

1 **Functional Exploration of Heterotrimeric Kinesin-II in IFT and Ciliary
2 Length Control in *Chlamydomonas***

3 Shufen Li^{1,2}, Wei Chen¹, Kirsty Y Wan³, Hui Tao¹, Xin Liang^{1*} and Junmin Pan^{1,2*}

4

5 ¹MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences,
6 School of Life Sciences, Tsinghua University, Beijing 100084, China

7 ²Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for
8 Marine Science and Technology, Qingdao, Shandong Province 266000, China

9 ³Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK

10

11

12 **Running title:** Kinesin-II, IFT and ciliary length

13

14 ***Correspondence:**

15 panjunmin@tsinghua.edu.cn; Tel/Fax 0086-1062771864

16 xinliang@tsinghua.edu.cn; Tel/Fax 0086-1062772563

17

18

19 **SUMMARY**

20 Heterotrimeric organization of kinesin-II is essential for its function in anterograde IFT
21 in ciliogenesis. However, the molecular basis of forming this complex for its function is
22 not well understood. In addition, the anterograde IFT velocity varies significantly in
23 different organisms, but how motor speed affects ciliary length is not clear. We show
24 that *Chlamydomonas* kinesin-II (CrKinesin-II) involves distinct mechanisms from
25 mammals and *C. elegans* in its assembly to necessitate its function in IFT.
26 Furthermore, chimeric CrKinesin-II with human kinesin-II motor domains functioned *in*
27 *vitro* and *in vivo*, leading to a ~2.8-fold reduced anterograde IFT velocity and a similar
28 fold reduction in IFT injection rate that supposedly correlates with ciliary assembly
29 activity. However, the ciliary length was only mildly reduced (~15%). Modelling
30 analyses suggest that such a non-linear scaling relationship between IFT velocity and
31 ciliary length can be accounted for by limitation of the motors and/or its ciliary cargoes,
32 e.g. tubulin.

33

34 **Key words:** Cilia and flagella; Intraflagellar transport; Kinesin-2; Ciliary length;
35 *Chlamydomonas*

36

37 **INTRODUCTION**

38 It is well-established that cilia are conserved cellular organelles that play pivotal roles
39 in signaling and cellular motilities, and defects in cilia are linked with numerous human
40 diseases and developmental disorders (Anvarian et al., 2019; Bangs and Anderson,
41 2017; Reiter and Leroux, 2017). The assembly and maintenance of cilia requires
42 intraflagellar transport (IFT), a bidirectional movement of protein complexes (IFT
43 complexes) between the ciliary membrane and the axoneme (Kozminski et al., 1993).
44 The anterograde transport (from ciliary base to tip) is driven by kinesin-2 whereas
45 retrograde transport (from ciliary tip to base) is powered by cytoplasmic dynein 2/1b
46 (Rosenbaum and Witman, 2002; Scholey, 2003). The IFT complexes, which consist of
47 IFT-A and IFT-B complexes, serve as cargo adaptors to recruit ciliary proteins
48 (Lechtreck, 2015; Taschner and Lorentzen, 2016), and are assembled into linear
49 arrays termed IFT particles or IFT trains (Kozminski et al., 1993; Pigino et al., 2009).

50

51 Heterotrimeric kinesin-2 (kinesin-II) is essential for anterograde IFT and
52 ciliogenesis in most ciliated cells while both heterotrimeric and homodimeric kinesin-2
53 collaboratively drive anterograde IFT in *C. elegans* (Scholey, 2013). In contrast to
54 most kinesins with two identical motor subunits, kinesin-II consists of two
55 non-identical motor subunits and one non-motor subunit (KAP) (Hirokawa et al., 2009;
56 Verhey and Hammond, 2009). The heterotrimeric organization of kinesin-II is required
57 for IFT because mutation in either subunit abolishes or impairs IFT in various
58 organisms (Engelke et al., 2019; Kozminski et al., 1995; Liang et al., 2014; Lin et al.,
59 2003; Miller et al., 2005; Mueller et al., 2005; Nonaka et al., 1998; Snow et al., 2004).
60 Though different systems use similar machinery, the underlying mechanism of this
61 heterotrimeric organization for IFT appear to diversify in the worm and mammals. For
62 example, homodimer of kinesin-II motor subunits cannot be formed and motors with
63 two identical motor domains are not functional *in vivo* in worm (Brunnbauer et al.,
64 2010; Pan et al., 2010) whereas in mammalian cells, kinesin-II subunit KIF3A can
65 form homodimers but cannot associate with IFT complexes (Funabashi et al., 2018). It

66 is intriguing to learn how this heterotrimeric organization requirement is conserved
67 and diversified, especially in the unicellular eukaryote *Chlamydomonas* in which IFT
68 was first discovered (Kozminski et al., 1993).

69

70 During IFT, the velocity of anterograde IFT driven by kinesin-II varies with the
71 types of organisms. Though the assay conditions would slightly affect the
72 measurements, the velocity of anterograde IFT is ~2.2 $\mu\text{m/s}$ in *Chlamydomonas* and
73 *Trypanosome* (Bertiaux et al., 2018a; Brown et al., 2015; Dentler, 2005; Engel et al.,
74 2009; Liang et al., 2014; Wingfield et al., 2017). In contrast, mammalian cells and
75 worms have a much slower velocity (~0.5 $\mu\text{m/s}$) (Broekhuis et al., 2014; Engelke et al.,
76 2019; Follit et al., 2006; Snow et al., 2004). Notably, *Chlamydomonas* and
77 *Trypanosoma* have longer cilia whereas mammalian cells tend to have shorter cilia. It
78 is intriguing how the motor speed affects IFT and ciliary assembly. In addition,
79 kinesin-II is thought to drive IFT complexes from the ciliary base through the transition
80 zone to the cilium (Prevo et al., 2015; Scholey, 2013; Wingfield et al., 2017). However,
81 it was also argued that kinesin-II takes over anterograde transport only after IFT
82 complexes enter cilia via a mechanism where the mechanochemical coupling of
83 kinesin-2 is dispensable (Nachury and Mick, 2019). Thus, it is interesting to know how
84 kinesin-II motor activity affects entry of IFT trains into cilia.

85

86 In this work, we reveal distinct mechanisms for the requirement of the
87 heterotrimeric organization of *Chlamydomonas* kinesin-II (CrKinesin-II),
88 demonstrating that a similar machinery may employ divergent mechanisms for the
89 function. Furthermore, we generated chimeric CrKinesin-II with motor domains of
90 human kinesin-II (HsKinesin-II) and show that it can perform motility function *in vitro*
91 and *in vivo* but with an ~2.8-fold reduction in the velocity of motor and/or anterograde
92 IFT. The reduced motor velocity results in a similar reduction in the IFT injection rate,
93 suggesting that kinesin-II activity is involved in moving IFT complexes into cilia. IFT
94 injection rate has been shown to correlate with ciliary assembly activity and thus

95 ciliary length (marshall 2001, 2005 2009). However, the effect of changing motor
96 speed on ciliary length has not been directly demonstrated *in vivo* until now.
97 Interestingly, our results reveal that the ciliary length of the cells expressing the slow
98 chimeric motor is only mildly reduced (~15%). Using a modeling approach to
99 understand the effect of motor speed on ciliary assembly and length, we reveal that
100 limitation of motors or key ciliary components are likely the key determinants of ciliary
101 length.

102

103 **RESULTS**

104 **The requirement of heterotrimeric organization of CrKinesin-II for IFT**

105 The function of kinesin-II in IFT requires two non-identical motor subunits and a
106 non-motor subunit, kinesin-associated protein (KAP). To understand how this
107 organization is required for the function of CrKinesin-II in IFT, we analyzed whether
108 CrKinesin-II with two identical motor domains can coordinate for motility *in vitro* and *in*
109 *vivo*, and whether each of the motor subunits can interact with KAP independently
110 without the other subunit. For *in vitro* motility assay, we generated CrKinesin-II
111 constructs with fluorescent tags as well as tags for protein purification as indicated
112 (Figure 1A). To generate CrKinesin-II constructs with two identical motor domains, the
113 motor domain of FLA8 was replaced with that of FLA10 and *vice versa* (Figure 1B).
114 The recombinant wild-type CrKinesin-II as well as the chimeric motors
115 FLA10/FLA10'/KAP and FLA8/FLA8'/KAP were expressed respectively in SF9 cells
116 and purified (Figure S1).

117

118 We used total internal reflection fluorescence (TIRF) microscopy to determine the
119 motility of the purified motors. Compared to wild type motors ($1.62 \pm 0.23 \mu\text{m/s}$, $n = 55$),
120 FLA8/FLA8'/KAP ($1.60 \mu\text{m/s} \pm 0.17$, $n = 83$) moved with a similar velocity while
121 FLA10/FLA10'/KAP ($1.88 \pm 0.20 \mu\text{m/s}$, $n = 56$) showed a slightly higher velocity. Thus,
122 chimeric motors with two identical motor domains (i.e. FLA10/FLA10 and FLA8/FLA8)
123 of Crkinesin-II can functionally coordinate. These results were consistent with the
124 reports for kinesin-II from *C. elegans* and mammal (Brunnbauer et al., 2010;
125 Muthukrishnan et al., 2009; Pan et al., 2010). However, kinesin-II with two identical
126 motor domains of KLP20 in *C. elegans* did not function *in vivo* (Pan et al., 2010). It
127 was intriguing whether this was conserved in *Chlamydomonas*. Thus, we tested the *in*
128 *vivo* functionality of the chimeric motor FLA10/FLA10'/KAP as FLA10 and KLP20 are
129 homologous. To this end, *FLA10'-HA* was transformed into an aflagellate *fla8* mutant
130 and the transformants were expected to form a chimera with two FLA10 motor
131 domains *in vivo*. FLA10/FLA10'/KAP transformants rescued the aflagellar phenotype

132 of *fla8* in terms of ciliary length and ciliary regeneration kinetics (Figure S2), indicating
133 that Crkinesin-II with two identical motor domains of FLA10 performs proper
134 physiological function *in vivo*. To determine whether the transformants indeed rescued
135 IFT, IFT46-YFP was expressed respectively in FLA10/FLA10'/KAP cell and an *ift46*
136 mutant (as a control) (Lv et al., 2017). The retrograde IFT in FLA10/FLA10'/KAP cells
137 ($3.57 \pm 0.60 \mu\text{m/s}$, $n = 70$) showed a similar velocity to that in the control cells ($3.59 \pm$
138 $0.42 \mu\text{m/s}$, $n = 46$). The velocity of anterograde IFT in FLA10/FLA10' (2.60 ± 0.19
139 $\mu\text{m/s}$, $n = 73$) was slightly higher relative to the control ($2.10 \pm 0.21 \mu\text{m/s}$, $n = 53$)
140 (Figure 1D and E). Thus, CrKinesin-II with two identical motor domains of FLA10
141 could function *in vivo*, which is in contrast to the results in *C. elegans* (Pan et al.,
142 2010).

143

144 We next examined whether FLA10 or FLA8 was able to form homodimer and
145 interact with KAP. FLA10-GFP and FLA10-MBP were co-expressed in HEK293T cells
146 followed by immunoprecipitation with an anti-GFP antibody and immunoblotting with
147 GFP and MBP antibodies, respectively. Similar experiments were performed for FLA8.
148 Both FLA10 and FLA8 could self-interact (Figure 1F). Supposing that self-interaction
149 of FLA10 or FLA8 can form proper homodimer, we then asked whether they could
150 interact with KAP. FLA10-MBP and FLA8-RFP were co-expressed with KAP-GFP-His,
151 respectively, followed by pull-down with Ni beads and immunoblotting (Figure G).
152 Interestingly, FLA10-MBP interacted with KAP while FLA8-RFP did not. KAP is
153 required for kinesin-II's full activation and recruitment to ciliary base (Mueller et al.,
154 2005; Sonar et al., 2020) and FLA8 homologue KIF3B is required for the interaction of
155 kinesin-II with IFT complex (Funabashi et al., 2018). Thus, neither homodimers of
156 FLA10 or FLA8 can function in IFT, because it is likely that the FLA10 homodimer
157 could not interact with IFT complex while FLA8 homodimer could not interact with KAP,
158 which explains the necessity of a heterotrimetric organization of CrKinesin-II for IFT.
159 We showed that both FLA10 and FLA8 could likely form homodimers *in vitro*, however,
160 formation of homodimers *in vivo* is expected to interfere with the proper formation of

161 heterotrimeric kinesin-II. We found that FLA10 in *fla8* mutant was undetectable likely
162 due to protein degradation (Figure S3), indicating that homodimer formation could not
163 occur *in vivo*.

164

165 **Chimeric CrKinesin-II with motor domains of HsKinesin-II functions *in vitro* and**
166 **performs physiological function *in vivo* of *Chlamydomonas***

167 Kinesin-II functions in various ciliated organisms to drive anterograde IFT. However, it
168 has quite different properties. For example, the motility of kinesin-II and thus that of
169 the anterograde IFT vary several folds between *Chlamydomonas* and mammal
170 (Broekhuis et al., 2014; Brown et al., 2015; Engelke et al., 2019; Follit et al., 2006;
171 Kozminski et al., 1993; Muthukrishnan et al., 2009; Wingfield et al., 2017). We wanted
172 to examine whether a chimeric kinesin-II motor with motor domains from different
173 species could perform motility function and what would be the physiological
174 consequences. To this end, we generated chimeric CrKinesin-IIs with one or two
175 motor domains of human kinesin-II (Figure S4). Wild type and chimeric kinesin-IIs
176 were expressed respectively in SF9 cells and subsequently purified (Figure 2 and
177 Figure S4). *In vitro* motility assay showed that all the chimeras indeed could move.
178 However, they had a similar motility to that of HsKinesin-II and was significantly
179 slower than CrKinesin-II (~3-fold reduction) (Figure 2B). This result suggests that
180 motor domains from different species can coordinate and the slower motor subunit
181 determines the velocity of the chimeric motor.

182

183 Though the chimeric motors could function *in vitro*, it remains a question whether
184 it can fulfill its physiological functions *in vivo*. Furthermore, the ~3-fold slower speed of
185 the chimeric Crkinesin-II compared to the wild type CrKinesin-II would also allow us to
186 examine how the velocity of the motor contributes to ciliary length and regeneration.
187 We chose to test the chimeric CrKinesin-II KIF3B'/FLA10/KAP in *Chlamydomonas*. To
188 do this, the *fla8* mutant was transformed with *KIF3B'-YFP* or *FLA8-YFP* (as a control).
189 The transformants were expected to form KIF3B'-YFP/FLA10/KAP or

190 FLA8-YFP/FLA10/KAP motors. Examination of the ciliary phenotype revealed that
191 both transformants rescued the aflagellar phenotypes of *fla8* (Figure 2C), indicating
192 that the chimeric KIF3B'-YFP/FLA10/KAP could function *in vivo*. Next, we measured
193 ciliary length. The cilia in the KIF3B'-YFP/FLA10/KAP cells had an average length of
194 $10.6 \pm 1.1 \mu\text{m}$ ($n=50$), ~15% shorter compared to the control cells ($12.6 \pm 1.3 \mu\text{m}$,
195 $n=50$) and wild type cells (Figure 2D). We further verified this change by using *fla8*
196 cells expressing *KIF3B'-HA*, which again showed ~15% reduction in length, and
197 *FLA8-HA*, which rescues the ciliary length to the control level (Figure 2D). These
198 observations demonstrate that although the reduction in ciliary length was mild, it is a
199 robust consequence of slow IFT mediated by a slower kinesin-II motor. Taken together,
200 we showed that chimeric CrKinesin-II with motor domain of HsKinesin-II could
201 function *in vitro* and *in vivo* though the chimeric motor did not fully recover the ciliary
202 phenotype.

203

204 **Chimeric CrKinesin-II with human motor domain results in a significant
205 reduction in IFT injection rate**

206 The recovery of ciliary phenotype in KIF3B'-YFP/FLA10/KAP cells suggests that
207 the chimeric motor KIF3B'-YFP/FLA10/KAP functions in anterograde IFT. Because
208 this chimeric motor is slower *in vitro* than the wild type motor, we first examined the
209 motor velocity *in vivo*. Though the velocities of KIF3B'-YFP (~0.91 $\mu\text{m/s}$) and
210 FLA8-YFP (~2.61 $\mu\text{m/s}$) were higher than their *in vitro* data respectively (Figure 3A
211 and Figure 2B), KIF3B'-YFP was ~2.8-fold slower relative to FLA8-YFP, which is
212 consistent with the *in vitro* assay data (Figure 2B). The motor speed should reflect the
213 velocity of anterograde IFT. This was confirmed by measuring the velocity of an IFT
214 protein (IFT46-YFP) in *fla8* mutants that were transformed with HA-tagged *FLA8* or
215 *KIF3B'* (Figure 3B). The anterograde velocities of IFT46-YFP in the FLA8
216 transformant ($2.29 \pm 0.25 \mu\text{m/s}$, $n = 61$) and KIF3B' transformant ($0.80 \pm 0.08 \mu\text{m/s}$, n
217 = 61) were similar to the velocities of the motors. Based on these results, we conclude
218 that the chimeric CrKinesin-II KIF3B' /FLA10/KAP function in IFT but with a slower

219 speed.

220

221 We next analyzed how motor activity change influences the ciliary entry of IFT
222 trains into the cilium. The IFT injection rates, the amount of IFT trains entering cilia per
223 unit time (au/s), from cells expressing chimeric and wild type kinesin-II were
224 measured. Using TIRF microscopy, we estimated IFT injection rate by monitoring the
225 amount of IFT46-YFP entered into cilia per unit time in KIF3B'-HA/FLA10/KAP cells;
226 FLA8-HA/FLA10/KAP and wild type cells were as control. The IFT injection rate in
227 FLA8-HA/FLA10/KAP (301.78 ± 44.21 au/s, $n = 60$) was similar to that in the wild type
228 cells (303.35 ± 49.42 au/s, $n = 60$) and was 2.2-fold of that in KIF3B'-HA/FLA10/KAP
229 (137.57 ± 24.62 au/s, $n = 60$) (Figure 3C), a similar fold-change as the IFT velocity.

230

231 We then wondered how the IFT injection rate was reduced. Intuitively, IFT
232 injection rate is the product of IFT injection frequency (number of IFT trains entering
233 cilia per unit time) and the average size of IFT trains. Using transmission electron
234 microscopy, we found that the average train size was similar among FLA8/FLA10/KAP,
235 KIF3B'/FLA10/KAP and wild type cells (243 – 253 nm) (Figure 3D-E), which is
236 consistent with a previous report (Stepanek and Pigino, 2016). In contrast, the IFT
237 frequency of KIF3B'/FLA10/KAP cells was reduced by ~2.1-fold as measured by TIRF
238 microscopy (Figure 3F), which is similar to the fold-reduction in IFT injection rate
239 (Figure 3C). Thus, we conclude that the reduction in IFT frequency accounts for the
240 reduction in IFT injection rate in KIF3B'-HA/FLA10/KAP cells.

241

242 It is intriguing how the amount of IFT proteins inside the cilium is changed given
243 the change in IFT injection rate and IFT velocity in the cells expressing chimeric
244 kinesin-II. The amount of IFT protein in a cilium is given by the following equation if
245 retrograde IFT is not considered: $M = L/v \times J$, where M is the quantity of IFT proteins
246 in a cilium; L is the ciliary length (μm); v is the velocity of anterograde IFT ($\mu\text{m/s}$) and J
247 is IFT injection rate (s^{-1}). Compared to the control cells, the ciliary length in the

248 chimeric motor cells is about 15% shorter, the IFT injection rate and velocity were
249 reduced ~2.8 and ~2.2-fold respectively. Given these compensatory contributions, we
250 predict that the ciliary levels of IFT proteins should be similar between these two
251 cases. We performed immunoblotting with isolated cilia to confirm that the ciliary
252 levels of IFT proteins were indeed similar (Figure 3G), supporting the above
253 mentioned reasoning. Taken together, we showed that the chimeric kinesin is
254 functional in IFT though with a reduced velocity and it significantly reduces the IFT
255 injection rate by down-regulating IFT injection frequency.

256

257 **Modeling: relationship between motor speed, ciliary assembly and length
258 control**

259 The eukaryotic cilium is a model system for probing the phenomenon of
260 organellar size control and equilibration (Chan and Marshall, 2012). Several models
261 have been proposed to explain ciliary length control, specifically in the
262 *Chlamydomonas* system (Bertiaux et al., 2018b; Fai et al., 2019; Hendel et al., 2018;
263 Ludington et al., 2015; Marshall and Rosenbaum, 2001; Patra et al., 2020; Wemmer
264 et al., 2020). Our results show that a motor with ~2.8-fold reduction in speed results in
265 a small change in ciliary length (~15% shorter). To understand the relationship
266 between the IFT velocity and ciliary length, we turned to a modelling approach. We
267 first considered a well-established phenomenological model for ciliary length control
268 (Marshall and Rosenbaum, 2001). In this simplest case, it is assumed that IFT limits
269 cilia regeneration, leading to an empirical inverse scaling law between IFT injection
270 rate and cilium length (Engel et al., 2009). The reduction in IFT injection rate during
271 ciliary elongation results in decreased ciliary assembly activity, which is eventually
272 balanced with a constant disassembly rate leading to a final steady-state length.
273 However, this model predicts a linear dependence between the steady-state ciliary
274 length and IFT velocity. This is inconsistent with our data (Figure 2D), suggesting that
275 more detailed aspects of the IFT dynamics must be incorporated to explain our
276 observation.

277

278 To this end, we turned to more recently published models and extended the
279 analysis to explore the dependence of ciliogenesis dynamics in different physical
280 regimes to understand how motor speed affects ciliary length (see Methods). These
281 belong to a class of ‘diffusion’ models (Fai et al., 2019; Hendel et al., 2018) in which
282 there are two key assumptions. First, that over ciliary regeneration timescales, there is
283 a limiting pool of resources, in this case of kinesin motors (and hence also of free
284 tubulin). Second, diffusion limits the rate at which kinesin motors can return back from
285 the ciliary tip to the base, thereby resulting in limitation of motors (Chien et al., 2017).
286 We assume that kinesin-II motors transport anterograde IFT trains ballistically with
287 speed v , deposit cargoes including tubulin subunits at the growing ciliary tip, and then
288 diffuse steadily back to the base. Using this interpretation, we now obtain a highly
289 nonlinear dependence of the fold-change in speed v/v_0 versus the fold-change in
290 cilium length L/L_0 , where v_0, L_0 denote the wild type motor speed and final cilium
291 lengths respectively. For realistic parameters and a reduced motor speed of $\sim v_0/3$,
292 the model predicts a $\sim 18\%$ reduction in L (Figure 4A), which qualitatively agrees with
293 our data (Figure 2D). More generally, this model predicts that a faster motor speed
294 would lead to a very small increase in ciliary length, which saturates as speed is
295 increased further. We further verified detailed model predictions in the present case of
296 a reduced motor speed. First, the model predicts that a slower IFT process should
297 result in a lower IFT injection rate (Figure 4B), which is consistent with our data
298 (Figure 3C). Second, in the case of the slower motors, the rate of change in IFT
299 injection rate should decay faster than in wild-type (Figure 4C). To test this, we
300 analyzed the ciliary length-dependent reduction in IFT injection rate in mutant and
301 control cells during ciliary elongation. Indeed, the mutant cells exhibited a faster rate
302 of reduction in IFT injection rate during earlier stages of ciliary assembly relative to the
303 control (Figure 4D-E). We hypothesize that the faster reduction in IFT injection rate
304 might be caused by the higher level of motor/IFT proteins resulted from the slower
305 motor during ciliary assembly. To test this hypothesis, we measured the levels of

306 ciliary IFT proteins in shorter growing cilia and found that the mutant cilia indeed had
307 higher ciliary levels of IFT proteins (Figure 4F). Third, the ciliary regeneration kinetics
308 predicted by the model for the two motor speeds are also consistent with our data
309 (Figure 4G and H). Therefore, we have presented a simple physical model which
310 reproduces the mild change in ciliary length upon a significant reduction in IFT velocity.
311 This nonlinear dependence seems to be resulted from a combination of a limited pool
312 of IFT resources and a separation in diffusive versus ballistic transport timescales for
313 the IFT motor.

314

315

316 **DISCUSSION**

317 **IFT motor speed and ciliary length control**

318 ***Motor limitation is a major determinant of ciliary length***

319 Uniquely, our experimental system allowed us to evaluate how a single parameter
320 change in motor speed affects ciliary assembly and length. Physical models have
321 been proposed to explain ciliary length control (Fai et al., 2019; Hendel et al., 2018).
322 However, they did not evaluate how motor speed influences ciliary length. We
323 adapted the single-cilium model of Fai and colleagues with extended analysis to
324 understand how motor speed affects length (Fai et al., 2019). These analyses suggest
325 that motor speed should not significantly affect ciliary length even with a motor with
326 ~2.8 fold reduction (Fig. 4G), which is consistent with our data (Fig. 4H). Based on this,
327 we suggest that motor limitation is a key determinant of ciliary length control.

328

329 How could this constraint arise? The conventional view suggests kinesin-II
330 diffuses back to the ciliary base during retrograde IFT (Chien et al., 2017; Engel et al.,
331 2009; Mueller et al., 2005; Pedersen et al., 2006); and this diffusion was proposed to
332 delay the return of kinesin-II motors, which would deplete the amount of kinesin-II
333 available for anterograde transport (Chien et al., 2017). In this diffusion-limited
334 scenario, a greater number of motors would lead to a greater IFT injection rate (Eq. 1)
335 and, in turn, a longer steady-state ciliary length when the diffusion rate is constant.
336 Thus, the diffusion timescale has been suggested to serve as a proxy by which cells
337 are able to measure the length of their cilia (Hendel et al., 2018). The existence of a
338 limited supply of motors would constrain the amount of IFT-associated proteins (e.g.
339 tubulin) entering into cilia, which naturally entails a decreasing ciliary assembly rate
340 when cilium is growing and confers a non-linear scaling between the IFT injection rate
341 and the ciliary length (Eq. 3). Finally, the ciliary assembly rate is balanced with the
342 disassembly rate, leading to a steady state ciliary length (Engel et al., 2009; Liang et
343 al., 2014; Marshall et al., 2005; Marshall and Rosenbaum, 2001; Wemmer et al.,
344 2020).

345

346 In this study, we showed that when IFT motors are slow, IFT injection rate is not
347 only limited by diffusion but also by motor speed. As shown in (Figure S5A, B), when
348 the motors are slow and the diffusion rate is unchanged, the number of motors
349 needed to grow a cilium for a wild-type length is greater. In other words, when the
350 number of motor and diffusion rate are both unchanged, slow motors would always
351 lead to a shorter ciliary length (Figure S5B). Therefore, the reduction in motor speed,
352 as we see in the mutant with a chimeric slow motor, switches the ciliary length control
353 system from a diffusion-limited regime to a motor-limited one, which would lead to a
354 reduction in IFT injection rate. In this scenario, the non-linear scaling relationship
355 between the IFT injection rate and the ciliary length, which is intrinsic in our model,
356 accounts for the mild reduction in ciliary length despite a 2.8-fold reduction in IFT
357 velocity (Fig. 4A).

358

359 ***Model implications and limitations***

360 In the chimeric motor mutant, there should be more motors moving along the cilium
361 (i.e. a greater $N_{ballistic}$) because motors are slow, but there will be fewer motors
362 diffusing back (i.e. a smaller $N_{diffusive}$) because the cilium is shorter (Figure S6).
363 These two changes have opposite effects on the total number of motors available for
364 ciliary assembly and they cancel each other to a large extent. The net effect is that the
365 number of motors available at the ciliary base in the mutants with slow motors
366 becomes smaller, leading to a reduction in IFT injection rate. The lower IFT injection
367 rate compensates for the longer ballistic time of the slower motors. The difference in
368 $N_{ballistic} + N_{diffusive}$ saturates, which explains the observation of the nearly
369 unchanged level of motors in the cilium at the final steady state (Figure 3G). However,
370 the difference is more pronounced in earlier stages of ciliary assembly when the cilia
371 are short, so the ciliary length control is neither diffusion-limited nor motor-limited. In
372 this scenario, slow motors are expected to result in a higher level of IFT motors and
373 proteins in cilia (Figure S6). This is fully consistent with our observations (Figure 4F).

374

375 On the other hand, although our model recapitulates the net reduction in IFT
376 injection rate in the slow-motor mutants, the expected level of change in our modeling
377 results is smaller than that observed in our experiments. We think there are probably
378 two reasons. First, the fold-change as observed in the experiments may be
379 over-estimated because we may only have measured the upper bound of the fold
380 change in IFT injection rate due to the limitations of fluorescence microscopy. Second,
381 there could be a negative feedback mechanism that auto-regulates IFT injection
382 frequency based on the amount of IFT complexes inside the cilium, which was not
383 considered in our model. What could be the negative feedback mechanism? We
384 speculate that the possible candidate mechanisms may involve signaling events at
385 the ciliary base. For example, it has been shown that IFT injection is influenced by
386 signaling such as Ran activation or FLA8/KIF3B phosphorylation (Liang et al., 2018;
387 Ludington et al., 2013). Thus, abnormal higher level of motor/IFT complexes during
388 ciliary assembly may invoke such signaling to restrict IFT entry, which remains to be a
389 hypothesis awaiting for future studies. In addition, it has been reported that the
390 occupancy of the ciliary cargoes on IFT complexes, which contributes to ciliary
391 assembly and length, is regulated (Craft et al., 2015; Pan and Snell, 2014; Wren et al.,
392 2013), which was not considered in our model. Our finding that a higher than
393 expected reduction in IFT injection rate in the slower motor mutants did not
394 significantly change ciliary length may also imply that the slower motor carries
395 relatively more ciliary cargoes, e.g. tubulins, in each IFT train. This is an interesting
396 point to be further tested.

397

398 **Further remarks**

399 Several mutants of *Chlamydomonas* with abnormally long cilia (up to 2-fold) have
400 been identified (Asleson and Lefebvre, 1998). The underlying mechanisms remain
401 elusive (Wemmer et al., 2020). Our model (Figure 4A) suggests that cilia length
402 saturates with increasing motor speed, therefore the long cilia phenotype cannot be
403 due to a change in anterograde IFT velocity. Indeed, it has been shown that the

404 velocity of anterograde IFT is similar between long cilia mutant *If4* and wild type cells
405 (Wang et al., 2019). Interestingly, it was shown that a cilium elongation phenotype
406 induced by the activation of PKA or depletion of ICK in mammalian cells is
407 accompanied with an increased velocity of anterograde IFT (Besschetnova et al.,
408 2010; Broekhuis et al., 2014). However, this increase in anterograde IFT velocity was
409 thought to be a consequence, but not the reason, of cilium elongation, as IFT velocity
410 itself was reported to be dependent on ciliary length (Engel et al., 2009).

411

412 **Kinesin-II and the ciliary entry of IFT complexes**

413 The conventional view for IFT is that kinesin-II carries IFT complexes with their
414 associated cargoes into cilia from the ciliary base through the transition zone (Prevo
415 et al., 2015; Rosenbaum and Witman, 2002; Scholey, 2013; Wingfield et al., 2017).
416 However, this view was challenged by arguments that IFT trains are picked up by
417 kinesin-II only after they enter cilia via kinesin-II independent mechanism (Nachury
418 and Mick, 2019). We showed that reduction in motor activity of the chimeric
419 Crkinesin-II with human motor domains resulted in a similar reduction in ciliary entry
420 of IFT trains, suggesting that kinesin-II likely carries IFT trains to enter cilia. However,
421 our data do not preclude the possibility that kinesin-II activity indirectly affects IFT
422 entry. For example, the slower velocity of the motor may alter the flux of kinesin-II
423 motors reaching the distal transition zone where IFT motors and complexes are
424 proposed to be assembled (Yang et al., 2019).

425

426 **Distinct mechanisms underlying formation of a functional kinesin-II for IFT from** 427 ***Chlamydomonas* to mammals and *C. elegans***

428 The heterotrimeric organization of kinesin-II is essential for its function in IFT from
429 lower eukaryotes to human (Scholey, 2013). This function requires a functional motor
430 with the ability to bind the IFT complexes. The non-motor subunit KAP is required for
431 full activation and targeting of kinesin-II to the ciliary base while KIF3B/FLA8 is
432 required for binding the IFT complexes (Funabashi et al., 2018; Mueller et al., 2005;

433 Sonar et al., 2020). We have revealed that the mechanism involved in forming this
434 essential complex is distinct in *Chlamydomonas* compared to mammals and *C.*
435 *elegans*. CrKinesin-II with two identical motor domains could coordinate *in vitro*, which
436 is the same as in mammals and *C. elegans* (Brunnbauer et al., 2010; Muthukrishnan
437 et al., 2009; Pan et al., 2010). However, such a chimera functioned *in vivo* in
438 *Chlamydomonas* but not in *C. elegans* (Pan et al., 2010). The two motor subunits in *C.*
439 *elegans* cannot form dimers and the particular form of the heterodimer is essential for
440 association with KAP (Brunnbauer et al., 2010). In mammalian cells, KIF3A can
441 self-interact and is able to interact with KAP while KIF3B can interact with KAP but
442 cannot form homodimer, thus formation of a heterotrimeric kinesin-II is required for
443 IFT (Funabashi et al., 2018). For CrKinesin-II, both FLA10 and FLA8 could
444 self-interact. The FLA10 homodimer is able to interact with KAP, however, such a
445 complex is expected not to be able to function in IFT because FLA8/KIF3B is required
446 for binding IFT trains. In contrast, FLA8 forms homodimers but cannot interact with
447 KAP, thus was unable to function in IFT as well because KAP is required for full
448 activation of the motor and its targeting to the ciliary base. Thus, this work reveals the
449 molecular basis underlying the necessity of CrKinesin-II to function in IFT, and also
450 highlights distinct mechanisms from both mammals and *C. elegans*.

451

452 In summary, we show that although the requirement of the heterotrimeric
453 organization of kinesin-II required for IFT is conserved, the underlying mechanisms
454 forming this heterotrimeric complex are distinct among various organisms.
455 Furthermore, our studies with chimeric kinesin-II that has reduced motor speed yield
456 new insights into how motor speed regulates IFT and ciliary length. Our data suggest
457 that controlling IFT entry and hence cargo loading appear to be the key determinant of
458 ciliary length control.

459 **MATERIALS AND METHODS**

460

461 **Strains and cell cultures**

462 The wild type strain 21gr (mt+, CC-1690) was available from the *Chlamydomonas*
463 Resource Center (University of Minnesota, St. Paul, MN). A *fla8* mutant was
464 generated previously in this laboratory (Liang et al., 2014). For the transgenic strains
465 used in this study, please refer to Table S1. Cells were cultured on 1.5% agar plates
466 or in liquid M medium (Sager and Granick, 1954) at 23°C with aeration under a 14:10
467 hour light-dark cycle.

468

469 **DNA constructs of chimeric kinesins for *in vitro* motility assay**

470 Full-length cDNAs of KIF3A and KIFAP3 were gifts of Dr. Jiahuai Han (Xiamen
471 University, China). Full-length cDNA of KIF3B was synthesized (WuXi Qinglan
472 Biotech). FLA10, FLA8 and KAP cDNAs were cloned from a *Chlamydomonas* cDNA
473 library (Takara). For chimeric kinesins, the motor domain of FLA10 was replaced with
474 that of FLA8 or KIF3A to generate FLA8' or KIF3A' as specified in the text, respectively.
475 The constructs for chimeric kinesins FLA10' and KIF3B' were similarly generated. The
476 cDNAs with tags as indicated in the text were cloned in the pOCC vectors,
477 respectively, by conventional molecular techniques.

478

479 **Protein expression and purification**

480 Proteins used for *in vitro* studies were expressed in insect Sf9 cells using the
481 baculovirus expression system. MBP-tag or His-tag at the C-terminus of the indicated
482 proteins was used to facilitate purification while RFP-tag or GFP-tag at the C-terminus
483 was used for imaging. The infected cells were grown for 3 days at 27 °C. Cells from
484 500 ml of cultures were disrupted by mortar and pestle grinding on ice in 100 ml lysis
485 buffer (80 mM Pipes, pH 6.9; 150 mM KCl, 1 mM MgCl₂, 1 mM EGTA, 0.1 mM ATP,
486 0.1% Tween-20). The cell lysates were centrifuged at 444,000xg for 40 min and 4 °C.
487 HsKinesin-II was purified using Ni column and MBP column successively (Ni-NTA
488 agarose affinity resin, QIAGEN; Amylose resin, NEB New England Biolabs). For
489 purification of Crkinesin-II, the heterodimer purified from a MBP column and KAP from
490 a Ni column were mixed, followed by purification via Superose 6 (GE Healthcare). The

491 proteins were frozen in liquid nitrogen and stored at -80 °C.

492

493 ***In vitro*, single-molecule motility assay**

494 A previously published protocol was followed for the *in vitro* motility assay (Gell et al.,
495 2010). Briefly, 6.25 μ l of 40 μ M porcine brain tubulin mix containing 5% Alexa
496 647-labeled tubulin in BRB80 buffer with addition of 4% DMSO, 4 mM MgCl₂ and 1
497 mM GTP (final concentrations) was incubated on ice for 5 min. Tubulins were allowed
498 to polymerize for 2 hours at 37 °C. The reaction was stopped by adding 200 μ l of
499 warm BRB80 buffer containing 20 μ M taxol. Microtubules were collected in the
500 taxol-BRB80 buffer after Airfuge centrifugation. For motility assay, the taxol stabilized
501 microtubules were attached to a cover glass surface coated with anti-tubulin
502 antibodies followed by the addition of indicated purified kinesins. The samples were
503 imaged by TIRF microscopy (Olympus IX83 equipped with an Andor 897 Ultra
504 EMCCD). The data were processed by imageJ.

505

506 **Pull-down assay**

507 To determine possible homodimer formation of FLA10 or FLA8,
508 FLA10-MBP/FLA10-GFP or FLA8-MBP/FLA8-GFP that were cloned respectively in
509 pEGFP-C3 vectors were co-expressed in HEK293T cells with controls as indicated in
510 the text. The transfected cells after growing for 48 h were lysed in 500 μ l lysis buffer
511 (PBS, pH 7.4, 150 mM KCl, 1 mM MgCl₂, 1 mM EGTA, 0.1 mM ATP, 0.5% NP-40)
512 containing protease inhibitor cocktail. After 30 min on ice, the cell lysates were
513 centrifuged at 20, 000xg for 10 min. The supernatant was mixed with anti-GFP beads
514 and incubated at 4 °C for 2 h with constant rotation followed by washing with lysis
515 buffer for three times. The samples were finally analyzed by immunoblotting with the
516 indicated antibodies. To examine possible interactions of KAP with FLA10 or FLA8,
517 FLA8-RFP/KAP-GFP-His or FLA10-MBP/KAP-GFP-His were co-expressed in Sf9
518 cells, respectively, with FLA8-RFP/FLA10-MBP/KAP-GFP-His as control. The
519 transfected cells were lysed in lysis buffer (80 mM Pipes, pH 6.9; 150 mM KCl, 1 mM
520 MgCl₂, 1 mM EGTA, 0.1 mM ATP, 0.1% Tween-20, 10 mM imidazole) containing

521 protease inhibitor cocktail. The proteins were pulled down by Ni beads followed by
522 washing and immunoblotting with the indicated antibodies.

523

524 **Ectopic gene expression in *Chlamydomonas***

525 *FLA8-HA* or *FLA8-YFP* was cloned in between PSAD promoter and terminator in a
526 modified vector pKH-IFT46 (kindly provided by Dr. Kaiyao Huang, Institute of
527 Hydrobiology) that harbors hygromycin B resistance gene. The final construct was
528 linearized with Scal and transformed into the *fla8* mutant by electroporation (Liang
529 and Pan, 2013). The construct of KIF3B' for expression in *fla8* was made by replacing
530 the motor domain of FLA8 with that of KIF3B. IFT46-YFP was provided by Dr. Kaiyao
531 Huang (Lv et al., 2017).

532

533 **Ciliogenesis and ciliary assays**

534 Cilia isolation or ciliary regeneration was performed as described previously (Wang et
535 al., 2019; Zhu et al., 2017b). For ciliary regeneration, cells were deflagellated by pH
536 shock to allow ciliary regeneration at the indicated times followed by fixation with 1%
537 glutaraldehyde. Cells were imaged by differential interference contrast microscopy
538 with a 40x objective on a Zeiss Axio Observer Z1 microscope (Carl Zeiss) equipped
539 with an EM CCD camera (QuantEM512SC, Photometrics). Ciliary length from 50 cells
540 at the indicated times was measured using ImageJ (NIH). For cilia isolation, control
541 cells or cells during ciliary regeneration were deflagellated by pH shock. Sucrose
542 gradient centrifugation was used to further purification of the detached cilia. Purified
543 cilia were suspended in HMDEK buffer (50 mM HEPES, pH 7.2; 5 mM MgCl₂, 1 mM
544 DTT, 0.5 mM EDTA, 25 mM KCl) containing EDTA-free protease inhibitor cocktail
545 (mini-complete, Roche), 20 μM MG132 and 25 μg/ml ALLN, frozen in liquid nitrogen
546 and finally stored at -80 °C until use.

547

548 **SDS-PAGE and immunoblotting**

549 Analysis for SDS-PAGE and immunoblotting has been described previously (Wu et al.,
550 2018). Cells were collected by centrifugation and lysed in buffer A (50 mM Tris-HCl,
551 pH 7.5; 10 mM MgCl₂, 1 mM DTT and 1 mM EDTA) containing EDTA-free protease

552 inhibitor cocktail (mini-complete, Roche), 20 μ M MG132 and 25 μ g/ml ALLN followed
553 by boiling in SDS sample buffer. Proteins separated on SDS-PAGE were analyzed by
554 coomassie blue staining or immunoblotting.

555

556 Rabbit polyclonal antibodies against IFT57 and IFT38 were made by immunizing
557 polypeptide 1-260 aa and 275-443aa, respectively, and affinity purified (Abclone,
558 China). The other primary antibodies were detailed in Table S2. The HRP-conjugated
559 secondary antibodies were the following: goat anti-rat, goat anti-rabbit and goat
560 anti-mouse (1:5000, EASYBIO, China).

561

562 **Live cell imaging of IFT**

563 Total internal reflection fluorescence (TIRF) microscopy was used to observe live IFT.
564 The coverslips treated with 0.01% (v/v) polylysine (Sigma) were used to immobilize
565 cells. Images were acquired at room temperature on a Nikon microscope (A1RSi)
566 equipped with a 100x (N.A. 1.49) TIRF objective and a cooled electron-multiplying
567 CCD camera (Orca-flash 4.0; Hamamatsu, Japan). Images were analyzed with
568 ImageJ (NIH, USA). The IFT speed, IFT frequency and IFT injection rate were
569 measured following previous publications (Engel et al., 2009; Wemmer et al., 2020).
570 The number of anterograde fluorescent IFT trains entering cilium per unit time was
571 calculated for IFT frequency. To obtain the IFT injection rate, the fluorescence
572 intensity of IFT trains (normalized for camera noise) per unit length of cilium and the
573 velocity of anterograde IFT were first measured. Because most IFT trains do not stop
574 during the transport, IFT injection rate was then calculated as the product of the
575 fluorescent intensity and the velocity.

576

577 **Thin-section electron microscopy**

578 Previously published protocols were followed (Craige et al., 2010; Meng et al., 2014).
579 The samples were imaged on an electron microscope (H-7650B; Hitachi Limited)
580 equipped with a digital camera (ATM Company).

581

582 **Mathematical modeling**

583 We adapt a recently published model (Fai et al., 2019; Hendel et al., 2018) to
584 understand the mild-reduction in cilium length upon 3-fold reduction in IFT velocity.
585 Here, kinesin-II motors transport anterograde IFT trains with speed v , deposit cargoes
586 including tubulin subunits at the growing cilium tip and then diffuse back to the base
587 (with diffusion constant D). As proposed in Fai and colleagues (Fai et al., 2019), we
588 assume that over cilia regeneration timescales, there is a limiting total pool of motors
589 (N) and of tubulin (T) per cilium. Without taking into account the detailed mechanism
590 of the IFT injection, the IFT flux or IFT injection rate (they are the same given that IFT
591 trains rarely stop during transport) (J) is considered to be proportional to the number
592 of free motors N_{free} (motors that are neither moving along the cilium nor diffusing back
593 to the base) with a kinetic constant K (Eq. 1).

594
$$J = K(N - N_{\text{ballistic}} - N_{\text{diffusive}}) = K(N - \frac{JL}{v} - \frac{JL^2}{2D}) \quad \text{Eq. 1}$$

595 Here, we have approximated the dynamics as a quasi-steady state process in which
596 the ballistic and diffusive fluxes are balanced – with the ciliary tip acting as a diffusive
597 source and the base as a sink. This is because the timescale for transport of IFT
598 particles over the length of the cilium (seconds) is much less than that of cilium
599 regeneration (hours). Rearranging Eq. 1, we obtain

600
$$J(v, L) = \frac{KN}{1 + \frac{LK}{v} + \frac{L^2 K}{2D}} \quad \text{Eq. 2}$$

601 which reproduces the empirical finding that J decreases with increasing cilium length
602 (Engel et al., 2009). Moreover, the formula predicts that J should decrease with
603 decreasing v , when all other parameters are held constant. Both of these features are
604 consistent with our findings (Figure 4B). Note that the scaling in Eq. 2 applies to any
605 rate-limiting IFT protein (not only motors). Furthermore, the net assembly rate of
606 cilium can be given by

607
$$dL/dt = \alpha J(T - L) - d \quad \text{Eq. 3}$$

608 where the additional constant α is a tubulin binding factor, and d is a constant
609 disassembly rate. This reproduces the empirical observation that the net assembly
610 rate is decreasing as the cilium grows longer (Marshall et al., 2005; Marshall and
611 Rosenbaum, 2001).

612

613 Finally, combining Eq. 2 and Eq. 3, we could obtain one positive solution
614 (provided $T > d/\alpha KN$) for the final steady-state ciliary length (Eq. 4)

$$615 \quad L = \left(\frac{D}{v} + \frac{\alpha DN}{d} \right) \left(-1 + \sqrt{1 + \frac{2dT}{\alpha ND} \left(\frac{1 - \frac{d}{\alpha KNT}}{\left(1 + \frac{d}{\alpha Nv} \right)^2} \right)} \right) \quad \text{Eq. 4}$$

616 Using Eq. 2 and Eq. 4, we evaluated the scaling relationship between the IFT velocity
617 and ciliary length using numerical simulations with the following choice of parameters
618 ($\alpha = 10^{-4}$, $K = 5 \text{ min}^{-1}$, $N = 60$, $D = 10 \mu\text{m}^2/\text{s}$, $T = 30 \mu\text{m}$, and $d = 0.25 \mu\text{m}/\text{min}$).
619 These parameters are representative of measured values obtained from the literature
620 (Fai et al., 2019; Hendel et al., 2018) and have been chosen to produce a final length
621 of approx. 12 μm at the wild type motor speed. Variations within a realistic range of
622 these values were found to have little effect on the overall functional dependencies,
623 usually only resulting in faster or slower growth kinetics and/or a different final cilium
624 length.

625

626 We further explored the dependence of ciliary growth on physiological model
627 parameters for motors with normal and reduced speed (Figures S5). At normal motor
628 speeds, the final length of cilium is diffusion-limited. In contrast, a slow motor will
629 always lead to a shorter than wild-type cilium regardless of the rate of diffusion unless
630 the number of motors available in circulation is increased (motor-limited). Thus, a
631 motor with slower speed would limit IFT entry due to motor limitation (Figure S5A, B).
632 The situation for tubulin limitation is similar (Figure S5C, D). Meanwhile, we found little
633 difference between the cilia growth timescales in the case of the wild-type motor
634 speed, compared to the ~3x slower motor (Figure S5E, F). This is consistent with the
635 data (Figure 4H).

636

637 **Quantification and statistical analysis**

638 Independent experiments were carried out for at least two or more times. Data plotting
639 was performed using Prism (GraphPad7). The data were presented as mean \pm SD.

640 Statistical significance was performed by using two-tailed Student's t test analysis. p<
641 0.05 was considered to be statistically significant. *, p<0.05; **, p<0.01; ***, p<0.001;
642 ****, p<0.0001.
643
644

645 **ACKNOWLEDGMENTS**

646 We are grateful to Dr. Jonathon Howard (Yale University) for discussion during the
647 course of this work. This work was supported by the National Key R&D Program of
648 China (2018YFA0902500, 2017YFA0503500) and the National Natural Science
649 Foundation of China (31991191, 31671387, 31972888) (to J.P.).

650

651 **AUTHOR CONTRIBUTIONS**

652 S.L., W.C., H.T., X.L., and J.P. designed the experiments and analyzed the data; S.L.,
653 W.C. and H.T. performed research; K.W. analyzed the data and performed modeling
654 analysis; J.P., X.L., and K.W. contributed reagents and analytic tools; J.P., X.L., K.W.
655 and S.L. wrote the paper.

656

657 **DECLARATION OF INTERESTS**

658 The authors declare no conflict of interest.

659

660 **SUPPLEMENTAL INFORMATION**

661 Supplemental information include two tables and six figures.

662

663

664 **REFERENCES**

665 Anvarian, Z., K. Mykytyn, S. Mukhopadhyay, L.B. Pedersen, and S.T. Christensen.
666 2019. Cellular signalling by primary cilia in development, organ function and
667 disease. *Nat Rev Nephrol.* 15:199-219.

668 Asleson, C.M., and P.A. Lefebvre. 1998. Genetic analysis of flagellar length control in
669 *Chlamydomonas reinhardtii*: a new long-flagella locus and extragenic
670 suppressor mutations. *Genetics.* 148:693-702.

671 Bangs, F., and K.V. Anderson. 2017. Primary Cilia and Mammalian Hedgehog
672 Signaling. *Cold Spring Harb Perspect Biol.* 9.

673 Bertiaux, E., A. Mallet, C. Fort, T. Blisnick, S. Bonnefoy, J. Jung, M. Lemos, S. Marco,
674 S. Vaughan, S. Trepout, J.Y. Tinevez, and P. Bastin. 2018a. Bidirectional
675 intraflagellar transport is restricted to two sets of microtubule doublets in the
676 trypanosome flagellum. *J Cell Biol.* 217:4284-4297.

677 Bertiaux, E., B. Morga, T. Blisnick, B. Rotureau, and P. Bastin. 2018b. A
678 Grow-and-Lock Model for the Control of Flagellum Length in Trypanosomes.
679 *Curr Biol.* 28:3802-3814 e3803.

680 Besschetnova, T.Y., E. Kolpakova-Hart, Y. Guan, J. Zhou, B.R. Olsen, and J.V. Shah.
681 2010. Identification of signaling pathways regulating primary cilium length and
682 flow-mediated adaptation. *Curr Biol.* 20:182-187.

683 Broekhuis, J.R., K.J. Verhey, and G. Jansen. 2014. Regulation of cilium length and
684 intraflagellar transport by the RCK-kinases ICK and MOK in renal epithelial
685 cells. *PLoS One.* 9:e108470.

686 Brown, J.M., D.A. Cochran, B. Craige, T. Kubo, and G.B. Witman. 2015. Assembly of
687 IFT trains at the ciliary base depends on IFT74. *Curr Biol.* 25:1583-1593.

688 Brunnbauer, M., F. Mueller-Planitz, S. Kosem, T.H. Ho, R. Dombi, J.C. Gebhardt, M.
689 Rief, and Z. Okten. 2010. Regulation of a heterodimeric kinesin-2 through an
690 unprocessive motor domain that is turned processive by its partner. *Proc Natl
691 Acad Sci U S A.* 107:10460-10465.

692 Chan, Y.H., and W.F. Marshall. 2012. How cells know the size of their organelles.
693 *Science.* 337:1186-1189.

694 Chien, A., S.M. Shih, R. Bower, D. Tritschler, M.E. Porter, and A. Yildiz. 2017.
695 Dynamics of the IFT machinery at the ciliary tip. *Elife.* 6.

696 Cole, D.G., D.R. Diener, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum.
697 1998. *Chlamydomonas* kinesin-II-dependent intraflagellar transport (IFT): IFT
698 particles contain proteins required for ciliary assembly in *Caenorhabditis*
699 *elegans* sensory neurons. *J Cell Biol.* 141:993-1008.

700 Craft, J.M., J.A. Harris, S. Hyman, P. Kner, and K.F. Lechtreck. 2015. Tubulin
701 transport by IFT is upregulated during ciliary growth by a cilium-autonomous
702 mechanism. *J Cell Biol.* 208:223-237.

703 Craige, B., C.C. Tsao, D.R. Diener, Y. Hou, K.F. Lechtreck, J.L. Rosenbaum, and G.B.
704 Witman. 2010. CEP290 tethers flagellar transition zone microtubules to the
705 membrane and regulates flagellar protein content. *J Cell Biol.* 190:927-940.

706 Dentler, W. 2005. Intraflagellar transport (IFT) during assembly and disassembly of
707 *Chlamydomonas* flagella. *J Cell Biol.* 170:649-659.

708 Engel, B.D., W.B. Ludington, and W.F. Marshall. 2009. Intraflagellar transport particle
709 size scales inversely with flagellar length: revisiting the balance-point length
710 control model. *J Cell Biol.* 187:81-89.

711 Engelke, M.F., B. Waas, S.E. Kearns, A. Suber, A. Boss, B.L. Allen, and K.J. Verhey.
712 2019. Acute Inhibition of Heterotrimeric Kinesin-2 Function Reveals
713 Mechanisms of Intraflagellar Transport in Mammalian Cilia. *Curr Biol.*
714 29:1137-1148 e1134.

715 Fai, T.G., L. Mohapatra, P. Kar, J. Kondev, and A. Amir. 2019. Length regulation of
716 multiple flagella that self-assemble from a shared pool of components. *Elife.* 8.

717 Follit, J.A., R.A. Tuft, K.E. Fogarty, and G.J. Pazour. 2006. The intraflagellar transport
718 protein IFT20 is associated with the Golgi complex and is required for cilia
719 assembly. *Mol Biol Cell.* 17:3781-3792.

720 Funabashi, T., Y. Katoh, M. Okazaki, M. Sugawa, and K. Nakayama. 2018. Interaction
721 of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for
722 ciliogenesis. *J Cell Biol.* 217:2867-2876.

723 Gell, C., V. Bormuth, G.J. Brouhard, D.N. Cohen, S. Diez, C.T. Friel, J. Helenius, B.
724 Nitzsche, H. Petzold, J. Ribbe, E. Schaffer, J.H. Stear, A. Trushko, V. Varga,
725 P.O. Widlund, M. Zanic, and J. Howard. 2010. Microtubule dynamics
726 reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
727 *Methods Cell Biol.* 95:221-245.

728 Hendel, N.L., M. Thomson, and W.F. Marshall. 2018. Diffusion as a Ruler: Modeling
729 Kinesin Diffusion as a Length Sensor for Intraflagellar Transport. *Biophys J.*
730 114:663-674.

731 Hirokawa, N., Y. Noda, Y. Tanaka, and S. Niwa. 2009. Kinesin superfamily motor
732 proteins and intracellular transport. *Nat Rev Mol Cell Biol.* 10:682-696.

733 Kozminski, K.G., P.L. Beech, and J.L. Rosenbaum. 1995. The Chlamydomonas
734 kinesin-like protein FLA10 is involved in motility associated with the flagellar
735 membrane. *J Cell Biol.* 131:1517-1527.

736 Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. A motility in
737 the eukaryotic flagellum unrelated to flagellar beating. *Proc Natl Acad Sci U S*
738 A. 90:5519-5523.

739 Lechtreck, K.F. 2015. IFT-Cargo Interactions and Protein Transport in Cilia. *Trends
740 Biochem Sci.* 40:765-778.

741 Liang, Y., and J. Pan. 2013. Regulation of flagellar biogenesis by a calcium dependent
742 protein kinase in Chlamydomonas reinhardtii. *PLoS One.* 8:e69902.

743 Liang, Y., Y. Pang, Q. Wu, Z. Hu, X. Han, Y. Xu, H. Deng, and J. Pan. 2014.
744 FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to
745 control IFT entry and turnaround. *Dev Cell.* 30:585-597.

746 Liang, Y., X. Zhu, Q. Wu, and J. Pan. 2018. Ciliary Length Sensing Regulates IFT
747 Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly.
748 *Curr Biol.* 28:2429-2435 e2423.

749 Lin, F., T. Hiesberger, K. Cordes, A.M. Sinclair, L.S. Goldstein, S. Somlo, and P.
750 Igarashi. 2003. Kidney-specific inactivation of the KIF3A subunit of kinesin-II
751 inhibits renal ciliogenesis and produces polycystic kidney disease. *Proc Natl*

796 phenomena. *In arXiv*. 2002.03679v03671.

797 Pedersen, L.B., S. Geimer, and J.L. Rosenbaum. 2006. Dissecting the molecular
798 mechanisms of intraflagellar transport in chlamydomonas. *Curr Biol*.
799 16:450-459.

800 Pigino, G., S. Geimer, S. Lanzavecchia, E. Paccagnini, F. Cantele, D.R. Diener, J.L.
801 Rosenbaum, and P. Lupetti. 2009. Electron-tomographic analysis of
802 intraflagellar transport particle trains in situ. *J Cell Biol*. 187:135-148.

803 Prevo, B., P. Mangeol, F. Oswald, J.M. Scholey, and E.J. Peterman. 2015. Functional
804 differentiation of cooperating kinesin-2 motors orchestrates cargo import and
805 transport in *C. elegans* cilia. *Nat Cell Biol*. 17:1536-1545.

806 Reiter, J.F., and M.R. Leroux. 2017. Genes and molecular pathways underpinning
807 ciliopathies. *Nat Rev Mol Cell Biol*. 18:533-547.

808 Rosenbaum, J.L., and G.B. Witman. 2002. Intraflagellar transport. *Nat Rev Mol Cell
809 Biol*. 3:813-825.

810 Sager, R., and S. Granick. 1954. Nutritional control of sexuality in Chlamydomonas
811 reinhardi. *J Gen Physiol*. 37:729-742.

812 Scholey, J.M. 2003. Intraflagellar transport. *Annu Rev Cell Dev Biol*. 19:423-443.

813 Scholey, J.M. 2013. Kinesin-2: a family of heterotrimeric and homodimeric motors with
814 diverse intracellular transport functions. *Annu Rev Cell Dev Biol*. 29:443-469.

815 Snow, J.J., G. Ou, A.L. Gunnarson, M.R. Walker, H.M. Zhou, I. Brust-Mascher, and
816 J.M. Scholey. 2004. Two anterograde intraflagellar transport motors cooperate
817 to build sensory cilia on *C. elegans* neurons. *Nat Cell Biol*. 6:1109-1113.

818 Sonar, P., W. Youyen, A. Cleetus, P. Wisanpitayakorn, S.I. Mousavi, W.L. Stepp, W.O.
819 Hancock, E. Tuzel, and Z. Okten. 2020. Kinesin-2 from *C. reinhardtii* Is an
820 Atypically Fast and Auto-inhibited Motor that Is Activated by
821 Heterotrimerization for Intraflagellar Transport. *Curr Biol*.

822 Stepanek, L., and G. Pigino. 2016. Microtubule doublets are double-track railways for
823 intraflagellar transport trains. *Science*. 352:721-724.

824 Taschner, M., and E. Lorentzen. 2016. The Intraflagellar Transport Machinery. *Cold
825 Spring Harb Perspect Biol*. 8.

826 Verhey, K.J., and J.W. Hammond. 2009. Traffic control: regulation of kinesin motors.
827 *Nat Rev Mol Cell Biol*. 10:765-777.

828 Wang, Y., Y. Ren, and J. Pan. 2019. Regulation of flagellar assembly and length in
829 Chlamydomonas by LF4, a MAPK-related kinase. *FASEB J*. 33:6431-6441.

830 Wemmer, K., W. Ludington, and W.F. Marshall. 2020. Testing the role of intraflagellar
831 transport in flagellar length control using length-altering mutants of
832 Chlamydomonas. *Philos Trans R Soc Lond B Biol Sci*. 375:20190159.

833 Wingfield, J.L., I. Mengoni, H. Bomberger, Y.Y. Jiang, J.D. Walsh, J.M. Brown, T.
834 Picariello, D.A. Cochran, B. Zhu, J. Pan, J. Eggenschwiler, J. Gaertig, G.B.
835 Witman, P. Kner, and K. Lechtreck. 2017. IFT trains in different stages of
836 assembly queue at the ciliary base for consecutive release into the cilium. *Elife*.
837 6.

838 Wren, K.N., J.M. Craft, D. Tritschler, A. Schauer, D.K. Patel, E.F. Smith, M.E. Porter, P.
839 Kner, and K.F. Lechtreck. 2013. A differential cargo-loading model of ciliary

840 length regulation by IFT. *Curr Biol.* 23:2463-2471.

841 Wu, Q., K. Gao, S. Zheng, X. Zhu, Y. Liang, and J. Pan. 2018. Calmodulin regulates a
842 TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of
843 cytosolic calcium during acidic stress that induces deflagellation in
844 *Chlamydomonas*. *FASEB J.* 32:3689-3699.

845 Yang, T.T., M.N.T. Tran, W.M. Chong, C.E. Huang, and J.C. Liao. 2019. Single-particle
846 tracking localization microscopy reveals nonaxonemal dynamics of
847 intraflagellar transport proteins at the base of mammalian primary cilia. *Mol
848 Biol Cell.* 30:828-837.

849 Zhu, B., X. Zhu, L. Wang, Y. Liang, Q. Feng, and J. Pan. 2017a. Functional
850 exploration of the IFT-A complex in intraflagellar transport and ciliogenesis.
851 *PLoS Genet.* 13:e1006627.

852 Zhu, X., Y. Liang, F. Gao, and J. Pan. 2017b. IFT54 regulates IFT20 stability but is not
853 essential for tubulin transport during ciliogenesis. *Cell Mol Life Sci.*
854 74:3425-3437.

855

856 **FIGURE LEGENDS**

857 **Figure 1. Requirement of the heterotrimeric organization of CrKinesin-II for IFT**
858 **(See also Figure S1-3).**

859 (A) Schematic diagram of recombinant CrKinesin-II for expression/purification.
860 (B) Overview of chimeric CrKinesin-II constructs with two identical motor domains.
861 The motor domain of FLA10 was replaced with that of FLA8 or vice versa to create
862 chimeric kinesin-IIs with two identical motor domains. Arrow indicates the splice site
863 after the neck linker (gray) for creating the chimeric constructs.
864 (C) *In vitro* motility assay of chimeric CrKinesin-IIs with two identical motor heads at
865 23 °C. Please note, KAP is present in the chimeric motors. Data shown are mean ±
866 SD. ****p < 0.0001; n.s., statistically not significant.
867 (D-E) Analysis of IFT. The velocities of IFT46-YFP expressed in FLA10/FLA10'/KAP
868 cells or in an *ift46* rescue strain expressing IFT46-YFP (as a control) were measured
869 using TIRF microscopy. Representative kymographs of IFT (D) and the
870 measurements (E). Data shown are mean ± SD. ****p < 0.0001; n.s., statistically not
871 significant.
872 (F) Self-interaction of FLA10 or FLA8. FLA10-GFP and FLA10-MBP or FLA8-GFP
873 and FLA8-MBP were co-expressed respectively in 293T cells followed by
874 immunoprecipitation with anti-GFP antibody and immunoblotting with GFP and MBP
875 antibodies, respectively.
876 (G) FLA10 interacts with KAP while FLA8 does not. FLA10-MBP or FLA8-RFP was
877 co-expressed respectively with KAP-GFP-His followed by pull-down with a Ni column
878 and immunoblotting with the indicated antibodies.

879

880 **Figure 2. Chimeric CrKinesin-IIs with motor domains of HsKinesin-II function *in***
881 ***vitro* and *in vivo* (see also Figure S4).**

882 (A) Overview of chimeric CrKinesin-II constructs. The motor domains of FLA10, FLA8
883 or both in CrKinesin-II were replaced with their counterparts of HsKinesin-II,
884 respectively.

885 (B) *In vitro* motility assay of CrKinesin-II chimeras at 23 °C. The rates are the following:
886 1.82 ± 0.24 μm/s (n = 48) for CrKinesin-II; 0.50 ± 0.05 μm/s (n = 50) for
887 KIF3A'/FLA8/KAP; 0.51 ± 0.20 μm/s (n = 37) for KIF3B'/FLA10/KAP; 0.32 ± 0.03 μm/s
888 (n = 40) for KIF3A'/KIF3B'/KAP and 0.41 ± 0.18 μm/s (n = 48) for HsKinesin-II. ****p <
889 0.0001; n.s., statistically not significant.
890 (C) Rescue of the aflagellate phenotype of *fla8* by *FLA8-YFP* or *KIF3B'-YFP*. *fla8* was
891 transformed with *FLA8-YFP* and *KIF3B'-YFP* respectively. Cells were imaged using
892 differential interference contrast microscopy. Wild type (WT) and *fla8* cells were
893 shown as control. Bar, 5 μm.
894 (D) Cells expressing KIF3B'/FLA10/KAP chimera show robust but mild decrease in
895 ciliary length. The ciliary length in steady state cells as indicated were measured.
896

897 **Figure 3. Chimeric KIF3B'/FLA10 motor leads to significant reduction in IFT
898 injection rate but slight decrease in ciliary length.**

899 (A) Velocities of FLA8-YFP and KIF3B'-YFP. The anterograde velocities of FLA8-YFP
900 and KIF3B'-YFP that were expressed respectively in *fla8* cells were assayed using
901 TIRF microscopy. ****p < 0.0001; n.s., statistically not significant.
902 (B) Anterograde velocities of IFT46-YFP in FLA8 and KIF3B' transgenic cells.
903 *IFT46-YFP* was transformed into *fla8* cells expressing FLA8-HA or KIF3B'-HA
904 followed by analysis using TIRF microscopy. *ift46* cells expressing IFT46-YFP were
905 used as a control.
906 (C) KIF3B'/FLA10/KAP chimera leads to ~2.2-fold reduction in IFT injection rate,
907 which was measured by monitoring fluorescence intensity of IFT46-YFP that enters
908 into cilia per time using TIRF microscopy.
909 (D-E) Analysis of the IFT train size. Representative TEM images of cilia showing IFT
910 trains (D) and the average train size was similar among the indicated samples (E). Bar,
911 100 nm.
912 (F) KIF3B'/FLA10 chimera leads to ~2.1-fold reduction in IFT frequency. *IFT46-YFP*
913 was expressed in the indicated cells followed by analysis using TIRF microscopy. 69.3

914 \pm 10.34 min^{-1} (n = 60) for wild type (WT), 72 \pm 8.2 min^{-1} (n = 60) for
915 FLA8-HA/FLA10/KAP and 32.7 \pm 6.24 min^{-1} (n = 60) for KIF3B'-HA/FLA10/KAP cells.
916 (G) Cells expressing chimeric KIF3B'/FLA10/KAP have similar ciliary levels of IFT
917 proteins to the controls. The cilia were isolated from the indicated cells. Equal
918 amounts of ciliary proteins were analyzed by immunoblotting with the indicated
919 antibodies.

920

921 **Figure 4. Mathematical modeling predicts a non-linear scaling relationship**
922 **between motor velocity and ciliary length (See also Figure S5, 6).**

923 (A-C) Modeling simulation. Relationship between motor speed and steady state ciliary
924 length (A); between ciliary length during ciliary assembly and IFT injection rate (B),
925 and rate of reduction in IFT injection rate as a function of ciliary length (C). See
926 Methods for detail.

927 (D) IFT injection rate during ciliary assembly at different length of cilia as indicated.
928 The fluorescence intensity of IFT46-YFP was monitored via TIRF microscopy.
929 (E) Reduction in IFT injection rate along with ciliary elongation during ciliary assembly.
930 The data were derived from (D).

931 (F) Cells expressing slower chimeric motor KIF3B'/FLA10/KAP at shorter growing cilia
932 exhibit higher ciliary levels of IFT proteins relative to the control. Isolated cilia during
933 ciliary regeneration from cells as indicated were subjected to immunoblotting with the
934 indicated antibodies.

935 (G) Simulated kinetics of ciliary assembly during ciliary regeneration.

936 (H) Kinetics of ciliary assembly. Cells were deflagellated by pH shock to allow cilia
937 regeneration. Cells were fixed at the indicated times followed by measurement of
938 ciliary length. Data shown are mean \pm SD (n = 50).

Figure 1

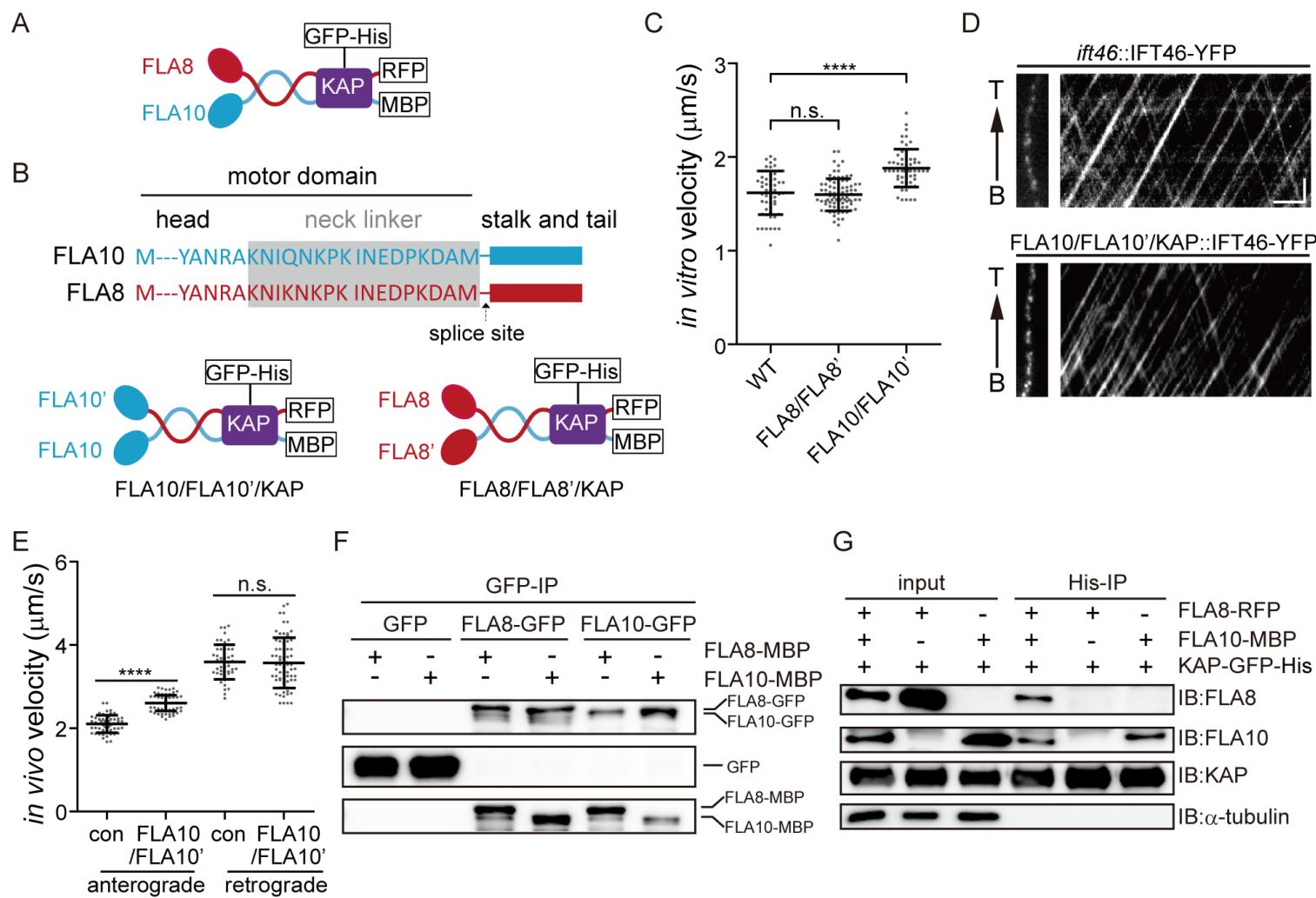
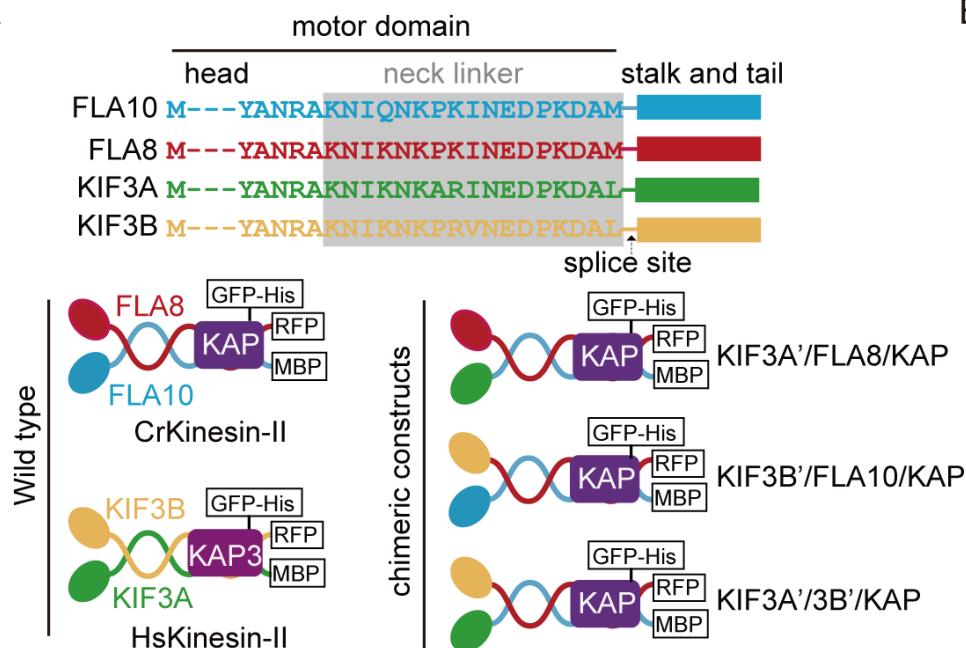
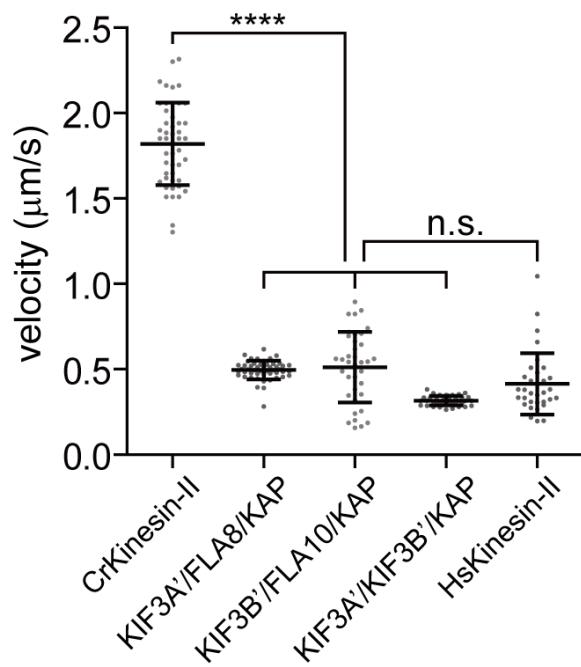
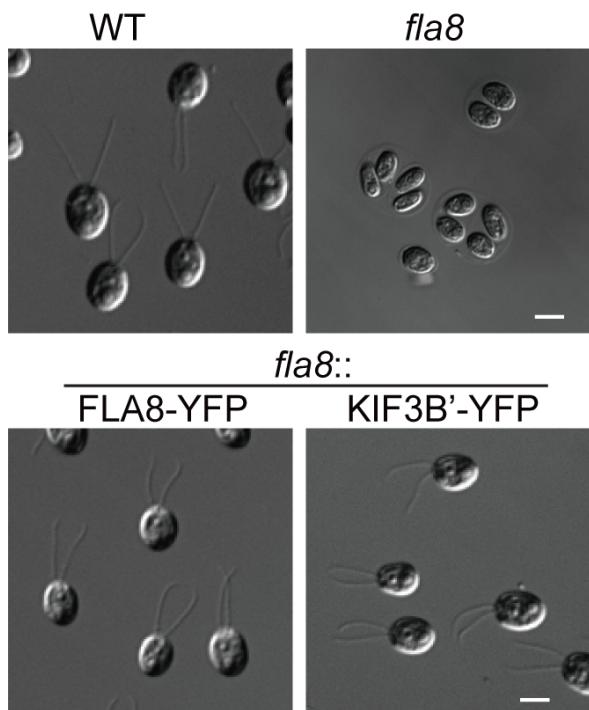




Figure 2


A

B

C

D

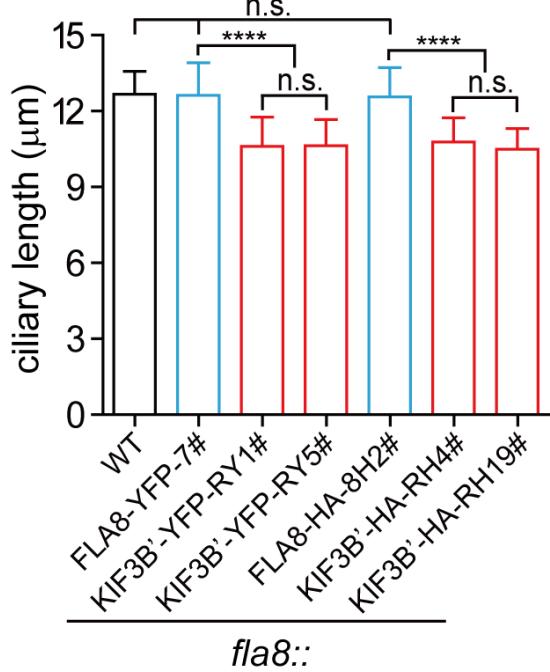


Figure 3

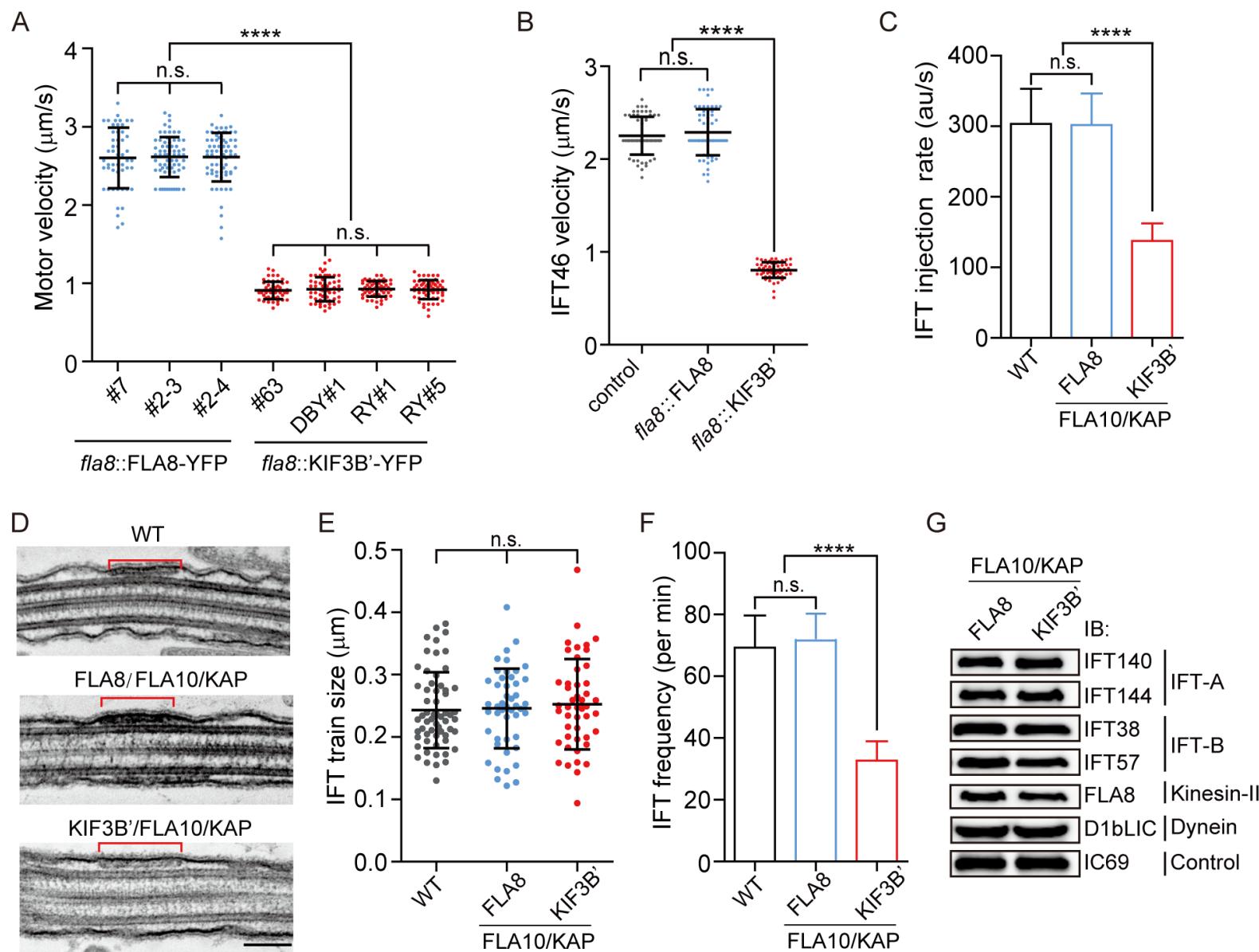
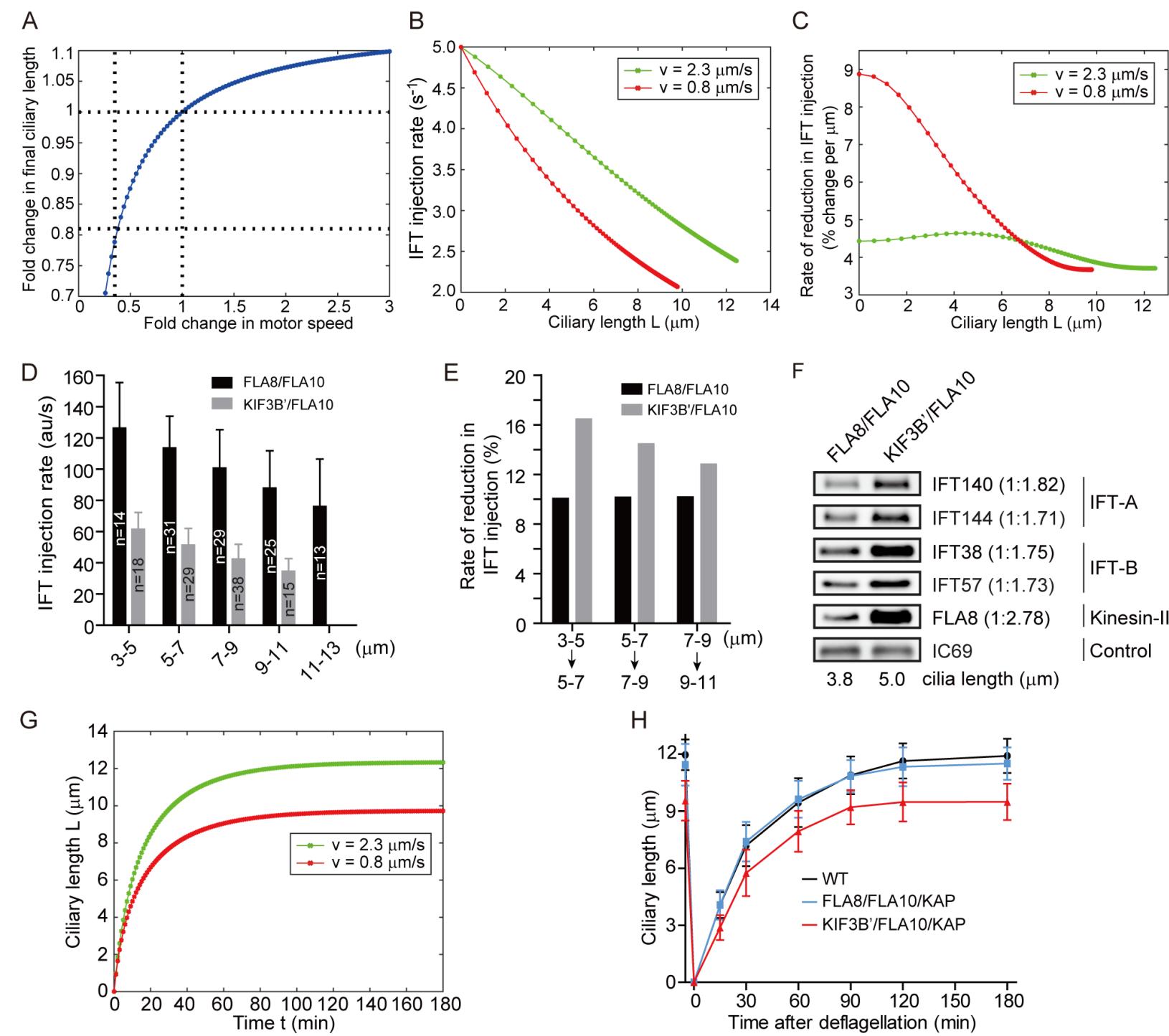
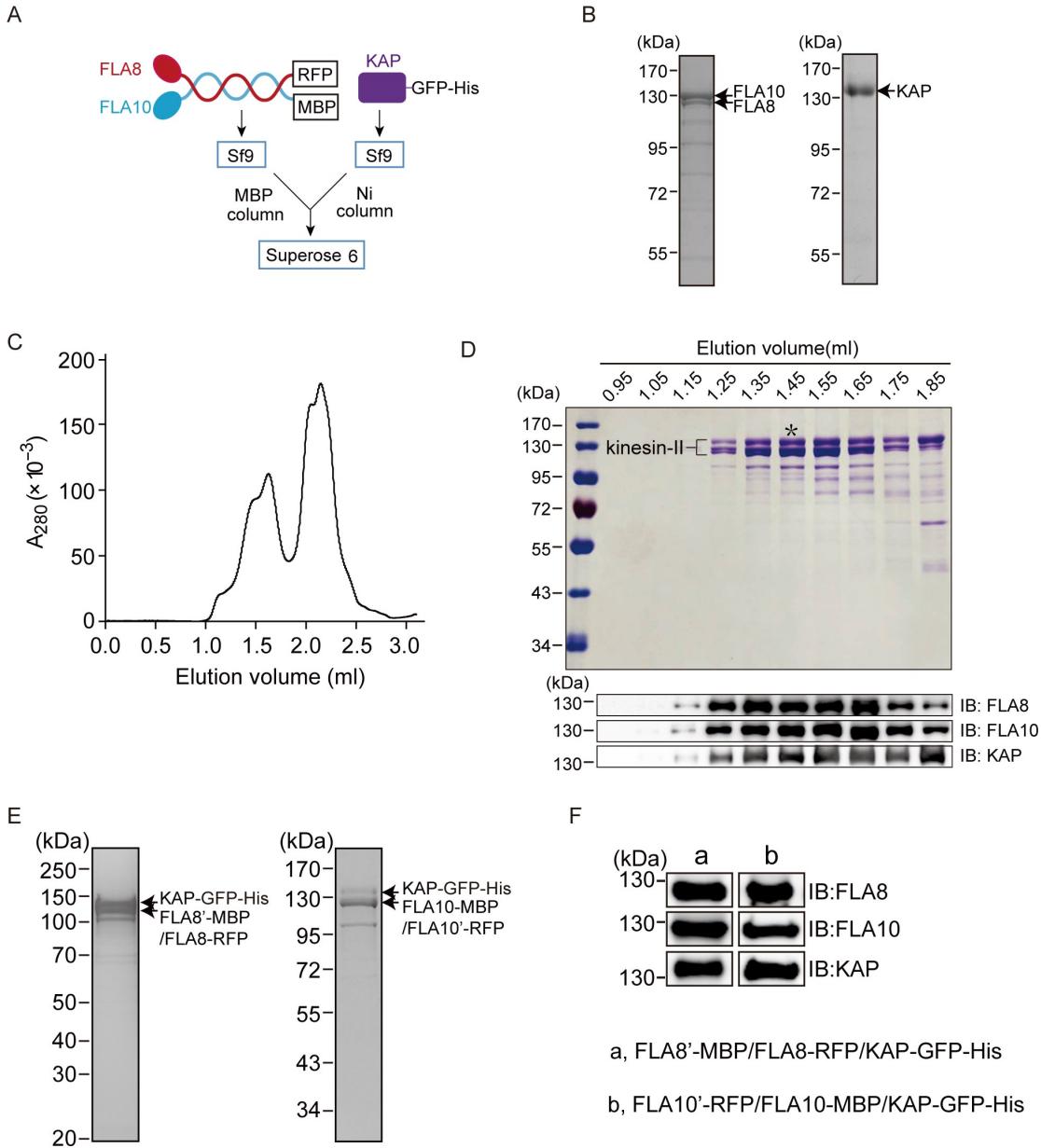




Figure 4

SUPPLEMENTAL INFORMATION

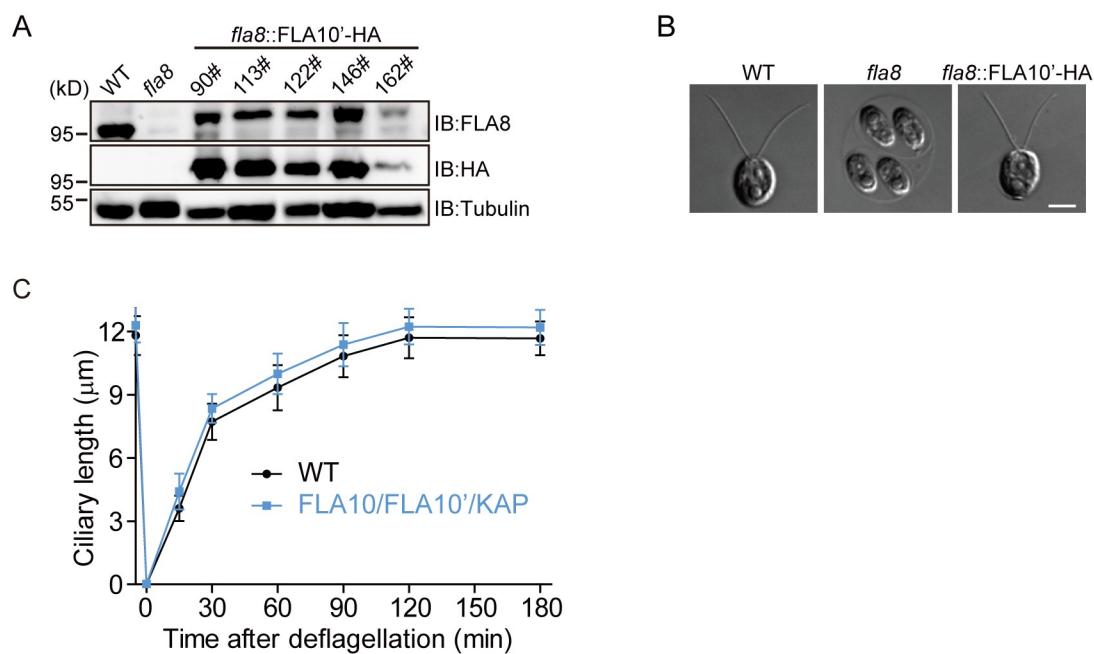


Figure S1. Purification of recombinant CrKinesin-II and chimeric Crkinesin-II with identical motor domains. Related to Figure 1.

- (A) Strategy for expression and purification CrKinesin-II.
- (B) Coomassie-stained SDS-PAGE of purified FLA10/FLA8 from an MBP column (left) and KAP from a Ni column (right).
- (C) Elution profiles of CrKinesin-II from gel filtration. Please refer to Figure S1D.
- (D) Analysis of purified CrKinesin-II by SDS-PAGE and immunoblotting. Elution fractions of CrKinesin-II from gel filtration were separated on a 10% SDS-PAGE

followed by coomassie blue staining (top) or by immunoblotting with the indicated antibodies (bottom). An asterisk indicates the fraction used for motility assay.

(E-F) FLA8'-MBP/FLA8-RFP/KAP-GFP-His and FLA10'-RFP/FLA10-MBP/KAP-GFP-His were expressed respectively in Sf9 cells followed by purification using MBP and Ni affinity columns. The purified products were analyzed by SDS-PAGE followed by coomassie blue staining (E) or immunoblotting (F).

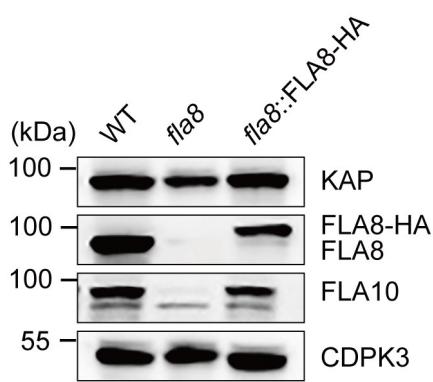


Figure S2. Cells expressing chimeric CrKinesin-II with identical motor domains of FLA10 form normal cilia. Related to Figure 1.

(A) HA-tagged FLA10' (motor domain of FLA10 with FLA8 carboxyl tail) was transformed into an aflagellate mutant *fla8*. The transformants were expected to form a chimeric motor with two identical motor domains of FLA10. The transformants were examined by immunoblotting with wild type (WT) and *fla8* cells as control.

(B) FLA10' rescued the aflagellate phenotype of *fla8*. Shown are the differential interference contrast images of the cells as indicated. Bar, 5 μm.

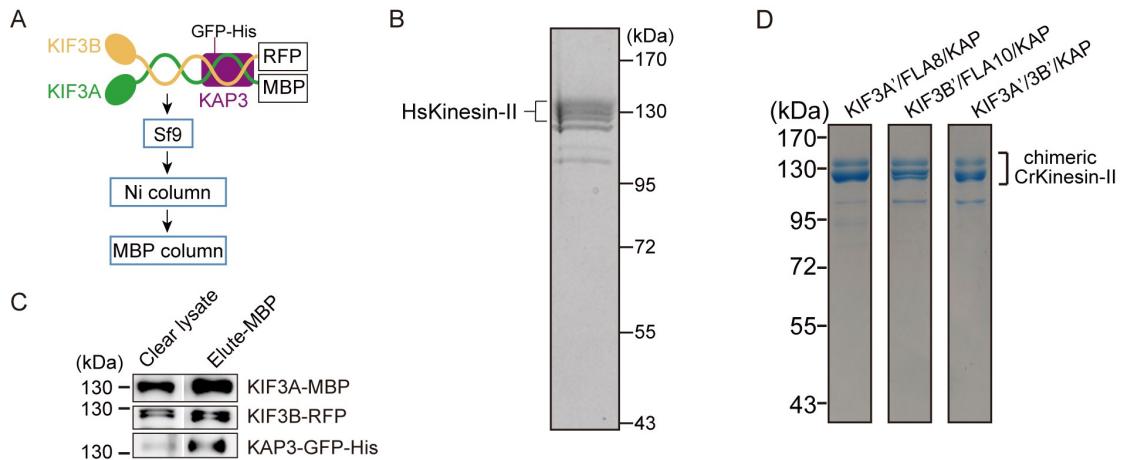

(C) Ciliary regeneration kinetics of FLA10' transgenic strain with wild type cells as a control. The cells were deflagellated by pH shock to allow ciliogenesis. Ciliary length of the cells was measured before deflagellation or at the indicated times after deflagellation. Data shown are mean ± SD (n = 50).

Figure S3. Loss of FLA8 in a *fla8* mutant results in diminished level of FLA10.

Related to Figure 1.

Wild type (WT), *fla8*, and rescued strain of *fla8* were analyzed by immunoblotting with antibodies against CrKinesin-II subunits KAP, FLA8, FLA10, and CDPK3 (Calcium dependent kinase 3) as a control.

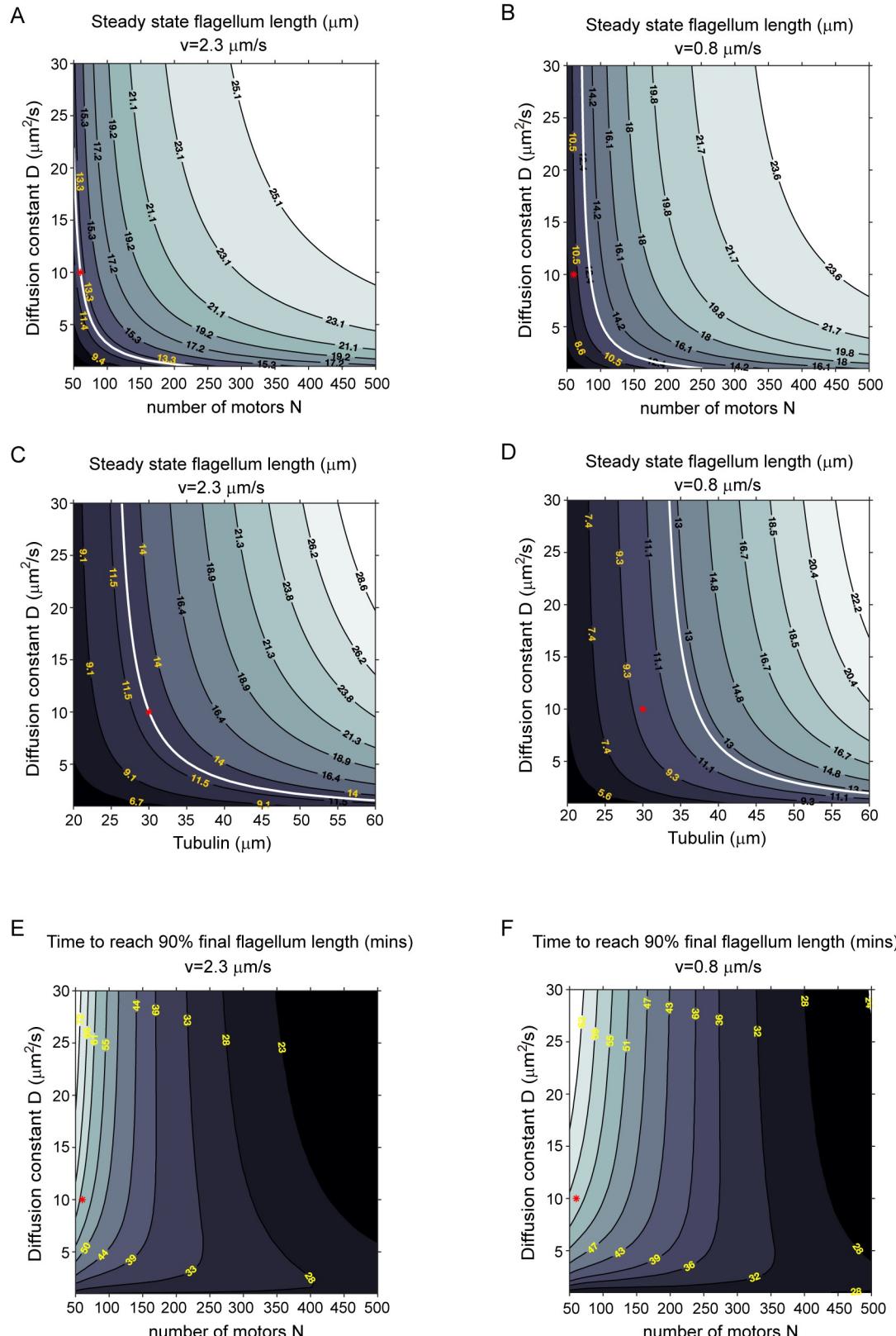
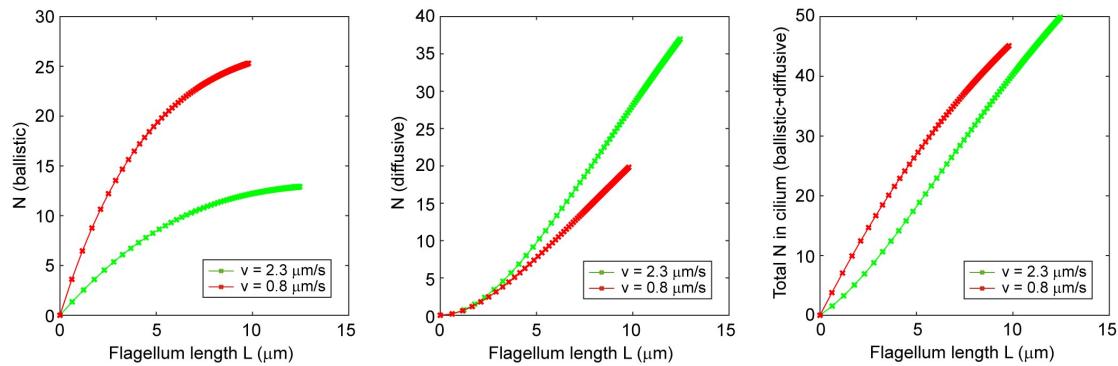


Figure S4. Purification of recombinant HsKinesin-II and chimeric CrKinesin-II with motor domains of HsKinesin-II. Related to Figure 2.


(A-C) Expression and purification of recombinant HsKinesin-II. Strategy of expression and purification (A). Purified kinesin-II were subjected to SDS-PAGE analysis followed by coomassie blue staining (B) or immunoblotting with antibodies against KIF3A, KIF3B or KAP3 (C).

(D) Purification of chimeric CrKinesin-II with motor domains of HsKinesin-II. The motor domains of recombinant CrKinesin-II as shown in Figure 1A was replaced with one or

two motor domains of HsKinesin-II as indicated. The resulting constructs KIF3A'-MBP/FLA8-RFP/KAP-GFP-His, KIF3B'-RFP/FLA10-MBP/KAP-GFP-His and KIF3A'-MBP/KIF3B'-RFP/KAP-GFP-His were expressed respectively in Sf9 cells followed by purification using MBP and Ni affinity columns consecutively. The purified products were analyzed by SDS-PAGE followed by commassie blue staining.

(A-D) Contour plots of the steady state cilium length when either N, the total number of motors or T, the total amount of tubulin, is varied with the rate of diffusion (D), while keeping all other parameters constant. The white lines correspond to 12.5 μm – assumed to be the wild-type cilium length. Red markers denote parameters used in the simulations presented in the main text. (E, F) Contour plots of the growth time (in minutes) required to attain 90% of the final steady state flagellum length.

Figure S6. Model predictions of the number of motors inside the growing cilium.

Related to Figure 4.

Change in the number of motors found at each stage of the IFT cycle (ballistic, diffusive, combined) as the cilium grows. Representative plots are for parameters used in the simulations presented in the main text.

Table S1. Transgenic strains used in this study

Name	Description
FLA10/FLA10'	<i>fla8</i> transformed with a chimeric <i>FLA10'</i> with FLA10 motor domain and FLA8 tail domain
FLA10/FLA10'::IFT46-YFP	FLA10/FLA10' strain expressing IFT46-YFP
<i>ift46</i> ::IFT46-YFP	<i>ift46</i> rescue strain expressing IFT46-YFP
wt::IFT46-YFP	Wild-type strain expressing IFT46-YFP
<i>fla8</i> ::FLA8-YFP	<i>fla8</i> rescue strain expressing FLA8-YFP
<i>fla8</i> ::FLA8-HA	<i>fla8</i> rescue strain expressing FLA8-HA
<i>fla8</i> ::KIF3B'-YFP	<i>fla8</i> transformed with a YFP tagged chimeric KIF3B' having KIF3B motor domain and FLA8 tail domain
<i>fla8</i> ::KIF3B'-HA	<i>fla8</i> transformed with an HA tagged chimeric KIF3B' having KIF3B motor domain and FLA8 tail domain
<i>fla8</i> ::FLA8-HA/IFT46-YFP	<i>fla8</i> ::FLA8-HA strain expressing IFT46-YFP
<i>fla8</i> ::KIF3B'-HA/IFT46-YFP	<i>fla8</i> ::KIF3B'-HA strain expressing IFT46-YFP

Table S2. Primary antibodies used in this study

Antibody	Dilution (IB)	Reference or source
Rat anti-HA	1:1000	Roche
Mouse anti-MBP	1:1000	CMCTAG
Mouse anti-GFP	1:2000	Abmart
Mouse anti- α -tubulin	1:3000	Sigma-Aldrich
Mouse anti-IC69	1:20000	Sigma-Aldrich
Rabbit anti-IFT140	1:2000	(Zhu et al., 2017)
Rabbit anti-IFT144	1:2000	(Zhu et al., 2017)
Rabbit anti-IFT46	1:3000	(Lv et al., 2017)
Rabbit anti-IFT38	1:3000	This study
Rabbit anti-IFT57	1:2000	This study
Rabbit anti-D1bLIC	1:1000	(Meng and Pan, 2016)
Rabbit anti-FLA8	1:3000	(Liang et al., 2014)
Rabbit anti-FLA10	1:3000	(Cole et al., 1998)
Rabbit anti-KAP	1:3000	(Liang et al., 2014)
Rabbit anti-KIF3A	1:2000	Abcam
Rabbit anti-KIF3B	1:500	Abcam
Rabbit anti-KIFAP3 (KAP3)	1:5000	Abcam