

1 Cerebrospinal fluid endo-lysosomal proteins as potential
2 biomarkers for Huntington's disease

3 Alexander J. Lowe¹, Simon Sjodin², Filipe B. Rodrigues¹, Lauren M. Byrne¹, Kaj
4 Blennow^{2,3}, Rosanna Tortelli¹, Henrik Zetterberg^{1,2,3,4} and Edward J. Wild^{1*}.

5

6 ¹UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology,
7 University College London, London, United Kingdom.

8 ²Department of Psychiatry and Neurochemistry, Institute of Neuroscience and
9 Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal,
10 Sweden.

11 ³Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal,
12 Sweden.

13 ⁴UK Dementia Research Institute at UCL, London, United Kingdom.

14

15 *Corresponding Author

16 Email: e.wild@ucl.ac.uk (EJW)

17

18

19

20

21

22

23

24 Abstract

25 Molecular markers derived from cerebrospinal fluid (CSF) represent an accessible
26 means of exploring the pathobiology of Huntington's disease (HD) in vivo. The endo-
27 lysosomal/autophagy system is dysfunctional in HD, potentially contributing to
28 disease pathogenesis and representing a potential target for therapeutic intervention.
29 Several endo-lysosomal proteins have shown promise as biomarkers in other
30 neurodegenerative diseases; however, they have yet to be fully explored in HD. We
31 performed parallel reaction monitoring mass spectrometry analysis (PRM-MS) of
32 multiple endo-lysosomal proteins in the CSF of 60 HD mutation carriers and 20
33 healthy controls. Using generalised linear models controlling for age and CAG, none
34 of the 18 proteins measured displayed significant differences in concentration
35 between HD patients and controls. This was affirmed by principal component
36 analysis, in which no significant difference across disease stage was found in any of
37 the three components representing lysosomal hydrolases, binding/transfer proteins
38 and innate immune system/peripheral proteins. However, several proteins were
39 associated with measures of disease severity and cognition: most notably amyloid
40 precursor protein, which displayed strong correlations with composite Unified
41 Huntington's Disease Rating Scale, UHDRS Total Functional Capacity, UHDRS
42 Total Motor Score, Symbol Digit Modalities Test and Stroop Word Reading. We
43 conclude that although endo-lysosomal proteins are unlikely to have value as
44 disease state CSF biomarkers for Huntington's disease, several proteins
45 demonstrate associations with clinical severity, thus warranting further, targeted
46 exploration and validation in larger, longitudinal samples.

47

48 Introduction

49 Huntington's disease (HD) is an autosomal dominant, neurodegenerative disease
50 characterised by progressive motor, psychiatric and cognitive dysfunction [1]. An
51 extended polyglutamine tract (polyQ) in the ubiquitously-expressed Huntington
52 protein (HTT), results in the production of a mutated, pathogenic product (mHTT)
53 which accumulates intracellularly causing toxicity and neuronal death [2,3].

54 Neuronal survival is dependent, among other things, on intracellular surveillance
55 mechanisms including autophagy, a lysosomal pathway that serves to eliminate toxic
56 substances via two mechanisms: macroautophagy and chaperone-mediated
57 autophagy (CMA) [4,5]. Both of these are disrupted in neurodegenerative diseases
58 including Parkinson's disease (PD), Alzheimer's disease (AD) and polyQ disorders
59 [6–12], potentially resulting in autophagic dysfunction and exacerbation of the
60 neurodegenerative process [13].

61 Lysosomal-associated membrane protein-2 (LAMP2) has pivotal roles in autophagy
62 including translocation of cargo into the lumen and as a receptor in CMA [14,15].
63 LAMP2 gene expression levels and total levels of LAMP2 protein have been shown
64 to be reduced and increased in PD and AD respectively [16–19]. Additionally,
65 cerebrospinal fluid (CSF) LAMP2 has been indicated as a potential biomarker in AD
66 with increased concentration compared to controls [18,20] and has been found to
67 correlate with phosphorylated tau, a well-established marker of neuronal pathology
68 [21]. In HD, a compensatory increase in CMA has been described in response to
69 defective macroautophagy which may explain the increased mRNA expression of
70 LAMP2 and increased levels of LAMP2 protein in HD cell models [11].

71 Deficits in lipid synthesis and metabolism, both of which are reported in HD [22],
72 could contribute towards autophagy failure [23]. Glycosphingolipids endocytosed
73 from the plasma membrane are degraded in the lysosome via the synchronous
74 activity of hydrolases and activator proteins [24]. Ganglioside GM2 activator (GM2A)
75 is a lysosomal protein that together with beta-hexosaminidase- β (HEXB), catalyses
76 the degradation of gangliosides, specifically GM2 [25]. GM2A has shown promise as
77 a CSF biomarker for neurodegeneration in AD, correlating with CSF amyloid-beta
78 levels, and in Lewy body dementia (LBD) with increased concentration [26], whilst
79 the concentration in PD has shown to be reduced [27]. The reason for elevated CSF
80 GM2A in AD and LBD is currently unknown but likely reflects generalised lysosomal
81 dysfunction, as elevated GM2A has been detected via urinary analysis in lysosomal
82 storage disorders [28]. In HD, the reduced expression of genes involved in
83 ganglioside catabolism has been reported [29], in addition to disturbances in
84 ganglioside metabolism and synthesis [29,30]. Furthermore, administration of
85 gangliosides has been found to reduce apoptosis in HD cell lines and restore normal
86 ganglioside concentration in YAK128 mice, resulting in improved motor function
87 [30,31]. Given that gangliosides are involved in regulating white matter integrity [32],
88 and that white matter atrophy is associated with HD [33–35], the exploration of CSF
89 GM2A, a protein pivotal for ganglioside catabolism, is warranted and may further
90 explain white matter pathology in HD.

91 Lysosomal proteolytic degradation involves the activity of the cathepsin family of
92 proteases [36]. Previous work using CSF has demonstrated significant alterations in
93 the concentration of several cathepsins in other proteopathies such as PD [27]. Both
94 Cathepsin L and Z have been shown to be crucial for the degradation of polyQ
95 proteins within lysosomes [37], suggesting a protective role against toxic aggregates.

96 The role of additional cathepsins in HD has also been explored, with early work
97 describing an increase in Cathepsin D activity in caudate tissue of HD patients [38].
98 This has been supported by recent studies showing increased Cathepsin D and L
99 levels in response to mHTT expression in vitro [39], and studies demonstrating
100 overexpression of Cathepsin B and D to reduce mHTT levels and toxicity in multiple
101 cell models, without impacting upon endogenous HTT [40].

102 CSF is enriched in brain-derived substances, thus biomarkers derived from CSF
103 represent a valid means to assess neuropathology [41]. Given the dysregulation of
104 the autophagy pathway in HD [23], the exploration of endo-lysosomal proteins in HD
105 patients could represent a means of identifying novel biomarkers with prognostic,
106 disease monitoring and pharmacodynamic value [42]. Parallel reaction monitoring
107 mass spectrometry (PRM-MS) is a quantitative approach making use of high
108 resolution instruments and thus offers highly selective and accurate measurements
109 [43,44]. Separation in two dimensions, by physiochemical properties using liquid
110 chromatography and by mass to charge ratio (m/z) using mass spectrometry,
111 facilitates multiplexing capabilities in complex matrices, for example in biofluids. The
112 PRM-MS method employed herein has previously been applied to investigate endo-
113 lysosomal dysfunction in AD and PD patients, with the later demonstrating altered
114 CSF concentrations of multiple cathepsins, GM2A and LAMP2 [27].

115 We employed PRM-MS to conduct a targeted analysis of 18 proteins associated with
116 endocytosis and lysosomal function in the CSF from the HD-CSF cohort baseline (60
117 HD mutation carriers and 20 healthy controls). Given the previously described
118 autophagic dysfunction in HD, and their role in other neurodegenerative diseases,
119 we pre-specified 5 lysosomal proteins as primary analytes to study: LAMP1, LAMP2,
120 GM2A, Cathepsin D and F. The remaining 13 proteins, pertaining to other aspects of

121 the endo-lysosomal and ubiquitin-proteasome system, were assessed in a separate
122 exploratory analysis. We aimed to elucidate the biomarker potential of endo-
123 lysosomal proteins whilst also highlighting targets for future comprehensive analysis,
124 with the aim of facilitating therapeutic developments in HD.

125 **Materials and methods**

126 **Participants and study design**

127 HD-CSF was a prospective single-site study with standardised longitudinal collection
128 of CSF, blood and phenotypic data (online protocol: DOI: 10.5522/04/11828448.v1).
129 Ethical approval was given by the London Camberwell St Giles Research Ethics
130 Committee, with all participants providing written informed consent prior to
131 enrolment. The study involved manifest HD, premanifest HD and healthy controls.
132 Manifest HD was defined as UHDRS diagnostic confidence level (DCL) = 4 and CAG
133 repeat length > 36. Premanifest HD had CAG repeat length > 40 and DCL < 4.
134 Healthy controls were contemporaneously recruited, drawn from a population with a
135 similar age to patients, and clinically well, so the risk of incidental neurodegenerative
136 diseases was very low. Consent, inclusion and exclusion criteria, clinical
137 assessment, CSF collection and storage were all as previously described [45,46]. In
138 brief, samples were collected after an overnight fast at the same time of day and
139 centrifuged and aliquoted on ice using a standardised protocol and polypropylene
140 plasticware. Relevant aspects of clinical phenotype were quantified using the Unified
141 Huntington's Disease Rating Scale (UHDRS) [47]. A composite UHDRS (cUHDRS)
142 score was generated for each subject to provide a single measure of motor,
143 cognitive and global functioning decline. This composite score, computed using four
144 measures; Total Functional Capacity (TFC), Total Motor Score (TMS), Symbol Digit

145 Modality Test (SDMT) and Stroop Word Reading (SWR), has been found to display
146 the strongest relationship to HD brain pathology and enhanced sensitivity to clinical
147 change in early HD [48]. Disease burden score (DBS) was calculated for each HD
148 patient using the formula [CAG repeat length – 35.5] × age [49]. DBS estimates
149 cumulative HD pathology exposure as a function of CAG repeat length and the time
150 exposed to the effects of the expansion, and has been shown to predict several
151 features of disease progression including striatal pathology [49,50]. Baseline
152 samples from HD-CSF have been used for this study.

153 **Sample preparation**

154 Measurement of peptide concentrations was performed as previously described [27],
155 which builds on the original method developed by Brinkmalm *et al.*[51]. However,
156 some minor modifications were introduced. In short, 50 µL CSF was mixed with 50
157 µL of an internal standard mixture containing stable isotope-labelled peptides (JPT
158 Peptide Technologies GmbH, Berlin, Germany; Thermo Fisher Scientific Inc.
159 Waltham, MA, USA), ¹³C-labelled ubiquitin (Silantes, GmbH, München, Germany)
160 and bovine serum albumin (Sigma-Aldrich Co., Saint Louis, MO, USA), diluted in 50
161 mM NH₄HCO₃ (see S1 Table). Reduction and alkylation was performed by the
162 addition of 50 µL 15 mM 1,4-dithiothreitol in 50 mM NH₄HCO₃, shaking for 30 min at
163 + 60 °C, cooling down at room temperature for 30 min, and finally the addition of 25
164 µL 70 mM iodoacetamide in 50 mM NH₄HCO₃ followed by shaking at room
165 temperature in the dark for 30 min. The samples were digested by the addition of 25
166 µL 0.08 µg/µL sequencing grade modified trypsin (Promega Co., Madison, WI, USA)
167 diluted in 50 mM NH₄HCO₃ and incubated at + 37 °C shaking for 18 h. Digestion was
168 ended by the addition of 25 µL 10% trifluoroacetic acid. Solid-phase extraction was

169 performed using Oasis® HLB 96-well µElution Plates (2 mg sorbent and 30 µm
170 particle size; Waters Co., Milford, MA, USA) by conditioning (2x300 µL methanol),
171 equilibration (2 × 300 µL H₂O), loading of samples, washing (2 × 300 µL H₂O), and
172 elution (2 × 100 µL methanol). The samples were then dried by vacuum
173 centrifugation and stored at – 80 °.

174 **Parallel reaction monitoring mass spectrometry**

175 Prior to analysis by PRM-MS the samples were dissolved by the addition of 50 µL 50
176 mM NH₄HCO₃, and shaking at room temperature for 1 h. Forty microliters of sample
177 were injected and separated using a Dionex™ UltiMate™ 3000 standard-LC system
178 (Thermo Fisher Scientific Inc., Waltham, MA, USA) and a Kinetex® EVO C18 column
179 (length 150 mm; inner diameter 2.1 mm; particle size 1.7 µm; Phenomenex Inc.,
180 Torrance, CA, USA) with a SecurityGuard™ ULTRA cartridge prefilter (Phenomenex
181 Inc.). On a 60 minutes method, with solvents A (0.1% formic acid in H₂O (v/v)) and B
182 (84% acetonitrile and 0.1% fromic acid in H₂O (v/v)), using a flow rate of 300 µL/min,
183 the gradient went from 3 to 5% B over one minute followed by 5 to 26% B over 48
184 minutes. The column temperature was set to + 50 °C. Separation by high-
185 performance liquid chromatography, as described above, was performed in online
186 mode coupled to a Q Exactive™ Hybrid Quadrupole-Orbitrap™ mass spectrometer
187 (Thermo Fisher Scientific Inc.). Using a HESI-II ionization probe (Thermo Fisher
188 Scientific Inc.) electrospray ionization was performed in positive ion mode with the
189 following settings: spray voltage + 4.1 kV, heater temperature + 400 °C, capillary
190 transfer tube temperature + 380 °C, sheath gas flow rate 25, auxiliary gas flow rate
191 10, and S-Lens RF level 60. Acquisition of data was performed using single
192 microscans in parallel reaction monitoring (PRM) mode with an isolation window of

193 *m/z* 2 centred on the second isotope of the precursor ion. The resolution setting was
194 70 k with an AGC target of 1×10^6 and a 256 ms injection time. Fragmentation was
195 performed using beam-type collision-induced dissociation (higher energy collision
196 induced dissociation [52] with optimized energies as described before [27]. The PRM
197 method was scheduled using one-minute retention time windows. Peptide related
198 settings are shown in S1 Table.

199 **Data extraction**

200 Skyline v.19.1 [53] was used to calculate and export fragment ion peak areas.
201 Skyline was also used to monitor and evaluate fragment ion traces and ratios, and to
202 determine which fragment ions to include in the analysis. The ratio between tryptic
203 peptide and isotope-labelled peptide peak area was used for quantification. In total
204 48 peptides from 19 proteins, including added bovine serum albumin as a control
205 protein, were monitored. With each set of samples analysed, four quality control
206 replicates from a CSF pool were run to normalize variation between sets of samples.
207 In this case the samples were split in two sets, however prepared on a single
208 occasion but analysed using PRM-MS at different points in time. The median of the
209 first set's four quality control replicates was used for normalization by dividing the
210 median of the second set's quality control median. Then the samples in the second
211 set were divided by the resulting normalization quotient (one for each peptide). As
212 multiple peptides were monitored from each protein the complexity of the data was
213 reduced by transforming the peptide ratios into a single value, see Equation 1. The
214 transformation was done for proteins with correlating peptides. To create a protein-
215 level estimate, a Mean Peptide Ratio was calculated by dividing the peptide ratio (x)
216 by the mean of all ratios for that peptide in the study (\bar{x}). The calculation was made

217 for peptides 1-n, and was then divided by the number of peptides (n) derived from
218 the protein. Thus, the sample ratios for each peptide were normalized to have a
219 mean of 1, without affecting the relative difference between samples. Additionally,
220 the weight of each peptide in the calculation of the Mean Peptide Ratio became
221 approximately equal.

222 Equation 1:
$$\text{Mean Peptide Ratio}_{1-n} = \frac{x_1/\bar{x}_1 + x_2/\bar{x}_2 + \dots + x_n/\bar{x}_n}{n}$$

223 Precision, shown in S1 Table, was monitored by analysing eight quality control
224 replicates from a CSF pool, which were run with each sample set. The precision and
225 limit of quantification of the method have previously been determined [27]. Given the
226 two sets of samples analysed, the within set variability had coefficients of variation of
227 1.8-15.8%, depending on peptide. Between sample sets, the coefficients of variation
228 were 2.7-21.0%. For the Mean Peptide Ratio the within set variability coefficients of
229 variation varied between 2.0-13.9% while the between sets variations were 2.1-
230 18.3%.

231 **Statistical analysis**

232 Statistical analysis was performed with Stata IC 15 software (StataCorp, TX, USA).
233 The distribution of all protein concentrations were tested for normality and found to
234 be non-normally distributed. Natural log-transformation was applied and produced an
235 acceptable distribution for all analytes. Based on their putative involvement in the
236 pathogenesis of HD in the literature, we pre-specified 5 proteins (LAMP1, LAMP2,
237 GM2A, and Cathepsins D and F) and designated them as primary analytes (see S1
238 Table for full protein list). Differences in demographic and clinical characteristics
239 were examined using ANOVA and χ^2 tests. Age, gender and blood contamination

240 were considered potentially confounding variables, thus their relationship with
241 analyte concentration was examined in a preliminary analysis in controls using
242 independent samples t-tests and Pearson's correlation. Differences across disease
243 stage were tested using general linear models controlling for age. CAG repeat length
244 was also included in the model when assessing differences between premanifest
245 and manifest HD mutation carriers. To test for associations with measures of clinical
246 severity and cognition, Pearson's partial correlation coefficients, bootstrapped with
247 1000 repetitions, were calculated controlling for age and CAG in all HD gene
248 expansion carriers. Biomarker potential was assessed by controlling relationships
249 first for age, and then for age and CAG. By including both age and CAG as
250 covariates, accurate assessments of associations can be made, independent of
251 known predictors. DBS is a product of age and CAG, as such, the latter two
252 variables were not included as covariates when assessing relationships with DBS.

253 Principal components analysis (PCA) was employed to reduce the dimensionality of
254 the entire protein dataset. PCA is used to identify the maximum number of
255 uncorrelated principal components that together explain the maximum amount of
256 variance in a data set [54]. We leveraged the Kaiser-Meyer-Olkin measure of sample
257 adequacy and Bartlett's test of sphericity to assess the suitability of our data for
258 PCA. Prior to running the PCA, we controlled each protein for the effect of age using
259 general linear models. When selecting the number of components to use in
260 subsequent analysis, we followed the recommendation to limit this to the smallest
261 number accounting for the most variability in the data [55]. As such, we inspected
262 scree plots and selected components with an eigenvalue of >1 . Orthogonal varimax
263 rotation was applied and variables with a loading of >0.3 were deemed significant
264 and used to define the component labels. Participant's original data were then

265 transformed to create a composite score for each principal component. Group
266 differences could then be analysed using this small number of principal components,
267 rather than the large number of original measures. Mirroring the analysis at the level
268 of individual proteins, general linear models and Pearson's partial correlation were
269 used to assess group differences in component scores and the relationships to
270 measures of clinical severity. Age was not included in the models as it had already
271 been controlled for using linear regression in the generation of PC scores
272 Significance level was defined as $p < 0.05$ and tests were Bonferroni-corrected for
273 multiple comparisons when required.
274 A further exploratory analysis was undertaken on the remaining 13 endo-lysosomal
275 proteins using the same hierarchical methodology outlined above.

276 **Results**

277 **Participant characteristics**

278 Our cohort consisted of 20 healthy controls and 60 HD mutation carriers. The HD
279 gene expansion carriers comprised of 20 premanifest and 40 manifest HD patients.
280 A single premanifest participant was removed due to missing data. There were no
281 significant differences in the gender distribution ($\chi^2 = 0.34, p = 0.84$) among the three
282 groups or CAG repeat length among manifest and premanifest HD participants. A
283 significant difference in age was observed, with both healthy controls and manifest
284 HD patients being significantly older than premanifest, because the controls were
285 recruited to span the entire age range of HD mutation carriers. As expected, there
286 were no differences between controls and premanifest individuals in TFC, TMS,

287 cUHDRS, SDMT and SWR, but there were differences between premanifest and
288 manifest HD patients (Table 1).

289 **Table 1. Demographics and Baseline Characteristics of Each Cohort.**

	Controls (20)	Premanifest (19)	Manifest (40)	ANOVA p-value	Control vs Premanifest p-value	Premanifest vs Manifest p-value
Age (Years)	50.7 ± 11.0	41.8 ± 11.0	56.1 ± 9.4	<0.0001	0.008	<0.0001
Sex (M/F)	10/10	9/10	22/18	NA	NA	NA
CAG	N/A	42.1 ± 1.6	42.7 ± 2.1	NA	NA	0.22
DBS	N/A	265.7 ± 63.3	395.6 ± 94.6	NA	NA	<0.0001
TFC	13 ± 0	13 ± 0	9.4 ± 2.7	<0.0001	1.00	<0.0001
TMS	2.4 ± 2.4	2.5 ± 2.6	37.5 ± 19.4	<0.0001	0.96	<0.0001
cUHDRS	17.4 ± 1.5	18.0 ± 1.0	10.5 ± 3.6	<0.0001	0.46	<0.0001
SDMT	50.9 ± 10.4	55.8 ± 9.5	27.2 ± 12.6	<0.0001	0.18	<0.0001
SWR	100.2 ± 17.4	105.5 ± 11.9	59.6 ± 23.6	<0.0001	0.40	<0.0001

290 Intergroup differences were assessed using general linear models and Pearson's chi squared test
291 (Gender). P-values are not adjusted for multiple comparisons. Values displayed are mean ±SD unless
292 otherwise stated. DBS, Disease Burden Score; PRE, Premanifest HD mutation carriers; MAN,
293 manifest HD mutation carriers; CAG, CAG triplet repeat count; cUHDRS, composite Unified
294 Huntington's Disease Rating Scale; SDMT, Symbol Digit Modalities Test; SWR, Stroop Word Reading
295 Test; TFC, Total Functional Capacity; TMS, Total Motor Score; NA, not applicable.

296 **Analysis of pre-specified primary analytes**

297 There were no significant differences in protein concentration between genders
298 (LAMP1: Mean Difference (MD) = -0.04, $p = 0.75$; LAMP2: MD = -0.06, $p = 0.61$;
299 GM2A: MD = -0.07, $p = 0.59$; Cathepsin D: MD = -0.07, $p = 0.49$; Cathepsin F: MD =
300 -0.05, $p = 0.54$). CSF haemoglobin concentration, used to evaluate effect of blood
301 contamination, displayed no significant associations with any protein (LAMP1: $r =$
302 0.16, $p = 0.49$; LAMP2: $r = 0.09$, $p = 0.70$; GM2A: $r = 0.15$, $p = 0.52$; Cathepsin D: $r =$
303 0.12, $p = 0.61$; Cathepsin F: $r = -0.13$, $p = 0.59$). In addition to significant differences
304 across disease stages, we observed positive trends between CSF protein
305 concentration and age (S1 Fig).

306 When controlling for age, no significant differences in CSF concentration of LAMP1,
307 LAMP2, GM2A, Cathepsin D or Cathepsin F were observed (group membership
308 main effect: $p = 0.84$; $p = 0.99$, $p = 0.72$; $p = 0.31$; $p = 0.59$, respectively; Fig 1). No
309 significant differences between manifest and premanifest HD patients were observed
310 when also controlling for CAG repeat length (Table 2). Furthermore, we observed no
311 significant differences when grouping together premanifest and manifest HD
312 mutation carriers and comparing with healthy controls (S2 Fig).

313

314 **Fig 1. Comparison of Analyte Concentration across Disease Stage.** No significant
315 differences were observed in the concentration of lysosomal (A) LAMP1, (B) LAMP2, (C) GM2A, (D)
316 Cathepsin (Cat) D and (E) Cathepsin (Cat) F between controls, premanifest and manifest HD
317 patients. P-values were Bonferroni-corrected and generated from general linear models controlling for
318 age. Group membership main effects p-values are displayed in text and Table 2. All CSF protein
319 values have been normalized and log-transformed.

320

321 **Table 2. Comparison of Analyte Concentration across Disease Stage.**

Endo-Lysosomal Proteins	Adjusted for	ANOVA p value	Control vs Premanifest p value	Manifest vs Premanifest p value
LAMP1	Age	0.84	1.00	1.00
	Age and CAG	NA	NA	0.70
LAMP2	Age	0.99	1.00	1.00
	Age and CAG	NA	NA	0.73
GM2A	Age	0.72	0.84	1.00
	Age and CAG	NA	NA	0.64
Cathepsin D	Age	0.31	0.34	0.34
	Age and CAG	NA	NA	0.15
Cathepsin F	Age	0.60	0.65	0.84
	Age and CAG	NA	NA	0.40

322 Differences in analyte concentration across disease stage were assessed using general linear models
323 controlling for effects of age. P-values are Bonferroni-corrected for multiple comparisons when

324 required. CAG was also included in the model when assessing differences between manifest and
325 premanifest HD mutation carriers.

326

327 Among HD gene expansion carriers, there were no significant correlations between
328 DBS and all measured analytes (Table 3). Furthermore, there were no statistically
329 significant associations between primary analyte concentrations and measures of
330 clinical severity (cUHDRS, TFC, TMS, Fig 2) or cognition (SDMT and SWR, Table
331 3). Findings remained largely the same when also controlling for CAG repeat length
332 except for LAMP2 which showed a significantly association with TFC (Table 3). Due
333 to LAMP2 demonstrating no significant relationship when controlling for age only, it

Endo-Lysosomal Proteins	DBS <i>r</i> (95% CI)	Adjusted for	cUHDRS <i>r</i> (95% CI)	TFC <i>r</i> (95% CI)	TMS <i>r</i> (95% CI)	SDMT <i>r</i> (95% CI)	SWR <i>r</i> (95% CI)
LAMP1	0.27 (-0.05, 0.49)	Age	0.11 (-0.19, 0.39)	0.12 (-0.12, 0.37)	-0.08 (-0.34, 0.18)	0.14 (-0.18, 0.43)	0.07 (-0.20, 0.34)
		Age and CAG	0.18 (-0.10, 0.45)	0.17 (-0.07, 0.41)	-0.14 (-0.36, 0.12)	0.20 (-0.09, 0.49)	0.12 (-0.15, 0.39)
LAMP2	0.31 (-0.02, 0.52)	Age	0.13 (-0.16, 0.40)	0.18 (-0.06, 0.41)	-0.10 (-0.34, 0.18)	0.16 (-0.13, 0.44)	0.08 (-0.19, 0.35)
		Age and CAG	0.22 (-0.04, 0.47)	0.24 (0.01, 0.46)	-0.16 (-0.40, 0.11)	0.24 (-0.04, 0.49)	0.15 (-0.11, 0.41)
GM2A	0.23 (-0.13, 0.45)	Age	0.13 (-0.14, 0.40)	0.10 (-0.15, 0.34)	-0.14 (-0.35, 0.10)	0.17 (-0.15, 0.47)	0.10 (-0.15, 0.36)
		Age and CAG	0.15 (-0.12, 0.45)	0.11 (-0.13, 0.33)	-0.15 (-0.36, 0.12)	0.19 (-0.09, 0.50)	0.12 (-0.14, 0.39)
Cathepsin D	0.05 (-0.20, 0.26)	Age	0.15 (-0.17, 0.40)	0.11 (-0.17, 0.38)	-0.16 (-0.39, 0.07)	0.13 (-0.16, 0.41)	0.13 (-0.18, 0.39)
		Age and CAG	0.11 (-0.20, 0.39)	0.07 (-0.21, 0.33)	-0.13 (-0.36, 0.11)	0.09 (-0.22, 0.43)	0.10 (-0.22, 0.36)
Cathepsin F	0.25 (-0.07, 0.47)	Age	0.10 (-0.20, 0.36)	0.05 (-0.21, 0.30)	-0.13 (-0.35, 0.15)	0.16 (-0.15, 0.43)	0.09 (-0.22, 0.34)
		Age and CAG	0.13 (-0.16, 0.40)	0.05 (-0.22, 0.31)	-0.14 (-0.37, 0.14)	0.19 (-0.13, 0.48)	0.12 (-0.18, 0.38)

334 did not meet our criteria for displaying biomarker potential.

335 **Table 3. Association of Analytes and Assessed Measures in HD Mutation
336 Carriers.**

337 The relationship between protein concentration and Disease Burden Score (DBS) was computed
338 using Pearson's correlation with unadjusted values displayed. Associations with composite Unified
339 Huntington's Disease Rating Scale (cUHDRS), Total Functional Capacity (TFC), Total Motor Score
340 (TMS), Symbol Digit Modalities Test (SDMT), and Stroop Word Reading (SRW) were assessed using
341 Pearson's partial correlation controlling for age, and age and CAG. Correlation coefficients and 95%
342 confidence intervals were computed using bootstrap testing with 1000 repetitions. Results displayed
343 are unadjusted for multiplicity. Bold text indicates $p < 0.05$

344

345 **Fig 2. Correlation between Primary Analyte Concentrations and Clinical**
346 **Severity.** Association within HD gene expansion carriers between CSF LAMP1 (A-C), LAMP2 (D-
347 F), GM2A (G-I), Cathepsin (Cat) D (J-L), Cathepsin (Cat) F and composite Unified Huntington's
348 Disease Rating Scale (cUHDRS), Total Functional Capacity (TFC) and Total Motor Score (TMS).
349 Scatter plots show unadjusted values. Correlation coefficients and 95% confidence intervals were
350 generated using Pearson's partial correlation controlling for age and bootstrapped with 1000
351 repetitions. All CSF protein values have been normalized and log transformed. Lighter coloured data
352 points represent premanifest individuals.

353

354 **Exploratory principal component analysis**

355 An exploratory principal components analysis was performed on the entire dataset.
356 The Kaiser-Meyer-Olkin measure of sample adequacy was 0.92 and Bartlett's test of
357 sphericity was significant ($\chi^2(153) = 1485, p < 0.001$) indicating that PCA was an
358 appropriate means of dimensionality reduction. The first three components (PC1,
359 PC2 and PC3) had eigenvalues of > 1 and explained 75% of the variance in the data
360 (59%, 9% and 7%, respectively). A screeplot demonstrated the 'levelling off' of
361 eigenvalues after three components, thus a three-component solution was selected.

362 Composite scores were generated for each of the three components allowing for
363 their use in for subsequent analysis. Based on the protein loadings, the three
364 components were deemed to represent lysosomal hydrolases, membrane
365 binding/transfer proteins and innate immune system/peripheral proteins (PC1, PC2
366 and PC3, respectively) (Fig 3).

367

368 **Fig 3. Screeplot and Component Loadings Following PCA.** (A) Screeplot displays
369 eigenvalues for all components generated. Red line represents an eigenvalue of 1. The first three
370 components have an eigenvalue of >1 , thus a three-component solution was adopted. (B) Proteins
371 with loadings of >0.3 were retained and used to define the component labels. All proteins were
372 controlled for age using the residuals from linear regression models. (C) Line graph displaying
373 loadings on the first three components for all proteins included in the PCA. (D) PCA plot
374 demonstrating the clustering of specific proteins into each of the three principal components.

375

376 The principal component scores for each participant represent a composite that can
377 be used to examine disease-related alterations across all proteins while avoiding
378 multiple comparisons. We found no significant differences in component scores
379 between genders (PC1, $p = 0.65$; PC2, $p = 0.84$; PC3, $p = 0.47$). When comparing
380 across disease stage, we found no significant differences in PC1, PC2 or PC3 (Fig
381 4). We observed similar findings when CAG was included in the model (S2 Table).

382

383 **Fig 4. Group-wise Comparison of Principal Component Scores.** No significant
384 differences were observed in Principal component 1 (PC1), 2 (PC2), or 3 (PC3) scores when
385 comparing between healthy controls and GE carriers (A) or across disease stage (B). P-values were
386 Bonferroni-corrected when required and generated from general linear models.

387

388 When controlling for age, PC3 demonstrated a significant relationship with TFC only
389 (S3 Table). Composite scores relating to PC1 were not significantly related to any
390 measure of clinical severity or cognition and although PC2 demonstrated a
391 significant relationship with TFC, this relationship was not present when controlling
392 for age only (Fig 5).

393

394 **Fig 5. Correlation between Principal Component Scores and Measures of**
395 **Clinical Severity.** Association within HD gene expansion carriers between PC1 (A-C), PC2 (D-F),
396 PC3 (G-I), and composite Unified Huntington's Disease Rating Scale (cUHDRS), Total Functional
397 Capacity (TFC) and Total motor score (TMS). Scatter plots show values adjusted for age with
398 correlation coefficients and confidence intervals generated using Pearson's correlation bootstrapped
399 with 1000 repetitions. Red and yellow data points represent manifest and premanifest HD subjects
400 respectively.

401

402 **Exploratory analysis of remaining analytes**

403 Pearson's correlation revealed only C9 and lysozyme C to be significantly associated
404 with age. Nevertheless, we controlled for age in the subsequent analysis of each
405 protein. Lysozyme C also demonstrated a significant gender difference and thus
406 gender was additionally controlled for when analysing this protein. No significant
407 associations with haemoglobin concentration were observed (S4 Table).

408 Despite not showing group-wise alterations (S3 Fig), APP, HEXB, UBQ, Cathepsin B
409 and FUCA were significantly associated with measures of clinical severity within HD
410 mutation carriers when controlling for age. Furthermore, these findings remained
411 significant when additionally controlling for CAG repeat length (Fig 6 and Table 4).

412 Our exploratory analysis of all the remaining endo-lysosomal proteins found no
413 significant differences in analyte concentration across disease stage (S5 Table) or
414 significant relationships with clinical measures, except for C9 and LYZ which
415 displayed significant associations with DBS (S6 Table).

416

417 **Fig 6. Significant Relationships between Exploratory Proteins and Measures of**

418 **Clinical Severity.** Correlation analysis between analyte concentration and composite Unified
419 Huntington's Disease Rating Scale (cUHDRS), Total Functional Capacity (TFC) and Total Motor
420 Score (TMS) revealed significant associations between all three analytes and measures of clinical
421 severity. Scatter plots show unadjusted values. Correlation coefficients and 95% confidence intervals
422 were generated using Pearson's partial correlation controlling for age and bootstrapped with 1000
423 repetitions. All CSF protein values have been normalized and log transformed. Lighter coloured data
424 points represent premanifest individuals. Bold text indicates significance at $p < 0.05$.

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441
442
443
444

445 **Table 4. Significant Associations between Exploratory Analytes and Assessed**
446 **Measures in HD Mutation Carriers.**

Endo-Lysosomal Proteins	DBS <i>r</i> (95% CI)	Adjusted for	cUHDRS <i>r</i> (95% CI)	TFC <i>r</i> (95% CI)	TMS <i>r</i> (95% CI)	SDMT <i>r</i> (95% CI)	SWR <i>r</i> (95% CI)
APP	-0.03 (-0.30, 0.24)	Age	0.34 (0.08, 0.57)	0.30 (0.07, 0.52)	-0.30 (-0.50, -0.07)	0.37 (0.09, 0.60)	0.32 (0.06, 0.53)
		Age and CAG	0.34 (0.06, 0.56)	0.27 (0.05, 0.49)	-0.27 (-0.46, -0.02)	0.36 (0.10, 0.59)	0.30 (0.01, 0.53)
HEXB	0.11 (-0.16, 0.40)	Age	0.26 (0.01, 0.48)	0.22 (0.02, 0.42)	-0.22 (-0.43, -0.01)	0.27 (0.01, 0.50)	0.24 (0.00, 0.47)
		Age and CAG	0.30 (0.04, 0.56)	0.23 (0.01, 0.45)	-0.23 (-0.45, -0.02)	0.29 (-0.01, 0.59)	0.26 (-0.04, 0.50)
UBQ	0.13 (-0.17, 0.35)	Age	0.27 (-0.02, 0.53)	0.27 (0.03, 0.47)	-0.22 (-0.44, 0.03)	0.28 (-0.02, 0.56)	0.22 (-0.07, 0.47)
		Age and CAG	0.31 (0.04, 0.55)	0.28 (0.04, 0.50)	-0.24 (-0.45, 0.02)	0.32 (0.03, 0.56)	0.24 (-0.09, 0.49)
Cathepsin B	0.12 (-0.17, 0.36)	Age	0.25 (-0.03, 0.47)	0.21 (-0.28, 0.43)	-0.26 (-0.45, -0.06)	0.22 (-0.06, 0.46)	0.22 (-0.05, 0.47)
		Age and CAG	0.30 (0.02, 0.55)	0.23 (-0.02, 0.45)	-0.30 (-0.54, -0.07)	0.25 (-0.03, 0.53)	0.26 (-0.03, 0.53)
FUCA	0.14 (-0.21, 0.40)	Age	0.20 (-0.05, 0.41)	0.30 (0.07, 0.51)	-0.17 (-0.36, 0.05)	0.18 (-0.08, 0.42)	0.15 (-0.10, 0.36)
		Age and CAG	0.23 (-0.03, 0.47)	0.23 (0.07, 0.51)	-0.18 (-0.40, 0.50)	0.19 (-0.11, 0.50)	0.16 (-0.12, 0.42)

447 The relationships between exploratory analytes and Disease Burden Score (DBS) were assessed
448 using Pearson's correlation with unadjusted values shown. Relationships with, composite Unified
449 Huntington's Disease Rating Scale (cUHDRS), Total Functional Capacity (TFC), Total Motor Score
450 (TMS), Symbol Digit Modalities Test (SDMT), and Stroop Word Reading (SRW) were assessed using
451 Pearson's partial correlation controlling for age, and age and CAG. Correlation coefficients and 95%
452 confidence intervals were computed using bootstrap testing with 1000 repetitions. Results displayed
453 are unadjusted multiplicity. Bold text indicates significance at $p<0.05$.

454

Discussion

455 In this cross-sectional study, we successfully quantified 18 endo-lysosomal proteins
456 in high-quality CSF obtained under strictly standardised conditions, from HD
457 mutation carriers and controls, by condensing peptide-level data from 48 peptides

458 quantified using mass spectrometry. Our pre-specified analysis of the five endo-
459 lysosomal proteins most likely to show relevant HD-related alterations (Cathepsin D,
460 Cathepsin F, GM2A, LAMP1 and LAMP2) found no discernible differences in
461 concentration between HD mutation carriers and controls. Nor, did we observe any
462 significant relationships between the concentrations of these proteins and
463 measurements of clinical severity or cognition. These findings were supported by an
464 exploratory unbiased PCA of the entire dataset which also showed no groupwise
465 differences in three principal components. The findings of our exploratory analysis of
466 the remaining 13 proteins, were also negative for group-wise differences. However,
467 we observed significant negative associations between CSF APP and all measures
468 of clinical severity and cognitive decline within HD mutation carriers, suggesting that
469 APP, and its cleaved product beta-amyloid (A β), may be an important avenue to be
470 explored in HD.

471 Lower levels of CSF APP were associated with worse clinical phenotype and lower
472 cognitive performance. The strongest relationship was observed with cUHDRS
473 score, a powerful measure of clinical progression that predicts corticostriatal atrophy
474 [48]; this relationship, and all others tested, remained significant when controlling for
475 both age and CAG, indicating that there is predictive value independent from well-
476 known predictors of HD progression [50]. APP is a transmembrane protein with
477 multiple physiological functions, including regulating brain iron homeostasis [56]. In
478 HD, mHTT expression has been linked to brain iron accumulation, particularly within
479 neurons [57], potentially exacerbating disease pathology via reactive oxygen species
480 production and oxidative stress [58]. APP is known to facilitate neuronal iron export
481 [56] and has been shown to be decreased in the R6/2 mouse brain [59]. It has been
482 hypothesised that an inadequate APP response to brain iron accumulation may

483 contribute to iron homeostatic dysfunction [60]. The association between reduced
484 CSF APP and clinical worsening in this study provides some support for APP
485 dysfunction in HD and a possible impact on disease progression.

486 APP is cleaved by β - and γ -secretase to form A β peptides [61,62]. Although we are
487 not measuring A β in this study, our findings also raise interesting questions
488 regarding the biomarker potential of CSF A β , a biomarker most associated with AD
489 [63], in HD. Reduced CSF A β is well described in the AD literature [64–67], likely as
490 a result of increased amyloid deposition in the brain and reduced clearance into the
491 CSF [68]. The CSF level often demonstrates an inverse relationship with whole brain
492 amyloid load and CSF tau concentration [67,69,70]. However, A β in CSF has not
493 been studied in HD to our knowledge. Though amyloid deposition is not a typical
494 feature of HD pathology, our APP findings suggest it is possible that A β could also
495 represent a novel monitoring or prognostic biomarker in HD.

496 Similarly, we observed reduced levels of beta-hexosaminidase- β and Cathepsin B
497 tended to predict a more severe clinical phenotype. Cathepsin B is a lysosomal
498 cysteine protease implicated in the pathology of several neurodegenerative
499 diseases, most notably AD [71] in which it has been shown to contribute to increased
500 A β load [72], yet also offers potential neuroprotective and anti-amyloidogenic
501 properties [73,74]. Contrary to previous studies demonstrating increased levels of
502 CSF and plasma Cathepsin B in PD and AD respectively [27,75], we found
503 Cathepsin B to offer little value as a state biomarker in HD. However, given its
504 significant relationship with TMS and previous work showing reduced mHTT in
505 response to CTSB overexpression [40], it may possess potential for monitoring
506 disease progression.

507 Together with the co-factor GM2 activator protein (GM2A), beta-hexosaminidase- β is
508 responsible for the degradation of ganglioside GM2 [76]. Mutations in *HEXB*,
509 resulting in reduced levels of the β -subunit and subsequent accumulation of GM2 in
510 neuronal tissue, are the cause of three fatal, neurodegenerative disorders known as
511 the GM2 Gangliosidoses [77]. In this study, we did not observe any differences in
512 beta-hexosaminidase- β across disease stage; however, given its strong association
513 with all three measures of clinical severity, and the reported dysfunction in lipid
514 synthesis, metabolism and catabolism in HD [29,30], CSF beta-hexosaminidase- β
515 represents an interesting avenue for future research and could help shed light on the
516 role of generalised lysosomal dysfunction in HD pathogenesis.

517 Furthermore, we observed significant relationships between ubiquitin and
518 complement component C9 and measures of clinical severity. The ubiquitin-
519 proteasome system (UPS) is a key mechanism of intracellular protein clearance, in
520 which misfolded proteins are polyubiquitinated by ligases, thus targeting the
521 substrate for degradation [78,79]. Previous proteomic work has demonstrated
522 differences in CSF ubiquitin levels between HD patients and controls, whilst also
523 showing a negative relationship with TFC [80]. However, we did not observe any
524 discernible group differences and found lower CSF ubiquitin to be indicative of
525 worsening clinical phenotype. Given these contrary findings and the abundance of
526 literature implicating UPS alterations in the context of Huntington's disease [81–84],
527 further exploration of CSF ubiquitin in HD is required. C9 is a constituent protein of
528 the innate immune system and is highly expressed by astrocytes, microglia and
529 neurons [85–87]. In HD, mHTT activates the complement system resulting in a
530 cascade of neuroinflammatory responses [88]. Neuroinflammation remains a
531 promising area in the field of biomarker research with additional complement

532 components shown to be upregulated in the plasma of HD patients [89] and CSF
533 YKL-40, a microglial marker, showing disease related elevations and the ability to
534 independently predict clinical severity and neuronal death [90]. We found increased
535 levels of C9 and Lysozyme C (LYZ), another cornerstone of innate immunity, to be
536 associated with a higher DBS. This finding was strengthened by our PCA results in
537 which a single component (PC3) correlated negatively with TFC when controlling for
538 age. Interestingly, the protein which loaded highest onto this component was C9,
539 with LYZ also loading highly, thus further supporting the involvement of the innate
540 immune system in HD.

541 By measuring several peptides per protein, a more accurate approximation of the
542 abundance of the intact protein can be obtained. Our decision to combine the
543 peptides was influenced by our desire to generate an accurate protein-level
544 estimate. However, it should be noted that individual peptides can be derived from
545 different endogenous fragments of the protein or may belong to different functional
546 domains, therefore there is value in studying individual peptides in future studies.

547 Our study has some limitations that should be acknowledged. First, the cross-
548 sectional nature of this study means we cannot fully understand how the measured
549 analytes may vary with disease progression; to do this requires longitudinal data
550 collection. Secondly, HD-CSF was principally designed to study manifest HD, so it
551 has a relatively small number of premanifest HD and control subjects. Future studies
552 should recruit larger numbers of subjects within these groups to help improve
553 generalisability of results across the entire disease course. The HDClarity CSF
554 collection initiative [91] represents a large collection of CSF with longitudinal repeat
555 sampling underway. Furthermore, patients with juvenile HD were not recruited in HD-
556 CSF; thus we cannot extend our findings to this sub-population of HD mutation

557 carriers. Finally, all CSF sampling visits were undertaken at the same time of day
558 following an overnight fast; while this minimises the effect of diurnal variation and
559 diet, it may limit the generalisability of our findings.

560 In conclusion, out of 5 primary and 13 exploratory endo-lysosomal proteins derived
561 from CSF, we could find no alterations in HD patients compared with healthy
562 controls. In our exploratory analyses, we found interesting associations with disease
563 severity for several proteins of potential pathogenic relevance namely HEXB,
564 Cathepsin B, UBQ, C9 and perhaps most notably, APP. These observations link HD
565 severity to several mechanisms, including lipid catabolism deficits, proteostasis
566 network dysfunction, enhanced neuroinflammatory response and dysregulation of
567 iron homeostasis, and suggest a means for beginning to explore these pathways
568 quantitatively in mutation carriers.

569 Our overall negative groupwise findings in CSF do not exclude a role of lysosomal
570 dysfunction in the pathogenesis of HD; only that major discernible differences in their
571 concentrations could not be observed in the CSF of HD patients. It remains likely
572 that the endo-lysosomal/autophagy system is implicated in the pathology of, and
573 CNS response to, Huntington's disease. However, our work suggests that endo-
574 lysosomal proteins measured in human CSF are unlikely to be state biomarkers in
575 HD but may show promise as tools for exploring pathways of interest and as
576 pharmacodynamic markers for future drug candidates targeting this system.

577 Acknowledgements

578 We would like to thank all the participants from the HD community who donated
579 samples and gave their time to take part in this study.

580
581
582
583

584 **References**

- 585 1. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, et al.
586 Huntington disease: Natural history, biomarkers and prospects for
587 therapeutics. *Nat Rev Neurol.* 2014;10(4):204–16.
- 588 2. The Huntington's Disease Collaborative Research Group. A novel gene
589 containing a trinucleotide repeat that is expanded and unstable on
590 Huntington's disease chromosomes. *Cell.* 1993;72(6):971–83.
- 591 3. Ross CA. Polyglutamine pathogenesis: Emergence of unifying mechanisms for
592 Huntington's disease and related disorders. *Neuron.* 2002;35(5):819–22.
- 593 4. Menzies FM, Moreau K, Rubinsztein DC. Protein misfolding disorders and
594 macroautophagy. *Curr Opin Cell Biol.* 2011;23(2):190–7.
- 595 5. Koga H, Cuervo AM. Chaperone-mediated autophagy dysfunction in the
596 pathogenesis of neurodegeneration. *Neurobiol Dis.* 2011;43(1):29–37.
- 597 6. Wong E, Cuervo AM. Autophagy gone awry in neurodegenerative diseases.
598 *Nat Neurosci.* 2010;13(7):805–11.
- 599 7. Martinez-Vicente M, Cuervo AM. Autophagy and neurodegeneration: when the
600 cleaning crew goes on strike. *Lancet Neurol.* 2007;6(4):352–61.
- 601 8. Zhang L, Sheng R, Qin Z. Review: The lysosome and neurodegenerative
602 diseases. *Acta Biochim Biophys Sin (Shanghai).* 2009;41(6):437–45.
- 603 9. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov

604 E V., et al. Dopamine-modified α -synuclein blocks chaperone-mediated
605 autophagy. *J Clin Invest.* 2008;118(2):777–8.

606 10. Wang Y, Martinez-Vicente M, Krüger U, Kaushik S, Wong E, Mandelkow EM,
607 et al. Tau fragmentation, aggregation and clearance: The dual role of
608 lysosomal processing. *Hum Mol Genet.* 2009;18(21):4153–70.

609 11. Koga H, Martinez-Vicente M, Arias E, Kaushik S, Sulzer D, Cuervo AM.
610 Constitutive upregulation of chaperone-mediated autophagy in Huntington's
611 disease. *J Neurosci.* 2011;31(50):18492–505.

612 12. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, et al.
613 Cargo recognition failure is responsible for inefficient autophagy in
614 Huntington's disease. *Nat Neurosci.* 2010;13(5):567–76.

615 13. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima
616 R, et al. Suppression of basal autophagy in neural cells causes
617 neurodegenerative disease in mice. *Nature.* 2006;441(7095):885–9.

618 14. Eskelinen EL. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and
619 autophagy. *Mol Aspects Med.* 2006;27(5–6):495–502.

620 15. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grinstein S. LAMP
621 proteins are required for fusion of lysosomes with phagosomes. *EMBO J.*
622 2007;26(2):313–24.

623 16. Pang S, Chen D, Zhang A, Qin X, Yan B. Genetic analysis of the LAMP-2
624 gene promoter in patients with sporadic Parkinson's disease. *Neurosci Lett.*
625 2012;526(1):63–7.

626 17. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso

627 JA, et al. Chaperone-mediated autophagy markers in Parkinson disease
628 brains. *Arch Neurol.* 2010;67(12):1464–72.

629 18. Armstrong A, Mattsson N, Appelqvist H, Janefjord C, Sandin L, Agholme L, et
630 al. Lysosomal network proteins as potential novel CSF biomarkers for
631 Alzheimer's disease. *NeuroMolecular Med.* 2014;16(1):150–60.

632 19. Youn J, Lee S Bin, Lee HS, Yang HO, Park J, Kim JS, et al. Cerebrospinal
633 Fluid Levels of Autophagy-related Proteins Represent Potentially Novel
634 Biomarkers of Early-Stage Parkinson's Disease. *Sci Rep.* 2018;8(1).

635 20. Sjödin S, Öhrfelt A, Brinkmalm G, Zetterberg H, Blennow K, Brinkmalm A.
636 Targeting LAMP2 in human cerebrospinal fluid with a combination of
637 immunopurification and high resolution parallel reaction monitoring mass
638 spectrometry. *Clin Proteomics.* 2016;13(1):1–14.

639 21. Buerger K, Ewers M, Pirtilä T, Zinkowski R, Alafuzoff I, Teipel SJ, et al. CSF
640 phosphorylated tau protein correlates with neocortical neurofibrillary pathology
641 in Alzheimer's disease. *Brain.* 2006;129(11):3035–41.

642 22. Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol
643 and fatty acid metabolism in Huntington disease. *J Clin Lipidol.* 2010;4(1):17–
644 23.

645 23. Cortes CJ, La Spada AR. The many faces of autophagy dysfunction in
646 Huntington's disease: From mechanism to therapy. *Drug Discov Today.*
647 2014;19(7):963–71.

648 24. Kolter T, Sandhoff K. Lysosomal degradation of membrane lipids. *FEBS Lett.*
649 2010;584(9):1700–12.

650 25. Cordeiro P, Hechtman P, Kaplan F. The GM2 gangliosidoses databases:
651 Allelic variation at the HEXA, HEXB, and GM2A gene loci. *Genet Med.*
652 2000;2(6):319–27.

653 26. Heywood WE, Galimberti D, Bliss E, Sirka E, Paterson RW, Magdalinos NK, et
654 al. Identification of novel CSF biomarkers for neurodegeneration and their
655 validation by a high-throughput multiplexed targeted proteomic assay. *Mol*
656 *Neurodegener.* 2015;10(1):1–16.

657 27. Sjödin S, Brinkmalm G, Öhrfelt A, Parnetti L, Paciotti S, Hansson O, et al.
658 Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and
659 Parkinson's disease. *Alzheimer's Res Ther.* 2019;11(1).

660 28. Manwaring V, Heywood WE, Clayton R, Lachmann RH, Keutzer J, Hindmarsh
661 P, et al. The identification of new biomarkers for identifying and monitoring
662 kidney disease and their translation into a rapid mass spectrometry-based test:
663 Evidence of presymptomatic kidney disease in pediatric fabry and type-I
664 diabetic patients. *J Proteome Res.* 2013;12(5):2013–21.

665 29. Desplats PA, Denny CA, Kass KE, Gilman T, Head SR, Sutcliffe JG, et al.
666 Glycolipid and ganglioside metabolism imbalances in Huntington's disease.
667 *Neurobiol Dis.* 2007;27(3):265–77.

668 30. Maglione V, Marchi P, Di Pardo A, Lingrell S, Horkey M, Tidmarsh E, et al.
669 Impaired ganglioside metabolism in Huntington's disease and neuroprotective
670 role of GM1. *J Neurosci.* 2010;30(11):4072–80.

671 31. Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, et al.
672 Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores
673 normal motor behavior in Huntington disease mice. *Proc Natl Acad Sci U S A.*

674 2012;109(9):3528–33.

675 32. Schnaar RL. Brain gangliosides in axon-myelin stability and axon regeneration.
676 FEBS Lett. 2010;584(9):1741–7.

677 33. Zhang J, Gregory S, Scahill RI, Durr A, Thomas DL, Lehericy S, et al. In vivo
678 characterization of white matter pathology in premanifest huntington's disease.
679 Ann Neurol. 2018;84(4):497–504.

680 34. Rosas HD, Tuch DS, Hevelone ND, Zaleta AK, Vangel M, Hersch SM, et al.
681 Diffusion tensor imaging in presymptomatic and early Huntington's disease:
682 Selective white matter pathology and its relationship to clinical measures. Mov
683 Disord. 2006;21(9):1317–25.

684 35. Gregory S, Johnson E, Byrne LM, Rodrigues FB, Henderson A, Moss J, et al.
685 Characterizing White Matter in Huntington's Disease. Mov Disord Clin Pract.
686 2020;7(1):52–60.

687 36. Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging
688 and neurodegeneration. Ageing Res Rev. 2016;32:22–37.

689 37. Bhutani N, Piccirillo R, Hourez R, Venkatraman P, Goldberg AL. Cathepsins L
690 and Z are critical in degrading polyglutamine-containing proteins within
691 lysosomes. J Biol Chem. 2012;287(21):17471–82.

692 38. MANTLE D, FALKOUS G, ISHIURA S, PERRY RH, PERRY EK. Comparison
693 of Cathepsin Protease Activities in Brain-Tissue From Normal Cases and
694 Cases With Alzheimers-Disease, Lewy Body Dementia, Parkinsons-Disease
695 and Huntingtons-Disease. J Neurol Sci [Internet]. 1995;131:65–70. Available
696 from:

697 http://apps.isiknowledge.com.proxy.bib.uottawa.ca/full_record.do?product=WO
698 S&search_mode=GeneralSearch&qid=1&SID=2F1g4g79DbbOIIffbiA&page=1
699 &doc=1

700 39. Kim YJ, Sapp E, Cuffo BG, Sabin L, Yoder J, Kegel KB, et al. Lysosomal
701 proteases are involved in generation of N-terminal huntingtin fragments.
702 *Neurobiol Dis.* 2006;22(2):346–56.

703 40. Liang Q, Ouyang X, Schneider L, Zhang J. Reduction of mutant huntingtin
704 accumulation and toxicity by lysosomal cathepsins D and B in neurons. *Mol*
705 *Neurodegener.* 2011;6(1):1–12.

706 41. Reiber H. Proteins in cerebrospinal fluid and blood: Barriers, CSF flow rate and
707 source-related dynamics. *Restor Neurol Neurosci.* 2003;21(3–4):79–96.

708 42. Byrne LM, Wild EJ. Cerebrospinal Fluid Biomarkers for Huntington's Disease.
709 *J Huntingtons Dis.* 2016;5(1):1–13.

710 43. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction
711 monitoring for high resolution and high mass accuracy quantitative, targeted
712 proteomics. *Mol Cell Proteomics.* 2012;11(11):1475–88.

713 44. Gallien S, Duriez E, Demeure K, Domon B. Selectivity of LC-MS/MS analysis:
714 Implication for proteomics experiments. *J Proteomics.* 2013;81:148–58.

715 45. Byrne LM, Rodrigues FB, Johnson EB, De Vita E, Blennow K, Scahill R, et al.
716 Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease. *Sci Rep.*
717 2018;8(1):1–7.

718 46. Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander
719 DC, et al. Evaluation of mutant huntingtin and neurofilament proteins as

720 potential markers in Huntington's disease. *Sci Transl Med.* 2018;10(458):1–11.

721 47. Huntington Study Group. Unified Huntington's Disease Rating Scale: Reliability
722 and-Consistency. *Mov Disord.* 1996;11:136–42.

723 48. Schobel SA, Palermo G, Auinger P, Long JD, Ma S, Khwaja OS, et al. Motor,
724 cognitive, and functional declines contribute to a single progressive factor in
725 early HD. *Neurology.* 2017;89(24):2495–502.

726 49. Penney JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat
727 number governs the development rate of pathology in huntington's disease.
728 *Ann Neurol.* 1997;41(5):689–92.

729 50. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, et al. Predictors
730 of phenotypic progression and disease onset in premanifest and early-stage
731 Huntington's disease in the TRACK-HD study: Analysis of 36-month
732 observational data. *Lancet Neurol.* 2013;12(7):637–49.

733 51. Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H,
734 Brinkmalm A, et al. A Parallel Reaction Monitoring Mass Spectrometric Method
735 for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. *Proteomics*
736 - Clin Appl. 2018;12(1).

737 52. De Graaf EL, Altelaar AFM, Van Breukelen B, Mohammed S, Heck AJR.
738 Improving SRM assay development: A global comparison between triple
739 quadrupole, Ion trap, and higher energy CID peptide fragmentation spectra. *J*
740 *Proteome Res.* 2011;10(9):4334–41.

741 53. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B,
742 et al. Skyline: An open source document editor for creating and analyzing

743 targeted proteomics experiments. *Bioinformatics*. 2010;26(7):966–8.

744 54. Jolliffe IT, Morgan B. Principal component analysis and exploratory factor
745 analysis. *Stat Methods Med Res*. 1992;1(1):69–95.

746 55. Preacher KJ, MacCallum RC. Exploratory factor analysis in behavior genetics
747 research: Factor recovery with small sample sizes. *Behav Genet*.
748 2002;32(2):153–61.

749 56. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, et al. Iron-
750 Export Ferroxidase Activity of β -Amyloid Precursor Protein is Inhibited by Zinc
751 in Alzheimer's Disease. *Cell*. 2010;142(6):857–67.

752 57. Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, et al.
753 Alterations in brain transition metals in Huntington disease: An evolving and
754 intricate story. *Arch Neurol*. 2012;69(7):887–93.

755 58. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain
756 ageing and neurodegenerative disorders. *Lancet Neurol*. 2014;13(10):1045–
757 60.

758 59. Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, et al.
759 Mechanisms of copper ion mediated Huntington's disease progression. *PLoS*
760 *One*. 2007;2(3):1–12.

761 60. Berggren K, Agrawal S, Fox JA, Hildenbrand J, Nelson R, Bush AI, et al.
762 Amyloid precursor protein haploinsufficiency preferentially mediates brain iron
763 accumulation in mice transgenic for the Huntington's disease mutation. *J*
764 *Huntingtons Dis*. 2017;6(2):115–25.

765 61. Müller UC, Zheng H. Physiological functions of APP family proteins. *Cold*

766 Spring Harb Perspect Med. 2012;2(2):1–18.

767 62. Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic
768 processing of APP. Cold Spring Harb Perspect Med. 2012;2(5):1–25.

769 63. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and
770 plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6(3):131–44.

771 64. Hampel H, Teipel SJ, Fuchsberger T, Andreasen N, Wilfang J, Otto M, et al.
772 Value of CSF β -amyloid 1-42 and tau as predictors of Alzheimer's disease in
773 patients with mild cognitive impairment. Mol Psychiatry. 2004;9(7):705–10.

774 65. Moonis M, Swearer JM, Dayaw MPE, St. George-Hyslop P, Rogeava E,
775 Kawarai T, et al. Familial Alzheimer disease: Decreases in CSF A β 42 levels
776 precede cognitive decline. Neurology. 2005;65(2):323–5.

777 66. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, et al.
778 Decreased β -Amyloid1-42 and Increased Tau Levels in Cerebrospinal Fluid of
779 Patients with Alzheimer Disease. J Am Med Assoc. 2003;289(16):2094–103.

780 67. Grimmer T, Riemenschneider M, Förstl H, Henriksen G, Klunk WE, Mathis CA,
781 et al. Beta Amyloid in Alzheimer's Disease: Increased Deposition in Brain Is
782 Reflected in Reduced Concentration in Cerebrospinal Fluid. Biol Psychiatry.
783 2009;65(11):927–34.

784 68. Weller RO. How well does the CSF inform upon pathology in the brain in
785 Creutzfeldt-Jakob and Alzheimer's diseases? J Pathol. 2001;194(1):1–3.

786 69. Seppälä TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, et al.
787 CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy
788 findings. Neurology. 2012;78(20):1568–75.

789 70. Palmqvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K,
790 et al. Detailed comparison of amyloid PET and CSF biomarkers for identifying
791 early Alzheimer disease. *Neurology*. 2015;85(14):1240–9.

792 71. Cataldo AM, Barnett JL, Pieroni C, Nixon RA. Increased neuronal endocytosis
793 and protease delivery to early endosomes in sporadic Alzheimer's disease:
794 Neuropathologic evidence for a mechanism of increased β -amyloidogenesis. *J*
795 *Neurosci*. 1997;17(16):6142–51.

796 72. Klein DM, Felsenstein KM, Brenneman DE. Cathepsins B and L differentially
797 regulate amyloid precursor protein processing. *J Pharmacol Exp Ther*.
798 2009;328(3):813–21.

799 73. Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, et al. Cystatin C-
800 Cathepsin B Axis Regulates Amyloid Beta Levels and Associated Neuronal
801 Deficits in an Animal Model of Alzheimer's Disease. *Neuron*. 2008;60(2):247–
802 57.

803 74. Mueller-Steiner S, Zhou Y, Arai H, Roberson ED, Sun B, Chen J, et al.
804 Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications
805 for Alzheimer's Disease. *Neuron*. 2006;51(6):703–14.

806 75. Sundelöf J, Sundström J, Hansson O, Eriksdotter-Jönhagen M, Giedraitis V,
807 Larsson A, et al. Higher cathepsin B levels in plasma in Alzheimer's disease
808 compared to healthy controls. *J Alzheimer's Dis*. 2010;22(4):1223–30.

809 76. Bateman KS, Cherney MM, Mahuran DJ, Tropak M, James MNG. Crystal
810 structure of β -hexosaminidase B in complex with pyrimethamine, a potential
811 pharmacological chaperone. *J Med Chem*. 2011;54(5):1421–9.

812 77. Mahuran DJ. Biochemical consequences of mutations causing the GM2
813 gangliosidoses. *Biochim Biophys Acta - Mol Basis Dis.* 1999;1455(2–3):105–
814 38.

815 78. Ciechanover A, Brundin P. The ubiquitin proteasome system in
816 neurodegenerative diseases: Sometimes the chicken, sometimes the egg.
817 *Neuron.* 2003;40(2):427–46.

818 79. DeMartino GN, Gillette TG. Proteasomes: Machines for All Reasons. *Cell.*
819 2007;129(4):659–62.

820 80. Vinther-Jensen T, Simonsen AH, Budtz-Jørgensen E, Hjermind LE, Nielsen
821 JE. Ubiquitin: A potential cerebrospinal fluid progression marker in
822 Huntington's disease. *Eur J Neurol.* 2015;22(10):1378–84.

823 81. Wang J, Wang CE, Orr A, Tydlacka S, Li SH, Li XJ. Impaired ubiquitin-
824 proteasome system activity in the synapses of Huntington's disease mice. *J
825 Cell Biol.* 2008;180(6):1177–89.

826 82. Hunter JM, Lesort M, Johnson GVW. Ubiquitin-proteasome system alterations
827 in a striatal cell model of Huntington's disease. *J Neurosci Res.*
828 2007;85(8):1774–88.

829 83. Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, et al.
830 Global changes to the ubiquitin system in Huntington's disease. *Nature.*
831 2007;448(7154):704–8.

832 84. Ortega Z, Lucas JJ. Ubiquitin-proteasome system involvement in Huntington's
833 disease. *Front Mol Neurosci.* 2014;7(SEP).

834 85. Sarma JV, Ward PA. The complement system. *Cell Tissue Res.*

835 2011;343(1):227–35.

836 86. Bonifati DM, Kishore U. Role of complement in neurodegeneration and
837 neuroinflammation. *Mol Immunol.* 2007;44(5):999–1010.

838 87. Gasque P, Dean YD, McGreal EP, Vanbeek J, Morgan BP. Complement
839 components of the innate immune system in health and disease in the CNS.
840 *Immunopharmacology.* 2000;49(1–2):171–86.

841 88. Janssen BJC, Huizinga EG, Raaijmakers HCA, Roos A, Daha MR, Nilsson-
842 Ek Dahl K, et al. Structures of complement component C3 provide insights into
843 the function and evolution of immunity. *Nature.* 2005;437(7058):505–11.

844 89. Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Björkqvist M, Petersén Å, et
845 al. Proteomic profiling of plasma in Huntington’s disease reveals
846 neuroinflammatory activation and biomarker candidates. *J Proteome Res.*
847 2007;6(7):2833–40.

848 90. Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H,
849 et al. Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in
850 Huntington’s disease. *PLoS One.* 2016;11(9):1–10.

851 91. Wild EJ, Borowsky B Hdc investigators. HDClarity: A new multi-site
852 cerebrospinal fluid collection initiative to facilitate therapeutic development for
853 Huntington’s disease. In: 11th Annual CHDI HD Therapeutics Conference.
854 Palm Spring, CA; 2016.

855

856 **Supporting information**

858 **S1 Table. Complete List of Lysosomal Proteins.** Information pertaining to all CSF endo-
859 lysosomal proteins used in the study.

860 **S1 Fig. Correlation Analysis between Main CSF Analytes and Age.** Pearson's
861 correlation revealed positive trends between the concentrations of lysosomal (A) LAMP1, (B) LAMP2,
862 (C) GM2A, (D) Cathepsin (Cat) D, (E) Cathepsin (Cat) F and age in healthy controls. All CSF protein
863 values have been normalized and log transformed.

864 **S2 Fig. Comparison of Analyte Concentration between Gene Expansion**

865 **Carriers and Controls.** No significant differences in the concentration of lysosomal (A) LAMP1,
866 (B) LAMP2, (C) GM2A, (D) Cathepsin (Cat) D and (E) Cathepsin (Cat) F, was observed between
867 healthy controls and GE carriers. All CSF protein values have been normalized and log transformed.
868 P-values were Bonferroni-corrected and generated from general linear models controlling for age.

869 **S2 Table. Comparison of Principal Component Scores across Disease Stage.**

870 Differences in scores across disease stage. P-values were Bonferroni-corrected and generated from
871 general linear models. CAG was included in the model when assessing differences between manifest
872 and premanifest HD mutation carriers.

873 **S3 Table. Association of Principal Components and Assessed Measures in HD**

874 **Mutation Carriers.** The relationships between principal components 1 (PC1), 2 (PC2) and 3
875 (PC3) and Disease Burden Score (DBS) were computed using Pearson's correlation with unadjusted
876 values shown. Relationships with composite Unified Huntington's Disease Rating Scale (cUHDRS),
877 Total Functional Capacity (TFC), Total Motor Score (TMS), Symbol Digit Modalities Test (SDMT), and
878 Stroop Word Reading (SWR) were assessed using Pearson's partial correlation controlling for age,
879 and age and CAG. Correlation coefficients and 95% confidence intervals were computed using
880 bootstrap testing with 1000 repetitions. Results shown are unadjusted for multiplicity. Bold text
881 indicates significance at $p < 0.05$.

882 **S4 Table. Assessments for Potential Confounding Variables in Exploratory**

883 **Proteins.** Values are Pearson's r and t-test statistic. Bold indicates significance at the $p < 0.05$ level.

884 **S3 Fig. Comparison of Exploratory Analyte Concentration across Disease**

885 **Stage.** We observed no significant differences across disease stage in APP, HEBX, UBQ,
886 Cathepsin (Cat) B and FUCA. P-values were Bonferroni-corrected and generated from general linear
887 models controlling for age.

888 **S5 Table. Exploratory Comparison of Additional Proteins across Disease**

889 **Stage.** Differences in analyte concentration across disease stage were Bonferroni-corrected and
890 generated from general linear models controlling for age, or age and CAG. Gender was also included
891 in the model for LYZ. Bold indicates significance at the p<0.05 level.

892 **S6 Table. Exploratory Correlation Analysis between Lysosomal Proteins and**
893 **Measures of Clinical Severity and Cognition.** Associations between analyte concentration
894 and Disease Burden Score (DBS) were assessed using Pearson's correlation with unadjusted values
895 displayed. Associations with composite Unified Huntington's Disease Rating Scale (cUHDRS), Total
896 Functional Capacity (TFC), Total Motor Score (TMS), Symbol Digit Modalities Test (SDMT), and
897 Stroop Word Reading (SWR) were assessed using partial correlation with age, and age and CAG
898 included in the model. For LYZ, the effects of gender were also controlled for. Significant associations
899 are highlighted in bold. Correlation coefficients and confidence intervals were both generated using
900 bootstrapping with 1000 repetitions. Bold indicates significance at the p<0.05 level.

901

902

903

904

905

906

907

908

909

910

911

912

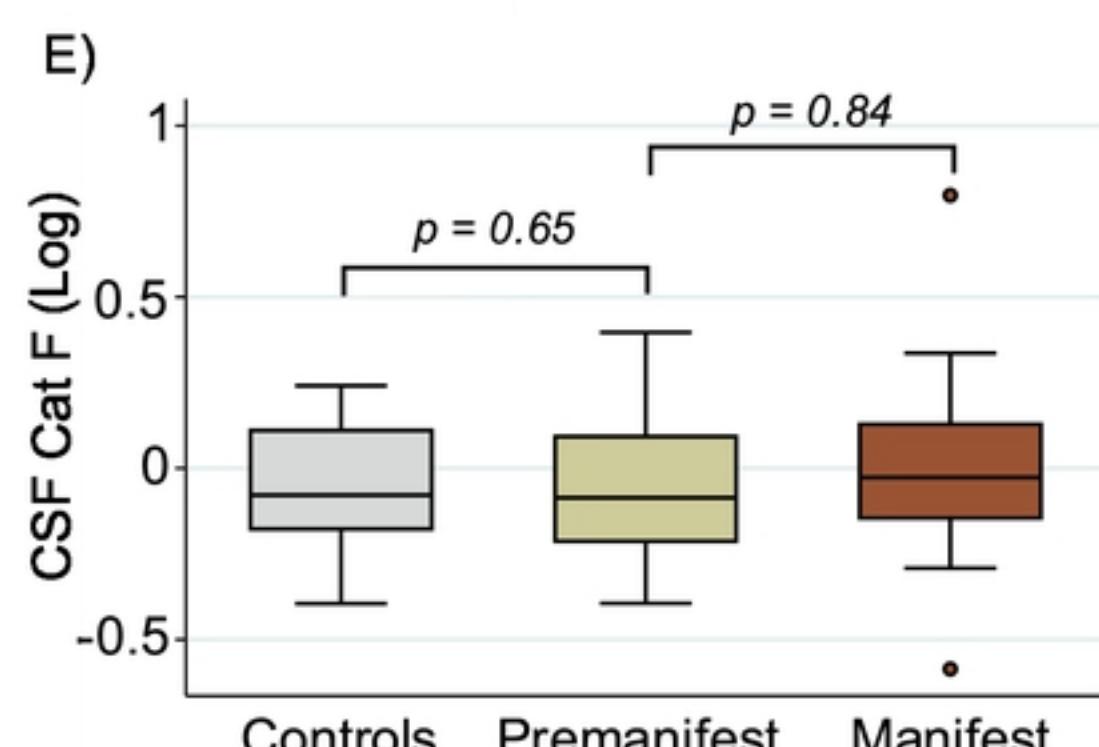
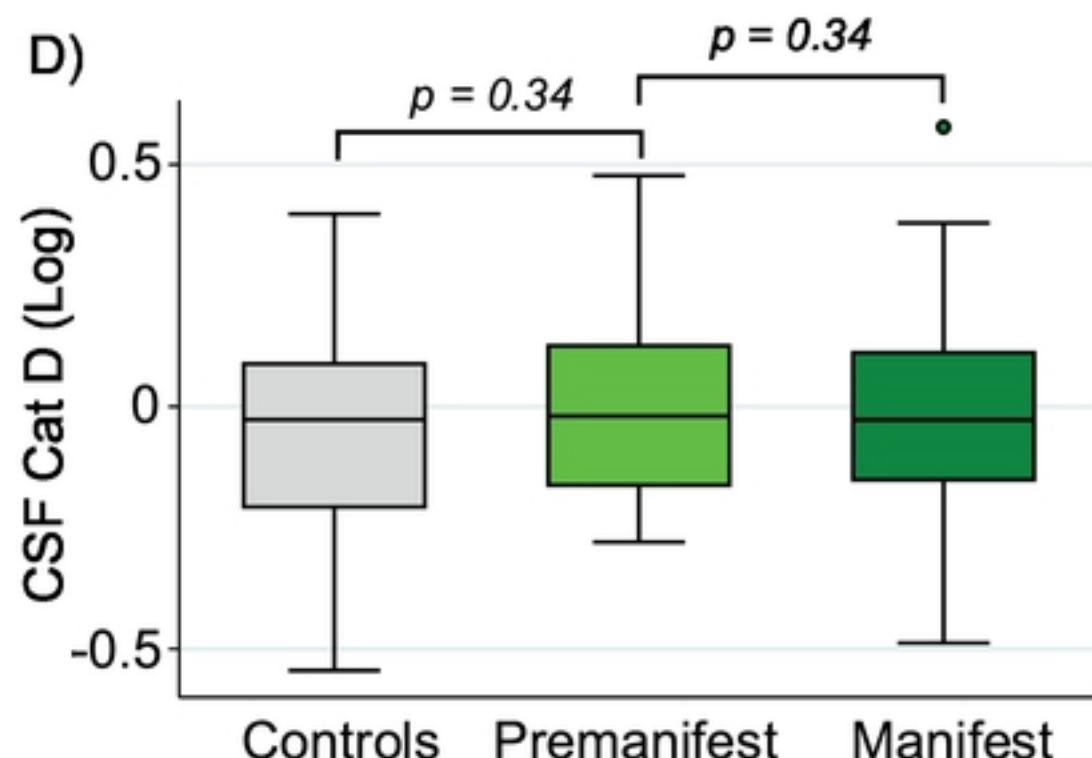
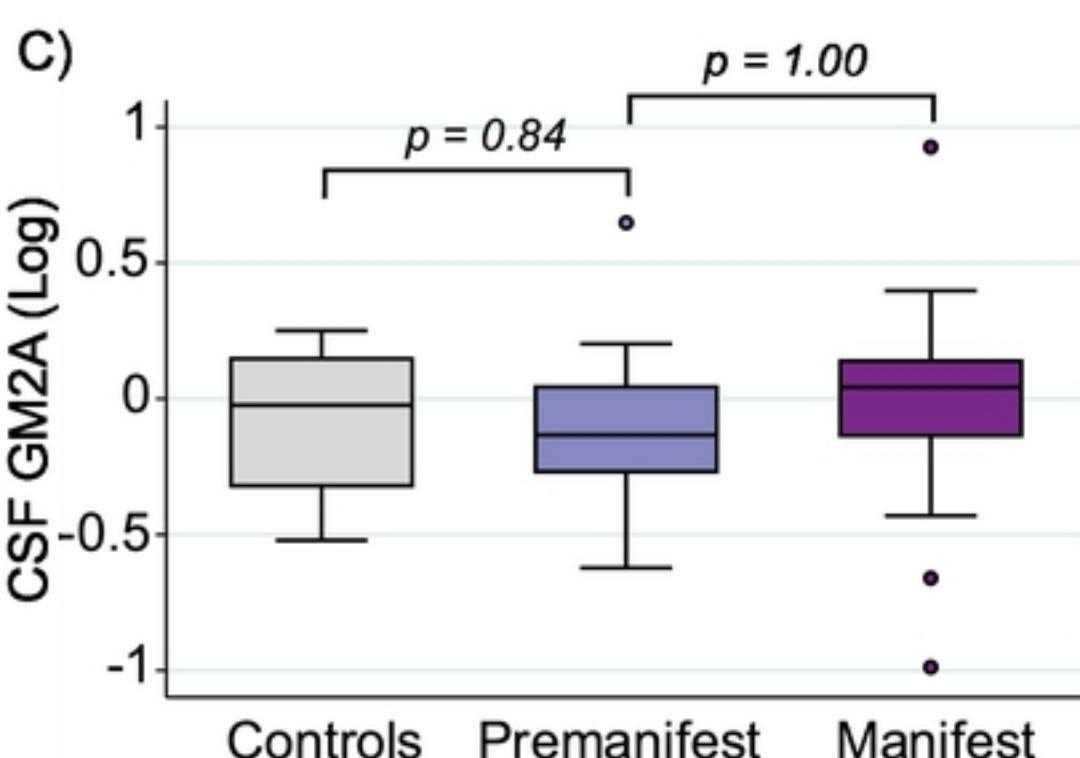
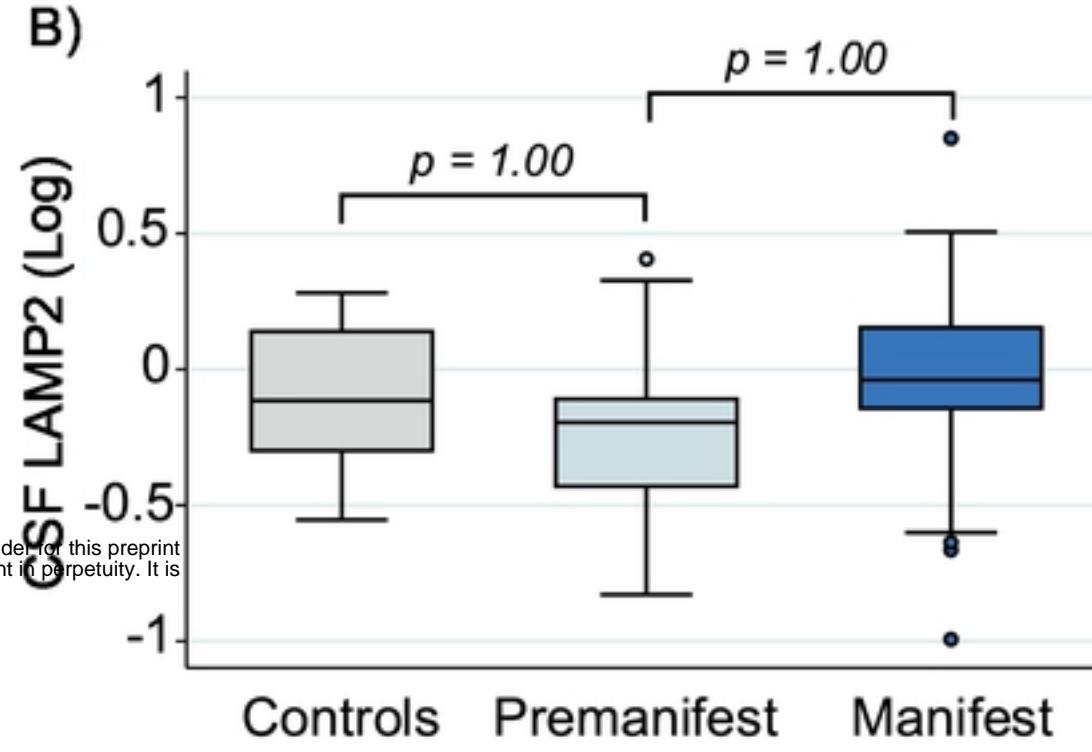
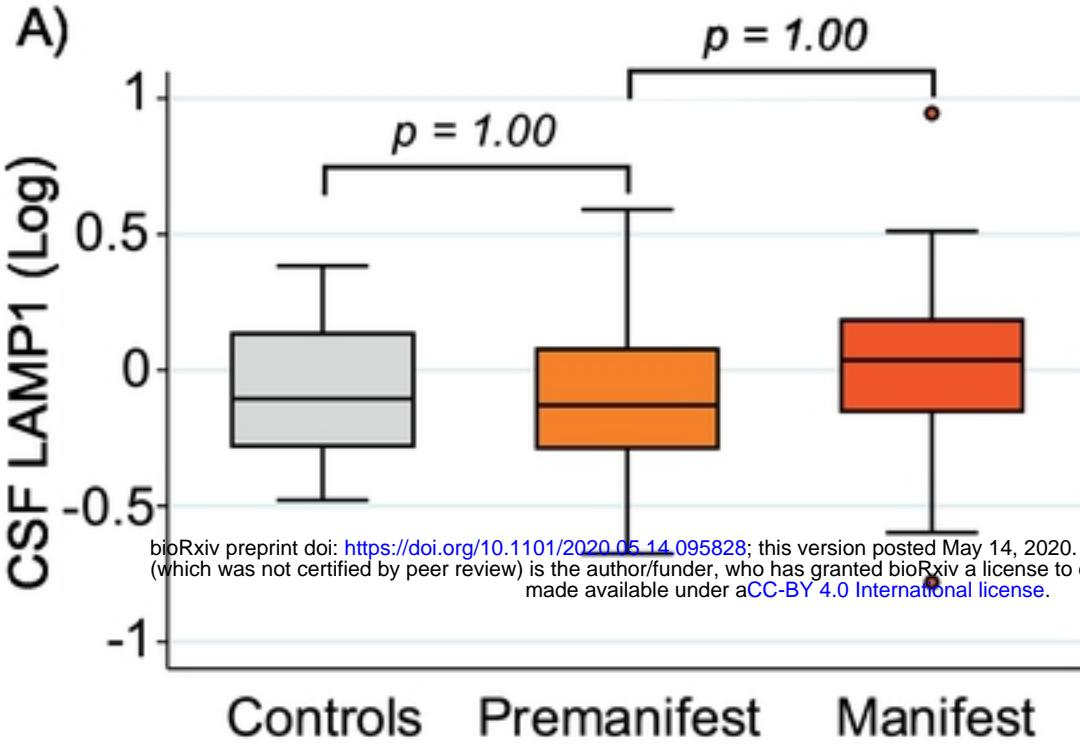






Fig 1

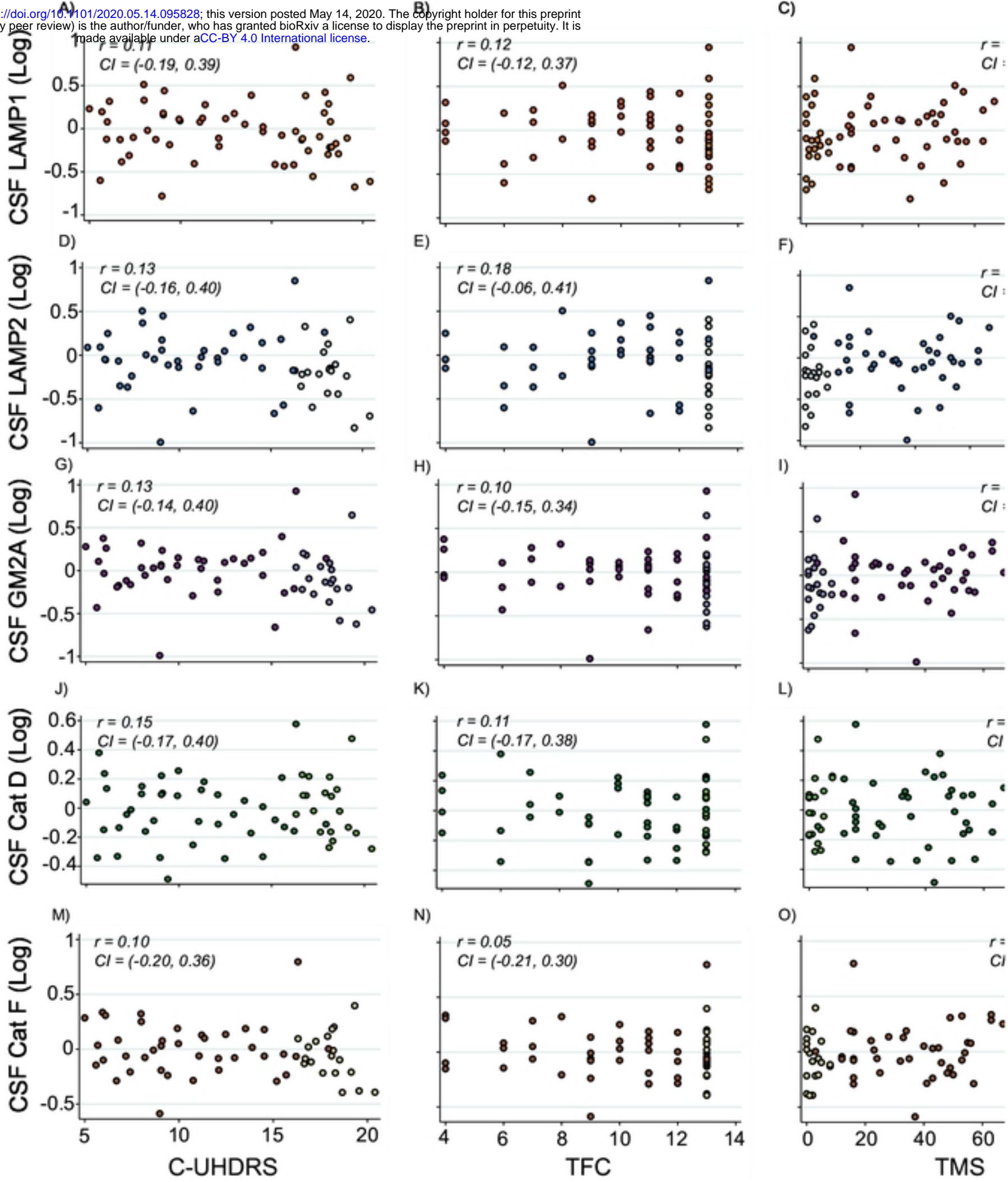
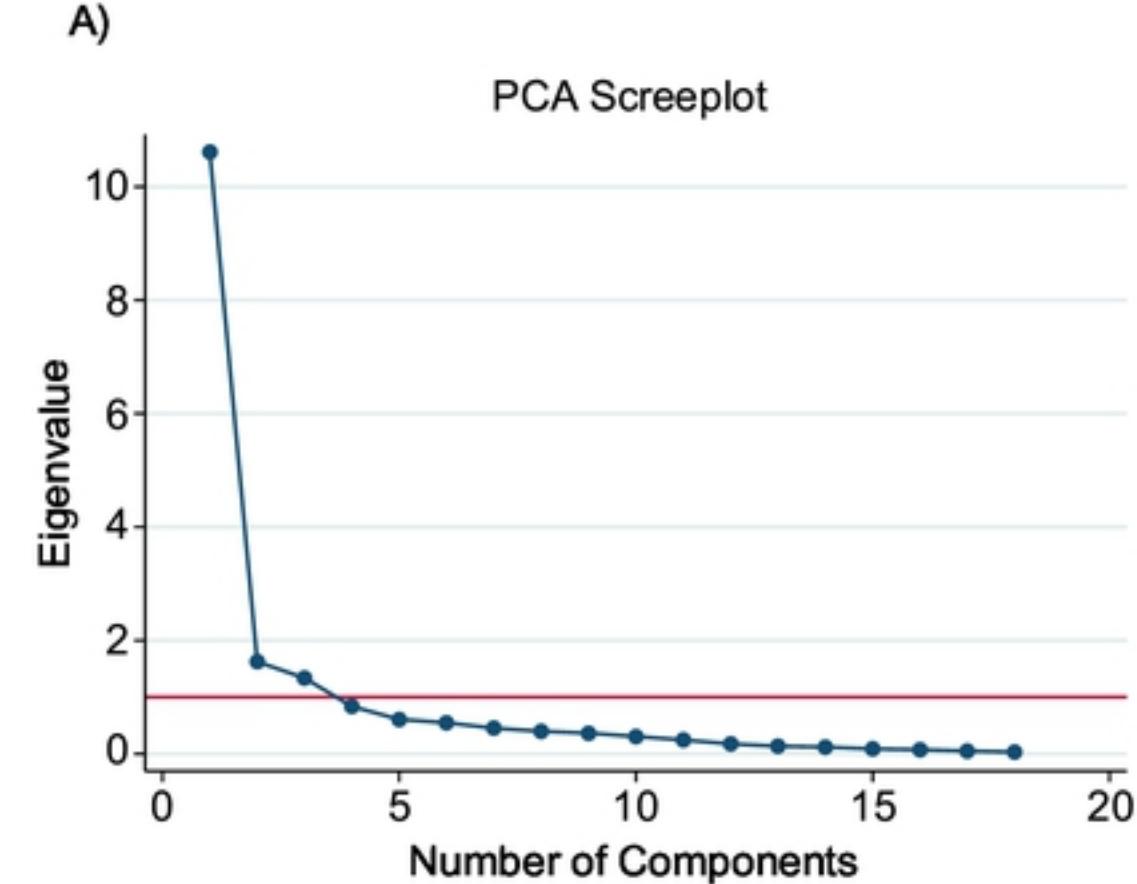



Fig 2

B)

Endo-lysosomal Proteins	PC1 Loadings	PC2 Loadings	PC3 Loadings
AP2		0.455	
APP			
C9			0.653
CTSB			
CTSD	0.395		
CTSL			
CTSZ	0.364		
DPP2	0.336		
GM2A		0.429	
HEXB	0.350		
LAMP1			
LAMP2		0.334	
LYZ			0.538
FUCA			
TCN2			0.372
TPP1	0.403		
UBQ		0.502	

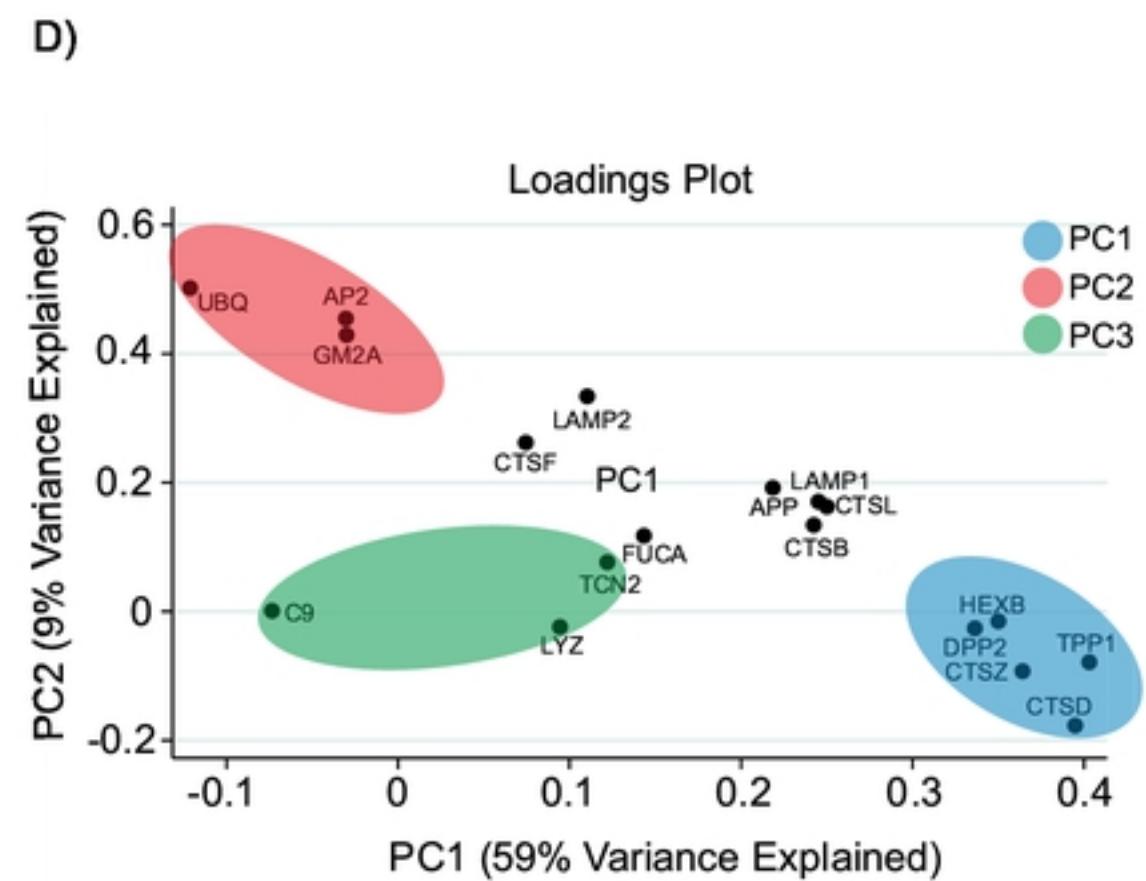
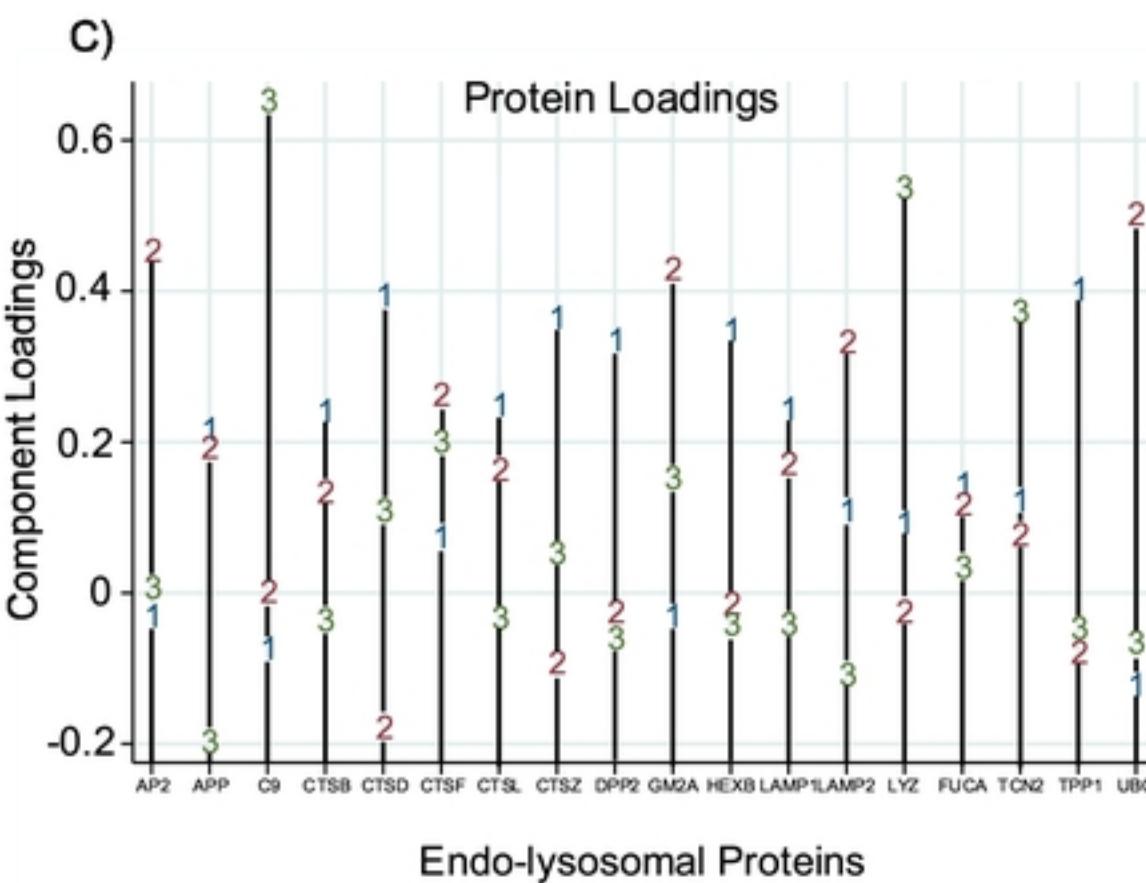
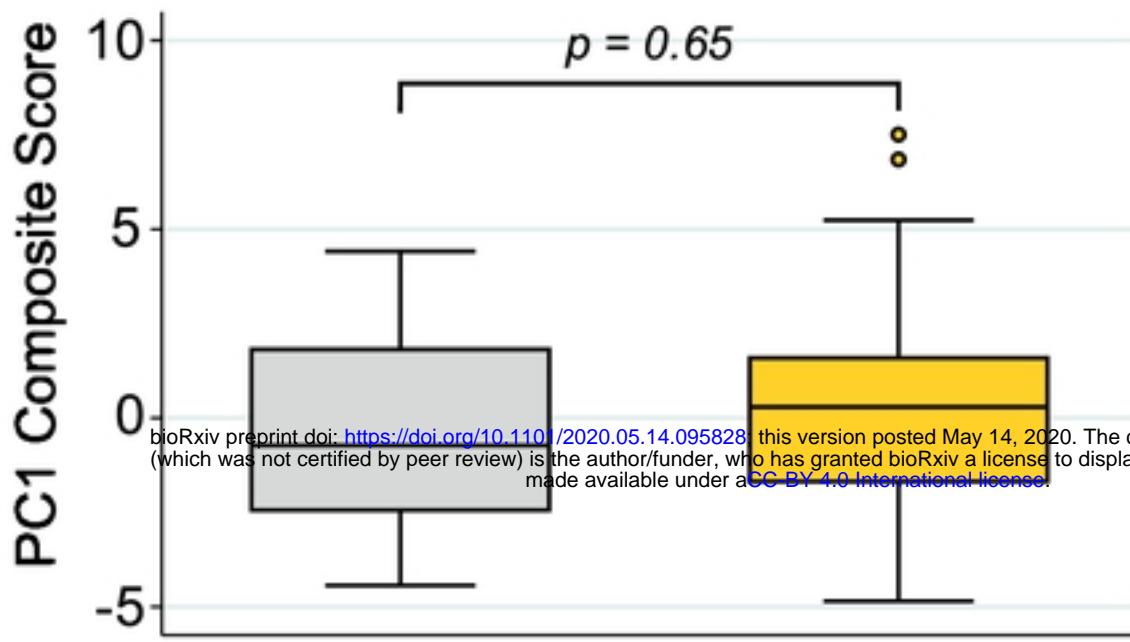




Fig 3

A)

B)

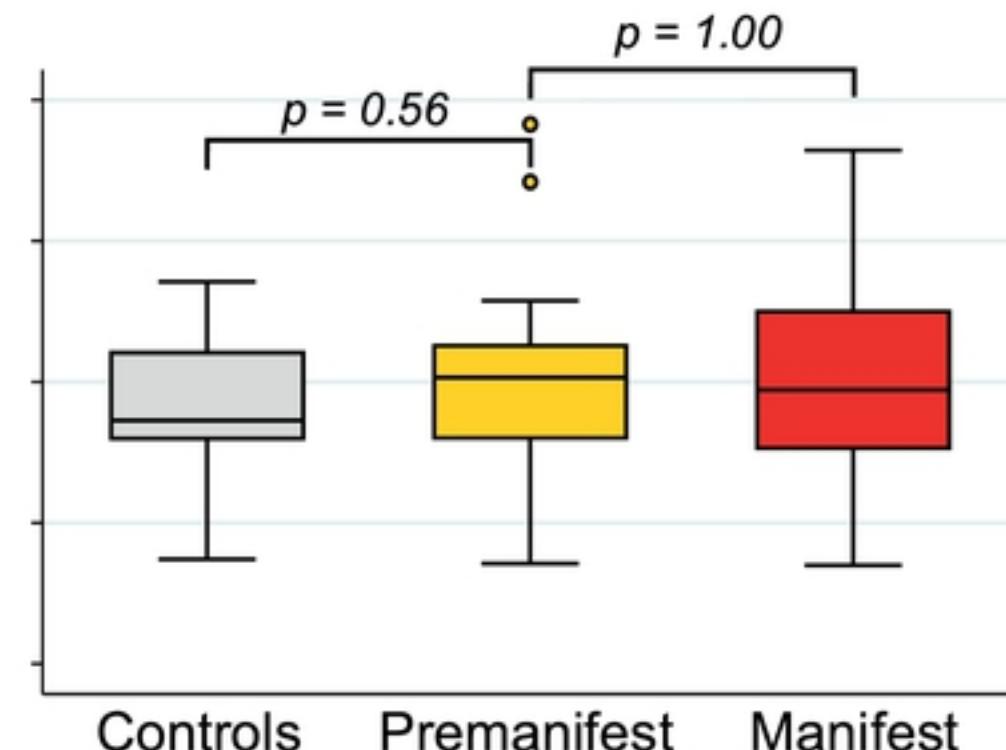
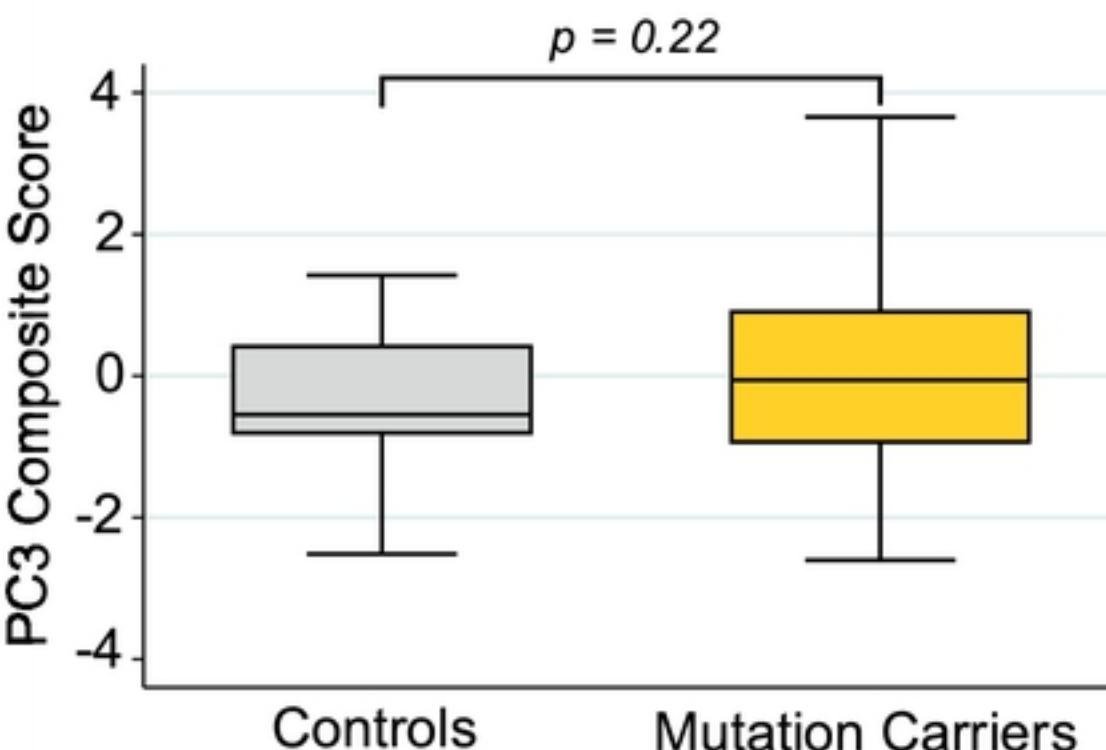
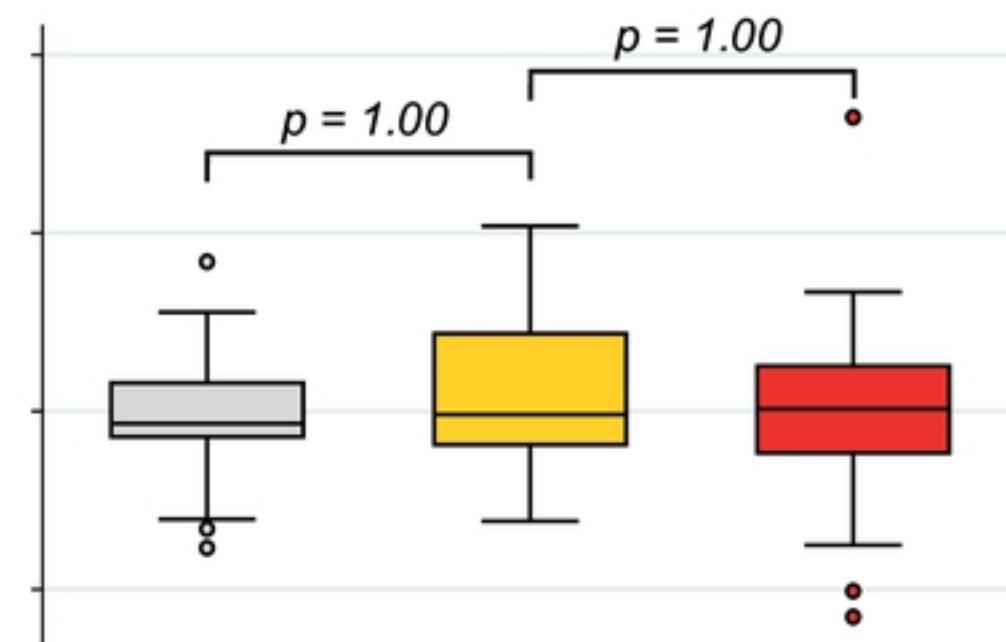
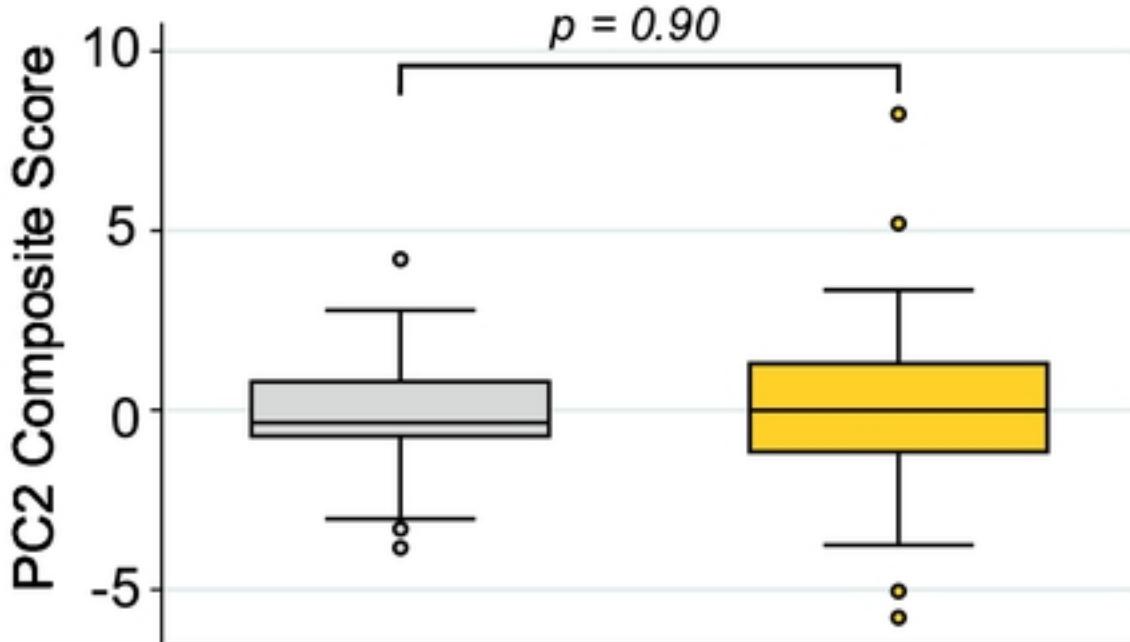
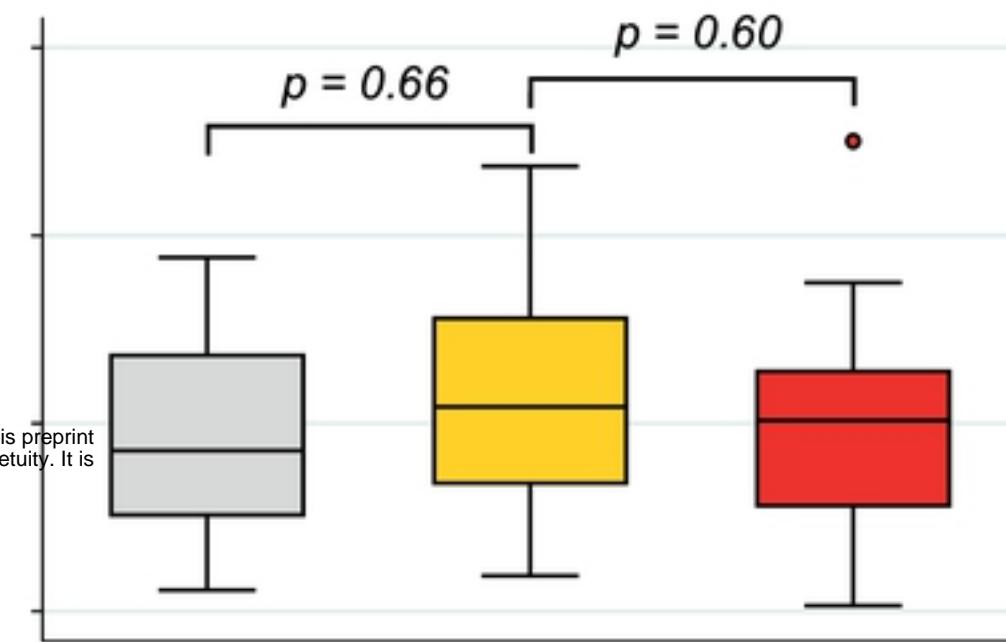






Fig 4

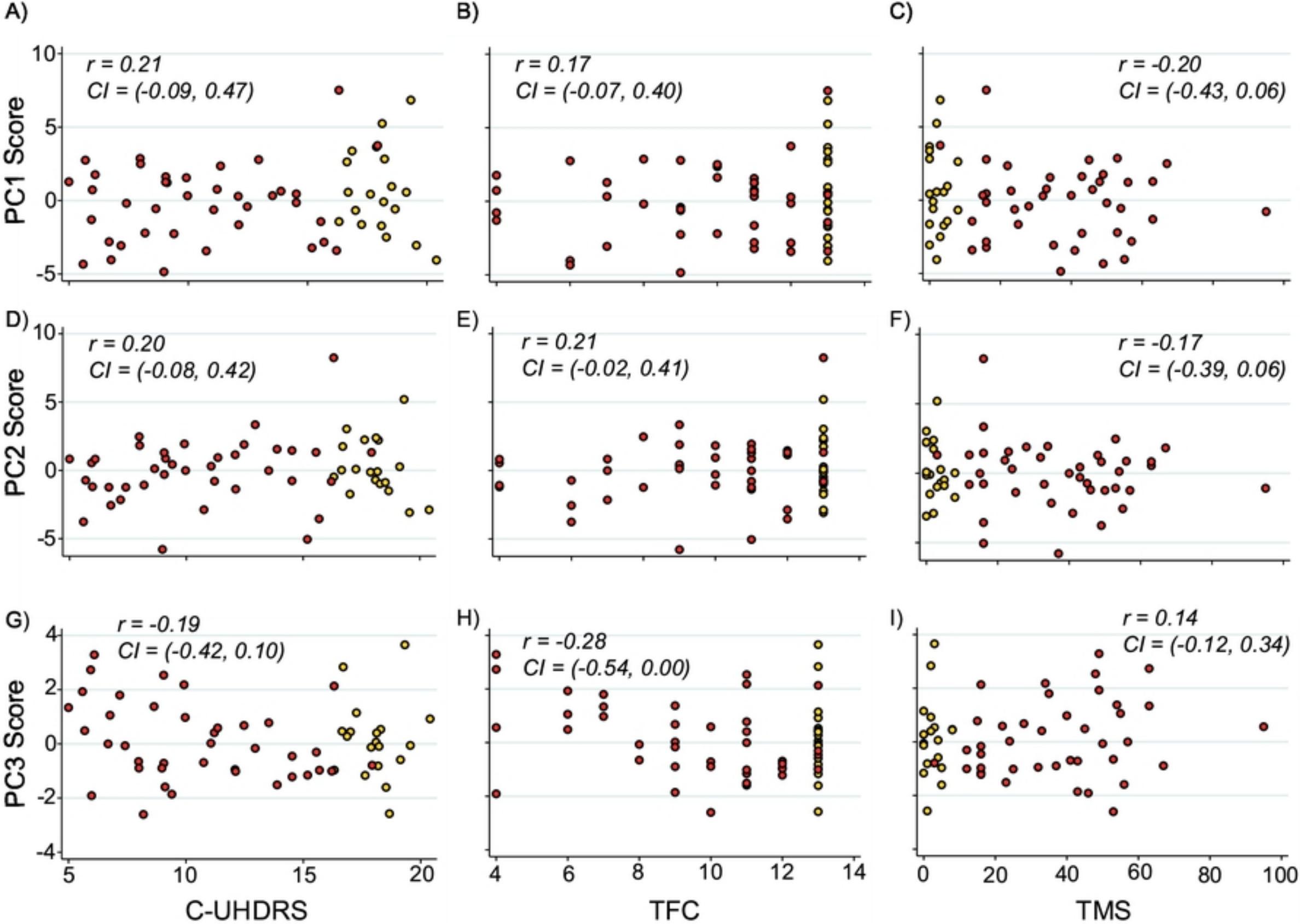


Fig 5

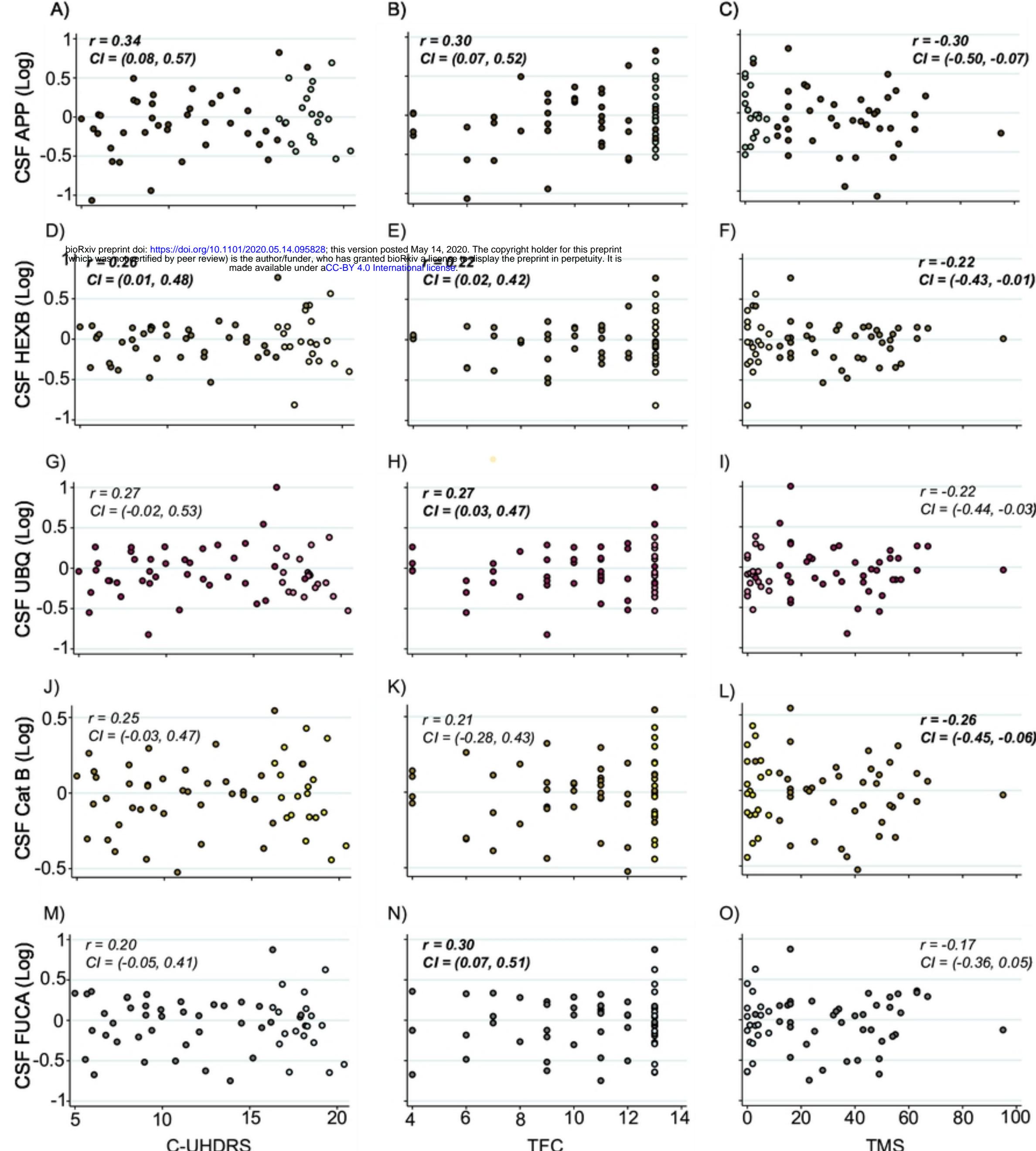


Fig 6