

1 **Glucocorticoid signaling in pancreatic islets modulates gene
2 regulatory programs and genetic risk of type 2 diabetes**

3

4 Anthony Aylward^{1,*}, Mei-Lin Okino^{2,*}, Paola Benaglio², Joshua Chiou³, Elisha Beebe², Jose
5 Andres Padilla², Sharlene Diep², Kyle J Gaulton^{2,4,#}

6

7 1. Bioinformatics and Systems Biology graduate program, University of California San Diego,
8 La Jolla CA 92093

9 2. Department of Pediatrics, University of California San Diego, La Jolla CA 92093

10 3. Biomedical Sciences graduate program, University of California San Diego, La Jolla CA
11 92093

12 4. Institute for Genomic Medicine, University of California San Diego, La Jolla CA 92093

13

14 * Authors contributed equally to this work

15

16 # Corresponding author:

17

18 Kyle J Gaulton
19 9500 Gilman Drive, #0746
20 Department of Pediatrics
21 University of California San Diego
22 858-822-3640
23 kgaulton@ucsd.edu

24

25 **Abstract**

26

27 Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but the
28 gene regulatory programs driving responses to glucocorticoid signaling in islets and the
29 contribution of these programs to diabetes risk are unknown. In this study we used ATAC-seq
30 and RNA-seq to map chromatin accessibility and gene expression from eight primary human islet
31 samples cultured *in vitro* with the glucocorticoid dexamethasone. We identified 2,838 accessible
32 chromatin sites and 1,114 genes with significant changes in activity in response to glucocorticoids.
33 Chromatin sites up-regulated in glucocorticoid signaling were prominently enriched for
34 glucocorticoid receptor binding sites and up-regulated genes were enriched for ion transport and
35 lipid metabolism, whereas down-regulated chromatin sites and genes were enriched for
36 inflammatory, stress response and proliferative processes. Genetic variants associated with
37 glucose levels and T2D risk were enriched in glucocorticoid-responsive chromatin sites, including
38 fine-mapped risk variants at 54 known signals. Among fine-mapped variants in glucocorticoid-
39 responsive chromatin, a likely causal variant at the 2p21 locus had glucocorticoid-dependent
40 allelic effects on beta cell enhancer activity and affected *SIX2* and *SIX3* expression. Our results
41 provide a comprehensive map of islet regulatory programs in response to glucocorticoids through
42 which we uncover a role for islet glucocorticoid signaling in mediating risk of type 2 diabetes.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 **Introduction**

60

61 Glucocorticoids are steroid hormones produced by the adrenal cortex which broadly regulate
62 inflammatory, metabolic and stress responses and are widely used in the treatment of immune
63 disorders¹⁻³. The metabolic consequences of glucocorticoid action are directly relevant to
64 diabetes pathogenesis, as chronic glucocorticoid exposure causes hyperglycemia and steroid-
65 induced diabetes and endogenous excess of glucocorticoids causes Cushing's syndrome in which
66 diabetes is a common co-morbidity^{4,5}. Glucocorticoids contribute to the development of diabetes
67 both through insulin resistance and obesity via effects on adipose, liver and muscle, as well as
68 through pancreatic islet dysfunction⁴. In islets, glucocorticoid signaling has been shown to
69 modulate numerous processes such as insulin secretion, ion channel activity, cAMP signaling,
70 proliferation and development⁶⁻¹¹.

71 The effects of glucocorticoids on cellular function are largely mediated through regulation of
72 transcriptional activity. Glucocorticoids diffuse through the cell membrane into cytoplasm and bind
73 the glucocorticoid receptor (GR), which is then translocated into the nucleus where it binds DNA
74 and modulates the transcriptional program¹²⁻¹⁵. Gene activity can be affected by GR via direct
75 genomic binding and regulation as well as indirectly through physical interaction with other
76 transcriptional regulators¹³⁻¹⁷. Previous studies have profiled glucocorticoid signaling by mapping
77 genomic locations of GR binding and other epigenomic features such as histone modifications
78 and chromatin accessibility in response to endogenous glucocorticoids such as cortisol or analogs
79 such as dexamethasone^{13,14,18,19}. Studies have also shown that the genomic function of GR is
80 largely mediated via binding to regions of accessible chromatin^{20,21}.

81 Genetic studies have identified hundreds of genomic loci that contribute to diabetes risk and which
82 primarily map to non-coding sequence and affect gene regulation²²⁻²⁵. Risk variants for type 2
83 diabetes (T2D) are enriched for pancreatic islet regulatory sites^{22-24,26,27}, while type 1 diabetes
84 (T1D) risk variants are enriched for immune cell as well as islet regulatory sites. The specific
85 mechanisms of most risk variants in islets are unknown, however, which is critical for
86 understanding the genes and pathways involved in disease pathogenesis and for the
87 development of novel therapeutic strategies. Previous studies of islet chromatin have focused
88 predominantly on normal, non-disease states^{27,31-36}, although recent evidence has shown that
89 diabetes risk variants can interact with environmental stimuli to affect islet chromatin and gene
90 regulatory programs³⁰.

91 The effects of glucocorticoid and other steroid hormone signaling on islet regulatory programs
92 and how these signals interact with diabetes risk variants, however, are largely unknown. In this
93 study we profiled islet accessible chromatin and gene expression in primary human pancreatic
94 islets exposed *in vitro* to the glucocorticoid dexamethasone. Glucocorticoid signaling had
95 widespread effects on islet accessible chromatin and gene expression levels. Up-regulated
96 chromatin sites were strongly enriched for glucocorticoid receptor binding and up-regulated genes
97 were enriched for processes related to ion channel activity and steroid and lipid metabolism.
98 Conversely, down-regulated sites and genes were involved in inflammation, stress response and
99 proliferation. Genetic variants affecting T2D risk and glucose levels were significantly enriched in
100 glucocorticoid-responsive chromatin sites, including a likely causal variant at the *SIX2/3* locus
101 which had glucocorticoid-dependent effects on beta cell enhancer activity and affected *SIX2* and
102 *SIX3* expression. Together our results provide a comprehensive map of islet gene regulatory
103 programs in response to glucocorticoids which will facilitate a greater mechanistic understanding
104 of glucocorticoid signaling and its role in islet function and diabetes risk.

105

106 **Results**

107 **Map of gene regulation in pancreatic islets in response to glucocorticoid signaling**

108
109 In order to determine the effects of glucocorticoid signaling on pancreatic islet regulation, we
110 cultured primary islet cells *in vitro* with dexamethasone (100 ng/mL for 24hr) as well as in
111 untreated conditions and measured accessible chromatin and gene expression levels in both
112 treated and untreated cells. An overview of the study design is provided in **Figure 1A**.

113
114 We assayed gene expression in dexamethasone-treated and untreated islets from 3 samples
115 using RNA-seq (**Supplemental Table 1; see Methods**). Across replicate samples we observed
116 changes in expression levels of genes both known to be induced by dexamethasone such as
117 *ZBTB16*³⁷⁻³⁹ and *VIPR1*⁴⁰ as well as those suppressed by dexamethasone such as *IL11*⁴¹ (**Figure**
118 **1B, Figure 1C, Supplemental Figure 1A**). We next assayed accessible chromatin in
119 dexamethasone-treated and untreated islets from 6 samples using ATAC-seq (**Supplemental**
120 **Table 1; see Methods**). Across replicate samples we observed reproducible changes in islet
121 accessible chromatin signal concordant with changes in gene expression. For example,
122 accessible chromatin signal was notably induced at several sites proximal to the *ZBTB16* and

123 *VIPR1* genes in dexamethasone-treated compared to untreated islets (**Figure 1B,C**,
124 **Supplemental Figure 2, Supplemental Figure 3**). Similarly, accessible chromatin signal was
125 reduced at sites proximal to *IL11* in glucocorticoid-treated compared to untreated islets
126 (**Supplemental Figure 1B**).

127

128 **Islet accessible chromatin sites with differential activity in response to glucocorticoid
129 signaling**

130

131 To understand the effects of glucocorticoid signaling on accessible chromatin in islets at a
132 genome-wide level, we first performed principal components analysis (PCA) using the read counts
133 in chromatin sites for each treated and untreated islet ATAC-seq sample (**see Methods**). We
134 observed reproducible differences in accessible chromatin profiles in dexamethasone-treated
135 islets compared to untreated islets across replicate samples (**Figure 2A**).

136

137 We then identified specific islet accessible chromatin sites with significant differential activity in
138 glucocorticoid treatment compared to untreated control cells (**see Methods**). We observed 2,838
139 sites genome-wide with significant evidence (FDR<.10) for differential activity in glucocorticoid
140 signaling (**Figure 2B, Supplemental Table 2**). Among these 2,838 glucocorticoid-responsive
141 sites, 1,986 had up-regulated activity and 851 had down-regulated activity in glucocorticoid
142 treated compared to untreated cells (**Figure 2B, Supplemental Table 2**). The majority of sites
143 (95%) with differential activity were already accessible in untreated islets, suggesting that sites
144 induced by glucocorticoid signaling typically not activated *de novo*. Furthermore, a majority of
145 differentially accessible sites (2,500, 88%) were not proximal to promoter regions, suggesting they
146 act via distal regulation of gene activity.

147

148 We next characterized transcriptional regulators underlying changes in glucocorticoid-responsive
149 islet chromatin. First, we identified TF motifs enriched in genomic sequence underneath sites up-
150 regulated and down-regulated in glucocorticoid-treated islets (**see Methods**). The most enriched
151 sequence motifs in up-regulated sites were for glucocorticoid and other steroid hormone response
152 elements (GRE $P<1\times10^{-300}$, ARE $P=1\times10^{-313}$, PGR $P=1\times10^{-305}$), in addition to lesser enrichment
153 for TFs relevant to islet function (e.g. FOXA1 $P=1\times10^{-11}$) (**Figure 2C, Supplemental Table 3**).
154 Conversely, down-regulated sites were most enriched for sequence motifs for STAT TFs (STAT4
155 $P=1\times10^{-12}$, STAT3 $P=1\times10^{-11}$) followed by TFs involved in islet function (NKX6.1 $P=1\times10^{-7}$, FOXA2
156 $P=1\times10^{-6}$) (**Figure 2C, Supplemental Table 3**). Next, we determined enrichment of

157 glucocorticoid-responsive chromatin sites for ChIP-seq TF-binding sites previously identified by
158 the ENCODE project. We observed strongest enrichment of up-regulated accessible chromatin
159 sites for glucocorticoid receptor (NR3C1) binding sites (ratio=73.1, $P<1\times10^{-300}$), and less
160 pronounced enrichment for binding sites of FOXA1 and other TFs (**Figure 2D, Supplemental**
161 **Table 3**). Down-regulated sites were most enriched for STAT binding (STAT3 ratio=2.1,
162 $P=7.6\times10^{-41}$) as well as enhancer binding TFs such as FOS/JUN and P300 (**Figure 2D,**
163 **Supplemental Table 3**).

164
165 Accessible chromatin sites with significant up-regulation in glucocorticoid signaling compared to
166 untreated islets included several that mapped to the *SIX2/SIX3* locus (**Figure 2E**), which also
167 harbors genetic variants associated with fasting glucose level and risk of T2D. Glucocorticoid-
168 responsive sites at this locus also directly overlapped NR3C1 ChIP-seq sites identified by the
169 ENCODE project (**Figure 2E**). We tested one of the sites up-regulated by glucocorticoids at this
170 locus (fold-change=1.75; $P=3.6\times10^{-5}$, **Supplemental Table 2**) for enhancer activity in luciferase
171 gene reporter assays in dexamethasone-treated and untreated MIN6 cells. We observed a
172 significant increase in enhancer activity in dexamethasone-treated cells relative to untreated cells
173 ($P=1.65\times10^{-6}$) (**Figure 2F**), confirming that this site is highly induced by glucocorticoid signaling.
174

175 We determined the effects of genetic variants on islet accessible chromatin using allelic imbalance
176 mapping. We performed microarray genotyping of islet samples and imputed genotypes into 39M
177 variants (**see Methods**). For variants overlapping islet chromatin sites we obtained read counts
178 in samples heterozygote for that variant, corrected for mapping bias using WASP and modeled
179 the resulting counts for imbalance using a binomial test. We then identified variants with evidence
180 for allelic imbalance ($FDR<.10$) in accessible chromatin for either glucocorticoid-treated or
181 untreated islets (**Supplemental Table 4**). Among imbalanced variants, several both mapped in
182 glucocorticoid-responsive chromatin and had significant effects in glucocorticoid-treated islets,
183 suggesting that their effects might interact with glucocorticoid signaling. For example, variant
184 rs684374 at 15q14 in a glucocorticoid-responsive site bound by GR had significant imbalance in
185 glucocorticoid-treated islets only ($GC\ P=2.6\times10^{-4}$, untr. $P=.22$) and was predicted to alter binding
186 of GR (NR3C1) (**Figure 2H**). Similarly, variant rs11610384 at 12p11 in a glucocorticoid-
187 responsive site bound by GR had significant imbalance in glucocorticoid-treated islets only ($GC\ P=1.5\times10^{-5}$, untr. $P=1$) and disrupted nuclear receptor motifs (**Supplemental Table 4**).
188

189

190 These results demonstrate that glucocorticoid signaling broadly affects accessible chromatin in
191 islets including sites both up-regulated through glucocorticoid receptor activity and down-
192 regulated through the activity of STAT and other TFs.

193

194 **Genes and pathways with differential regulation in islets in response to glucocorticoid
195 signaling**

196

197 We next sought to determine the effects of glucocorticoid treatment on gene expression levels.
198 We first performed PCA using gene transcript counts from untreated and dexamethasone-treated
199 islet samples obtained from RNA-seq assays (see **Methods**). There were again reproducible
200 differences in expression levels across replicate samples (**Figure 3A**).

201

202 We next identified specific genes with differential expression in response to glucocorticoids
203 compared to untreated islet samples using DESeq2 (see **Methods**). There were 1,114 genes with
204 significant evidence for differential expression (FDR<0.10) in glucocorticoid signaling
205 (**Supplemental Table 5**). Among these genes, 46% were up-regulated and 54% were down-
206 regulated in response to glucocorticoids compared to untreated islets (**Figure 3B**). Genes with
207 the most significant up-regulation included *FBKP5* ($\log_2(\text{FC})=2.65$, $\text{FDR}=4.97 \times 10^{-18}$), a
208 chaperone of the glucocorticoid receptor, *METTL7A* ($\log_2(\text{FC})=1.84$, $\text{FDR}=6.09 \times 10^{-88}$), *GP2*
209 ($\log_2(\text{FC})=2.65$, $\text{FDR}=2.48 \times 10^{-83}$), *PRR15L* ($\log_2(\text{FC})=2.39$, $\text{FDR}=3.73 \times 10^{-52}$), and *EDN3*
210 ($\log_2(\text{FC})=1.37$, $\text{FDR}=1.19 \times 10^{-40}$). Conversely, genes with most significant down-regulation
211 included *INHBA* ($\log_2(\text{FC})=-1.54$, $\text{FDR}=2.79 \times 10^{-46}$), *DHRS2* ($\log_2(\text{FC})=-1.255$, $\text{FDR}=1.51 \times 10^{-47}$)
212 and *IL11* ($\log_2(\text{FC})=-2.23$, $\text{FDR}=3.46 \times 10^{-43}$) (**Figure 3B**).

213

214 We determined whether changes in gene expression in glucocorticoid signaling were driven
215 through accessible chromatin, by testing for enrichment of glucocorticoid-responsive chromatin
216 sites for proximity to genes with glucocorticoid-responsive changes in expression. Glucocorticoid-
217 responsive chromatin sites were significantly more likely to map within 100kb of a gene with
218 glucocorticoid-responsive expression compared to other chromatin sites in islets (OR=2.0,
219 $P=9 \times 10^{-41}$). We next performed these analyses separately for sites up- and down-regulated in
220 glucocorticoid signaling. There was significant enrichment of sites with increased activity in
221 glucocorticoid signaling within 100kb of up-regulated genes specifically (up OR=4.0, $P=1.8 \times 10^{-92}$;
222 down OR=0.57, $P=1.1 \times 10^{-7}$) (**Figure 3C**). Similarly, sites with decreased activity in glucocorticoid
223 signaling were enriched within 100kb of down-regulated genes (down OR=2.4, $P=1.7 \times 10^{-15}$; up

224 OR=0.79, P=0.19) (**Figure 3C**). Furthermore, we also observed an enrichment of glucocorticoid-
225 responsive chromatin sites for closer proximity to genes with glucocorticoid-responsive
226 expression compared to background sites (Kolmogorov-Smirnov P=2.76x10⁻¹³) (**Figure 3D**).
227

228 In order to understand the molecular pathways affected by glucocorticoid activity in islets, we
229 tested genes up- and down-regulated in glucocorticoid signaling for gene set enrichment using
230 gene ontology (GO) terms (**see Methods**). Up-regulated genes showed strongest enrichment for
231 GO terms related to steroid metabolism (steroid metabolic process P=5.8x10⁻²⁰), and were also
232 enriched for potassium and other ion transport (potassium channels P=7.1x10⁻¹⁰; regulation of ion
233 transport P=6.8x10⁻¹⁸), lipid metabolism (lipid biosynthetic process P=1.6x10⁻²⁰), and insulin
234 signaling (insulin signaling pathway P=4.5x10⁻⁹) (**Figure 3E, Supplemental Table 6**). Numerous
235 genes that function in ion transport were up-regulated in glucocorticoid signaling; for example
236 *ATP1A1*, *ATP2A2*, *SCN1B*, *SCNN1A*, *CACNA1H*, *CACNG4*, *SLC38A4*, *TRPV6* as well as 13
237 potassium channel genes including *ABCC8*, *KCNJ2*, *KCNJ6*, and *KCND3* (**Figure 3E**,
238 **Supplemental Table 5-6**). Up-regulated genes also included numerous that function in lipid
239 metabolism including *FADS1*, *FADS2*, *ACSL1*, *SCD5*, *FASN*, *FABP4*, *ACACB*, and *ANGPTL4*
240 (**Figure 3E, Supplemental Table 5-6**).
241

242 Conversely, genes down-regulated in glucocorticoid signaling were enriched for inflammatory
243 response (inflammatory response P=7.9x10⁻²¹; cytokine signaling in immune system P=2.9x10⁻¹⁸),
244 stress response (cellular responses to stress P=3.8x10⁻¹⁰), extracellular matrix, cell adhesion
245 and morphogenesis (extracellular matrix organization P=2.3x10⁻²⁶, cell adhesion P=1.2x10⁻²⁶),
246 and cell differentiation and proliferation terms (neg. regulation of cell differentiation P=2.9x10⁻²⁷)
247 (**Figure 3F, Supplemental Table 5-6**). Down-regulated genes included those involved in the
248 inflammatory response such as *IL6*, *STAT5B*, *STAT3*, *STAT4*, *SMAD3*, *CXCL8*, *STAT3*, *CCL2*,
249 *CD44*, *CD36*, *RELB*, *IRF1*, extracellular matrix formation such matrix metalloproteinase genes
250 such as *MMP1*, *MMP9* and matrix components such as *FBN1*, pancreatic differentiation such as
251 *ISL1*, *PAX6*, *NKX6-1*, *HES1* and *JAG1*, and proliferation and growth factors such as *PDGFA*,
252 *PDGFB*, *FGF2*, *TGFB3* and *VEGFA* (**Figure 3F, Supplemental Table 5-6**).
253

254 These results demonstrate that glucocorticoid signaling in islets up-regulates genes involved in
255 steroid metabolism, lipid metabolism and ion channel activity, and down-regulates genes involved
256 in inflammation, stress response, differentiation, proliferation and extracellular matrix formation.
257

258 **Enrichment of T2D and glucose associated variants in glucocorticoid-responsive islet**
259 **chromatin**

260
261 Genetic variants associated with diabetes risk are enriched in pancreatic islet regulatory
262 elements. As these studies have been performed primarily using non-diabetic donors in normal
263 (untreated) conditions, however, the role of environmental stimuli in modulating diabetes-relevant
264 genetic effects on islet chromatin is largely unknown. We therefore tested diabetes and fasting
265 glycemia associated variants for enrichment in glucocorticoid-responsive islet chromatin sites
266 compared to a background of other islet chromatin sites (**see Methods**). We observed significant
267 enrichment of variants influencing T2D risk and blood sugar (glucose) levels in glucocorticoid-
268 responsive chromatin (T2D -log10(P)=1.35, glucose -log10(P)=1.50) (**Figure 4A**). Conversely,
269 we observed no evidence for enrichment of T1D risk variants (-log10(P)=0.22) (**Figure 4A**).
270

271 We catalogued fine-mapped variants overlapping glucocorticoid-responsive islet chromatin using
272 99% credible sets of T2D and glucose level signals from DIAMANTE and Biobank Japan^{22,42} (**see**
273 **Methods**). We identified 54 signals where a fine-mapped variant overlapped at least one
274 glucocorticoid-responsive site (**Supplemental Table 7**). We further cataloged 412 variants
275 genome-wide in glucocorticoid-responsive sites with nominal evidence for T2D association
276 (P<.005) in DIAMANTE or Biobank Japan GWAS (**Supplemental Table 7**). We next prioritized
277 potential target genes of T2D-associated variants in glucocorticoid-responsive chromatin by
278 identifying genes proximal to these sites and with expression patterns consistent with the activity
279 of the site (**Supplemental Table 7**). For example, T2D-associated variants at the 11q12 locus
280 mapped in a chromatin site induced by glucocorticoid signaling proximal to *SCD5* and *TMEM150C*
281 which both had up-regulated expression (**Figure 4B, Supplemental Table 5, Supplemental**
282 **Table 7**). Similarly, T2D-associated variants at the 4q31 locus mapped in a chromatin site down-
283 regulated in glucocorticoid signaling proximal to *FBXW7* which had down-regulated expression
284 (**Supplemental Figure 4A, Supplemental Table 5, Supplemental Table 7**). Outside of known
285 T2D loci we observed numerous additional examples such as rs1107376 (T2D P=2.2x10⁻⁴) in a
286 site induced in glucocorticoids which was proximal to *NPY* which had glucocorticoid-stimulated
287 expression (**Supplemental Figure 4B, Supplemental Table 5, Supplemental Table 7**).
288

289 At the 2p21 locus, glucose level-associated variant rs12712928 mapped in a chromatin site with
290 increased activity in glucocorticoid signaling and was proximal to *SIX2* and *SIX3* which both had
291 glucocorticoid-induced expression (**Figure 4C,D, Supplemental Table 5, Supplemental Table**

292 7). This variant had the highest posterior probability in glucose fine-mapping data (PPA=.89),
293 suggesting it is causal for the association signal at this locus. Furthermore, this variant also had
294 evidence for T2D association (Biobank Japan T2D $P=2.1\times 10^{-6}$), strongly suggesting that it
295 influences T2D risk as well. We therefore tested whether rs12712928 affected enhancer activity
296 using sequence around variant alleles in untreated and dexamethasone treated MIN6 cells (see
297 **Methods**). The glucose level increasing and T2D risk allele C had significantly reduced enhancer
298 activity in both glucocorticoid-treated ($P=2.5\times 10^{-6}$) and untreated cells ($P=3.2\times 10^{-4}$) (**Figure 4E**).
299 However, the allelic differences at this variant were more pronounced in glucocorticoid-treated
300 cells (ref/alt ratio GC=6.85, 95% CI=3.4,10.2; untreated=1.78, 95% CI=1.23,2.32) (**Figure 4F**).
301 We next identified gene(s) directly affected by rs12712928 activity using expression QTL data in
302 islets³⁵. We observed evidence that rs10168523 was an islet QTL for *SIX3* and *SIX2* expression
303 (*SIX3* eQTL $P=1.8\times 10^{-11}$, *SIX2* eQTL $P=1.6\times 10^{-6}$; **Figure 4G**), where the T2D risk allele was
304 correlated with reduced expression of both genes. Glucose level and T2D association at this
305 locus was also strongly co-localized with both the *SIX3* and *SIX2* eQTLs (T2D shared *SIX3*
306 PP=98%, *SIX2* PP=91%; Blood sugar shared *SIX3* PP=99%, *SIX2* PP=99%) (**Figure 4G**).
307

308 These results demonstrate that T2D and glucose level variants are enriched in glucocorticoid-
309 responsive chromatin sites in islets, including variants that interact with glucocorticoid signaling
310 directly to affect islet regulation.
311

312 **Discussion**

313
314 Our study demonstrates the relevance of islet chromatin dynamics in response to corticosteroid
315 signaling to T2D pathogenesis, including T2D risk variants that interact with corticosteroid activity
316 directly to affect islet chromatin. In a similar manner, variants mediating epigenomic responses of
317 pancreatic islets to proinflammatory cytokines were recently shown to contribute to genetic risk of
318 T1D³⁰. Numerous environmental signals and external conditions modulate pancreatic islet
319 function and contribute to the pathophysiology and genetic basis of diabetes, yet the epigenomic
320 and transcriptional responses of islets to disease-relevant stimuli have not been extensively
321 measured. Future studies of islet chromatin and gene regulation exposed to additional stimuli will
322 therefore likely continue providing additional insight into diabetes risk.
323

324 Glucocorticoid signaling led to widespread changes in accessible chromatin, which up-regulated
325 the expression of proximal genes enriched for processes related to ion channels and transport, in

326 particular potassium channels. Potassium ion concentrations modulate calcium influx and insulin
327 secretion in beta cells⁴³, and in disruption of ion channel function leads to impaired glucose-
328 induced insulin secretion and diabetes⁴⁴. Glucocorticoids have been shown to suppress calcium
329 influx while preserving insulin secretion via cAMP⁷, and in line with this finding we observed
330 increased activity of potassium channel and cAMP signaling genes. Up-regulated genes were
331 also enriched in lipid metabolism, which has been shown to regulate insulin secretion and
332 contribute to diabetes^{45,46}. Several up-regulated genes *PER1* and *CRY2* are also components of
333 the circadian clock, and previous studies have shown that endogenous glucocorticoid release is
334 under control of circadian rhythms and therefore may contribute to downstream regulation of the
335 clock⁴⁷. Conversely, glucocorticoid signaling down-regulated inflammatory and stress response
336 programs, in line with previous reports and the known function of glucocorticoids^{2,17,48}. Our
337 findings further suggest that down-regulation of gene activity in glucocorticoid signaling is
338 mediated through the activity of STAT and other TFs at proximal accessible chromatin sites, either
339 through reduced TF expression or inhibition by GR.

340

341 Genetic variants near the homeobox TFs *SIX2* and *SIX3* influence glucose levels^{49,50}, and our
342 results provide evidence that both of these TFs operate downstream of glucocorticoid signaling
343 and that the variants interact with this signaling program directly to influence glucose levels and
344 risk of T2D. A previous study identified association between this locus and glucose levels in
345 Chinese samples and demonstrated allelic effects of the same variant on islet enhancer activity
346 and binding of the TF GABP⁵⁰, further supporting the likely causality of this variant. *SIX2* and
347 *SIX3* have been widely studied for their role in forebrain, kidney and other tissue development⁵¹⁻
348 ⁵⁶. In islets, *SIX2* and *SIX3* both have been shown to increase expression in adult compared to
349 juvenile islets, and induction of *SIX3* expression in EndoB-CH1 cells and juvenile islets enhanced
350 islet function, insulin content and secretion and may contribute to the suppression of proliferative
351 programs⁵⁷. These findings are in line with those of our study which reveal that corticosteroid
352 signaling increases the activity of genes involved in islet function and insulin secretion while
353 suppressing inflammatory and proliferative gene activity.

354

355 Our *in vitro* experimental model mimics the environment of pancreatic islets under hormone
356 signaling, albeit for a single treatment and condition. Given the similarity in binding sites of many
357 nuclear hormone receptors, the effects of GR binding on gene regulation may overlap with the
358 activity of other nuclear receptors which act in beta cells⁵⁸. Studies of other tissues have profiled
359 glucocorticoid signaling across a range of experimental conditions and identified dose- and

360 temporally-dependent effects on gene regulatory programs¹⁴¹⁵, and in islets dose- and temporally-
361 dependent effects of glucocorticoids may impact insulin secretion and other islet functions. Future
362 studies profiling the genomic activity of nuclear receptors in islets across a breadth of
363 experimental conditions will therefore help further shed light into the role of hormone signaling
364 dynamics in islet gene regulation and diabetes pathogenesis.

365

366 **Methods**

367

368 *Human islet samples*

369 Human islet samples were obtained through the Integrated Islet Distribution Program (IIDP) and
370 University of Alberta. Islet samples were further enriched using a dithizone stain. Islets were
371 cultured at approximately 10mL media/1k islets in 10cm dishes at 37C, 5% CO2 in CMRL 1066
372 media supplemented with 10% FBS, 1X pen-strep, 8mM glucose, 2mM L-glutamine, 1mM sodium
373 pyruvate, 10mM HEPES, and 250ng/mL Amphotericin B. Treated islets had an additional 100
374 ng/mL dexamethasone (Sigma) added in the culture media. Islet studies were approved by the
375 Institutional Review Board of the University of California San Diego.

376

377 *ATAC-seq assays*

378 Islet samples were collected and centrifuged at 500xg for 3 minutes, then washed twice in HBSS,
379 and resuspended in nuclei permeabilization buffer consisting of 5% BSA, 0.2% IGEPAL-CA630,
380 1mM DTT, and 1X complete EDTA-free protease inhibitor (Sigma) in 1X PBS. Islets were
381 homogenized using a chilled glass dounce homogenizer and incubated on a tube rotator for 10
382 mins before being filtered through a 30uM filter (sysmex) and centrifuged at 500xg in a 4C
383 microcentrifuge to pellet nuclei. Nuclei were resuspended in Tagmentation Buffer (Illumina) and
384 counted using a Countess II Automated Cell Counter (Thermo). Approximately 50,000 nuclei were
385 transferred to a 0.2mL PCR tube and volume was adjusted to 22.5uL with Tagmentation Buffer.
386 2.5uL TDE1 (Illumina) was added to each tagmentation reaction and mixed with gentle pipetting.
387 Transposition reactions were incubated at 37C for 30 minutes. Tagmentation reactions were
388 cleaned up using 2X reaction volume of Ampure XP beads (Beckman Coulter) and eluted in 20uL
389 Buffer EB (Qiagen). 10uL tagmented DNA prepared as described above was used in a 25uL PCR
390 reaction using NEBNext High-Fidelity Master Mix (New England Biolabs) and Nextera XT Dual-
391 Indexed primers (Nextera). Final libraries were double size selected using Ampure XP beads and
392 eluted in a final volume of 20uL Buffer EB. Libraries were analyzed using the Qubit HS DNA assay

393 (Thermo) and Agilent 2200 Bioanalyzer (Agilent Biotechnologies). Libraries were sequenced on
394 an Illumina HiSeq 4000 using paired end reads of 100bp.

395

396 *RNA-seq assays*

397 RNA was isolated from treated and untreated islets using RNeasy Mini kit (Qiagen) and submitted
398 to the UCSD Institute for Genomic Medicine to prepare and sequence ribodepleted RNA libraries.
399 Libraries were sequenced on an Illumina HiSeq4000 using paired end reads of 100bp.

400

401 *ATAC-seq data processing*

402 We trimmed reads using Trim Galore with options ‘–paired’ and ‘–quality 10’, then aligned them
403 to the hg19 reference genome using BWA⁵⁹ mem with the ‘-M’ flag. We then used samtools⁶⁰ to
404 fix mate pairs, sort and index read alignments, used Picard (<http://broadinstitute.github.io/picard/>)
405 to mark duplicate reads, and used samtools⁶⁰ to filer reads with flags ‘-q 30’, ‘-f 3’, ‘-F 3332’. We
406 then calculated the percentage of mitochondrial reads and percentage of reads mapping to
407 blacklisted regions and removed all mitochondrial reads. Peaks were called using MACS2⁶¹ with
408 parameters ‘—extsize 200 –keep-dup all –shift -100 –nomodel’. We calculated a TSS enrichment
409 score for each ATAC-seq experiment using the Python package ‘tssenrich’. To obtain read depth
410 signal tracks, we used bamCoverage⁶² to obtain bigWig files for each alignment with signal
411 normalization using RPKM.

412

413 *Identifying differential chromatin sites*

414 We generated a set of ATAC-seq peaks by merging peaks called from treated and untreated cells
415 across all samples. The set of alignments for each assay were supplied as inputs to the R function
416 featureCounts from the Rsubread⁶³ package to generate a read count matrix. We applied the R
417 function DESeqDataSetFromMatrix from the DESeq2⁶⁴ package to the read count matrix with
418 default parameters then applied the DESeq function including donor as a variable to model paired
419 samples. We considered sites differentially accessible with FDR<0.1, as computed by the
420 Benjamini-Hochberg method.

421

422 *Principal components analysis*

423 A consensus set of ATAC-seq peaks was defined by merging overlapping (1bp or more) peaks
424 identified in at least two experiments across all ATAC-seq experiments. We constructed a read
425 count matrix using edgeR⁶⁵ and calculated normalization factors using the ‘calcNormFactors’
426 function. We applied the voom transformation⁶⁶ and used the ‘removeBatchEffect’ function from

427 limma⁶⁷ to regress out batch effects and sample quality effects (using TSS enrichment as a proxy
428 for sample quality). We then restricted the read count matrix to the 10,000 most variable peaks
429 and performed PCA analysis using the core R function ‘prcomp’ with rank 2.

430

431 *TF enrichment analysis*

432 Differentially accessible chromatin sites were analyzed for motif enrichment compared to a
433 background of all chromatin sites tested for differential activity using HOMER⁶⁸ and a masked
434 hg19 reference genome with the command `findMotifsGenome.pl <bed file> <masked hg19>
435 <output dir> -bg <background bed file> -size 200 -p 8 -bits -preparse -preparsedDir tmp`. For TF
436 ChIP-seq enrichment, we obtained ChIP-seq binding sites for 160 TFs generated by the ENCODE
437 project⁶⁹ and tested for enrichment of binding in differential accessible chromatin sites compared
438 to a background of all remaining chromatin sites genome-wide without differential activity. For
439 each TF we calculated a 2x2 contingency table of overlap with differential sites and non-
440 differential sites, determined significance using a Fisher test and calculated a fold-enrichment of
441 overlap in differential compared to non-differential sites.

442

443 *RNA-seq data processing and analysis*

444 Paired-end RNA-Seq reads were aligned to the genome using STAR⁷⁰ (2.5.3a) with a splice
445 junction database built from the Gencode v19 gene annotation⁷¹. Gene expression values were
446 quantified using the RSEM package (1.3.1) and filtered for >1 TPM on average per sample. Raw
447 expression counts from the remaining 13,826 genes were normalized using variance stabilizing
448 transformation (vst) from DESeq2⁶⁴ and corrected for sample batch effects using limma
449 removeBatchEffect. Principal component analysis was performed in R using the prcomp function.
450 To identify differentially expressed genes between treated and untreated samples we used
451 RSEM⁷² raw expression counts from the 13,826 genes and applied DESeq2⁶⁴ with default
452 settings, including donor as a cofactor to model paired samples. To identify enriched GO terms in
453 up and down-regulated genes, we applied GSEA⁷³ to 516 up-regulated and 598 down-regulated
454 genes using Gene Ontology terms and pathway terms. We excluded gene sets with large
455 numbers of genes in enrichment tests.

456

457 *Proximity of differential chromatin sites to differentially expressed genes*

458 We calculated the percentage of up- and down-regulated accessible chromatin sites mapping
459 within 100kb of (i) all differentially expressed genes, (ii) up-regulated genes and (iii) down-
460 regulated genes compared to non-differentially accessible sites, and determined the significance

461 and odds ratio using a Fisher exact test. We calculated relative distances using bedtools⁷⁴, with
462 either differential chromatin sites or the "background" of all islet accessible chromatin sites as the
463 "a" argument and differentially expressed genes as the "b" argument. We compared the
464 distribution of relative distances from differential sites to the distribution from background sites
465 using a Kolmogorov-Smirnov test.

466

467 *Sample genotyping and imputation*

468 Non-islet tissue was collected for four samples during islet picking and used for genomic DNA
469 extraction using the PureLink genomic DNA kit (Invitrogen). Genotyping was performed using
470 Infinium Omni2.5-8 arrays (Illumina) at the UCSD Institute for Genomic Medicine. We called
471 genotypes using GenomeStudio (v.2.0.4) with default settings. We then used PLINK⁷⁵ to filter out
472 variants with 1) minor allele frequency (MAF) less than 0.01 in the Haplotype Reference
473 Consortium (HRC)⁷⁶ panel r1.1 and 2) ambiguous A/T or G/C alleles with MAF greater than
474 0.4. For variants that passed these filters, we imputed genotypes into the HRC reference
475 panel r1.1 using the Michigan Imputation Server with minimac4. Post imputation, we removed
476 imputed genotypes with low imputation quality (R2<.3).

477

478 *Allelic imbalance mapping*

479 We identified heterozygous variant calls in each sample with read depth of at least 10 in both
480 untreated and treated cells, and then used WASP⁷⁷ to correct for reference mapping bias. We
481 retained variants in each sample where both alleles were identified at least 3 times across
482 untreated and treated cells. We then merged read counts at heterozygous SNPs from all samples
483 in untreated and treated cells separately. We called imbalanced variants from the merged counts
484 using a binomial test, and then calculated q-values from the resulting binomial p-values. We
485 considered variants significant at an FDR<.10.

486

487 *Genetic association analysis*

488 We tested glucocorticoid-responsive chromatin sites for enrichment of diabetes associations
489 using fine-mapping data for T1D signals from a prior study²⁹, for T2D signals from the DIAMANTE
490 consortium and the Japan Biobank studies^{22,42}, and for blood sugar signals from the Japan
491 Biobank study⁴⁹. For the Japan Biobank data, we fine-mapped signals ourselves using GWAS
492 summary statistics for blood sugar and type 2 diabetes. For both traits, we calculated approximate
493 Bayes factors (ABF) for each variant as described previously⁷⁸. We then compiled index variants
494 for each significant locus and defined the set of all credible variants as those in within a 5 Mb

495 window and at least low linkage ($r^2 > 0.1$) in the East Asian subset of 1000 Genomes⁷⁹ with each
496 index. For each locus, we calculated posterior probabilities of associations (PPA) by dividing the
497 variant ABF by the sum of ABF for the locus. We then defined the 99% credible sets by sorting
498 variants by descending PPA and retaining variants adding up to a cumulative probability of 99%.

499

500 To test for enrichment, we calculated the cumulative posterior probability of variants overlapping
501 differential sites across all signals. We then defined a background set of ATAC-seq peaks by
502 merging peaks from all ATAC-seq experiments. We estimated an empirical distribution for the
503 total posterior probability using 10,000 random draws of peaks from the background equal in
504 number to the DAC sites. We computed a p-value for each treatment by comparing the total
505 posterior probability within DAC sites to the empirical distribution.

506

507 We then cataloged all variants in glucocorticoid-responsive chromatin sites in both fine-mapping
508 data and with nominal association ($P < .005$) genome-wide. For each variant in glucocorticoid-
509 responsive chromatin, we then identified protein-coding genes in GENCODE v33 with differential
510 expression and where the gene body mapped within 100kb of the variant.

511

512 *Expression QTL analyses*

513 We obtained islet expression QTL data from a previous meta-analysis of 230 samples³⁵. We
514 extracted variant associations at the *SIX2/SIX3* locus and tested for colocalization between T2D
515 and blood sugar association in the Biobank Japan study and *SIX2* and *SIX3* eQTLs using a
516 Bayesian approach⁸⁰. We considered signals colocalized with shared PP greater than 50%.

517

518 *Gene reporter assays*

519 To test for allelic differences in enhancer activity at the *SIX2/3* locus, we cloned human DNA
520 sequences (Coriell) containing the reference allele upstream of the minimal promoter in the
521 luciferase reporter vector pGL4.23 (Promega) using the enzymes Sac I and Kpn I. A construct
522 containing the alternate allele was then created using the NEB Q5 SDM kit (New England
523 Biolabs). The primer sequences used were as follows:

524 Cloning FWD AGCTAGGTACCCCTCATCTGCCCTTCTGGAC

525

526 Cloning REV TAACTGAGCTCCAGTGGGTATTGCTGCTTCC

527

528 SDM FWD TGCATTGTTcCTGTCCTGAAGACGAGC

529

530 SDM REV GGGGGTGCCTGCATCTGC

531

532 MIN6 cells were seeded at approximately 2.5E05 cells/cm² into a 48-well plate. The day after
533 passaging into the 48-well plate, cells were co-transfected with 250ng of experimental firefly
534 luciferase vector pGL4.23 containing the alt or ref allele in the forward direction or an empty
535 pGL4.23 vector, and 15ng pRL-SV40 Renilla luciferase vector (Promega) using the Lipofectamine
536 3000 reagent. Cells were fed culture media and stimulated where applicable 24 hours post-
537 transfection. Dexamethasone (Sigma) was added to the culture media for dexamethasone
538 stimulation. Cells were lysed 48 hours post transfection and assayed using the Dual-Luciferase
539 Reporter system (Promega). Firefly activity was normalized to Renilla activity and normalized
540 results were expressed as fold change compared to the luciferase activity of the empty vector. A
541 two-sided t-test was used to compare the luciferase activity between the two alleles in each
542 orientation.

543

544 **Acknowledgements**

545 This work was supported by DK114650, DK122607, and DK120429 to K.G.

546

547 **Author contributions**

548 K.J.G conceived of and supervised the research in this study; K.J.G, A.A and M.O. wrote the
549 manuscript and performed data analyses; J.C., P.B. and E.B. performed data analyses; M.O.
550 performed genomic experiments; M.O., A.P. and S.D. performed reporter experiments.

551

552 **Data availability**

553 Processed data and annotations will be made available in <https://www.diabetesepigenome.org>
554 upon publication, and raw data will be deposited in GEO and dbGAP.

555 **Figure Legends**

556

557 **Figure 1. A map of gene regulation in pancreatic islets in response to glucocorticoid
558 signaling.** (A) Overview of study design. Primary pancreatic islet samples were split and
559 separately cultured in normal conditions and including the glucocorticoid dexamethasone, and

560 then profiled for gene expression and accessible chromatin using RNA-seq and ATAC-seq
561 assays. (B,C) Genes with known induction in glucocorticoid signaling *ZBTB16* and *VIPR1* had
562 increased expression levels in glucocorticoid-treated islets compared to untreated islets. TPM =
563 transcripts per million. (C) At the *ZBTB16* locus several accessible chromatin sites intronic to
564 *ZBTB16* had increased accessibility in glucocorticoid treated (Dex.) compared to untreated (Untr.)
565 islets. (D) At the *VIPR1* locus an accessible chromatin site downstream of *VIPR1* had increased
566 accessibility in glucocorticoid treated (Dex.) compared to untreated (Untr.) islets. Values in C and
567 D represent RPKM normalized ATAC-seq read counts.

568

569 **Figure 2. Glucocorticoid signaling affects chromatin accessibility in pancreatic islets.** (A)
570 Principal components plot showing ATAC-seq signal for 6x glucocorticoid-treated (orange) and
571 untreated (blue) islets. Lines connect paired assays from the same sample, and box plots on
572 each axis represent the average values for each condition. (B) Number of sites with differential
573 chromatin accessibility in glucocorticoid treated compared to untreated islets, including sites with
574 increased activity (+ in dex) and decreased activity (- in dex). (C) Enrichment of ChIP-seq sites
575 from ENCODE for 160 TFs in differential chromatin sites with increased activity (top, + in dex)
576 and decreased activity (bottom, - in dex) in glucocorticoid treated islets. (D) Sequence motifs
577 enriched in differential chromatin sites with increased activity (top, + in dex) and decreased activity
578 (bottom, - in dex) in glucocorticoid-treated islets. (E) Multiple chromatin sites at the *SIX2/3* locus
579 had increased activity in glucocorticoid-treated islets and overlapped ChIP-seq sites for the
580 glucocorticoid receptor (GR/NR3C1) (top). (F) One of the differential sites at *SIX2/3* had
581 glucocorticoid-dependent effects on enhancer activity in gene reporter assays in MIN6 cells
582 (bottom). Values represent mean and standard deviation. ***P=1.6x10⁻⁶. (G) Variant rs684374
583 mapped in a chromatin site with increased activity in glucocorticoid treated islets, had significant
584 allelic effects on chromatin accessibility specifically in glucocorticoid-treated islets, and also
585 disrupted a sequence motif for the glucocorticoid receptor. **P=3.8x10-4.

586

587 **Figure 3. Glucocorticoid signaling affects gene expression levels in pancreatic islets.** (A)
588 Principal components plot showing RNA-seq signal for 3x glucocorticoid-treated (orange) and
589 untreated (blue) islets. Lines connect paired assays from the same sample, and box plots on
590 each axis represent the average values for each condition. (B) Volcano plot showing genes with
591 differential expression in glucocorticoid-treated islets compared to untreated islets. Genes with
592 significantly differential expression (FDR<.10) are highlighted in red, and genes with pronounced
593 changed in expression are listed. (C) Percentage of chromatin sites with increased activity (left)

594 and decreased activity (right) in glucocorticoid-treated islets within 100kb of differentially
595 expressed genes compared to chromatin sites without differential activity. (D) Relative distance
596 of accessible chromatin sites with differential activity (dex) to genes with differential expression
597 compared to all chromatin sites (background). (E) Biological pathway and Gene Ontology terms
598 enriched among genes with up-regulated expression in glucocorticoid-treated islets (top), and the
599 expression level of selected genes annotated with ion transport and lipid metabolism terms in
600 glucocorticoid-treated and untreated islets (bottom). (F) Biological pathway and Gene Ontology
601 terms enriched among genes with up-regulated expression in glucocorticoid-treated islets (top),
602 and the expression level of selected genes annotated with inflammatory response and
603 proliferation terms in glucocorticoid-treated and untreated islets (bottom). Circles represent -
604 log10 of the enrichment q-value, and bar plots represent mean and standard error.

605

606 **Figure 4. Type 2 diabetes and glucose associated variants affect glucocorticoid-
607 responsive islet regulatory programs.** (A) Enrichment of variants associated with type 1
608 diabetes, type 2 diabetes and blood sugar (glucose) levels for sites with differential chromatin
609 accessibility in glucocorticoid-treated islets. (B) Multiple fine-mapped T2D variants at the
610 *SCD5/TMEM150C* locus mapped in a glucocorticoid-responsive islet accessible chromatin site.
611 Both the *SCD5* and *TMEM150C* genes had increased expression in glucocorticoid-treated islets.
612 TPM = transcripts per million. Genome browser tracks represent RPKM normalized ATAC-seq
613 signal, and TPM bar plots represent mean and standard error. (C, D) Variant rs12712928 with
614 evidence for blood sugar and T2D association mapped in a glucocorticoid-responsive chromatin
615 site at the *SIX2/3* locus. Both the *SIX2* and *SIX3* genes had increased expression in
616 glucocorticoid-treated islets. (E) Variant rs12712928 had significant allelic effects on enhancer
617 activity in gene reporter assays in MIN6 cells. Values represent mean and standard deviation.
618 **P=3.2x10⁻⁴; ***P=2.5x10⁻⁶ (F) The allelic effects of rs12712928 were more pronounced in
619 glucocorticoid-treated relative to untreated islets. Values represent fold-change and 95% CI. (G)
620 The T2D association signal at *SIX2/3* was colocalized with an eQTL for *SIX3* expression in islets.

621

622 **References**

623

624 1. Becker, D. E. Basic and clinical pharmacology of glucocorticosteroids. *Anesth. Prog.* **60**, 25–
625 31; quiz 32 (2013).

626 2. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and immunosuppressive effects of
627 glucocorticoids, recent developments and mechanistic insights. *Mol. Cell. Endocrinol.* **335**, 2–
628 13 (2011).

629 3. Patel, R., Williams-Dautovich, J. & Cummins, C. L. Minireview: new molecular mediators of
630 glucocorticoid receptor activity in metabolic tissues. *Mol. Endocrinol. Baltim. Md* **28**, 999–
631 1011 (2014).

632 4. Bauerle, K. T. & Harris, C. Glucocorticoids and Diabetes. *Mo. Med.* **113**, 378–383 (2016).

633 5. Suh, S. & Park, M. K. Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked
634 Problem. *Endocrinol. Metab. Seoul Korea* **32**, 180–189 (2017).

635 6. Colvin, E. S., Ma, H.-Y., Chen, Y.-C., Hernandez, A. M. & Fueger, P. T. Glucocorticoid-
636 induced suppression of β -cell proliferation is mediated by Mig6. *Endocrinology* **154**, 1039–
637 1046 (2013).

638 7. Fine, N. H. F. *et al.* Glucocorticoids Reprogram β -Cell Signaling to Preserve Insulin
639 Secretion. *Diabetes* **67**, 278–290 (2018).

640 8. Gesina, E. *et al.* Dissecting the role of glucocorticoids on pancreas development. *Diabetes*
641 **53**, 2322–2329 (2004).

642 9. Liu, X. *et al.* β -Cell-Specific Glucocorticoid Reactivation Attenuates Inflammatory β -Cell
643 Destruction. *Front. Endocrinol.* **5**, 165 (2014).

644 10. Lambillotte, C., Gilon, P. & Henquin, J. C. Direct glucocorticoid inhibition of insulin
645 secretion. An in vitro study of dexamethasone effects in mouse islets. *J. Clin. Invest.* **99**,
646 414–423 (1997).

647 11. Ullrich, S. *et al.* Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates
648 glucocorticoid-induced inhibition of insulin secretion. *Diabetes* **54**, 1090–1099 (2005).

649 12. Oakley, R. H. & Cidlowski, J. A. The biology of the glucocorticoid receptor: new signaling
650 mechanisms in health and disease. *J. Allergy Clin. Immunol.* **132**, 1033–1044 (2013).

651 13. Reddy, T. E. *et al.* Genomic determination of the glucocorticoid response reveals
652 unexpected mechanisms of gene regulation. *Genome Res.* **19**, 2163–2171 (2009).

653 14. McDowell, I. C. *et al.* Glucocorticoid receptor recruits to enhancers and drives activation
654 by motif-directed binding. *Genome Res.* **28**, 1272–1284 (2018).

655 15. Vockley, C. M. *et al.* Direct GR Binding Sites Potentiate Clusters of TF Binding across
656 the Human Genome. *Cell* **166**, 1269-1281.e19 (2016).

657 16. Ling, J. & Kumar, R. Crosstalk between NFkB and glucocorticoid signaling: a potential
658 target of breast cancer therapy. *Cancer Lett.* **322**, 119–126 (2012).

659 17. De Bosscher, K. *et al.* Glucocorticoids repress NF-kappaB-driven genes by disturbing
660 the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels
661 in the cell. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 3919–3924 (2000).

662 18. Hazlehurst, J. M. *et al.* Glucocorticoids fail to cause insulin resistance in human
663 subcutaneous adipose tissue *in vivo*. *J. Clin. Endocrinol. Metab.* **98**, 1631–1640 (2013).

664 19. Jubb, A. W., Boyle, S., Hume, D. A. & Bickmore, W. A. Glucocorticoid Receptor Binding
665 Induces Rapid and Prolonged Large-Scale Chromatin Decompaction at Multiple Target Loci.
666 *Cell Rep.* **21**, 3022–3031 (2017).

667 20. John, S. *et al.* Chromatin accessibility pre-determines glucocorticoid receptor binding
668 patterns. *Nat. Genet.* **43**, 264–268 (2011).

669 21. Grøntved, L. *et al.* C/EBP maintains chromatin accessibility in liver and facilitates
670 glucocorticoid receptor recruitment to steroid response elements. *EMBO J.* **32**, 1568–1583
671 (2013).

672 22. Mahajan, A. *et al.* Fine-mapping type 2 diabetes loci to single-variant resolution using
673 high-density imputation and islet-specific epigenome maps. *Nat. Genet.* **50**, 1505–1513
674 (2018).

675 23. Fuchsberger, C. *et al.* The genetic architecture of type 2 diabetes. *Nature* **536**, 41–47
676 (2016).

677 24. Gaulton, K. J. *et al.* Genetic fine mapping and genomic annotation defines causal
678 mechanisms at type 2 diabetes susceptibility loci. *Nat. Genet.* **47**, 1415–1425 (2015).

679 25. Gaulton, K. J. Mechanisms of Type 2 Diabetes Risk Loci. *Curr. Diab. Rep.* **17**, 72 (2017).

680 26. Pasquali, L. *et al.* Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-
681 associated variants. *Nat. Genet.* **46**, 136–143 (2014).

682 27. Chiou, J. *et al.* *Single cell chromatin accessibility reveals pancreatic islet cell type- and*
683 *state-specific regulatory programs of diabetes risk.*
684 <http://biorxiv.org/lookup/doi/10.1101/693671> (2019) doi:10.1101/693671.

685 28. Onengut-Gumuscu, S. *et al.* Fine mapping of type 1 diabetes susceptibility loci and
686 evidence for colocalization of causal variants with lymphoid gene enhancers. *Nat. Genet.* **47**,
687 381–386 (2015).

688 29. Aylward, A., Chiou, J., Okino, M.-L., Kadakia, N. & Gaulton, K. J. Shared genetic risk
689 contributes to type 1 and type 2 diabetes etiology. *Hum. Mol. Genet.* (2018)
690 doi:10.1093/hmg/ddy314.

691 30. Ramos-Rodríguez, M. *et al.* The impact of proinflammatory cytokines on the β -cell
692 regulatory landscape provides insights into the genetics of type 1 diabetes. *Nat. Genet.* **51**,
693 1588–1595 (2019).

694 31. Gaulton, K. J. *et al.* A map of open chromatin in human pancreatic islets. *Nat. Genet.* **42**,
695 255–259 (2010).

696 32. Stitzel, M. L. *et al.* Global epigenomic analysis of primary human pancreatic islets
697 provides insights into type 2 diabetes susceptibility loci. *Cell Metab.* **12**, 443–455 (2010).

698 33. Varshney, A. *et al.* Genetic regulatory signatures underlying islet gene expression and
699 type 2 diabetes. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 2301–2306 (2017).

700 34. Parker, S. C. J. *et al.* Chromatin stretch enhancer states drive cell-specific gene
701 regulation and harbor human disease risk variants. *Proc. Natl. Acad. Sci. U. S. A.* **110**,
702 17921–17926 (2013).

703 35. Greenwald, W. W. *et al.* Pancreatic islet chromatin accessibility and conformation
704 reveals distal enhancer networks of type 2 diabetes risk. *Nat. Commun.* **10**, 2078 (2019).

705 36. Miguel-Escalada, I. *et al.* Human pancreatic islet three-dimensional chromatin
706 architecture provides insights into the genetics of type 2 diabetes. *Nat. Genet.* **51**, 1137–1148
707 (2019).

708 37. Wasim, M. *et al.* PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic
709 leukemia, interferes with glucocorticoid-induced apoptosis. *J. Steroid Biochem. Mol. Biol.*
710 **120**, 218–227 (2010).

711 38. Wasim, M. *et al.* Promyelocytic leukemia zinc finger protein (PLZF) enhances
712 glucocorticoid-induced apoptosis in leukemic cell line NALM6. *Pak. J. Pharm. Sci.* **25**, 617–
713 621 (2012).

714 39. Fahnenstich, J. *et al.* Promyelocytic leukaemia zinc finger protein (PLZF) is a
715 glucocorticoid- and progesterone-induced transcription factor in human endometrial stromal
716 cells and myometrial smooth muscle cells. *Mol. Hum. Reprod.* **9**, 611–623 (2003).

717 40. Breen, M. S. *et al.* Differential transcriptional response following glucocorticoid activation
718 in cultured blood immune cells: a novel approach to PTSD biomarker development. *Transl.*
719 *Psychiatry* **9**, 201 (2019).

720 41. Wang, J., Zhu, Z., Nolfo, R. & Elias, J. A. Dexamethasone regulation of lung epithelial
721 cell and fibroblast interleukin-11 production. *Am. J. Physiol.* **276**, L175-185 (1999).

722 42. Suzuki, K. *et al.* Identification of 28 new susceptibility loci for type 2 diabetes in the
723 Japanese population. *Nat. Genet.* **51**, 379–386 (2019).

724 43. Rajan, A. S. *et al.* Ion channels and insulin secretion. *Diabetes Care* **13**, 340–363
725 (1990).

726 44. Jacobson, D. A. & Shyng, S.-L. Ion Channels of the Islets in Type 2 Diabetes. *J. Mol.*
727 *Biol.* (2019) doi:10.1016/j.jmb.2019.08.014.

728 45. Ye, R. *et al.* Intracellular lipid metabolism impairs β cell compensation during diet-
729 induced obesity. *J. Clin. Invest.* **128**, 1178–1189 (2018).

730 46. Imai, Y., Cousins, R. S., Liu, S., Phelps, B. M. & Promes, J. A. Connecting pancreatic
731 islet lipid metabolism with insulin secretion and the development of type 2 diabetes. *Ann. N.*
732 *Y. Acad. Sci.* **1461**, 53–72 (2020).

733 47. Dickmeis, T. Glucocorticoids and the circadian clock. *J. Endocrinol.* **200**, 3–22 (2009).

734 48. King, E. M. *et al.* Glucocorticoid repression of inflammatory gene expression shows
735 differential responsiveness by transactivation- and transrepression-dependent mechanisms.
736 *PLoS One* **8**, e53936 (2013).

737 49. Kanai, M. *et al.* Genetic analysis of quantitative traits in the Japanese population links
738 cell types to complex human diseases. *Nat. Genet.* **50**, 390–400 (2018).

739 50. Spracklen, C. N. *et al.* Identification and functional analysis of glycemic trait loci in the
740 China Health and Nutrition Survey. *PLoS Genet.* **14**, e1007275 (2018).

741 51. Carl, M., Loosli, F. & Wittbrodt, J. Six3 inactivation reveals its essential role for the
742 formation and patterning of the vertebrate eye. *Dev. Camb. Engl.* **129**, 4057–4063 (2002).

743 52. Brodbeck, S., Besenbeck, B. & Englert, C. The transcription factor Six2 activates
744 expression of the Gdnf gene as well as its own promoter. *Mech. Dev.* **121**, 1211–1222
745 (2004).

746 53. Lagutin, O. V. *et al.* Six3 repression of Wnt signaling in the anterior neuroectoderm is $\backslash=$

747 54. He, G. *et al.* Inactivation of Six2 in mouse identifies a novel genetic mechanism
748 controlling development and growth of the cranial base. *Dev. Biol.* **344**, 720–730 (2010).

749 55. Samuel, A. *et al.* Six3 regulates optic nerve development via multiple mechanisms. *Sci.*
750 *Rep.* **6**, 20267 (2016).

751 56. Steinmetz, P. R. *et al.* Six3 demarcates the anterior-most developing brain region in
752 bilaterian animals. *EvoDevo* **1**, 14 (2010).

753 57. Arda, H. E. *et al.* Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms
754 Governing Human β Cell Function. *Cell Metab.* **23**, 909–920 (2016).

755 58. Reynolds, M. S. *et al.* β -Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes
756 mitochondrial respiration and insulin secretion. *Am. J. Physiol. Endocrinol. Metab.* **311**, E186–
757 201 (2016).

758 59. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
759 transform. *Bioinforma. Oxf. Engl.* **25**, 1754–1760 (2009).

760 60. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf. Engl.*
761 **25**, 2078–2079 (2009).

762 61. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* **9**, R137
763 (2008).

764 62. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data
765 analysis. *Nucleic Acids Res.* **44**, W160-165 (2016).

766 63. Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and
767 better for alignment and quantification of RNA sequencing reads. *Nucleic Acids Res.* **47**, e47
768 (2019).

769 64. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
770 for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

771 65. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for
772 differential expression analysis of digital gene expression data. *Bioinforma. Oxf. Engl.* **26**,
773 139–140 (2010).

774 66. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear
775 model analysis tools for RNA-seq read counts. *Genome Biol.* **15**, R29 (2014).

776 67. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing
777 and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

778 68. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime
779 cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–589
780 (2010).

781 69. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the
782 human genome. *Nature* **489**, 57–74 (2012).

783 70. Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinforma. Oxf. Engl.* **29**,
784 15–21 (2013).

785 71. Harrow, J. *et al.* GENCODE: the reference human genome annotation for The ENCODE
786 Project. *Genome Res.* **22**, 1760–1774 (2012).

787 72. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with
788 or without a reference genome. *BMC Bioinformatics* **12**, 323 (2011).

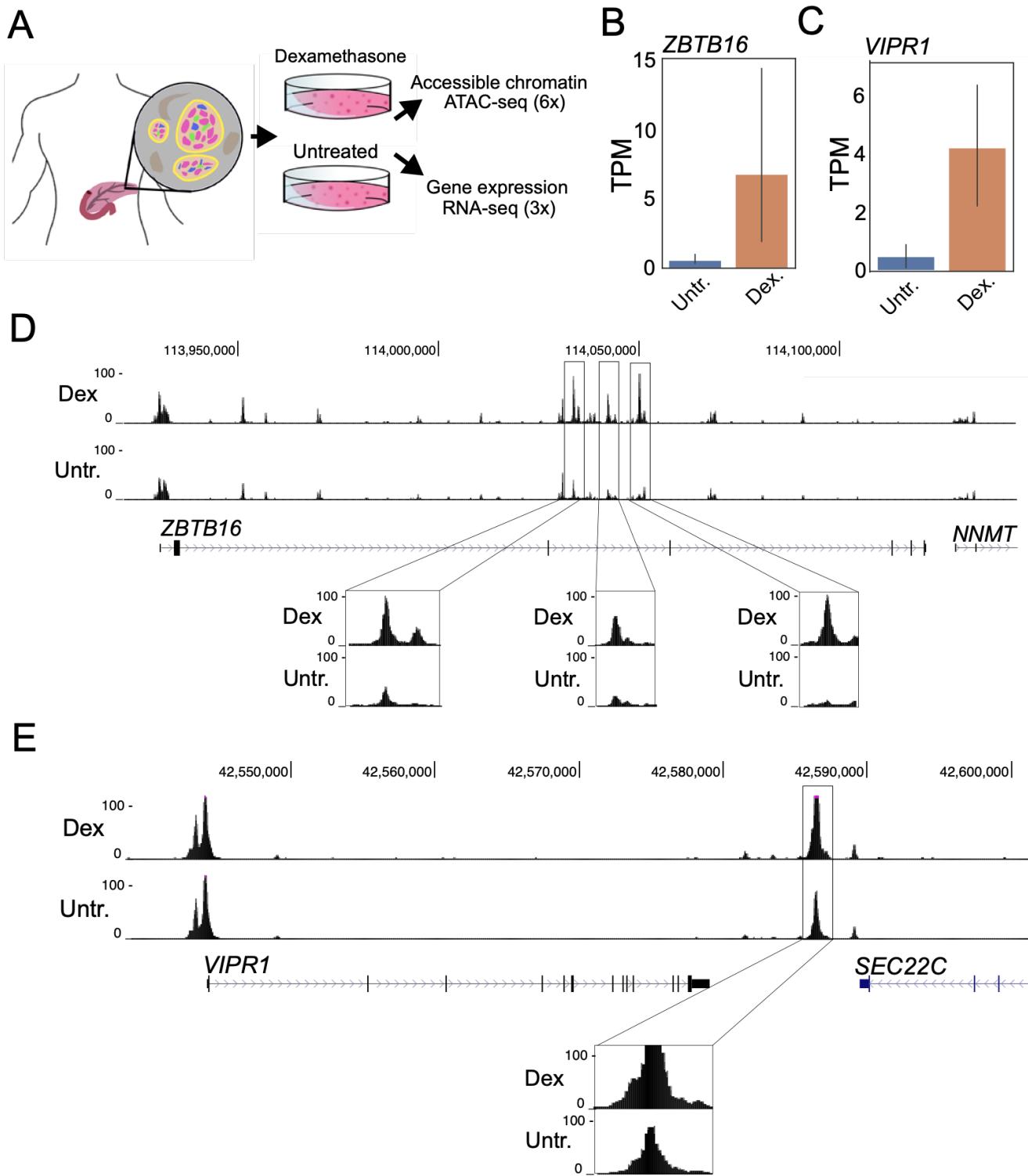
789 73. Subramanian, A. *et al.* Gene set enrichment analysis: a knowledge-based approach for
790 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U. S. A.* **102**, 15545–
791 15550 (2005).

792 74. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
793 features. *Bioinforma. Oxf. Engl.* **26**, 841–842 (2010).

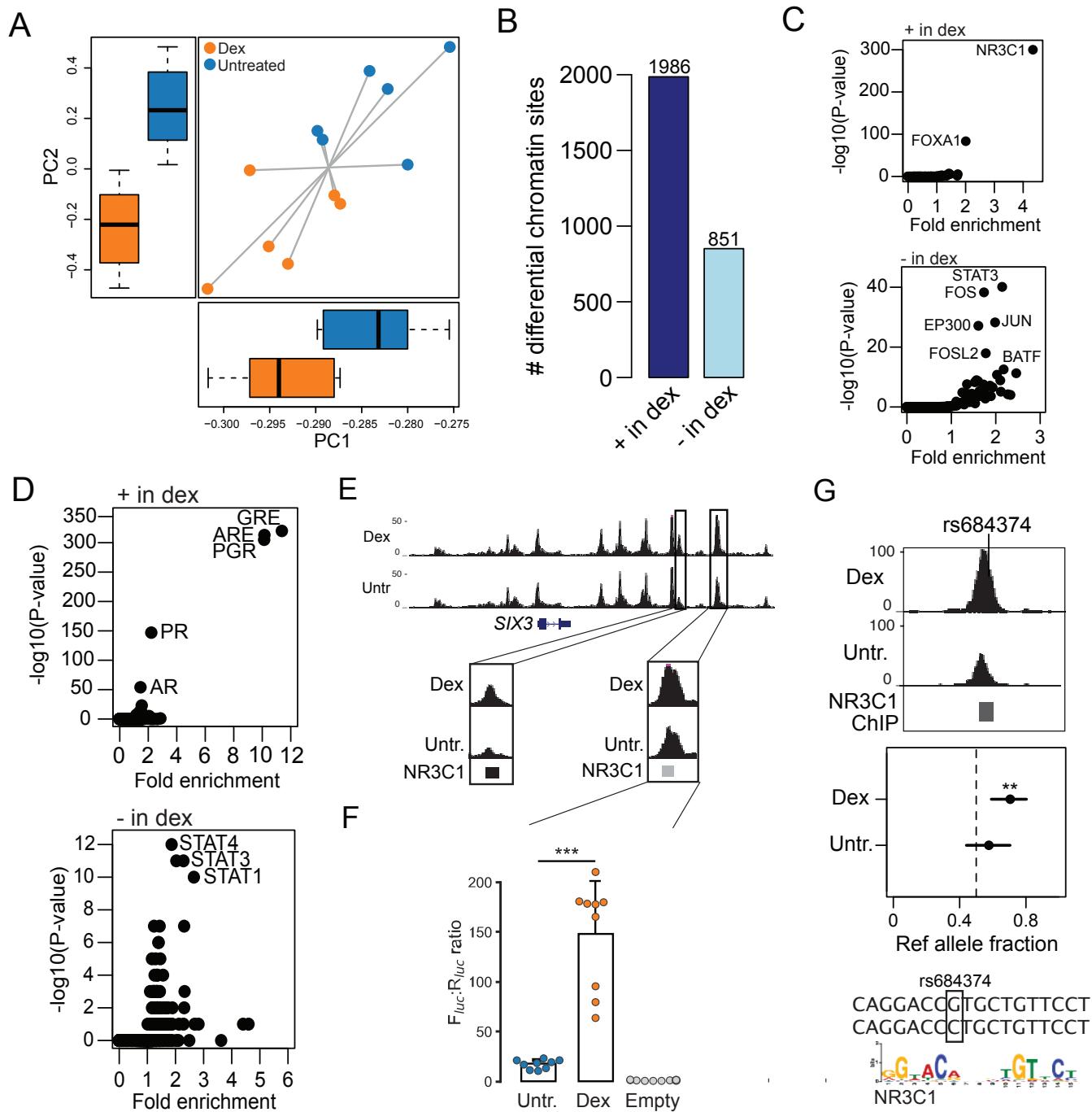
794 75. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based
795 linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

796 76. McCarthy, S. *et al.* A reference panel of 64,976 haplotypes for genotype imputation. *Nat.*
797 *Genet.* **48**, 1279–1283 (2016).

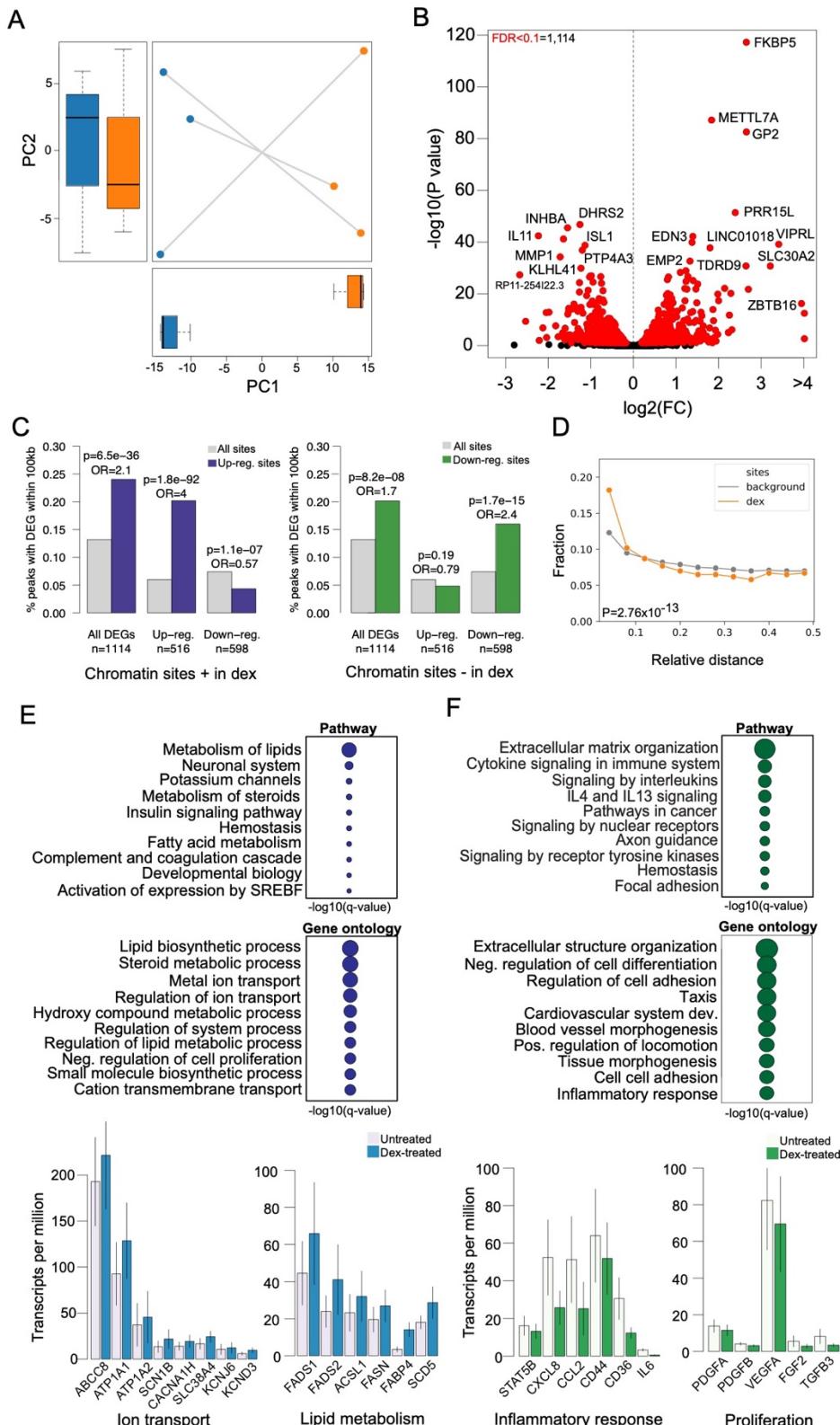
798 77. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific
799 software for robust molecular quantitative trait locus discovery. *Nat. Methods* **12**, 1061–1063
800 (2015).


801 78. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic
802 epidemiology studies. *Am. J. Hum. Genet.* **81**, 208–227 (2007).

803 79. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation.


804 *Nature* **526**, 68–74 (2015).

805 80. Giambartolomei, C. *et al.* Bayesian test for colocalisation between pairs of genetic


806 association studies using summary statistics. *PLoS Genet.* **10**, e1004383 (2014).

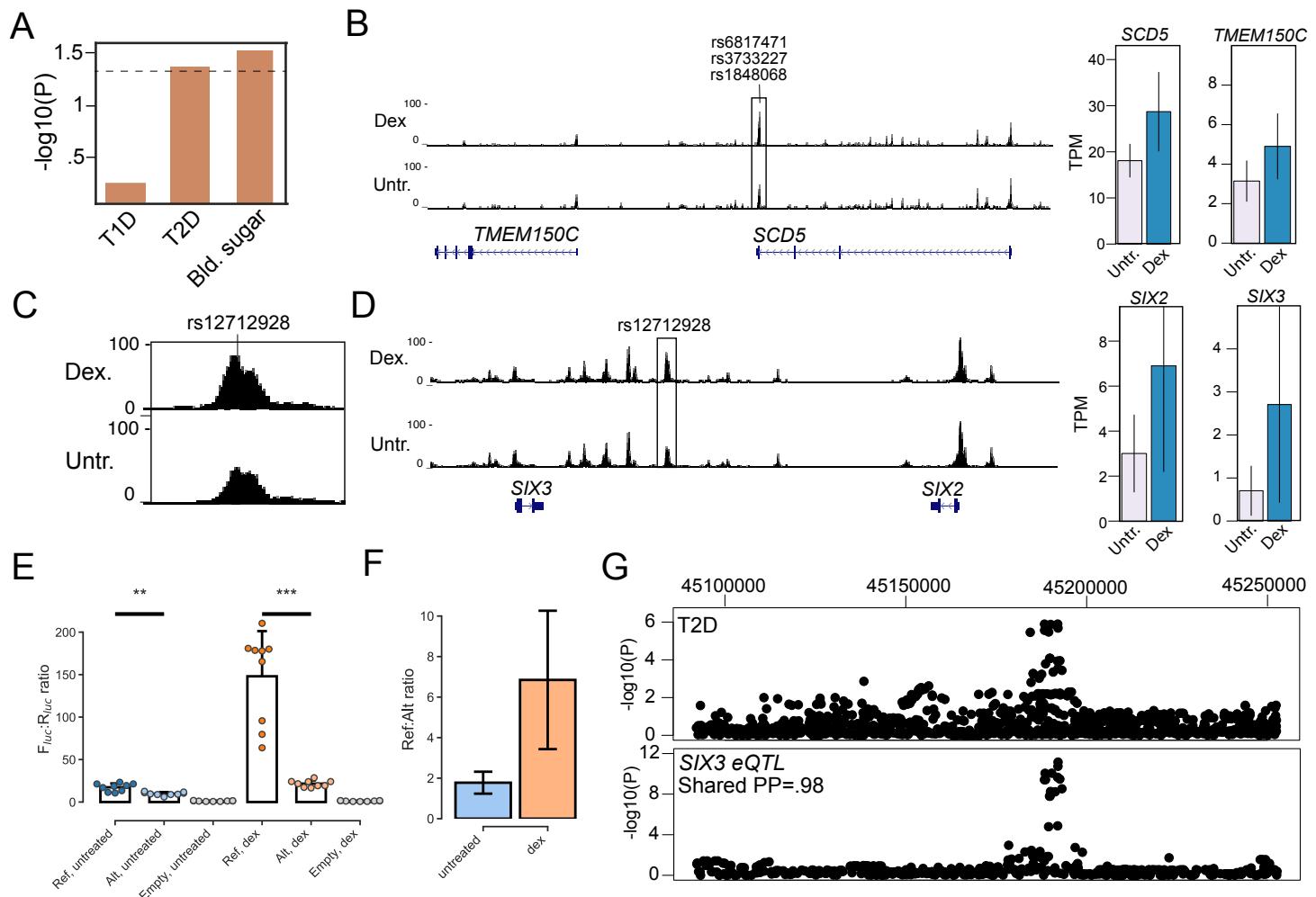

Figure 1

Figure 2

Figure 3

Figure 4