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Abstract

The investigation of brain networks has yielded many insights that have helped to characterise

many neurological and psychiatric disorders. In particular, network classification of functional

magnetic resonance imaging (fMRI) data is an important tool for the identification of prognostic

and diagnostic biomarkers of brain connectivity disorders such as schizophrenia and depression.

However, existing generic network classification methods provide no direct information on the un-

derlying molecular mechanisms of the selected functional connectivity features when applied to

fMRI data. To address this, we propose a novel fMRI network classification method that incor-

porates brain transcriptional data using a user-specified gene set collection (GSC) to construct

feature groups for use in classification of brain connectivity data. The use of GSCs are an op-

portunity to incorporate knowledge of potential molecular mechanisms which may be associated

with a disease. The inclusion of transcriptional data yields improved prediction accuracy on pub-

licly available schizophrenia fMRI data for several of the GSCs we consider. We also introduce a

post-hoc interpretation framework to provide transcriptional-data-guided biological interpretations

for discriminative functional connectivity features identified by existing fMRI network classification

methods.

Introduction

Network analysis of functional brain imaging data has been widely applied in studies of neuro-

logical disorders and has facilitated the discovery of functional biomarkers in many complex brain

diseases [6, 10, 39], but the molecular and neurobiological mechanisms underlying brain func-

tional connectivity patterns remain elusive [36, 37]. Previous studies [23, 37, 43] on neuroimaging

network classification in mental disorders that provided feature selection typically sought to bi-

ologically interpret algorithmically selected functional connectivity features post hoc, based on

available literature on the known functions of certain brain regions. At the same time, it is known

that differential transcription across distinct brain regions has an impact on brain functions [20, 30],

raising the question of how changes in gene expression associated with a mental disorder may
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be connected to disrupted brain functional organisation (note that in this paper we sometimes use

the phrase "gene expression" when discussing transcriptional data). Recent work [30, 34] anal-

ysed transcriptional networks that focused on gene-gene correlations across distinct brain regions,

and gene ontology enrichment analyses were used to assess the functional relevance of identified

gene modules, but these studies did not examine the associated changes in functional connectivity

patterns.

Traditionally, integrative analysis on multimodal data requires measurements of different modali-

ties from the same cohort of subjects. For instance, genome-wide association studies (GWAS)

on brain imaging phenotypes require subject-matched structural or functional magnetic resonance

imaging (fMRI) scans and genome-wide genetic data. However, functional imaging and ante-

mortem transcriptional data are highly unlikely to be available from the same brain at the same

time as expression assays require invasive access to brain tissues [2]. A recent paper [12] re-

viewed common approaches to link the functional connectome with the whole brain transcriptome

from the Allen Human Brain Atlas (AHBA), an anatomically comprehensive human brain transcrip-

tional atlas [19]. They include testing for correlations between measurements of brain imaging

based disease phenotypes and (i) the spatial transcriptional profiles of a particular gene, (ii) eigen-

genes of disease associated pathways or gene ontology terms [4], or (iii) the spatial expression

patterns of known risk genes. Another approach is to perform gene set enrichment tests on genes

previously found to be associated with normative imaging phenotypes of the disease since many

genes are functionally related [12]. Although these methods only provide a list of priority genes for

further study, there is evidence that spatial variations in brain transcriptional profiles closely track

variations in functional organisation of the brain [12].

Here, we introduce a transcriptional-data-guided functional network classification method to en-

able biologically annotated feature selection in functional brain network classification via the re-

gional matching of multimodal data. Our case study on the publicly available data set shows that

transcriptional-data-guided classification of functional connectivity facilitates the identification of

underpinning molecular mechanisms for disrupted functional organisations in complex neurologi-

cal diseases.
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Materials and Methods

Data sets

Processed resting state fMRI networks for subjects (54 schizophrenic and 70 healthy control)

from the Center for Biomedical Research Excellence (COBRE) schizophrenia fMRI data [1, 41]

were downloaded from the R package [3]. Whole brain microarray gene expres-

sion data were downloaded from the Allen Human Brain Atlas (AHBA) at http://human.brain-

map.org/static/download?rw=t. Both COBRE fMRI data and AHBA microarray gene expression

samples were registered to the MNI152 1mm space during initial data pre-processing. Gene

set information was downloaded from the Molecular Signatures Database (MSigDB, v7.0) [26].

Gene-schizophrenia association scores were obtained from DiGSeE [24], a MEDLINE abstract

text mining search engine.

Data processing

Regions of interest (ROIs) from the Power et al. brain parcellation [35] were used as nodes to

construct the brain networks. Time course data were extracted from the ROIs defined by the

Power parcellation. The 1, 488 AHBA gene expression samples were also mapped to the same

brain parcellation and assigned to ROIs. Out of the 264 ROIs in the Power parcellation, 248 had

at least one AHBA sample mapped to it. The remaining 16 ROIs which had no AHBA samples

mapped to them were excluded from our transcriptional-data-guided method, but retained for use

in other methods that do not directly depend upon transcriptional data (e.g., the baseline network

classifiers and the post-hoc interpretation framework proposed below). ROI 75 was also discarded

as it is missing in COBRE data. In summary, 247 ROIs with mapped transcriptional profiles were

used as nodes to construct each transcriptional brain network. Details on the AHBA brain tissue

sample to Power ROI mapping, as well as other gene expression data processing steps, are

provided in Supplementary Methods.

: Transcriptional-data-guided brain network classification

The proposed classification method has two major components, both with several steps.
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(A) Construction of Gene Set Edge Groups (Figure 1a). The transcriptional data is first partitioned

by a gene set collection (GSC) under consideration. A weighted, undirected ROI-wise transcrip-

tional network is then calculated for each gene set from the GSC as follows. In the transcriptional

network of gene set x, the weight wx
ij of an edge (i, j) between ROIs i 6= j is computed as the

absolute value of the Pearson correlation coefficient of the gene expression levels of genes in set

x between ROI i and ROI j. Next, a very stringent hard-thresholding criterion is applied to obtain

a subset of the highest-weighted edges in each network, defined by

EGSx = {(i, j) |wx
ij � ⌘0.99 , i 6= j}

where ⌘0.99 is the 99th percentile of all edge weights in this network.

(B) fMRI Network Classification (Figure 1b) For each subject, the fMRI network is constructed

using the Power ROIs as nodes. The Pearson correlation coefficient of the fMRI time courses

between ROIs is used as the connectivity measure between nodes. Edge weights of each fMRI

network are treated as a long feature vector in classification. See Supplementary Methods for

details regarding fMRI data.

For fMRI network classification, we make use of statistical classification methods that perform

feature selection among overlapping feature groups. Functional edges are grouped according to

the gene set edge groups constructed in component (A) to form (potentially overlapping) feature

groups, and edges that do not belong to any feature group are excluded from training. The current

default implementation of uses logistic regression with the overlapping group lasso

penalty implemented in the R package [42], which allows user-defined overlap-

ping feature groups.

Gene Set Prioritisation With feature selection results from classification, gene sets within a given

GSC can be ranked by any user-defined gene set prioritisation score to quantify their relevance to

functional connectivity. In the current implementation, we utilise a measure for overlap defined as

|EfMRI \ EGSx |
|EGSx |
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for each gene set x, where | · | denotes the cardinality of a set, and EfMRI is defined as the set

of edges selected (with a non-zero fitted coefficient) in each fold of a 10-fold cross-validation.

Gene sets ranked in top 5% by the above measure in all ten folds in all 50 repetitions of 10-fold

cross-validations are considered prioritised in the GSC of interest.

Evaluation of

Selection of GSC The performance of was evaluated when various types of GSCs

were used for the construction of gene set edge groups. The proposed algorithm was also eval-

uated when non-informative gene sets were utilised, as discussed below. Non-informative GSCs

were generated with 606 gene sets each, which is the median size of all evaluated biologically

meaningful GSCs (Figure 2c). The size of each individual gene set was randomly drawn from the

distribution of all gene set sizes shown in Figure 2c, regardless of the category.

Post-hoc interpretation framework

We propose a framework for the post-hoc interpretation of an edge set selected by a classifier (see

Figure 2 for a schematic overview). Let EfMRI denote the set of edges selected by an fMRI network

classifier, consisting of edges with a non-zero estimated coefficient. As a post-hoc interpretation

metric, we can compare the edge sets EfMRI and EGSx , the subset of highest-weight edges in the

transcriptional connectivity network of gene set x. We measure their similarity by the Jaccard

index, defined as

JGSx =
|EfMRI \ EGSx |
|EfMRI [ EGSx |

.

We then repeatedly select n = |EfMRI| edges at random from the set of all possible edges to obtain

a null distribution for the Jaccard index and an estimated P -value for JGSx .

Another metric is devised based on the edge betweenness centrality, defined as the number of the

shortest paths via the edge in a network [16]. Because the strict threshold we previously applied

resulted in highly disconnected graphs, we instead apply a less stringent threshold to obtain a
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binary transcriptional network of gene set x:

wx0

i,j = I(wx
i,j � ⌘0.75), i 6= j

where ⌘0.75 is the 3rd quartile of all edge weights wx, retaining 25% of edges with the highest

weights instead of 1% as we did before. For this network, we calculate the average edge between-

ness centrality for the edges that also belong to EfMRI, for each gene set x. We then generate a null

distribution by randomly choosing n = |EfMRI| edges to serve as the pseudo EfMRI set and repeat

the above procedure: we intersect each EGSx with the pseudo EfMRI set and calculate the average

edge betweenness centrality of these edges. We use this null distribution to obtain an estimated

P -value for each gene set. We use the Jaccard index, the average edge betweenness, and the

P -values associated with each to rank gene sets. The same approach is applicable to any other

user-defined interpretation metric.

Application of the post-hoc interpretation framework to COBRE data

Feature selection results evaluated by the post-hoc interpretation framework We compared the

functional edge selection results of our method to the two existing fMRI network classification

methods we use as benchmarks. For logistic regression with the ordinary lasso penalty,

[14], EfMRI was defined as the set of edges selected (with a non-zero fitted coefficient) in at least

one fold of at least ten of the 50 repetitions of 10-fold cross validation. For the overlapping lasso

penalty in [3], as recommended by the authors, stability selection [27] was used to

calculate variable selection probabilities, by randomly splitting the data and calculating the per-

centage of times across all random splits that each variable was chosen. Edges chosen more

than half the time were selected.

Evaluation procedure The effectiveness of different GSCs in explaining the functional edge selec-

tion results by other existing fMRI network classifiers were evaluated. Schizophrenia relevance

scores were constructed for each gene set based on the gene-schizophrenia association scores

extracted from DiGSeE [24] and log-transformed. We consider both (i) the sum of gene-based dis-

ease association scores (for identifying gene sets driven by a small number of strong effects) and

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


(ii) the average disease association score for each set. Within each GSC, gene sets with a top 5%

sum score or a top 5% average score were categorised as the true positives, or in other words, to

be associated with schizophrenia, and true negatives otherwise (Figure 2b). The accuracy of gene

set categorisation by each interpretation metric was evaluated by the receiver operating character-

istic (ROC) curve constructed with a step size of 5%, where the true positive rate is plotted against

the false positive rate, and the corresponding area under the curve (AUC). This procedure was

repeated to obtain a distinct AUC score for each combination of GSC and classifier.

Results

: A new method for brain network classification guided by transcriptional data

Our novel fMRI network classification method, , uses gene expression across brain

regions to guide connectivity-based feature selection, with the goal of bridging the gap between

the functional biomarkers of neurological disorders and their underpinning molecular mechanisms.

Firstly, brain regional matching is performed between whole brain transcriptional data and fMRI

data via the spatial coordinates of each sample with the aid of a standardised brain template (e.g.,

MNI152 1mm). Both modalities of data are then mapped into a selected brain parcellation, where

the pre-defined ROIs are used as nodes to construct both transcriptional and fMRI networks.

Next, feature groups are strategically constructed and annotated to incorporate the biologically

relevant gene set information, such as pre-defined biological pathways or gene ontology (GO)

terms [4]. Finally, we perform network classification using statistical classification methods that

allow overlapping feature groups.

Application on COBRE data shows the transcriptional-data-guided fMRI network classifier outper-

formed the baseline methods in terms of the classification accuracy when guided by certain GSCs

(Figure 3a). Compared with (82%), implemented with any tested GSCs pro-

vided higher classification accuracy except for the positional gene sets (80%). The average cross-

validation prediction accuracies of with feature groups constructed via GO molecular

function terms (92%) and filtered GO biological process (only gene sets sized between 10 and 30

were used [22]) terms (94%) were also higher than that of (91%).
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Classification performance depends on the GSC utilised in feature group construction

Prediction accuracy varied when different GSCs were used, as expected, since classification re-

sults depend strongly on feature groups determined by the GSC. Compared with using randomly

generated GSCs, Figure 3a shows that the transcription factor targets (TFTs), GO molecular func-

tion terms, REACTOME pathways and filtered GO biological process terms outperformed the ran-

dom GSCs (median accuracies of 89%, 92%, 91% and 94% respectively versus 88%; see the figure

for a measure of CV variation around these median accuracies, represented by boxplots).

We observed reasonably high network classification accuracy with a small number of features

selected by the baseline classifier of on the COBRE data. The median classification

accuracy over 50 repetitions of 10-fold cross-validation was 82% (Figure 3a) for the ordinary lasso

via . The number of unique features selected across 10 folds of each cross-validation

repetition ranges from 200 to 300, out of the total of 34, 453 (263 choose 2) features, or below 1%

on average. On the contrary, for , almost all features were always selected, to obtain

the median estimation of classification accuracy of 91% (Figure 3a).

In , the GSC used in feature group construction influences the number of selected

features by the proposed method. For example, 14, 721 functional edges were included in training

by the positional GSC and 7, 057 edges by the GSC of TFT. In our analysis, the regularisation

parameter � of was tuned to 5⇥ 10�3 so that the implemented algorithm selected

around 10% features that had non-zero coefficients. Although sparse models (with few features

selected) commonly have lower prediction accuracy in high-dimensional settings [18], the median

prediction accuracy over repeated cross-validation was considerably higher when the proposed

classifier was guided by TFT (89%) than by the positional GSC (80%). This implies that strategic

construction of feature groups can potentially improve prediction accuracy and promote sparsity

at the same time. The numbers of features included in training and the distribution of the number

of selected features by different GSCs are provided in Supplementary Results.

Quality of biological information affects prediction accuracy of

As curated gene set information evolves, the performance of the transcriptional-data-guided fMRI

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


network classification algorithm can also improve. The prediction accuracy of was

also evaluated when GSC information was downloaded from the previous release of MSigDB,

v6.2 (Figure 3b). The current version (v7.0) implemented a major overhaul in GSCs including

the positional gene sets and GO term GSCs compared to the older v6.2. There was also a major

update in REACTOME pathways from v6.2 to v7.0, for which the prediction accuracy was improved

when the fMRI network classification was guided by the updated pathway information (from 89% to

91%). An even bigger improvement was observed when GO biological process terms (filtered for

gene sets sized between 10 and 30 in both versions) were utilised for feature group construction in

classification (from 87% to 94%). The positional GSC yielded relatively poor performance (87% in

v6.2 and 80% in v7.0), which is not surprising as we expect limited biologically relevant implications

on schizophrenia by the physical location of genes on each chromosome.

Selected features have an inherent biological interpretation

A major advantage of is the direct connection between selected connectivity features

and their potential molecular underpinnings. By directly comparing the set of selected functional

edges with the most highly weighted transcriptional edges in each gene set expression network,

gene sets can be ranked by the proposed gene set prioritisation metric. For example, Table 1

shows the gene sets ranked in the top 5% by the implemented gene set prioritisation metric in

each fold of the 50 repeats of 10-fold cross-validations when was guided by REAC-

TOME pathways. Note that the DiGSeE gene set scores are not directly used by the

classification method, but displayed here for reference only.

Many of the prioritised REACTOME pathways in Table 1 are associated with schizophrenia as re-

ported in previous studies, such as signaling by GPCR [28, 32, 40], signaling by receptor tyrosine

kinases [9, 17], signaling by interleukins [11, 33], and MAPK family signaling cascades [7, 15]. Al-

though scored low by DiGSeE gene set scores, N-Linked glycosylation can play a modulatory role

in neural transmission [38], and abnormalities in N-Linked glycosylation potentially indicate disrup-

tions of central cell signaling processes in schizophrenia [29, 31]. Similarly, it has been reported

that glucose oxidation, which takes place in the tricarboxylic acid (TCA) cycle, is inherently abnor-

mal in a significant proportion of schizophrenic brains [5] and yet the corresponding REACTOME
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pathway only had low DiGSeE scores. Additional gene set prioritisation results corresponding to

other evaluated GSCs are provided in Supplementary Results.

Different network classifiers lead to different post-hoc interpretations

Functional edge selection results by different classifiers were better interpreted by different GSCs

(Figure 2d) in the post-hoc interpretation framework. Edges selected by were best ex-

plained by KEGG pathways, followed by the GO molecular function terms; see Supplementary

Table S6 and Figure S7a. In contrast, edges selected by were better explained by

GO molecular function terms, GO biological process terms and REACTOME pathways; see Sup-

plementary Table S7 and Figure S7b.

As expected, GSCs with no obvious involvement in schizophrenia, such as the chromosomal po-

sition GSC and the immunological signature GSC, were not helpful in interpreting the functional

edge selection results by any classifier. Figure 4 ranks the effectiveness of all examined GSCs by

the AUC of each corresponding ROC curve for both classification methods. Generally, GO terms

provided better interpretation compared to other GSCs by most of the metrics in both classification

methods, and immunologic signatures and positional gene sets on chromosomes provided almost

no insight in this case study.

Discussion

We have devised a novel transcriptional-data-guided fMRI network classification algorithm via the

strategic construction of feature groups in order to link transcriptional connectivity with functional

connectivity across distinct brain regions with the aid of biologically meaningful gene set infor-

mation. Application to publicly available data shows that our method provides better prediction

accuracy in distinguishing fMRI networks of schizophrenic patients versus healthy controls while

enabling biologically meaningful interpretation for selected functional connectivity features. In ad-

dition, we have also provided a post-hoc interpretation framework to enable biologically meaningful

interpretation of functional edge selection results by other fMRI network classification algorithms.
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Comparison among feature selection results guided by different GSCs of gene sets suggests

there are potentially multiple functional connectivity biomarkers in schizophrenia. For example,

two GSCs, GO molecular function terms and the REACTOME pathways, performed similarly well

in terms of classification accuracy (Figure 3a) but had very different edge selection results (Sup-

plementary Figure S6). This is by design, since different GSCs use different features and feature

groups in training. Thus a biologically meaningful interpretation must consider selected functional

connectivity features together with the corresponding GSC used in the construction of feature

groups.

The choice of the GSC also affects the computational efficiency of the proposed classifier. Given

a set of predictors, the number of feature groups, which depends on the number of gene sets in

the selected GSC, increases the computational time of approximately exponentially.

Another tuning parameter that affects the computational efficiency is the hard threshold on edge

weights since a stricter cut-off reduces the number of features. An ad hoc investigation suggests

that gene set rankings by the gene set prioritisation metric were relatively robust to the choice of

the threshold used within a given GSC in our case study.

The ROC-based evaluation of the post-hoc interpretation framework substantially depends on how

we construct disease association scores for each gene set. The scores were obtained by taking

the sum or the average of association scores provided by DiGSeE for each individual gene after

log-transformation, but the collective effect of a group of genes in disease mechanisms may not

be additive. Besides, many studies have emphasised the role of pathways or biological processes

in the pathogenesis of neurological disorders, rather than individual genes. For example, the WNT

signalling pathway has been implicated in many neurodevelopment processes and was reported

to be associated with schizophrenia [8, 21, 25], but none of these papers were counted towards

the DiGSeE score because they do not mention any genes involved in the pathway within their

abstracts. Similarly, this suggests that gene set prioritisation results will become more interpretable

with the availability of better scoring systems for associations between diseases and molecular

signatures such as pathways and GO terms.

One advantage of our framework is its flexibility. This approach can be readily applied for differ-
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ent GSCs, different brain parcellations, and different types of brain network data (e.g., diffusion

weighted imaging). In addition, in the post-hoc interpretation framework, one can define different

interpretation metrics. One could also utilise gene expression data in different ways to construct

different types of feature groups for use in the method.

Data Availability

Processed example data and the R implementation of all proposed methods are available at

https://github.com/Mengbo-Li/brainClass.
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[12] Fornito,A., Arnatkevic̆iūtė,A., and Fulcher,B.D. (2019) Bridging the gap between connectome

and transcriptome. Trends in Cognitive Sciences, 23(1).

[13] Freyberg,Z., Ferrando,S.J. and Javitch,J.A. (2009) Roles of the Akt/GSK-3 and Wnt signal-

ing pathways in schizophrenia and antipsychotic drug action. American Journal of Psychiatry,

167(4), 388-396.

[14] Friedman,J., Hastie,T. and Tibshirani,R. (2010) Regularization paths for generalized linear

models via coordinate descent. Journal of Statistical Software, 33(1), 1.

[15] Funk,A.J., McCullumsmith,R.E., Haroutunian,V. and Meador-Woodruff,J.H. (2012) Abnormal

activity of the MAPK-and cAMP-associated signaling pathways in frontal cortical areas in post-

mortem brain in schizophrenia. Neuropsychopharmacology, 37(4), 896.

[16] Girvan,M. and Newman,M.E. (2002) Community structure in social and biological networks.

Proceedings of the National Academy of Sciences, 99(12), 7821-7826.

[17] Hahn,C.G., Wang,H.Y., Cho,D.S., Talbot,K., Gur,R.E., Berrettini,W.H., Bakshi,K., Kamins,J.,

Borgmann-Winter,K.E., Siegel,S.J. and Gallop,R.J. (2006) Altered neuregulin 1–erbB4 signaling

contributes to NMDA> receptor hypofunction in schizophrenia. Nature Medicine, 12(7), 824.

[18] Hastie,T., Tibshirani,R. and Wainwright,M. (2015) Statistical learning with sparsity: the lasso

and generalizations. Chapman and Hall/CRC.

[19] Hawrylycz,M.J., Lein,E.S., Guillozet-Bongaarts,A.L., Shen,E.H., Ng,L., Miller,J.A., Van De

Lagemaat,L.N., Smith,K.A., Ebbert,A., Riley,Z.L. and Abajian,C. (2012) An anatomically com-

prehensive atlas of the adult human brain transcriptome. Nature, 489, 391-399.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


[20] Hawrylycz,M., Miller,J.A., Menon,V., Feng,D., Dolbeare,T., Guillozet-Bongaarts,A.L.,

Jegga,A.G., Aronow,B.J., Lee,C.K., Bernard,A. and Glasser,M.F. (2015) Canonical genetic sig-

natures of the adult human brain. Nat. Neurosci., 18(12), 1832-1844.

[21] Inestrosa,N.C., Montecinos-Oliva,C. and Fuenzalida,M. (2012) Wnt signaling: role in

Alzheimer disease and schizophrenia. Journal of Neuroimmune Pharmacology, 7(4), 788-807.

[22] Jiang,Z. and Gentleman,R. (2007) Extensions to gene set enrichment. Bioinformatics, 23(3),

306-313.

[23] Kazeminejad,A. and Sotero,R.C. (2018) Topological properties of resting-state fMRI func-

tional networks improves machine learning-based autism classification. Frontiers in Neuro-

science, 12:1018.

[24] Kim,J., So,S., Lee,H.J., Park,J., Kim,J.J. and Lee,H. (2013) DigSee: Disease gene search

engine with evidence sentences (version cancer). Nucleic Acid Res., 41, 510-517.

[25] Lovestone,S., Killick,R., Di Forti,M. and Murray,R. (2007) Schizophrenia as a GSK-3 dysreg-

ulation disorder. Trends in Neurosciences, 30(4), 142-149.

[26] Liberzon,A., Subramanian,A., Pinchback,R., Thorvaldsdóttir,H., Tamayo,P. and Mesirov,J.P.

(2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739-1740.

[27] Meinshausen,N. and Bühlmann,P. (2006) High-dimensional graphs and variable selection

with the lasso. The Annals of Statistics, 34(3), 1436-1462.

[28] Moreno, J.L., Miranda-Azpiazu, P., García-Bea, A., Younkin, J., Cui, M., Kozlenkov, A., Ben-

Ezra, A., Voloudakis, G., Fakira, A.K., Baki, L. and Ge, Y. (2016) Allosteric signaling through an

mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophre-

nia. Sci. Signal., 9(410), ra5-ra5.

[29] Mueller,T.M., Haroutunian,V. and Meador-Woodruff,J.H. (2014) N-glycosylation of GABA A

receptor subunits is altered in schizophrenia. Neuropsychopharmacology, 39(3), 528.

[30] Negi,S.K. and Guda,C. (2017) Resting-state fMRI: A review of methods and clinical applica-

tions. Scientific Reports, 7, 1-12.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


[31] Ohtsubo,K. and Marth,J.D. (2006) Glycosylation in cellular mechanisms of health and dis-

ease. Cell, 126(5), 855-867.

[32] Niswender,C.M. and Conn,P.J. (2010) Metabotropic glutamate receptors: physiology, phar-

macology, and disease. Annual Review of Pharmacology and Toxicology, 50, 295-322.

[33] Paul-Samojedny, M., Kowalczyk, M., Suchanek, R., Owczarek, A., Fila-Danilow, A., Szczy-

giel, A. and Kowalski, J. (2010) Functional polymorphism in the interleukin-6 and interleukin-10

genes in patients with paranoid schizophrenia—a case-control study. Journal of Molecular Neu-

roscience, 42(1), 112-119.

[34] Parikshak,N.N., Gandal,M.J. and Geschwind,D.H. (2015) Systems biology and gene net-

works in neurodevelopmental and neurodegenerative disorders. Nature Reviews Genetics,

16(8), 441-458.

[35] Power,J.D., Cohen,A.L., Nelson,S.M., Wig,G.S., Barnes,K.A., Church,J.A., Vogel,A.C., Lau-

mann,T.O., Miezin,F.M., Schlaggar,B.L. and Petersen,S.E. (2011) Functional Network Organi-

zation of the Human Brain. Neuron, 72, 665-678.

[36] Richiardi,J., Altmann,A., Milazzo,A.C., Chang,C., Chakravarty,M.M., Banaschewski,T.,

Barker,G.J., Bokde,A.L., Bromberg,U., Büchel,C. and Conrod,P. (2015) Correlated gene expres-

sion supports synchronous activity in brain networks. Science, 348, 1241-1244.

[37] Rosa,M.J., Portugal,L., Hahn,T., Fallgatter,A.J., Garrido,M.I., Shawe-Taylor,J. and Mourao-

Miranda,J. (2015) Sparse network-based models for patient classification using fMRI. NeuroIm-

age, 105, 493-506.

[38] Scott,H. and Panin,V.M. (2014) The role of protein N-glycosylation in neural transmission.

Glycobiology, 24(5), 407-417.

[39] Supekar,K., Menon,V., Rubin,D., Musen,M., and Greicius,M.D. (2008) Network analysis of

intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6),

e1000100.

[40] Urs,N.M., Peterson,S.M. and Caron,M.G. (2017) New concepts in dopamine D2 receptor

biased signaling and implications for schizophrenia therapy. Biological Psychiatry, 81(1), 78-85.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


[41] Wood,D., King,M., Landis,D., Courtney,W., Wang,R., Kelly,R., Turner,J.A. and Calhoun,V.D.

(2014) Harnessing modern web application technology to create intuitive and efficient data vi-

sualization and sharing tools. Frontiers in Neuroinformatics, 8(71).

[42] Zeng,Y. and Breheny,P. (2016) Overlapping group logistic regression with applications to ge-

netic pathway selection. Cancer Informatics, 15, CIN-S40043.

[43] Zhou,L., Wang,L. and Ogunbona,P. (2014) Discriminative sparse inverse covariance matrix:

Application in brain functional network classification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 3097-3104.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Schematic illustration of . (a) Construction of gene set edge groups based
on transcriptional data. In the left panel, processed transcriptional data are represented as a
data matrix with rows corresponding to genes and columns to ROIs. Given a GSC of interest,
the transcriptional data matrix is partitioned by each gene set, and the ROI-wise transcriptional
network is calculated for each gene set. Labels of the most highly weighted edges in each gene
set expression network form a gene set edge group, labelled by the name of the corresponding
gene set. (b) fMRI network classification. Functional connectivity edge weights are used as the
features, which are grouped according to the previously constructed gene set edge groups. (ROI:
Region of interest; GSC: gene set collection. )
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Figure 2: Post-hoc interpretation framework applied to existing fMRI network classification meth-
ods. (a) Schematic illustration of the post-hoc interpretation framework. (b) Gene sets with re-
ported associations with schizophrenia in MEDLINE by DiGSeE. (c) Summary statistics on the
pre-processed GSCs. Note: when evaluating the performance of the transcriptional-data-guided
fMRI-network classifier with the GO GSC, we filtered to include only gene sets with size between
10 and 30, resulting in 1,492 gene sets. (d) Receiver operating characteristic (ROC) curves for
two post-hoc interpretation metrics versus constructed DiGSeE scores. (GSC: gene set collec-
tion; TPR: true positive rate; FPR: false positive rate; TFT: transcription factor target; GO: Gene
Ontology; BP: biological process; CC: cellular component; MF: molecular function. )
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Figure 3: Evaluation of . (a) Prediction accuracy of the gene-expression guided fMRI
network classification algorithm compared with baseline methods. We evaluated all fMRI network
classifiers on the COBRE schizophrenia fMRI data in terms of the prediction accuracy in discrim-
inating schizophrenic patients (n = 54) from healthy controls (n = 70) guided by different GSCs
(obtained from MSigDB v7.0). Accuracy was calculated as the average prediction accuracy of
10-fold cross-validations in 50 repeats. (b) Prediction accuracy of guided by the gene
set information provided in versions v6.2 and v7.0 of MSigDB.
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Figure 4: Interpretability of GSCs as measured by AUC in post-hoc interpretation framework for
four different interpretation metrics (Jaccard, Jaccard P -value, Edge betweenness, and Edge be-
tweenness P -value). ROC curves corresponding to each AUC value are depicted in Figure S7.
Size and colour of the dots correspond to the rank of the GSC by AUC within each interpretation
metric. For each classifier, GSCs on the horizontal axis are ordered by its average rank across all
interpretation metrics. (AUC: area under the curve; ROC: receiver operating characteristic. )

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: REACTOME pathways with a prioritisation score in top 5% in all ten folds in all 50 repeats
of 10-fold cross-validations, shown in alphabetical order together with the constructed DiGSeE
gene set schizophrenia relevance scores of each pathway.

Gene set Sum score Average score

Adaptive Immune System 7.04 0.04
Asparagine N-Linked Glycosylation 2.59 0.04
Axon Guidance 35.87 0.19
Cell Cell Communication 3.74 0.07
Cell Cycle 8.05 0.06
Cellular Responses to External Stimuli 10.39 0.09
Cellular Responses to Stress 9.06 0.09
Cytokine Signaling in Immune System 54.84 0.26
Developmental Biology 48.26 0.16
Disease 56.25 0.22

Gene Expression Transcription 35.95 0.13
Generic Transcription Pathway 35.95 0.15
Hemostasis 27.03 0.14
Innate Immune System 38.95 0.15
Integration of Energy Metabolism 7.29 0.19
Intracellular Signaling by Second Messengers 26.41 0.31
MAPK Family Signaling Cascades 31.12 0.34
Metabolism of Amino Acids and Derivatives 21.20 0.21
Metabolism of Carbohydrates 1.31 0.02
Metabolism of Lipids 22.82 0.12

Metabolism of RNA 1.04 0.01
Neuronal System 73.54 0.40
Other Interleukin Signaling 30.75 0.34
Phospholipid Metabolism 3.83 0.06
Platelet Activation Signaling and Aggregation 14.48 0.19
Post Translational Protein Modification 25.90 0.08
Pyruvate Metabolism and Citric Acid TCA Cycle 0.98 0.05
rRNA Processing 0.00 0.00
rRNA Processing in the Nucleus and Cytosol 0.00 0.00

Signaling by GPCR 80.35 0.28
Signaling by Interleukins 50.68 0.29
Signaling by Receptor Tyrosine Kinases 56.88 0.34
Signaling by Rho GTPases 6.95 0.05
Signaling by VEGF 3.07 0.08
Signaling by WNT 9.53 0.10
Transcriptional Regulation by TP53 4.83 0.08
Translation 1.02 0.03
Transmission Across Chemical Synapses 63.01 0.58
Transport of Small Molecules 24.13 0.11
Vesicle Mediated Transport 15.57 0.09
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Supplementary Methods

COBRE schizophrenia resting state fMRI data

Functional MRI (fMRI) networks for subjects from the Center for Biomedical Research Excellence (COBRE)
schizophrenia resting state fMRI data (54 schizophrenic and 70 healthy control) [1, 8] were downloaded
from the supplement to [2]. Details on the pre-processing of raw anatomic and functional scans from the
COBRE data set are provided in [2].

Allen Human Brain Atlas (AHBA) whole human brain gene expression microarray data

Brain-wide microarray gene expression data were obtained from the Allen Human Brain Atlas (AHBA) [4],
which provides an anatomically comprehensive adult human brain transcriptome atlas comprising 3, 702
spatially distinct brain tissue samples obtained from six cadaver brains profiled for more than 20, 000 genes.
During pre-processing, each sample was assessed for its quality and samples with poor quality spot plots,
unusual plots of log-intensity ratios versus log-intensity averages or abnormal gene expression distribu-
tions were excluded, leaving 3, 546 samples. After pre-processing, the data were normalised using a
conventional background correction in combination with quantile normalisation. Critically, all brain tissue
samples were anatomically annotated to the normalised Montreal Neurological Institute (MNI) brain space
(MNI152 non-linear). The MNI coordinates of each AHBA brain tissue sample were downloaded from
https://github.com/chrisgorgo/alleninf/tree/master/alleninf/data.

Power Brain Parcellation

Power et al. (2011) proposed a functional brain parcellation consisting of 264 anatomically distinct regions
of interest (ROIs) comprising 14 functional brain systems modelled as 5mm radius spheres (Figure S1a)
[7], whose centre coordinates were also mapped to the MNI152 1mm brain space. ROIs identified by the
Power Parcellation were used as nodes to construct brain-wide fMRI networks and the gene set expression
networks. In our analysis, pre-processed time series courses were extracted from voxels constituting each
Power ROI from COBRE data, where node 75 is missing. The assignment of AHBA gene expression
samples via sample MNI coordinates to the Power ROIs is described in the next section.

Brain regional mapping of AHBA mircroarray samples to Power Parcellation ROIs

ROIs identified by the Power Parcellation [7] were used to construct gene set expression networks. To
obtain gene expression profiles for each Power ROI, AHBA microarray samples were spatially mapped to
the ROIs via their MNI coordinates. In order to obtain gene expression profiles for as many Power ROIs
as possible, we enlarged the radius of spheres defined by the Power Parcellation to get enlarged ROIs for
better coverage. The brain regional mapping from AHBA samples to (enlarged) Power ROIs has 3 steps
(Figure S3):

Step 1 Map the AHBA sample to a Power ROI if it lies within the 5mm radius from the centre of the
ROI according to the original definition. Out of the 3, 546 preprocessed AHBA brain tissue samples, 240
samples got assigned to 118 ROIs.

Step 2 Enlarge the radius of spheres defined as ROIs by the Power Parcellation [7]. While keeping
the centre MRI coordinates of each sphere unchanged, we increase the radius of all spheres from 5mm
to 12mm. Some ROIs become overlapped when r = 12mm. Note that samples can only be mapped into
the non-overlapping regions of each ROI in this step. The enlarged radius of 12mm was picked so that as
many AHBA samples were mapped to the non-overlapped regions as possible (Figure S2). 1, 129 gene

1
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expression samples were mapped to 196 different enlarged ROIs in this step. So far, 1, 369 AHBA samples
were mapped to 211 enlarged ROIs.

Step 3 Map the remaining AHBA gene expression samples to the so-far empty enlarged ROIs (r =
12mm). In this step, 119 samples were mapped to 52 enlarged ROIs.

Eventually after all three steps, 1, 488 AHBA microarray samples were mapped into 248 enlarged Power
ROIs.

Dimension reduction on the AHBA microarray data

After the initial data pre-processing and normalisation on the AHBA gene expression data, we obtained a
3, 546⇥32, 488 data matrix, where each row corresponds to an AHBA brain tissue sample and each column
corresponds to a probe ID. We first filtered out probes that were not annotated to any HGNC gene symbols
and tissue samples that were not assigned to any ROI. This returned us a sample ID by gene symbol data
matrix (1, 488⇥19, 227). We discarded ROI75 as it is missing in COBRE data. For each gene, we calculated
its average expression level in samples assigned to the same Power ROI to obtain a ROI by gene symbol
data matrix (247 ⇥ 19, 227). We further filtered out genes with low expression in all ROIs. Average gene
expression levels across 247 ROIs for each of the 19, 227 genes were calculated and those below the 3rd
quartile were filtered out. We ended up with a 247 ⇥ 4, 807 ROI by gene symbol data matrix, where each
entry in the matrix contains the average expression level of a gene within the enlarged Power ROI (Figure
S1b).

Molecular Signatures Database (MSigDB, v7.0)

Gene set collections from the Molecular Signatures Database (MSigDB, v7.0) are publicly available at
http://software.broadinstitute.org/gsea/msigdb/index.jsp, which is a comprehensive gene set database that
is commonly used to perform gene set enrichment analysis (GSEA), providing labelled gene set information
on biological processes and disease pathways to enable biologically meaningful interpretation of transcrip-
tional data [6]. Typically, each category of gene set collections represent a particular domain of knowledge
[6] . For instance, gene ontology (GO) [3] gene sets are derived based on hierarchically controlled GO terms
including molecular function (MF), cellular component (CC) or biological process (BP) to provide meaning-
ful annotations for gene functions and products. Alternatively, gene sets can also be curated simply by
the physical location of each gene on the chromosomes (the positional gene set collection). MSigDB also
provides processed and annotated gene sets that constitute various types of biological pathways such as
KEGG or REACTOME.

Gene set schizophrenia association scores based on DiGSeE

Disease gene search engine with evidence sentences (DiGSeE) [5] is a web tool for gene-disease asso-
ciation queries (http://gcancer.org/digsee). The database searches for genes associated with the disease
of interest (e.g. schizophrenia) in current literature, and provides a score for each gene, based on joint
occurrences of the disease and relevant genes through biological events in MEDLINE abstracts. Gene-
schizophrenia association scores were obtained from DiGSeE for our case study. To account for different
aliases of the same gene, we summed association scores for gene symbols mapped to the same entrez ID.
A natural log-transformation was applied to raw scores due to its right-skewed distribution. We then filtered
out genes with a relatively low schizophrenia association score by keeping only genes scored higher than
or equal to the median of log-transformed scores.

After pre-processing, we constructed two types of schizophrenia relevance scores for each gene set:
DiGSeE sum score and DiGSeE average score. We first filtered each gene set by removing genes pre-
viously identified as having low expression in gene expression data and discarded gene sets consisting of
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less than 5 genes post filtering. Gene set schizophrenia relevance scores were calculated by taking the sum
and the average of gene-schizophrenia association scores with genes from each filtered gene set (Figure
S1c).

Receiver operating characteristic (ROC) curve and area under the curve (AUC)

Within each gene set collection (GSC), gene sets were ranked by post-hoc interpretability metrics. True
positives (gene sets associated with schizophrenia) and true negatives were defined by summarised gene
set schizophrenia relevance scores based on DiGSeE. By each interpretability metric, gene sets that are
ranked top x percent (from 0% to 100% at a step of 5%) were categorised as test positives (associated with
schizophrenia) and test negatives (not associated with schizophrenia) otherwise. The accuracy of gene set
categorisation by each metric was evaluated by the area under the receiver operating characteristic (ROC)
curve, where the true positive rate is plotted against the false positive rate by comparing true positives with
test positives. Complete results are provided in Figure S7, with AUC for each curve in the figure provided in
Table S6 and Table S7.
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Supplementary Results

Gene set prioritisation results when guided by different collections of gene sets

Given selected functional edge features by the classifier, a gene set prioritisation metric was calculated as
described in the Methods section. Gene sets were then ranked within each GSC by the prioritisation metric.
Gene sets ranked top 5% within each GSC in all ten folds of all 50 repetitons of 10-fold cross-validations are
provided in Tables S1 to S5. For each GSC, distributions of gene set schizophrenia relevance scores for (i)
all gene sets in each GSC and (ii) the prioritised gene sets are provided in Figure S4.

Number of selected features when guided by different GSCs

Given a particular GSC, we observed that the distribution of the number of selected features (around 10%
of all included features are selected) and the prediction accuracy are robust to the regularisation parameter
� in grpregOverlap, when 1 ⇥ 10�3  � < 1 ⇥ 10�2. In our implementation, the default is � = 5 ⇥
10�3. The number of features included in classification when guided by different GSCs, and the median
number of selected features (that had non-zero coefficients) in 10-fold cross-validations over 50 repeats are
summarised in Figure S5.
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Supplementary Figures

Figure S1: Data pre-processing. (a) The Power brain parcellation. Regions of interest (ROIs) are modelled
as 5mm radius spheres and coloured by functional brain systems. The total number of ROIs in each
system are also indicated. This illustration was created using the BrainNet Viewer Matlab software [9]. (b)
Dimension reduction on the Allen Human Brain Atlas (AHBA) gene expression data. (c) Construction of
schizophrenia relevance scores for each gene set based on the gene-disease association query results
from DiGSeE.
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Figure S2: Number of AHBA samples mapped to the non-overlapping regions of enlarged ROIs as we
increase the radius of Power ROI spheres. Originally, Power ROIs are modelled as r = 5mm spheres,
and none of them overlap. In order to obtain gene expression profiles for as many ROIs as possible, we
increased the radius of all spheres at a step of 0.01mm, from 5mm to 20mm. As the radius of all ROIs
increase, some of them start to overlap, and we only map the AHBA samples located in the non-overlapping
regions to its closest ROI.
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Figure S3: Schematic illustration of the AHBA microarray sample assignment to the Power brain parcella-
tion.
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Figure S4: Gene set schizophrenia association score distributions. All gene set collections were filtered and
processed as described in the Supplementary Methods section. Distributions of all gene set schizophrenia
relevance scores are plotted in grey. Plotted in black are the distributions of the gene set association scores
for those selected in all 50 repeats of 10-fold cross-validations in the case study. The filtered GO biological
process (BP) term collection was obtained by only keeping those sized between 10 and 30. (Abbreviations:
TFT: transcription factor target; CC: cellular component; MF: molecular function. )
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Figure S5: Median number of selected features in 10-fold cross-validations over 50 trials by the gene
expression guided classification algorithm (� = 5⇥ 10�3). By design, edges that do not belong to any gene
set edge groups are excluded from model training, thus the selection of GSC directly determines which
features are included in classification. The numbers of features included in model training are provided.

Figure S6: The overlap between most selected functional edges when the proposed classifier was guided
by REACTOME pathways versus the gene ontology (GO) molecular function (MF) terms. Most selected
edges were edges selected in all 10 folds and all 50 trials of cross-validations.
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Figure S7: Receiver operating characteristic (ROC) curve evaluation of each post-hoc interpretability metric
when different GSCs were used for interpreting predictive functional edges selected by (a) glmnet and (b)
graphclass. (FPR: false positive rate; TPR: true positive rate. )
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Supplementary Tables

Table S1: KEGG pathway gene sets with a prioritisation score in top 5% in all ten folds in all 50 repeats of 10-fold
cross-validations in alphabetical order.

Gene set Sum score Average score

Calcium Signaling Pathway 36.32 0.48
Citrate Cycle TCA Cycle 0.00 0.00
Glycolysis Gluconeogenesis 0.96 0.09
Pathways in Cancer 25.22 0.23
Regulation of Actin Cytoskeleton 12.18 0.17

Table S2: Transcription factor target gene sets with a prioritisation score in top 5% in all ten folds in all 50 repeats of
10-fold cross-validations in alphabetical order.

Gene set Sum score Average score

AAANWWTGC_UNKNOWN 16.69 0.19
AAAYRNCTG_UNKNOWN 28.68 0.22
AACTTT_UNKNOWN 103.36 0.14
CACGTG_MYC_Q2 41.78 0.14
CAGCTG_AP4_Q5 58.25 0.11

CAGGTA_AREB6_01 42.10 0.15
CTGCAGY_UNKNOWN 63.28 0.22
CTTTAAR_UNKNOWN 48.13 0.14
CTTTGA_LEF1_Q2 54.82 0.14
GATTGGY_NFY_Q6_01 37.46 0.12

GCANCTGNY_MYOD_Q6 51.12 0.15
GGGTGGRR_PAX4_03 51.60 0.12
RNGTGGGC_UNKNOWN 43.77 0.15
RTAAACA_FREAC2_01 39.18 0.12
RYTTCCTG_ETS2_B 43.62 0.13

TAATTA_CHX10_01 43.57 0.14
TATAAA_TATA_01 63.05 0.16
TCANNTGAY_SREBP1_01 17.32 0.12
TGACAGNY_MEIS1_01 42.53 0.15
TGACATY_UNKNOWN 36.29 0.15

TGACCTY_ERR1_Q2 47.17 0.13
TGCCAAR_NF1_Q6 45.08 0.17
TGGAAA_NFAT_Q4_01 99.81 0.16
TGTTTGY_HNF3_Q6 40.36 0.16
WGTTNNNNNAAA_UNKNOWN 33.75 0.19

WTTGKCTG_UNKNOWN 33.38 0.19
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Table S3: Gene ontology cellular component gene sets with a prioritisation score in top 5% in all ten folds in all 50
repeats of 10-fold cross-validations in alphabetical order.

Gene set Sum score Average score

Axon 82.88 0.32
Catalytic Complex 9.51 0.04
Cell Body 51.17 0.23
Cell Junction 89.17 0.17
Cell Projection Part 123.33 0.24

Cytoskeletal Part 40.62 0.09
Endoplasmic Reticulum 66.17 0.13
Envelope 37.04 0.15
Filopodium 9.84 0.20
Golgi Apparatus 42.91 0.10

Golgi Apparatus Part 20.93 0.08
Intrinsic Component of Plasma Membrane 137.94 0.25
Membrane Protein Complex 60.51 0.20
Mitochondrion 46.46 0.14
Neuron Part 196.16 0.28

Neuron Projection 159.93 0.31
Nuclear Chromosome Telomeric Region 0.00 0.00
Perinuclear Region of Cytoplasm 45.77 0.19
Plasma Membrane Region 121.90 0.27
Somatodendritic Compartment 107.55 0.31

Supramolecular Complex 39.87 0.15
Synapse 161.38 0.31
Vesicle Membrane 46.68 0.20
Whole Membrane 79.23 0.16
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Table S4: Gene ontology molecular function gene sets with a prioritisation score in top 5% in all ten folds in all 50
repeats of 10-fold cross-validations in alphabetical order.

Gene set Sum score Average score

Adenyl Nucleotide Binding 48.90 0.12
Calcium Ion Binding 17.29 0.07
Cation Transmembrane Transporter Activity 41.22 0.20
Cell Adhesion Molecule Binding 22.82 0.12
Cyclic Nucleotide Phosphodiesterase Activity 9.47 0.47

Cytoskeletal Protein Binding 40.91 0.12
DNA Binding Transcription Factor Activity 29.30 0.07
Double Stranded DNA Binding 27.43 0.11
Drug Binding 76.04 0.17
Enzyme Regulator Activity 40.59 0.13

Guanyl Nucleotide Binding 4.41 0.04
Hydrolase Activity Acting on Ester Bonds 17.34 0.08
Identical Protein Binding 84.68 0.17
Ion Transmembrane Transporter Activity 54.31 0.20
Kinase Activity 28.67 0.12

Kinase Binding 33.68 0.15
Lipid Binding 20.37 0.09
Metal Ion Transmembrane Transporter Activity 36.13 0.22
Molecular Function Regulator 94.53 0.18
Passive Transmembrane Transporter Activity 39.66 0.24

Phospholipid Binding 11.15 0.08
Phosphoric Ester Hydrolase Activity 11.88 0.09
Protein Containing Complex Binding 41.43 0.14
Protein Dimerization Activity 61.52 0.15
Protein Domain Specific Binding 34.72 0.16

Protein Homodimerization Activity 43.86 0.16
Protein Kinase Activity 26.48 0.14
Protein Serine Threonine Tyrosine Kinase Activity 0.00 0.00
Ribonucleotide Binding 54.52 0.11
Sequence Specific DNA Binding 29.52 0.10

Sequence Specific Double Stranded DNA Binding 27.43 0.12
Signaling Receptor Binding 112.30 0.23
Structural Molecule Activity 15.38 0.08
Transcription Coregulator Activity 14.42 0.10
Transferase Activity Transferring Phosphorus Containing Groups 28.67 0.11

Transition Metal Ion Binding 39.35 0.14
Transmembrane Transporter Activity 55.37 0.17
Transporter Activity 62.13 0.16
Zinc Ion Binding 22.77 0.11
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Table S5: Gene ontology biological process gene sets with a prioritisation score in top 5% in all ten folds in all 50
repeats of 10-fold cross-validations in alphabetical order.

Gene set Sum score Average score

Acute Inflammatory Response 10.40 0.36
Amyloid Precursor Protein Metabolic Process 10.90 0.44
Artery Development 1.99 0.07
Axis Specification 2.10 0.08
Catecholamine Secretion 15.76 0.58

Cell Adhesion Mediated by Integrin 0.94 0.03
Cell Differentiation Involved in Kidney Development 2.09 0.10
Cellular Response to Heat 6.69 0.22
Cellular Response to Lipoprotein Particle Stimulus 2.97 0.30
Cerebral Cortex Cell Migration 9.61 0.42

Diencephalon Development 9.94 0.37
DNA Damage Response Signal Transduction by P53 Class Mediator 2.57 0.10
Embryonic Heart Tube Development 0.00 0.00
Embryonic Pattern Specification 6.79 0.27
Epithelial Cell Apoptotic Process 1.64 0.06

Fibroblast Growth Factor Receptor Signaling Pathway 5.72 0.21
Forebrain Generation of Neurons 12.53 0.42
Forebrain Neuron Differentiation 11.31 0.44
Glomerulus Development 1.28 0.05
Inner Ear Morphogenesis 5.27 0.18

Multi Organism Behavior 13.45 0.50
Muscle Cell Migration 2.60 0.11
Myeloid Cell Development 6.77 0.26
Negative Regulation of Extrinsic Apoptotic Signaling Pathway 8.95 0.30
Negative Regulation of Fat Cell Differentiation 1.02 0.06

Negative Regulation of Hormone Secretion 9.61 0.34
Negative Regulation of Ossification 0.87 0.03
Negative Regulation of Protein Polymerization 3.24 0.12
Neural Crest Cell Migration 8.85 0.34
Neuroblast Proliferation 11.05 0.38

Neuron Fate Commitment 8.40 0.32
Neuron Recognition 7.99 0.27
Odontogenesis of Dentin Containing Tooth 0.00 0.00
Osteoclast Differentiation 0.87 0.03
Pigmentation 9.25 0.32

Platelet Derived Growth Factor Receptor Signaling Pathway 0.96 0.06
Positive Regulation of Actin Filament Bundle Assembly 2.03 0.08
Positive Regulation of Animal Organ Morphogenesis 5.30 0.20
Positive Regulation of Cell Cycle Phase Transition 2.05 0.09
Positive Regulation of DNA Metabolic Process 0.00 0.00

Positive Regulation of Mitotic Cell Cycle 8.97 0.31
Positive Regulation of Muscle Tissue Development 17.21 0.82
Positive Regulation of Peptide Hormone Secretion 3.90 0.14
Positive Regulation of Protein Binding 11.11 0.38
Positive Regulation of Regulated Secretory Pathway 2.91 0.13
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Table S5: (Continued) Gene ontology biological process gene sets with a prioritisation score in top 5% in all ten folds
in all 50 repeats of 10-fold cross-validations in alphabetical order.

Gene set Sum score Average score

Post Embryonic Development 8.61 0.30
Proteoglycan Biosynthetic Process 2.95 0.11
Regulation of Adherens Junction Organization 0.96 0.03
Regulation of Cardiac Muscle Tissue Development 21.31 0.79
Regulation of Cartilage Development 1.06 0.04

Regulation of Cellular Ketone Metabolic Process 4.37 0.15
Regulation of Chondrocyte Differentiation 1.06 0.05
Regulation of Filopodium Assembly 3.58 0.14
Regulation of Jun Kinase Activity 4.80 0.19
Regulation of Kidney Development 3.37 0.18

Regulation of Muscle Adaptation 8.83 0.29
Regulation of Neuronal Synaptic Plasticity 11.04 0.39
Regulation of Protein Targeting 3.29 0.12
Regulation of Protein Tyrosine Kinase Activity 22.48 0.75
Regulation of Smooth Muscle Contraction 8.19 0.27

Regulation of Stem Cell Proliferation 5.20 0.19
Response to Amino Acid 11.30 0.45
Response to Anesthetic 24.53 0.88
Response to Nerve Growth Factor 13.77 0.55
Response to Vitamin 3.06 0.11

Signal Transduction in Absence of Ligand 6.55 0.25
Signal Transduction in Response to DNA Damage 2.57 0.09
Smooth Muscle Cell Migration 2.60 0.14
Sterol Transport 2.08 0.08
Ventricular Septum Development 1.93 0.07

Table S6: AUC of the corresponding ROC curve when interpreting glmnet functional edge selection results by each
GSC with each post-hoc interpretability metric.

Gene set collection Jaccard Jacard P-value Edge betweenness Edge betweenness P-value

TFT 0.56 0.55 0.56 0.57
KEGG 0.66 0.67 0.58 0.56
REACTOME 0.63 0.63 0.59 0.57
GO-BP 0.59 0.59 0.60 0.59
GO-CC 0.58 0.58 0.57 0.56
GO-MF 0.66 0.66 0.64 0.63
Positional 0.51 0.48 0.37 0.40
Immunological 0.50 0.50 0.52 0.52

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.099028doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.099028
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S7: AUC of the corresponding ROC curve when interpreting graphclass functional edge selection results by
each GSC with each post-hoc interpretability metric.

Gene set collection Jaccard Jacard P-value Edge betweenness Edge betweenness P-value

TFT 0.54 0.55 0.60 0.62
KEGG 0.52 0.53 0.55 0.52
REACTOME 0.63 0.64 0.57 0.55
GO-BP 0.53 0.53 0.64 0.62
GO-CC 0.51 0.51 0.63 0.59
GO-MF 0.58 0.58 0.68 0.64
Positional 0.54 0.56 0.39 0.44
Immunological 0.49 0.49 0.52 0.50
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