pegiviruses. Novel Blue tit
377 hepacivirus, Magpie lark hepacivirus and Pelican hepacivirus, and other avian hepaciviruses
378 are shown in the pink box. The novel Gecko hepacivirus is highlighted in the green box.
379 Fish- and shark-associated hepaciviruses are shown in the yellow box. Turtle-associated
380 hepaciviruses are shown in the brown box. Marsupial hepaciviruses, including those
381 identified in bandicoots and koalas, are shown in the blue box. Bushbaby hepacivirus and
382 Simian hepacivirus fall in the mammalian clade shown in the red box. Two novel
383 pegiviruses, Marmoset pegivirus and Simian pegivirus, are shown in the purple box.
384 Bootstrap values greater than 85% are shown next to the relevant nodes, represented by
385 an asterisk. All horizontal branch lengths are scaled according to the number of amino acid
386 substitutions per site.

387

388 Finally, it is notable two previously identified hepaciviruses, Hepacivirus sp., identified in a
389 Red-eared slider turtle (*Trachemys scripta elegans*) and Wenling moray eel hepacivirus,
390 identified from a moray eel (*Gymnothorax reticularis*), fall basal to all known pegiviruses,
391 even though other fish and turtle viruses group with the hepaciviruses. To investigate this
392 issue in more detail we performed an additional phylogenetic analysis of amino acid
393 sequences of the NS2/3 and NS5 regions separately (Figure 4). While the phylogenetic
394 position of the Red-eared slider turtle remains unchanged, the moray eel virus fell in
395 markedly different positions in these two phylogenies, falling closer to the other fish
396 hepaciviruses in the NS2/3 phylogeny (as expected with virus-host co-divergence) yet in a
397 highly divergent position in the NS5 phylogeny. While the underlying cause of these
398 disparate phylogenetic positions is uncertain and could plausibly have resulted from with
399 recombination (with unknown parental sequences) or extreme rate variation, it does mean
400 that the position of the moray eel virus as a sister-group to the pegiviruses in the
401 polyprotein phylogeny is artifactual. While a number of other clades change position
402 between the NS2/3 and NS5 phylogenies, particularly the fish and lungfish viruses that
403 occupy basal positions in the polyprotein phylogeny, the deeper nodes on the NS2/3 and
404 NS5 trees receive only weak bootstrap support such that these movements may simply
405 reflect a lack of phylogenetic resolution. In addition, the position of the viruses newly
406 identified here relative to those described previously remained unchanged between the
407 NS2/3 and NS5 phylogenies.

408

409

410 **Figure 4.** Phylogenetic analysis of the (A) NS2/NS3 and (B) NS5 amino acid sequences
 411 from the novel hepaciviruses and pegiviruses identified in this study, marked by animal

412 symbols, combined with 106 known hepaciviruses and pegiviruses. Animal groups are
413 shaded as described in Figure 3. Bootstrap values greater than 85% (from a total of 100
414 bootstrap replicates in each case) are shown next to the relevant nodes, represented by an
415 asterisk. All horizontal branch lengths are scaled to the number of amino acid substitutions
416 per site. Note that Collins beach virus is necessarily excluded from the NS5 phylogeny as it
417 lacks this gene region.

418

419 **Discussion**

420

421 Using a meta-transcriptomic approach we identified four novel hepaciviruses and a single
422 variant of a previously described hepacivirus in Australian marsupials, birds, and a reptile.
423 Additionally, through SRA-mining, we were able to discover three novel hepaciviruses and
424 two novel pegiviruses in primate hosts. Accordingly, this work broadens our knowledge of
425 two viral genera within the *Flaviviridae* and suggests that, with increased sampling,
426 hepaciviruses and pegiviruses will likely be identified in many other animal hosts.

427

428 Hepaciviruses encode a single polyprotein that is commonly observed among vertebrate
429 members of the *Flaviviridae*. The hepaciviruses identified in this study were characterised
430 by high conservation in the NS5B, RdRp and NS3 genes. Other proteins were present in
431 most of the viral genomes identified here, although the NS5A gene was not readily
432 identified in the avian and gecko hepaciviruses, while the two envelope genes could not be
433 identified in the Gecko hepacivirus. Based on the genome structure of the novel
434 hepaciviruses, and that complete encoding region of the polyprotein is likely present, we
435 anticipate that these genes are present in these viruses but are highly divergent in
436 sequence and hence cannot be easily be identified using approaches that only assess
437 primary sequence homology.

438

439 As hepaciviruses and pegiviruses are commonly thought to have co-diverged with their
440 hosts over time-scales of many millions of years, we expected that these viruses would
441 follow an evolutionary pattern similar to that of their hosts [17]. Indeed, our phylogenetic
442 analysis demonstrates that this pattern generally holds true. In particular, the avian, reptile,
443 mammal and marsupial viruses fall into distinct clades and the virus phylogeny broadly
444 follows that of the hosts, although a number of the key nodes are only poorly supported.
445 There are, however, some notable exceptions, such as rodent hepacivirus and Hepacivirus
446 J, identified in bank voles (*Myodes glareolus*) from Germany [8], that clustered with turtle-

447 associated hepaciviruses. Similarly, rather than falling as a sister-group to those
448 hepaciviruses sampled from placental mammals as expected under virus-host co-
449 divergence, it is notable that the marsupial hepaciviruses fall within the mammalian
450 (eutherian) phylogenetic diversity. Finally, novel Pin pegivirus [25], isolated from a Common
451 myna bird (*Acridotheres tristis*), falls within the diversity of mammalian pegiviruses. As this
452 is the first avian pegivirus identified, it is possible that a distinct avian clade will be identified
453 with increased sampling.

454

455 The avian hepacivirus clade characterised here contains Blue tit hepacivirus (BtHV),
456 recovered from the SRA, as well the novel Australian pelican and magpie lark hepaciviruses
457 (PeHV and MaHV, respectively), three variants of duck hepacivirus [15], and the recently
458 described Jogalong virus, identified from a *Culex annulirostris* mosquito in northern
459 Western Australia. However, as discussed by the authors, the mosquito from which
460 Jogalong virus was identified is hypothesised to have recently fed upon a tawny frogmouth
461 (*Podargus strigoides*) [20]. Similarly, a distinct clade of gecko hepaciviruses was identified,
462 comprising the novel Gecko hepacivirus from an Australian gecko (*Gehyra lauta*) [45], and
463 the two previously identified gecko hepaciviruses from China. The gecko clade itself
464 clusters with the avian hepaciviruses, which in turn group with the pegiviruses. Importantly,
465 however, there is relatively weak support for the nodes in question, and if this reptile-avian
466 cluster in fact grouped with the hepaciviruses then the overall phylogeny would offer better
467 support to virus-host co-divergence.

468

469 The novel Koala hepacivirus and Collins beach virus 1 (identified in ticks feeding on a long-
470 nosed bandicoot) group closely together, along with the single marsupial-infecting
471 hepacivirus identified previously, Brushtail possum hepacivirus [38]. Together, these viruses
472 establish a distinct marsupial clade of hepaciviruses. Both Collins beach virus and Collins
473 beach virus 1 also fall in this clade and we suggest that they represent variants of the same
474 virus. Interestingly, two marsupial-associated gammaherpesviruses (double-strand DNA
475 viruses) from Australian koalas (*Phascolarctos cinereus*) and wombats (*Vombatus ursinus*),
476 similarly formed a distinct clade [65]. Hence, marsupial-specific clades may be present in
477 other vertebrate-infecting viruses and undergo co-divergence with their hosts. Additionally,
478 two primate hepaciviruses were identified from the SRA, including a novel variant of SfHV
479 (Sifaka hepacivirus) closely related to the previously identified SfHV, both of which were
480 isolated from Diademed sifakas. In contrast, Bushbaby hepacivirus isolated from a Senegal
481 bushbaby, instead falls as a sister-group to a cluster of equine and canine hepaciviruses

482 that are in turn closely related to HCV. Despite the obvious clinical importance of HCV, its
483 ultimate animal reservoir is unknown [22-25]. The placement of another primate (i.e.
484 bushbaby) virus in this clade is notable as it suggests that there are additional primate
485 viruses within this group that are yet to be discovered and that might shed light on the
486 origin of HCV.

487

488 Primate pegiviruses fall into distinct clades – in Old World versus New World primates - and
489 the two novel sequences identified here follow this pattern. Several pegiviruses have been
490 detected in a variety of Old World monkeys, including red colobus monkeys (*Procolobus*
491 *ephrosclces*), red-tailed guenons (*Cercopithecus ascanius*) and an olive baboon (*Papio*
492 *Anubis*) [62, 63], as well as the novel Simian pegivirus genome identified here in a South
493 African vervet monkey. Similarly, the New World pegiviruses form a distinct clade that
494 includes Pegivirus A (also termed GB virus A), isolated from tamarins [64, 66, 67], and newly
495 identified Marmoset pegivirus, isolated from a Common marmoset.

496

497 Arthropod vectors are known to transmit a wide variety of infectious disease agents, and
498 are responsible for more than 17% of total infectious diseases and cause upwards of
499 700,000 deaths per year [68]. Notably, the *Flaviviridae* contain many arthropod-borne
500 viruses that impose a serious burden on human populations, including yellow fever virus,
501 Zika virus, and dengue virus. However, all the vector-borne flaviviruses described to date
502 are members of the genus *Flavivirus*, with no evidence of vector-borne transmission within
503 the hepaciviruses or pegiviruses. Although the data presented here and previously [19]
504 tentatively suggest that *I. holocyclus* ticks may act as a vector of Collins beach virus, the
505 biology of ticks prevents us from clearly establishing this link [69]. In particular, as the ticks
506 sampled for RNA extraction were engorged adult females it is impossible to determine if
507 Collins beach virus infected the tick itself or was merely held within their considerable blood
508 meal. As ticks take only one blood meal in each lifecycle stage (of which adulthood is the
509 final stage) they do not act as ‘biological syringes’ as other arthropods such as mosquitos
510 and biting flies do [70]. As Collins beach virus and Collins beach virus 1 were detected in
511 very low abundance it does not seem likely that this virus is actively infecting the tick itself.
512 Future meta-transcriptomic studies on unfed questing ticks are therefore a priority.

513

514 In sum, we have expanded the diversity of known hepaciviruses and hypothesise that a
515 wide range of hosts that are yet to be identified globally. Unsurprisingly Australia’s unique
516 fauna host an equally diverse virome. The meta-transcriptomic tools described here can

517 help us to explore the breadth and depth of viral assemblages, investigate the role of
518 putative pathogens in wildlife disease syndromes, and contribute to the rapid and accurate
519 diagnosis of emergent disease syndromes.

520 **Supplementary Materials**

521

522 **Supplementary Figure 1.** Individual fragments used in compiling the Blue tit hepacivirus
523 and Simian pegivirus genomes. Each fragment has a coding region with draft annotations
524 of key viral proteins. (A) The three fragments from SRA project SRX565268 (SRR1325073,
525 SRR1325072, SRR1325074) from the Eurasian blue tit (*Cyanistes caeruleus*) from Germany.
526 (B) The two fragments (SRR1046735, SRR1046733) from SRA project SRX389659, taken
527 from a Vervet monkey (*Chlorocebus pygerythrus*) sampled in South Africa. These two
528 fragments were concatenated into a single genome, Simian pegivirus (SPV-saf).

529

530 **Supplementary Table 1.** Results of the SRA mining of marsupial transcriptomes.

531

532 **Supplementary Table 2.** Abundance of hepacivirus reads in the total read count of the
533 sequencing libraries used in this analysis.

534

535 **Supplementary Table 3.** Results of the SRA mining of avian transcriptomes (excluding
536 *Gallus gallus*).

537

538 **Supplementary Table 4.** Results of the SRA mining of primate transcriptomes (excluding
539 *Homo sapiens*).

540

541 **Supplementary Table 5.** GenBank accession numbers and description of the hepacivirus
542 and pegivirus amino acid sequences used in the phylogenetic analysis.

543

544 **Author Contributions:** Conceptualization, E.C.H; Methodology, E.C.H, J.H.O.P., J-S.E,
545 J.P.B, C.M., K.R, A.F.P; Formal Analysis, A.F.P, J.H.O.P., J-S.E; Writing – Original Draft
546 Preparation, A.F.P, E.C.H; Writing – Review & Editing, A.F.P, E.C.H, E.H., J.H.O.P., W-S.C,
547 J-S.E; Funding Acquisition, E.C.H.

548

549 **Funding:** This work was supported by an ARC Australian Laureate Fellowship
550 (FL170100022) to E.C.H. A.F.P. is supported by the Australian Research Training Program
551 and University of Sydney Top-up and Merit grants. J.H.O.P is funded by the Swedish
552 research council FORMAS (grant nr: 2015-710).

553

554 **Data Availability:** The sequences have been submitted to GenBank with accession
555 numbers MT371434- MT371443.

556

557 **Acknowledgments:** Analysis was performed using the University of Sydney Artemis HPC.
558 We thank the Australian Museum for their generous provision of sample material used in
559 this study.

560

561 **Conflicts of Interest:** The authors declare no conflict of interest.

562 **References**

- 563 1. Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. *Nature* 2008, 451, 990-993.
- 564 2. Pfaender, S.; Brown, R.J.P.; Pietschmann, T.; Steinmann, E. Natural reservoirs for homologs of hepatitis C virus. *Emerg. Microbes Infect.* 2014, 3, 1-9.
- 565 3. Pfaender, S.; Cavalleri, J.M.V.; Walter, S.; Doerrbecker, J.; Campana, B.; Brown, R.J.P.; Burbelo, P.D.; Postel, A.; Hahn, K.; Anggakusuma, et al. Clinical course of infection and 566 viral tissue tropism of hepatitis C virus-like nonprimate hepaciviruses in Horses. *Hepatol.* 2015, 61, 447-459.
- 567 4. Lauck, M.; Sibley, S.D.; Lara, J.; Purdy, M.A.; Khudyakov, Y.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Switzer, W.M.; Chapman, C.A., et al. A novel hepacivirus with an 568 unusually long and intrinsically disordered NS5A protein in a wild Old World primate. *J. 569 Virol.* 2013, 87, 8971-8981.
- 570 5. Canuti, M.; Williams, C.V.; Sagan, S.M.; Oude Munnink, B.B.; Gadi, S.; Verhoeven, J.T.P.; Kellam, P.; Cotten, M.; Lang, A.S.; Junge, R.E., et al. Virus discovery reveals 571 frequent infection by diverse novel members of the *Flaviviridae* in wild lemurs. *Arch. 572 Virol.* 2019, 164, 509-522.
- 573 6. Firth, C.; Bhat, M.; Firth, M.A.; Williams, S.H.; Frye, M.J.; Simmonds, P.; Conte, J.M.; 574 Ng, J.; Garcia, J.; Bhuva, N.P., et al. Detection of zoonotic pathogens and 575 characterization of novel viruses carried by commensal *Rattus norvegicus* in New York 576 City. *mBio* 2014, 5, e01933-01914.
- 577 7. Kapoor, A.; Simmonds, P.; Scheel, T.K.; Hjelle, B.; Cullen, J.M.; Burbelo, P.D.; 578 Chauhan, L.V.; Duraisamy, R.; Sanchez Leon, M.; Jain, K., et al. Identification of rodent 579 homologs of hepatitis C virus and pegiviruses. *mBio* 2013, 4, e00216-00213.
- 580 8. Drexler, J.F.; Corman, V.M.; Muller, M.A.; Lukashev, A.N.; Gmyl, A.; Coutard, B.; Adam, A.; Ritz, D.; Leijten, L.M.; van Riel, D., et al. Evidence for novel hepaciviruses in rodents. 581 *PLoS Pathog.* 2013, 9, e1003438.
- 582 9. Wu, Z.; Lu, L.; Du, J.; Yang, L.; Ren, X.; Liu, B.; Jiang, J.; Yang, J.; Dong, J.; Sun, L., et 583 al. Comparative analysis of rodent and small mammal viromes to better understand the 584 wildlife origin of emerging infectious diseases. *Microbiome* 2018, 6, 178.
- 585 10. de Souza, W.M.; Fumagalli, M.J.; Sabino-Santos, G., Jr.; Motta Maia, F.G.; Modha, S.; 586 Teixeira Nunes, M.R.; Murcia, P.R.; Moraes Figueiredo, L.T. A novel hepacivirus in wild 587 rodents from South America. *Viruses* 2019, 11, 297.

595 11. Burbelo, P.D.; Dubovi, E.J.; Simmonds, P.; Medina, J.L.; Henriquez, J.A.; Mishra, N.;
596 Wagner, J.; Tokarz, R.; Cullen, J.M.; Iadarola, M.J., et al. Serology-enabled discovery
597 of genetically diverse hepaciviruses in a new host. *J. Virol.* 2012, 86, 6171-6178.

598 12. Quan, P.L.; Firth, C.; Conte, J.M.; Williams, S.H.; Zambrana-Torrelio, C.M.; Anthony,
599 S.J.; Ellison, J.A.; Gilbert, A.T.; Kuzmin, I.V.; Niegzoda, M., et al. Bats are a major
600 natural reservoir for hepaciviruses and pegiviruses. *Proc. Natl. Acad. Sci. USA* 2013,
601 110, 8194-8199.

602 13. Baechlein, C.; Fischer, N.; Grundhoff, A.; Alawi, M.; Indenbirken, D.; Postel, A.; Baron,
603 A.L.; Offinger, J.; Becker, K.; Beineke, A., et al. Identification of a novel hepacivirus in
604 domestic cattle from Germany. *J. Virol.* 2015, 89, 7007-7015.

605 14. Corman, V.M.; Grundhoff, A.; Baechlein, C.; Fischer, N.; Gmyl, A.; Wollny, R.; Dei, D.;
606 Ritz, D.; Binger, T.; Adankwah, E., et al. Highly divergent hepaciviruses from African
607 cattle. *J. Virol.* 2015, 89, 5876-5882.

608 15. Chu, L.; Jin, M.; Feng, C.; Wang, X.; Zhang, D. A highly divergent hepacivirus-like
609 flavivirus in domestic ducks. *J. Gen. Virol.* 2019, 100, 1234-1240.

610 16. Goldberg, T.L.; Sibley, S.D.; Pinkerton, M.E.; Dunn, C.D.; Long, L.J.; White, L.C.;
611 Strom, S.M. Multidecade mortality and a homolog of hepatitis C virus in Bald Eagles
612 (*Haliaeetus leucocephalus*), the national bird of the USA. *Sci. Rep.* 2019, 9, 14953-
613 14953.

614 17. Shi, M.; Lin, X.D.; Chen, X.; Tian, J.H.; Chen, L.J.; Li, K.; Wang, W.; Eden, J.S.; Shen,
615 J.J.; Liu, L., et al. The evolutionary history of vertebrate RNA viruses. *Nature* 2018, 556,
616 197-202.

617 18. Shi, M.; Lin, X.D.; Vasilakis, N.; Tian, J.H.; Li, C.X.; Chen, L.J.; Eastwood, G.; Diao, X.N.;
618 Chen, M.H.; Chen, X., et al. Divergent viruses discovered in arthropods and vertebrates
619 revise the evolutionary history of the *Flaviviridae* and related viruses. *J. Virol.* 2016, 90,
620 659-669.

621 19. Harvey, E.; Rose, K.; Eden, J.S.; Lo, N.; Abeyasuriya, T.; Shi, M.; Doggett, S.L.;
622 Holmes, E.C. Extensive diversity of RNA viruses in Australian ticks. *J. Virol.* 2019, 93,
623 e01358-18.

624 20. Williams, S.H.; Levy, A.; Yates, R.A.; Somaweera, N.; Neville, P.J.; Nicholson, J.;
625 Lindsay, M.D.A.; Mackenzie, J.S.; Jain, K.; Imrie, A., et al. Discovery of Joggalong virus,
626 a novel hepacivirus identified in a *Culex annulirostris* (Skuse) mosquito from the
627 Kimberley region of Western Australia. *PLoS One* 2020, 15, e0227114.

628 21. Theze, J.; Lowes, S.; Parker, J.; Pybus, O.G. Evolutionary and phylogenetic analysis of
629 the hepaciviruses and pegiviruses. *Genome Biol. Evol.* 2015, 7, 2996-3008.

630 22. Lyons, S.; Kapoor, A.; Schneider, B.S.; Wolfe, N.D.; Culshaw, G.; Corcoran, B.;
631 Durham, A.E.; Burden, F.; McGorum, B.C.; Simmonds, P. Viraemic frequencies and
632 seroprevalence of non-primate hepacivirus and equine pegiviruses in horses and other
633 mammalian species. *J. Gen. Virol.* 2014, 95, 1701-1711.

634 23. Hartlage, A.S.; Cullen, J.M.; Kapoor, A. The strange, expanding world of animal
635 hepaciviruses. *Annu. Rev. Virol.* 2016, 3, 53-75.

636 24. Pybus, O.G.; Gray, R.R. The virus whose family expanded. *Nature* 2013, 498, 310-311.

637 25. Chang, W.-S.; Eden, J.-S.; Hall, J.; Shi, M.; Rose, K.; Holmes, E.C. Meta-transcriptomic
638 analysis of virus diversity in urban wild birds with paretic disease. *bioRxiv* 2020,
639 <https://www.biorxiv.org/content/10.1101/2020.03.07.982207v1.full>.

640 26. Stapleton, J.T.; Foun, S.; Muerhoff, A.S.; Bukh, J.; Simmonds, P. The GB viruses: a
641 review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus
642 Pegivirus within the family *Flaviviridae*. *J. Gen. Virol.* 2011, 92, 233-246.

643 27. Tuddenham, R.; Eden, J.-S.; Gilbey, T.; Dwyer, D.E.; Jennings, Z.; Holmes, E.C.;
644 Branley, J.M. Human pegivirus in brain tissue of a patient with encephalitis. *Diag
645 .Micro. Infect. Dis.* 2020, 96, 114898.

646 28. Bukh, J.; Apgar, C.L. Five new or recently discovered (GBV-A) virus species are
647 indigenous to New World monkeys and may constitute a separate genus of the
648 *Flaviviridae*. *Virology* 1997, 229, 429-436.

649 29. Schaluder, G.G.; Dawson, G.J.; Simons, J.N.; Pilot-Matias, T.J.; Gutierrez, R.A.;
650 Heynen, C.A.; Knigge, M.F.; Kurpiewski, G.S.; Buijk, S.L.; Leary, T.P., et al. Molecular
651 and serologic analysis in the transmission of the GB hepatitis agents. *J. Med. Virol.*
652 1995, 46, 81-9.

653 30. Adams, N.J.; Prescott, L.E.; Jarvis, L.M.; Lewis, J.C.; McClure, M.O.; Smith, D.B.;
654 Simmonds, P. Detection in chimpanzees of a novel flavivirus related to GB virus-
655 C/hepatitis G virus. *J. Gen. Virol.* 1998, 79, 1871-1877.

656 31. Birkenmeyer, L.G.; Desai, S.M.; Muerhoff, A.S.; Leary, T.P.; Simons, J.N.; Montes,
657 C.C.; Mushahwar, I.K. Isolation of a GB virus-related genome from a chimpanzee. *J.
658 Med. Virol.* 1998, 56, 44-51.

659 32. Simons, J.N.; Leary, T.P.; Dawson, G.J.; Pilot-Matias, T.J.; Muerhoff, A.S.; Schlauder,
660 G.G.; Desai, S.M.; Mushahwar, I.K. Isolation of novel virus-like sequences associated
661 with human hepatitis. *Nat. Med.* 1995, 1, 564-569.

662 33. Sibley, S.D.; Lauck, M.; Bailey, A.L.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Chapman,
663 C.A.; O'Connor, D.H.; Goldberg, T.L.; Friedrich, T.C. Discovery and characterization of

664 distinct simian pegiviruses in three wild African Old World monkey species. *PLoS One*
665 2014, 9, e98569-e98569.

666 34. Chandriani, S.; Skewes-Cox, P.; Zhong, W.; Ganem, D.E.; Divers, T.J.; Van Blaricum,
667 A.J.; Tennant, B.C.; Kistler, A.L. Identification of a previously undescribed divergent
668 virus from the *Flaviviridae* family in an outbreak of equine serum hepatitis. *Proc. Natl.*
669 *Acad. Sci. USA* 2013, 110, E1407-1415.

670 35. Epstein, J.H.; Quan, P.L.; Briese, T.; Street, C.; Jabado, O.; Conlan, S.; Ali Khan, S.;
671 Verdugo, D.; Hossain, M.J.; Hutchison, S.K., et al. Identification of GBV-D, a novel GB-
672 like flavivirus from old world frugivorous bats (*Pteropus giganteus*) in Bangladesh. *PLoS*
673 *Pathog.* 2010, 6, e1000972.

674 36. Stapleton, J.T.; Founf, S.; Muerhoff, A.S.; Bukh, J.; Simmonds, P. The GB viruses: a
675 review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus
676 *Pegivirus* within the family *Flaviviridae*. *J. Gen. Virol.* 2011, 92, 233-246.

677 37. Pybus, O.G.; Thézé, J. Hepacivirus cross-species transmission and the origins of the
678 hepatitis C virus. *Curr. Opin. Virol.* 2016, 16, 1-7.

679 38. Chang, W.-S.; Eden, J.-S.; Hartley, W.J.; Shi, M.; Rose, K.; Holmes, E.C. Metagenomic
680 discovery and co-infection of diverse wobbly possum disease viruses and a novel
681 hepacivirus in Australian brushtail possums. *One Health Outlook* 2019, 1, 5.

682 39. Harvey, E.; Rose, K.; Eden, J.S.; Lawrence, A.; Doggett, S.L.; Holmes, E.C.
683 Identification of diverse arthropod associated viruses in native Australian fleas. *Virology*
684 2019, 535, 189-199.

685 40. Mahar, J.E.; Read, A.J.; Gu, X.; Urakova, N.; Mourant, R.; Piper, M.; Haboury, S.;
686 Holmes, E.C.; Strive, T.; Hall, R.N. Detection and circulation of a novel rabbit
687 hemorrhagic disease virus in Australia. *Emerg. Infect. Dis.* 2018, 24, 22-31.

688 41. Harvey, E.; Madden, D.; Polkinghorne, A.; Holmes, E.C. Identification of a novel
689 picorna-like virus, Burpengary virus, that is negatively associated with chlamydial
690 disease in the Koala. *Viruses* 2019, 11, 211.

691 42. Wille, M.; Eden, J.-S.; Shi, M.; Klaassen, M.; Hurt, A.C.; Holmes, E.C. Virus–virus
692 interactions and host ecology are associated with RNA virome structure in wild birds.
693 *Mol. Ecol.* 2018, 27, 5263-5278.

694 43. Shi, M.; Neville, P.; Nicholson, J.; Eden, J.-S.; Imrie, A.; Holmes, E.C. High-resolution
695 metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA
696 viruses in Western Australia. *J. Virol.* 2017, 91, e00680-00617.

697 44. Cantalupo, P.G.; Buck, C.B.; Pipas, J.M. Complete genome sequence of a
698 polyomavirus recovered from a pomona leaf-nosed bat (*Hipposideros pomona*)
699 metagenome data set. *Genome Announc.* 2017, 5, e01053-01016.

700 45. Oliver, P.M.; Prasetya, A.M.; Tedeschi, L.G.; Fenker, J.; Ellis, R.J.; Doughty, P.; Moritz,
701 C. Crypsis and convergence: integrative taxonomic revision of the *Gehyra australis*
702 group (Squamata: Gekkonidae) from northern Australia. *Peer J.* 2020, 8, e7971.

703 46. Johnson, R.N.; O'Meally, D.; Chen, Z.; Etherington, G.J.; Ho, S.Y.W.; Nash, W.J.;
704 Grueber, C.E.; Cheng, Y.; Whittington, C.M.; Dennison, S., et al. Adaptation and
705 conservation insights from the koala genome. *Nat. Genet.* 2018, 50, 1102-1111.

706 47. Shi, M.; Lin, X.D.; Tian, J.H.; Chen, L.J.; Chen, X.; Li, C.X.; Qin, X.C.; Li, J.; Cao, J.P.;
707 Eden, J.S., et al. Redefining the invertebrate RNA virosphere. *Nature* 2016, 540, 539-
708 543.

709 48. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: a flexible trimmer for Illumina
710 sequence data. *Bioinformatics* 2014, 30, 2114-2120.

711 49. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.;
712 Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q., et al. Full-length transcriptome
713 assembly from RNA-Seq data without a reference genome. *Nat. Biotech.* 2011, 29,
714 644-652.

715 50. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.;
716 Madden, T.L. BLAST+: architecture and applications. *BMC Bioinformatics* 2009, 10,
717 421.

718 51. Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using
719 DIAMOND. *Nat. Meth.* 2015, 12, 59-60.

720 52. Li, D.; Luo, R.; Liu, C.M.; Leung, C.M.; Ting, H.F.; Sadakane, K.; Yamashita, H.; Lam,
721 T.W. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced
722 methodologies and community practices. *Methods* 2016, 102, 3-11.

723 53. Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton,
724 S.; Cooper, A.; Markowitz, S.; Duran, C., et al. Geneious Basic: an integrated and
725 extendable desktop software platform for the organization and analysis of sequence
726 data. *Bioinformatics* 2012, 28, 1647-1649.

727 54. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7:
728 improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772-780.

729 55. Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and
730 ambiguously aligned blocks from protein sequence alignments. *Syst. Biol.* 2007, 56,
731 564-577.

732 56. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. ProtTest 3: fast selection of best-fit
733 models of protein evolution. *Bioinformatics* 2011, 27, 1164-1165.

734 57. Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: a fast and
735 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol.*
736 *Biol. Evol.* 2015, 32, 268-274.

737 58. Zein, N.N. Clinical significance of hepatitis C virus genotypes. *Clin. Microbiol. Rev.*
738 2000, 13, 223-235.

739 59. Moradpour, D.; Penin, F.; Rice, C.M. Replication of hepatitis C virus. *Nat. Rev. Micro.*
740 2007, 5, 453-463.

741 60. Major, M.E.; Feinstone, S.M. The molecular virology of hepatitis C. *Hepatol.* 1997, 25,
742 1527-1538.

743 61. Canuti, M.; Williams, C.V.; Sagan, S.M.; Oude Munnink, B.B.; Gadi, S.; Verhoeven,
744 J.T.P.; Kellam, P.; Cotten, M.; Lang, A.S.; Junge, R.E., et al. Virus discovery reveals
745 frequent infection by diverse novel members of the *Flaviviridae* in wild lemurs. *Arch.*
746 *Virol.* 2019, 164, 509-522.

747 62. Bailey, A.L.; Lauck, M.; Mohns, M.; Peterson, E.J.; Beheler, K.; Brunner, K.G.; Crosno,
748 K.; Mejia, A.; Mutschler, J.; Gehrke, M., et al. Durable sequence stability and bone
749 marrow tropism in a macaque model of human pegivirus infection. *Sci. Transl. Med.*
750 2015, 7, 305ra144.

751 63. Sibley, S.D.; Lauck, M.; Bailey, A.L.; Hyeroba, D.; Tumukunde, A.; Weny, G.; Chapman,
752 C.A.; O'Connor, D.H.; Goldberg, T.L.; Friedrich, T.C. Discovery and characterization of
753 distinct simian pegiviruses in three wild African Old World monkey species. *PLoS One*
754 2014, 9, e985699.

755 64. Leary, T.P.; Desai, S.M.; Yamaguchi, J.; Chalmers, M.L.; Schlauder, G.G.; Dawson,
756 G.J.; Mushahwar, I.K. Species-specific variants of GB virus A in captive monkeys. *J.*
757 *Virol.* 1996, 70, 9028-9030.

758 65. Vaz, P.K.; Hartley, C.A.; Lee, S.-Y.; Sansom, F.M.; Adams, T.E.; Stalder, K.; Pearce, L.;
759 Lovrecz, G.; Browning, G.F.; Müller, C.E., et al. Koala and wombat
760 gammaherpesviruses encode the first known viral NTPDase homologs and are
761 phylogenetically divergent from all known gammaherpesviruses. *J. Virol.* 2019, 93,
762 e01404-01418.

763 66. Leary, T.P.; Desai, S.M.; Erker, J.C.; Mushahwar, I.K. The sequence and genomic
764 organization of a GB virus A variant isolated from captive tamarins. *J. Gen. Virol.* 1997,
765 78, 2307-2313.

766 67. Erker, J.C.; Desai, S.M.; Leary, T.P.; Chalmers, M.L.; Montes, C.C.; Mushahwar, I.K.
767 Genomic analysis of two GB virus A variants isolated from captive monkeys. *J. Gen.*
768 *Virol.* 1998, 79, 41-45.
769 68. WHO, W.H.O. Global Hepatitis Report 2017. Geneva, 2017.
770 69. Sojka, D. Book review: Sonenshine D.E. & Roe R.M. 2013: *Biology of Ticks*. 2nd ed.
771 *European Journal of Entomology* 2015, 11.
772 70. Nuttall, P.A.; Jones, L.D.; Labuda, M.; Kaufman, W.R. Adaptations of arboviruses to
773 ticks. *J. Med. Entomol.* 1994, 31, 1-9.