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The signal to noise ratio of high-speed fluorescence
microscopy is heavily influenced by photon counting
noise and sensor noise due to the expected low photon
budget. Denoising algorithms are developed to decrease
these noise fluctuations in the microscopy data. One
question arises: whether there exists a theoretical
precision limit for the performance of a denoising
algorithm. In this paper, combining Cramér-Rao Lower
Bound with constraints and the low-pass-filter property of
microscope systems, we develop a method providing a
theoretical variance lower bound of microscopy image
denoising. We show that this lower bound is influenced by
photon count, readout noise, detection wavelength,
effective pixel size and the numerical aperture of the
microscope system. We demonstrate our development by
comparing multiple state-of-the-art denoising algorithms
to this bound. This theoretical bound provides a reference
benchmark for microscopy denoising algorithms, and
establishes a framework to incorporate additional prior
knowledge into theoretical denoising performance limit
calculation.

Rapid development of fluorescent microscopy techniques together
with the availability of fast and sensitive cameras are enabling
molecular observations at unprecedented spatial and temporal
resolution. High-speed imaging of fluorescently tagged molecules
suffers from low signal to noise ratio (SNR) due to the limited
photon budget per fluorescent emitter. When ignoring sensor
noise, the detected photons in each pixel follows Poisson
distribution [1]. As a result, the SNR of a microscopy image
decreases rapidly with decreasing number of detected photon. At
these low light conditions, quantitative biological measurements
result in imprecisions — fluctuations of measured signal mainly
come from the uncertainty of photon detection rather than the
underlying biological processes.

To improve the measurement precision, denoising algorithms
are developed to decrease the noise fluctuation in the microscopy
data caused by the photon detection process and the sensor. The
key to such noise reducing capacity is the incorporation of
additional prior knowledge or assumptions about the imaging
system or biological specimens[2-7], for example, through
exploiting the low pass filter property of a well-designed

microscope [3] or assuming self-similarities of local structures in
the specimens [4,7].

An ideal denoising algorithm will maintain the quantitative
nature of microscopy images by providing estimations of pixel
intensities with low variance and minimum biases or artifacts.
However, common among the denoising algorithms that we tested,
there exist tradeoffs between the estimation variance and the
introduced bias. Typically, one could shift denoising performance
with increased bias in trade for decreasing the denoising variance.
Regarding this tradeoff, one fundamental question arises: How
precise is precise enough? Is there a precision limit which a
denoising algorithm could achieve at its best given a certain bias
level? In this context, focusing on the case of unbiased denoising
estimation of microscopy images, we derive an analytical
expression to calculate the theoretical variance lower bound. This
lower bound of variance provides a reference benchmark for the
denoising algorithms and shows how the detected photons (e.g.
their emission wavelength (1) and expected photon counts) and the
microscope system (e.g. numerical aperture (NA) of the objective
lens, and pixel size of the camera) influence the precision limit of an
unbiased microscopy denoising algorithm.

Our target here is to develop a variance lower bound for
microscopy denoising algorithms by considering the common
property of a far-field optical microscope system: the frequency
response of a microscope is characterized by its optical transfer
function (OTF)[8]. In a typical microscope system, the OTF
boundary (with the radius of 2NA/1) defines the region of
detectable spatial frequencies whereas frequencies outside this
boundary cannot transmit through the microscope system.
Mathematically, this low-pass-filter property of microscope
systems forms a rather strict constraint: The 2D Fourier transform
of the underlying transmitted signal through a microscope must be
zero outside the OTF boundary (Fig. 1). We expressed this
constraint using the discrete Fourier transform matrix to form a set
of equations corresponding to the vanishing components outside
the OTF boundary in the following equation,

Epn = ATWUWL)TALWUWL,) =0 (1)

where (m, n) is the pixel coordinate outside the OTF boundary in
the spatial frequency domain of a microscopy image (Fig. 1). Here
E, » is the magnitude square of the Fourier transform of the 2D
image at (m, n),and superscript T denotes the conjugate transpose
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of a matrix. 1,, is a column vector with m‘* element equal to 1
while the others equal to 0, W is the discrete Fourier transform
matrix [9] and U is the 2D array of the ideal image where each
element U, ; is the expected photon counts of the pixel at position
(i, ). Specifically, WUW is the 2D Fourier transform of an ideal
image.

To simplify notation, throughout this paper we used bold upper
case letter to denote matrix (e.g. A), bold lower case letter to denote
vector (e.g. a)and normal letter despite of upper or lower case to
denote scalar (e.g. a or A). Moreover, all variables were denoted as
letters in Italic while operations were denoted as normal letters (e.g.
A).

Image denoising can be regarded as an estimation process during
which one seek to estimate the noise-free ideal image from a
detected noisy image with the help of additional knowledge. We
considered the expected photon counts at different pixels as
parameters to be estimated,

p= [yt oo py]” (2)

where u = vec(U) is the vectorization form of ideal image U and
N is the total number of pixels within a 2D image. Here we also
defined the observation of the image,

z=[z1,2 .., 2515, 3)

where z; is the observed readout of the i pixel in the original
noisy image.

To consider photon-counting noise and sensor noise, we
assumed noise from each pixel is independent and can be modeled
as the combination of two noise types [10]:

Zi=9iSi+Yi+o (4)

where Z;, S; and Y; are random variables each representing i*"
pixel’s readout, photon count and readout noise. g; stands for the
pixel-dependent gain and o; is a constant offset pre-engineered into
the readout process in order to prevent negative counts from
camera sensors. In this paper, we assumed S; was a Poisson
random variable with expectation y; and Y; was a zero-mean
Gaussian random variable with variance of o7,

Therefore, the probability of obtaining a specific camera readout
z; (unit: analog to digit unit (ADU)) given an expected photon
counts y; (unit: ) can be expressed as [10,11],

pz,(zilu) = ZZO ps,(Tlu)dpy,(zi — 9iT — 0;) (5)

o e Mgt 1 21— T—0:)2
= Zrzo T!ul N exp{—( - ‘Zlglz 2 } (6)
where py, () is the probability density function (PDF) of Z;, ps, () is
the probability mass function (PMF) of S; and py, () is the PDF of ;.
In estimation theory, Cramér-Rao Lower Bound [12] (CRLB)
characterizes the lower bound on variance of unbiased estimators
for parameters based on the likelihood function. In presence of
constraints imposed on the parameters to be estimated, the lower
bound on their variance can be further reduced since these
constraints effectively reduce the dimensions of the parameter
space [13]. This lower bound considering constraints on
parameters is referred as constrained Cramér-Rao Lower Bound
(cCRLB).
We defined the covariance matrix of the parameter vector,

I(w=E@E-w'@-mw)] (7

where E is taking the expectation over the distribution of
observations z.

According to Cramér and Rao et al [12,14,15]. the covariance
matrix of the estimator satisfies the following inequation,

I =1, (8)

where matrix inequality means that X(u) — I"1(u) is positive
semidefinite and Fisher information matrix I(u) is an N X N
matrix defined as,

_ g |9%nL@iz)
), = —E [ ©)
where L (u|2) is the likelihood function of the image,
L(pulz) = TTiL: pz, (2l my). (10)

In our case, as we assumed the noise statistics at different pixels
were independent, the off-diagonal elements of I() were zero
while diagonal elements of I(u) can be calculated as [11],

o [ZZotps, tludpy,(zi-giT-0)

(] = éf_

When we took the constraints into account, the constraint-lower
bound (cCRLB) can be calculated as [13],

I(pw) = PI ' (w. (12)
P () is the projection matrix (shown in Ref. [13]) which takes
the following form,
P(p) = I(w) — I (VG (W[VG(I ' (V6 ()] VG ()
(13)
where G () is a column set of constraint functions satisfying,

G = [G,(W), G, (W), ..., G, (W]" =0, (14)

where G;(p) is a scalar function of p and k is the number of
constraints. 0 refers to a column vector of all 0’s of size k.
Here, we adopt the convention that

© Er2otps;(tlupy;(zi—git—0))

[VG(w)];; = 25 (15)
Ky
Next, we derived VG (u) given our optical transfer function
constraints in microscopy images as shown in Eq. 1. Combing Egs.
1,2 and 15 while changing the order of vectorization and derivation,
each row of VG () was calculated as,

_ 0Emn\T
VGi(w) = vec(Zmr) (16)
where pixel (m, n)in frequency domain is the i*" pixel when we
arranged all pixels outside OTF boundary in a raster scan order. We
adopt the convention that

aE-m'n] _ 9Emn
[ ou i,j - 6Ui_j' (17)

To calculate the above derivative matrix, we expanded E;,, ,, from
Eqg.1as,

Epn = 15WTUTWT1,1TWUW1,,. (18)
By defining
D=wT1,1Tw, D' =w1,1IwT, (19)

and using matrix derivative identities [16], we had
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0Emn
ou

=2DUD'. (20)

In summary, we calculated the unconstrained CRLB, I~ (1) (Egs.

8and 11), and then calculated the projection matrix, P (u) (Egs. 13,
16 and 20). Finally, the cCRLB can be obtained by multiplying the
resulting projection matrix with the unconstrained CRLB (Eq. 12).
A schematic of our cCRLB calculation is shown in Fig. 1.
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Fig. 1. Schematic diagram of calculating cCRLB, bias, and variance of
microscopy image denoising. CRLB is the variance lower bound on
estimation of ideal image calculated from the noise model (Eq. 4 -11).
cCRLB is the variance lower bound on estimation of ideal image while
taking CRLB and additional prior knowledge on frequency constraint
(Eg. 1) into consideration. Bias map and variance map (on the right)
were calculated pixel by pixel from 100 frames of denoised images.

Here, we compared cCRLB with the achieved performance of
three denoising algorithms: noise correction for scientific
Complementary metal-oxide-semiconductor (sCMOS) camera
(NCS) [3], non-local means filtering (NLM)[2] and automatic
correction of sCMOS-related noise (ACsN) [4]. These algorithms
rely on different principles: noise separations based on optical
transfer function (OTF), self-similarity of local sub-regions within
the image, and the combination of these two. To visualize and
quantify the effectiveness of tested denoising algorithms, we
evaluated their performances at a low signal-to-noise ratio (SNR)
condition with peak expected photon count of 20 per pixel and a
uniform background of expected photon count of 10 per pixel. We
quantified denoising performance through calculating the achieved
estimation variance as intensity fluctuation of the denoised image
sequence and bias as the deviation between the ideal image and the
mean of the denoised sequence. We showed that all three tested
algorithms reduced the estimated variance substantially (variance
reduction of 7.16-16.27 (e’)?on average) compared to original noisy
image with variance of 18.50 (e)? on average (Fig. 2). When
examining both bias and variance of the denoising algorithms, we
found NLM resulted in largest variance improvement (Fig. 2)

achieving a denoised images’ variance of 2.23 (e’)? on average butat
the cost of significant higher absolute biases (~1.98 e on average at
structure region defined as the region above average photon
counts), causing the denoised image being statistically distorted
from the ideal image. ACsN significantly reduced bias while
achieving an estimation variance of 11.34 (e)? on average. NCS
denoise algorithm achieved similar bias level as ACsN algorithm
while achieving estimation variance of 8.87 (e)? on average. To
demonstrate the precision improvement using denoising
algorithms relative to the cCRLB, we calculated the pointwise ratio
between achieved variance of a certain denoising algorithm and
cCRLB. We found the resulting variance /cCRLB ratios of NCS were
1.56 on average (Fig. 2). The ratios of NLM were roughly 0.17 at the
background regions while being 0.54 on average at the structure
regions. AcSN had the ratio of 1.63 on average at the background
region while being 2.24 on average at regions with structures.

The bias and variance/cCRLB ratios results were demonstrated
in Fig. 3 where we grouped the bias and ratios based on pixels’
photon counts. NCS resulted in consistent performance across the
tested image despite the variations of the expected photon counts.
NLM resulted in increased bias and variance/cCRLB ratio in the
positions with high photon counts than that in the low photon
counts positions. ACsN maintained unbiased performance despite
the variation of photon counts while increasing variance/cCRLB
ratio with increased photon counts (Fig. 3b).
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Fig. 2. Comparison of three denoising algorithms. First row shows
examples of noisy image (raw image before denoising) and denoised
images from NCS, NLM and ACsN algorithms. Variance map (second
row) and bias map (third row) were calculated using 100 frames of
corresponding noisy or denoised images. Variance/cCRLB ratio maps
(fourth row) were calculated from variance maps divided by cCRLB
pixel by pixel.
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Fig. 3. Comparison of bias and variance/cCRLB ratio in different
denoising algorithms. (a, b) Bias and variance/cCRLB ratio plots at
different expected photon count levels. Each point and its error bar of
the plots were calculated by taking the mean and the standard deviation
of bias and variance/cCRLB ratio at different expected photon count
levels.

To compare the three denoising algorithms at higher photon
count (Supplementary Fig. 1), we increased the peak expected
photon counts to be 50 per pixel, with a uniform background of
expected photon counts of 10 per pixel. In this setting, the
performance of NCS and NLM were similar with their bias and
variance increased accordingly with higher photon counts.
However, ACsN’s performance improved significantly as the ratio
between its variance and cCRLB achieved to 0.97 on average at
structure regions and 0.51 on average at the background regions,
with relative low absolute bias (~ 0.40 e on average at structure
regions). A possible reason of ACsN’s improved denoising
performance on variance is that ACsN not only took the frequency
response into consideration, but also recognized the local pattern in
the image and used them to denoise similar local patches. However,
this assumption wasn’t considered in our cCRLB calculation. Atlow-
photon-counts condition (as shown in Fig. 2), the SNR of the raw
images was low such that ACsN may falsely recognized noisy
patterns and used them to estimate other patches translating the
noise-induced pattern to other image locations which resulted in
estimation imprecisions.

Other than photon counting noise (treated as Poisson
distribution), sensor noise (e.g. pixel-dependent readout noise of a
sCMOS sensor) also affects the performance of denoising algorithm
at each pixel. Interestingly, by quantifying the influence of sensor
noise on denoising variance lower bound, we found that cCCRLB of a
single pixel was insensitive towards its intrinsic readout-noise level.
This behavior differed from CRLB which increased rapidly with
increasing readout-noise standard deviation (SD). To illustrate this
observation, we compared cCRLB and CRLB of individual pixels at
different locations (Fig. 4). As shown in Fig. 4b, when the pixel has
ignorable readout-noise SD (0=0) and constant gain of 2.17 (Fig. 4b
Location 1), the cCRLB was aslow as 7.66 ('), 3.5 times lower than
the CRLB (26.57 (&)?). When increasing the readout-noise SD of the
pixel to 40 ADU, the cCRLB increased to 10.53 (e)? compared to
CRLB491.3 (e')% a47 times difference. The ratio between CRLB and

cCRLB (Fig. 4c) showed that with an increasing readout-noise SD,
the benefit of denoising on a single pixel increased. However, such
improvement of cCRLB comparing to CRLB in a single pixel came at
the cost of slightly increasing cCRLB of its neighbor pixels. Fig. 4c
showed that with readout-noise SD of center pixel increased from 0
to 40 ADU, the mean of ratio between CRLB and cCRLB of 8
neighbor pixels decreased from 3.2 to 2.9. Our result showed the
possibility of denoising algorithm estimating pixels precisely with
high readout noise. This further highlighted the importance of
denoising algorithm development in microscopy images, especially
for sSCMOS sensor where pixel-dependent readout-noise SD varies
significantly (e.g. from 1.5 to 40 ADU) among pixels.
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Fig. 4. Comparison of CRLB and cCRLB of individual pixels at two
locations. (a) The ideal image with the marked locations. (b)
Comparisons between CRLB and cCRLB with respect to increasing
readout-noise SD in the marked locations. (c) The ratios of CRLB/cCRLB
of the center pixel and the mean ratios of its neighbors (8 surrounding
pixels).

Further, we demonstrate that cCRLB was highly related to the
numerical aperture (NA) as well as the effective camera pixel size
in the specimen. We expressed the radius of the OTF boundary in
the unit of numbers of pixels in the Fourier space as

Rorr = # *Mimg * lpixels (21)
where nn, is the number of pixels of the image in one lateral
dimension (assuming a square image), and [, is the effective
camera pixel size (the physical length of one pixel occupied in the
specimen). Therefore, increasing NA increases the radius of the
OTF boundary causing fewer number of constraints imposed on
parameters. As cCRLB depends on the number of constraints and
the number of pixels within the image, larger NA results in larger
cCRLB (Fig. 5). An extreme case will be when the N A is sufficiently
large such that OTF occupies the entire field of the Fourier
transform of the image. In such a case, there is no constraint
imposed on the parameters and cCRLB will be equal to CRLB.
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Fig. 5. The relationship between NA and cCRLB. The red circle on the
OTF indicates the OTF boundary.
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Next, we investigated the influence of effective pixel size on
cCRLB. In order to maintain the size of the field of view as well as the
photon flux emitted per area, we changed pixel size while adjusting
number of pixels of the image and the expected photon counts per
pixel accordingly. Here, we calculated cCRLB in two settings: one
with an image of 128*128 pixels, a pixel size of 40 nm, peak photon
counts of 5 per pixel, and background photon counts of 2.5 per pixel
and the other with an image of 64*64 pixels, a pixel size of 80 nm,
peak photon counts of 20 per pixel, and background photon counts
of 10 per pixel. In order to compare these two cCRLB maps, we
binned the cCRLB map of 128x128 pixels into a 64x64 pixels map
(Fig. 6a). The binned cCRLB represents an approximation of the
variance lower bound of binned denoised image. As shown in Fig. 6,
we found that the cCRLB with the pixel size of 40 nm are four times
smaller than that of 80 nm on average. This observation suggested
that choosing a smaller effective pixel size during microscopy
experiments benefited denoising performance with a lower
achievable variance bound.

a cCRLB , b cCRLB
(128*128 pixels)  (e) (64*64 pixels)

BB

Fig. 6. Comparison of cCRLB maps calculated from different pixel sizes
while photo flux per area remains constant. (a) cCRLB map was
calculated from a simulated image of 128x128 pixels with the pixel size
of 40 nm and binned to 64x64 pixels. (b) cCRLB map was calculated
from a simulated image of 64x64 pixels with the pixel size of 80 nm. In
these two maps, the underlying structure, the field of view, and photon
count per area were kept the same. Here, NA was set to 14, the
wavelength of light was set to 700 nm and a uniform readout-noise SD
was assumed across the field of view at 3.46 ADU with a uniform gain of
2.0.

cCRLB represents the theoretical lower bound on variance of
unbiased estimation of microscopy images. However, to approach
unbiased estimation, most denoising algorithms will have to
sacrifice their ability of reducing estimation variance (Fig. 7). For
example, NCS algorithm has an inherent parameter « serving as a
balancing parameter between its likelihood function based on the
noise model and the prior knowledge. By tuning this parameter, one
can balance the tradeoff between bias and variance. We
demonstrated this effect in Fig. 7. When @ = 0.1, we observed the
denoised image with relative small bias while its variance
performance was far from the theoretical bound (cCRLB). However,
as parameter « increased to 3, the variance of denoised image had
reached to 7.04 (e’)? compared to variance of original noisy image
14.89 (e)? while introducing the bias with ~0.28 e- on average at
structure regions and the ratio between variance and cCRLB was
1.54 on average. As this parameter further increased (¢ = 10 and
a = 100), the variance was reduced to 3.55 (€)% and 1.70 (€)% on
average respectively, at the same time, the absolute bias at the
structure regions increased to an average amplitude of 0.35 e* and
05e.
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Fig. 7. Trade-off between variance and bias of NCS denoising algorithm.
Here we applied a simulated microtubule image for denoising
demonstration. The variance maps (second row) and bias maps (third
row) were calculated by using different parameter a in NCS. Every
pixel’s cCRLB and its denoising variance were shown in the scatter plot
(fourth row) with the solid red line representing the cases where cCRLB
and the estimation variances are equal.

Our development of cCRLB provides a theoretical lower bound
on the estimation variance of unbiased denoising algorithms for
microscopy images by considering the finite spatial frequency
response in a microscope system. This work provides a general
framework to incorporate additional knowledge, either from the
imaging system or potentially from the specimen, to estimate the
precision performance limit of the denoising estimation by
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formulating a set of constraint equations representing the prior
knowledge. In addition, by using cCRLB, we show that the readout
statistics (readout-noise SD) of individual pixel has little influence
on how precise the pixel intensity can be estimated, suggesting the
importance of developing denoising algorithms especially for
camera sensors with readout-noise variation in different pixels (e.g.
CMOS sensor). Although cCRLB does not guarantee the existence of
an estimator or an algorithm achieving such limit, we expect cCRLB
will be a useful tool predicting the variance limit for a proposed
microscopy denoising algorithm.

Funding. National Institute of Health (R35GM119785 to FH)

Acknowledgment. We would like to thank Fan Xu for the
suggestions on our simulations, fruitful discussions and helps on
revising the manuscriptt We would also like to thank
Benjamin Brenner for the suggestions on our simulations and
manuscript.

Disclosures. The authors declare no conflicts of interest.

References

1. B.E.A. Saleh, and M. C. Teich. "Fundamentals of
photonics" john Wiley & sons, (2019)

2. ]. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, ]. B.

Sibarita, and J. Salamero, "Patch-based nonlocal
functional for denoising fluorescence microscopy
image sequences," IEEE Trans. Med. Imaging 29,
442-454 (2010).

3. S. Liu, M. J. Mlodzianoski, Z. Hy, Y. Ren, K.
McElmurry, D. M. Suter, and F. Huang, "sCMOS
noise-correction algorithm for microscopy images,"
Nat. Methods 14, 760-761 (2017).

4, B. Mandracchia, X. Hua, C. Guo, J. Son, T. Urner, and
S. Jia, "Fast and accurate sCMOS noise correction for
fluorescence microscopy,” Nat. Commun. 11, 94
(2020).

5. T. Blu and F. Luisier, "The SURE-LET approach to
image denoising," IEEE Trans. Image Process. 16,
2778-2786 (2007).

6. D. L. Donoho, and I. M. Johnstone "Threshold
selection for wavelet shrinkage of noisy data. In
Proceedings of 16th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society". IEEE. 1, A24-A25. (1994)

7. A. Buades, B. Coll, and J. M. Morel, "A non-local
algorithm for image denoising," in Proceedings -
2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR
2005, I1, 60-65. (2005)

8. ]J. W. Goodman, "Introduction to Fourier Optics,
Third Edition" Roberts and Company Publishers,
(2005)

9. K. R. Rao and P. C. Yip, "The Transform and Data

Compression Handbook", CRC press (2000).

10. F. Huang, T. M. P. Hartwich, F. E. Rivera-Molina, Y.
Lin, W. C. Duim, ]. J. Long, P. D. Uchil, J. R. Myers, M.
A. Baird, W. Mothes, M. W. Davidson, D. Toomre, and
]. Bewersdorf, "Video-rate nanoscopy using sCMOS

11.

12.

13.

14.

15.

16.

camera-specific single-molecule localization
algorithms," Nat. Methods 10, 653-658 (2013).
R.]. Ober, S. Ram, and E. S. Ward, "Localization
Accuracy in Single-Molecule Microscopy,” Biophys. J.
86, 1185-1200 (2004).

S. K. Sengupta and S. M. Kay, "Fundamentals of
Statistical Signal Processing: Estimation Theory,"
Technometrics 37, 465 (1995).

J. D. Gorman and A. O. Hero, "Lower Bounds For
Parametric Estimation with Constraints," IEEE
Trans. Inf. Theory. 36, 6, 1285-1301 (1990).

F. N. David and H. Cramer, "Mathematical Methods
of Statistics.," Biometrika 34, 374 (1947).

C. R. Rao, "Information and the Accuracy Attainable
in the Estimation of Statistical Parameters,"
Breakthroughs in Statistics, 235-247 (1992).

M. S. Pedersen, B. Baxter, B. Templeton, C. Rishgj, D.
L. Theobald, E. Hoegh-rasmussen, G. Casteel, ]. Bin
Gao, K. Dedecius, K. Strim, L. Christiansen, L. K.
Hansen, L. Wilkinson, L. He, M. Bar, O. Winther, P.
Sakov, S. Hattinger, K. B. Petersen, and C. Rishg j,
"The Matrix Cookbook," Matrix (2008).


https://doi.org/10.1101/2020.05.13.094748
http://creativecommons.org/licenses/by-nc-nd/4.0/

