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The signal to noise ratio of high-speed fluorescence 
microscopy is heavily influenced by photon counting 
noise and sensor noise due to the expected low photon 
budget. Denoising algorithms are developed to decrease 
these noise fluctuations in the microscopy data. One 
question arises: whether there exists a theoretical 
precision limit for the performance of a denoising 
algorithm. In this paper, combining Cramér-Rao Lower 
Bound with constraints and the low-pass-filter property of 
microscope systems, we develop a method providing a 
theoretical variance lower bound of microscopy image 
denoising. We show that this lower bound is influenced by 
photon count, readout noise, detection wavelength, 
effective pixel size and the numerical aperture of the 
microscope system. We demonstrate our development by 
comparing multiple state-of-the-art denoising algorithms 
to this bound. This theoretical bound provides a reference 
benchmark for microscopy denoising algorithms, and 
establishes a framework to incorporate additional prior 
knowledge into theoretical denoising performance limit 
calculation. 

Rapid development of fluorescent microscopy techniques together 
with the availability of fast and sensitive cameras are enabling 
molecular observations at unprecedented spatial and temporal 
resolution. High-speed imaging of fluorescently tagged molecules 
suffers from low signal to noise ratio (SNR) due to the limited 
photon budget per fluorescent emitter.  When ignoring sensor 
noise, the detected photons in each pixel follows Poisson 
distribution [1]. As a result, the SNR of a microscopy image 
decreases rapidly with decreasing number of detected photon. At 
these low light conditions, quantitative biological measurements 
result in imprecisions — fluctuations of measured signal mainly 
come from the uncertainty of photon detection rather than the 
underlying biological processes. 

To improve the measurement precision, denoising algorithms 
are developed to decrease the noise fluctuation in the microscopy 
data caused by the photon detection process and the sensor. The 
key to such noise reducing capacity is the incorporation of 
additional prior knowledge or assumptions about the imaging 
system or biological specimens [2–7], for example, through 
exploiting the low pass filter property of a well-designed 

microscope [3] or assuming self-similarities of local structures in 
the specimens [4,7].  

An ideal denoising algorithm will maintain the quantitative 
nature of microscopy images by providing estimations of pixel 
intensities with low variance and minimum biases or artifacts. 
However, common among the denoising algorithms that we tested, 
there exist tradeoffs between the estimation variance and the 
introduced bias. Typically, one could shift denoising performance 
with increased bias in trade for decreasing the denoising variance. 
Regarding this tradeoff, one fundamental question arises: How 
precise is precise enough? Is there a precision limit which a 
denoising algorithm could achieve at its best given a certain bias 
level? In this context, focusing on the case of unbiased denoising 
estimation of microscopy images, we derive an analytical 
expression to calculate the theoretical variance lower bound. This 
lower bound of variance provides a reference benchmark for the 
denoising algorithms and shows how the detected photons (e.g. 
their emission wavelength (𝜆) and expected photon counts) and the 
microscope system (e.g. numerical aperture (𝑁𝐴) of the objective 
lens, and pixel size of the camera) influence the precision limit of an 
unbiased microscopy denoising algorithm. 

Our target here is to develop a variance lower bound for 
microscopy denoising algorithms by considering the common 
property of a far-field optical microscope system: the frequency 
response of a microscope is characterized by its optical transfer 
function (OTF) [8]. In a typical microscope system, the OTF 
boundary (with the radius of 2𝑁𝐴 𝜆⁄ ) defines the region of 
detectable spatial frequencies whereas frequencies outside this 
boundary cannot transmit through the microscope system. 
Mathematically, this low-pass-filter property of microscope 
systems forms a rather strict constraint: The 2D Fourier transform 
of the underlying transmitted signal through a microscope must be 
zero outside the OTF boundary (Fig. 1). We expressed this 
constraint using the discrete Fourier transform matrix to form a set 
of equations corresponding to the vanishing components outside 
the OTF boundary in the following equation, 

𝐸𝑚,𝑛 = (𝟏𝒎
T𝑾𝑼𝑾𝟏𝒏)

T(𝟏𝒎
T𝑾𝑼𝑾𝟏𝒏) = 0  (1) 

where (𝑚, 𝑛) is the pixel coordinate outside the OTF boundary in 
the spatial frequency domain of a microscopy image (Fig. 1). Here 
𝐸𝑚,𝑛  is the magnitude square of the Fourier transform of the 2D 

image at (𝑚, 𝑛), and superscript T denotes the conjugate transpose 
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of a matrix. 𝟏𝒎  is a column vector with 𝑚𝑡ℎ  element equal to 1 
while the others equal to 0, 𝑾  is the discrete Fourier transform 
matrix [9] and 𝑼  is the 2D array of the ideal image where each 
element 𝑈𝑖,𝑗 is the expected photon counts of the pixel at position 

(𝑖, 𝑗) . Specifically, 𝑾𝑼𝑾  is the 2D Fourier transform of an ideal 
image.  

To simplify notation, throughout this paper we used bold upper 
case letter to denote matrix (e.g. 𝑨), bold lower case letter to denote 
vector (e.g. 𝒂)and normal letter despite of upper or lower case to 
denote scalar (e.g. 𝑎 or 𝐴). Moreover, all variables were denoted as 
letters in Italic while operations were denoted as normal letters (e.g. 
𝐀). 

Image denoising can be regarded as an estimation process during 
which one seek to estimate the noise-free ideal image from a 
detected noisy image with the help of additional knowledge. We 
considered the expected photon counts at different pixels as 
parameters to be estimated, 

𝝁 = [𝜇1, 𝜇2, … , 𝜇𝑁]
T    (2) 

where 𝝁 = vec(𝑼) is the vectorization form of ideal image 𝑼 and 
𝑁  is the total number of pixels within a 2D image. Here we also 
defined the observation of the image, 

𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑁]
T,       (3) 

where 𝑧𝑖  is the observed readout of the 𝑖𝑡ℎ  pixel in the original 
noisy image. 

To consider photon-counting noise and sensor noise, we 
assumed noise from each pixel is independent and can be modeled 
as the combination of two noise types [10]: 

𝑍𝑖 = 𝑔𝑖𝑆𝑖 + 𝑌𝑖 + 𝑜𝑖        (4) 

where 𝑍𝑖 , 𝑆𝑖  and 𝑌𝑖  are random variables each representing 𝑖𝑡ℎ 
pixel’s readout, photon count and readout noise. 𝑔𝑖  stands for the 
pixel-dependent gain and 𝑜𝑖  is a constant offset pre-engineered into 
the readout process in order to prevent negative counts from 
camera sensors. In this paper, we assumed 𝑆𝑖  was a Poisson 
random variable with expectation 𝜇𝑖  and 𝑌𝑖  was a zero-mean 
Gaussian random variable with variance of 𝜎𝑖

2,  
Therefore, the probability of obtaining a specific camera readout 

𝑧𝑖  (unit: analog to digit unit (ADU)) given an expected photon 
counts 𝜇𝑖 (unit: e-) can be expressed as [10,11] , 

𝑝𝑍𝑖(𝑧𝑖|𝜇𝑖) = ∑ 𝑝𝑆𝑖(𝜏|𝜇𝑖)𝑝𝑌𝑖(𝑧𝑖 − 𝑔𝑖𝜏 − 𝑜𝑖)
∞

𝜏=0           (5) 

= ∑
𝑒−𝜇𝑖𝜇𝑖

𝜏

𝜏!

1

√2𝜋𝜎𝑖
exp⁡{−

(𝑧𝑖−𝑔𝑖𝜏−𝑜𝑖)
2

2𝜎𝑖
2 }

∞

𝜏=0    (6) 

where 𝑝𝑍𝑖() is the probability density function (PDF) of 𝑍𝑖 , 𝑝𝑆𝑖() is 

the probability mass function (PMF) of 𝑆𝑖 and 𝑝𝑌𝑖() is the PDF of 𝑌𝑖 . 

In estimation theory, Cramér-Rao Lower Bound [12] (CRLB) 
characterizes the lower bound on variance of unbiased estimators 
for parameters based on the likelihood function. In presence of 
constraints imposed on the parameters to be estimated, the lower 
bound on their variance can be further reduced since these 
constraints effectively reduce the dimensions of the parameter 
space [13]. This lower bound considering constraints on 
parameters is referred as constrained Cramér-Rao Lower Bound 
(cCRLB).  

We defined the covariance matrix of the parameter vector, 

𝜮(𝝁) = 𝐄[(𝝁̂ − 𝝁)T(𝝁̂ − 𝝁)],         (7) 

where 𝐄  is taking the expectation over the distribution of 
observations 𝒛.  

According to Cramér and Rao et al [12,14,15]. the covariance 
matrix of the estimator satisfies the following inequation, 

𝜮(𝝁) ≥ 𝑰−𝟏(𝝁),    (8) 

where matrix inequality means that 𝜮(𝝁) − 𝑰−𝟏(𝝁)  is positive 
semidefinite and Fisher information matrix 𝑰(𝝁)  is an 𝑁 × 𝑁 
matrix defined as, 

[𝑰(𝝁)]𝑖,𝑗 = −𝐄 [
𝜕2ln𝐿(𝝁|𝒛)

𝜕𝜇𝑖𝜕𝜇𝑗
].      (9) 

where 𝐿(𝝁|𝒛) is the likelihood function of the image, 

𝐿(𝝁|𝒛) = ∏ 𝑝𝑍𝑖(𝑧𝑖|𝜇𝑖)
𝑁
𝑖=1 .    (10) 

In our case, as we assumed the noise statistics at different pixels 
were independent, the off-diagonal elements of 𝑰(𝝁)  were zero 
while diagonal elements of ⁡𝑰(𝝁) can be calculated as [11], 

[𝑰(𝝁)]𝑖,𝑖 =
1

𝜇𝑖
2 ∫

[∑ 𝜏𝑝𝑆𝑖
⁡∞⁡
𝜏=0 (𝜏|𝜇𝑖)𝑝𝑌𝑖

(𝑧𝑖−𝑔𝑖𝜏−𝑜𝑖)]
2

∑ 𝜏𝑝𝑆𝑖
⁡∞⁡
𝜏=0 (𝜏|𝜇𝑖)𝑝𝑌𝑖

(𝑧𝑖−𝑔𝑖𝜏−𝑜𝑖)

∞

−∞
𝑑𝑧𝑖 − 1. (11) 

When we took the constraints into account, the constraint-lower 
bound (cCRLB) can be calculated as [13],  

𝜮(𝝁) ≥ 𝑷(𝝁)𝑰−𝟏(𝝁).  (12) 

𝑷(𝝁) is the projection matrix (shown in Ref.  [13]) which takes 
the following form, 

𝑷(𝝁) = 𝑰(𝝁) − 𝑰−𝟏(𝝁)∇𝑮T(𝝁)[∇𝑮(𝝁)𝑰−𝟏(𝝁)∇𝑮T(𝝁)]−𝟏∇𝑮(𝝁)           
(13) 

where 𝑮(𝝁) is a column set of constraint functions satisfying, 

𝑮(𝝁) = [𝐺1(𝝁), 𝐺2(𝝁), … , 𝐺𝑘(𝝁)]
T = 𝟎, (14) 

where 𝐺𝑖(𝝁)  is a scalar function of 𝝁  and 𝑘  is the number of 
constraints. 𝟎 refers to a column vector of all 0’s of size 𝑘.   

Here, we adopt the convention that 

[∇𝑮(𝝁)]𝑖,𝑗 =
𝜕𝐺𝑖(𝜇)

𝜕𝜇𝑗
.  (15) 

Next, we derived ∇𝑮(𝝁) given our optical transfer function 
constraints in microscopy images as shown in Eq. 1. Combing Eqs. 
1, 2 and 15 while changing the order of vectorization and derivation, 
each row of  ∇𝑮(𝝁) was calculated as, 

∇𝐺𝑖(𝝁) = vec (
𝜕𝐸𝑚,n

𝜕𝑼
)
T

,  (16) 

where pixel(𝑚, 𝑛)in frequency domain is the 𝑖𝑡ℎ  pixel when we 
arranged all pixels outside OTF boundary in a raster scan order. We 
adopt the convention that 

[
𝜕𝐸𝑚,n

𝜕𝑼
]
𝑖,𝑗
=

𝜕𝐸𝑚,n

𝜕𝑈𝑖,𝑗
.              (17) 

To calculate the above derivative matrix, we expanded 𝐸𝑚,𝑛 from 

Eq. 1 as, 

𝐸𝑚,n = 𝟏𝒎
T𝑾T𝑼T𝑾T𝟏𝒏𝟏𝒏

T𝑾𝑼𝑾𝟏𝒎.         (18) 

By defining 

𝑫 = 𝑾T𝟏𝒎𝟏𝒎
T𝑾, 𝑫′ = 𝑾𝟏𝒏𝟏𝒏

T𝑾T,          (19) 

and using matrix derivative identities [16], we had 
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𝜕𝐸𝑚,n

𝜕𝑼
= 2𝑫𝑼𝑫′.   (20) 

In summary, we calculated the unconstrained CRLB, 𝑰−𝟏(𝝁) (Eqs. 
8 and 11), and then calculated the projection matrix, 𝑷(𝝁) (Eqs. 13, 
16 and 20). Finally, the cCRLB can be obtained by multiplying the 
resulting projection matrix with the unconstrained CRLB (Eq. 12). 
A schematic of our cCRLB calculation is shown in Fig. 1. 

 

Fig. 1. Schematic diagram of calculating cCRLB, bias, and variance of 
microscopy image denoising. CRLB is the variance lower bound on 
estimation of ideal image calculated from the noise model (Eq. 4 –11). 
cCRLB is the variance lower bound on estimation of ideal image while 
taking CRLB and additional prior knowledge on frequency constraint 
(Eq. 1) into consideration. Bias map and variance map (on the right) 
were calculated pixel by pixel from 100 frames of denoised images. 

Here, we compared cCRLB with the achieved performance of 
three denoising algorithms: noise correction for scientific 
Complementary metal–oxide–semiconductor (sCMOS) camera 
(NCS) [3], non-local means filtering (NLM) [2] and automatic 
correction of sCMOS-related noise (ACsN) [4]. These algorithms 
rely on different principles: noise separations based on optical 
transfer function (OTF), self-similarity of local sub-regions within 
the image, and the combination of these two. To visualize and 
quantify the effectiveness of tested denoising algorithms, we 
evaluated their performances at a low signal-to-noise ratio (SNR) 
condition with peak expected photon count of 20 per pixel and a 
uniform background of expected photon count of 10 per pixel. We 
quantified denoising performance through calculating the achieved 
estimation variance as intensity fluctuation of the denoised image 
sequence and bias as the deviation between the ideal image and the 
mean of the denoised sequence. We showed that all three tested 
algorithms reduced the estimated variance substantially (variance 
reduction of 7.16-16.27 (e-)2 on average) compared to original noisy 
image with variance of 18.50 (e-)2 on average (Fig. 2). When 
examining both bias and variance of the denoising algorithms, we 
found NLM resulted in largest variance improvement (Fig. 2) 

achieving a denoised images’ variance of 2.23 (e-)2 on average but at 
the cost of significant higher absolute biases (~1.98 e- on average at 
structure region defined as the region above average photon 
counts), causing the denoised image being statistically distorted 
from the ideal image. ACsN significantly reduced bias while 
achieving an estimation variance of 11.34 (e-)2 on average. NCS 
denoise algorithm achieved similar bias level as ACsN algorithm 
while achieving estimation variance of 8.87 (e-)2 on average. To 
demonstrate the precision improvement using denoising 
algorithms relative to the cCRLB, we calculated the pointwise ratio 
between achieved variance of a certain denoising algorithm and 
cCRLB. We found the resulting variance/cCRLB ratios of NCS were 
1.56 on average (Fig. 2).  The ratios of NLM were roughly 0.17 at the 
background regions while being 0.54 on average at the structure 
regions. AcSN had the ratio of 1.63 on average at the background 
region while being 2.24 on average at regions with structures.  

The bias and variance/cCRLB ratios results were demonstrated 
in Fig. 3 where we grouped the bias and ratios based on pixels’ 
photon counts. NCS resulted in consistent performance across the 
tested image despite the variations of the expected photon counts. 
NLM resulted in increased bias and variance/cCRLB ratio in the 
positions with high photon counts than that in the low photon 
counts positions. ACsN maintained unbiased performance despite 
the variation of photon counts while increasing variance/cCRLB 
ratio with increased photon counts (Fig. 3b). 

 

Fig. 2. Comparison of three denoising algorithms. First row shows 
examples of noisy image (raw image before denoising) and denoised 
images from NCS, NLM and ACsN algorithms. Variance map (second 
row) and bias map (third row) were calculated using 100 frames of 
corresponding noisy or denoised images. Variance/cCRLB ratio maps 
(fourth row) were calculated from variance maps divided by cCRLB 
pixel by pixel. 
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Fig. 3. Comparison of bias and variance/cCRLB ratio in different 
denoising algorithms. (a, b) Bias and variance/cCRLB ratio plots at 
different expected photon count levels. Each point and its error bar of 
the plots were calculated by taking the mean and the standard deviation 
of bias and variance/cCRLB ratio at different expected photon count 
levels. 

To compare the three denoising algorithms at higher photon 
count (Supplementary Fig. 1), we increased the peak expected 
photon counts to be 50 per pixel, with a uniform background of 
expected photon counts of 10 per pixel. In this setting, the 
performance of NCS and NLM were similar with their bias and 
variance increased accordingly with higher photon counts. 
However, ACsN’s performance improved significantly as the ratio 
between its variance and cCRLB achieved to 0.97 on average at 
structure regions and 0.51 on average at the background regions, 
with relative low absolute bias (~ 0.40 e- on average at structure 
regions). A possible reason of ACsN’s improved denoising 
performance on variance is that ACsN not only took the frequency 
response into consideration, but also recognized the local pattern in 
the image and used them to denoise similar local patches. However, 
this assumption wasn’t considered in our cCRLB calculation. At low-
photon-counts condition (as shown in Fig. 2), the SNR of the raw 
images was low such that ACsN may falsely recognized noisy 
patterns and used them to estimate other patches translating the 
noise-induced pattern to other image locations which resulted in 
estimation imprecisions. 

Other than photon counting noise (treated as Poisson 
distribution), sensor noise (e.g. pixel-dependent readout noise of a 
sCMOS sensor) also affects the performance of denoising algorithm 
at each pixel. Interestingly, by quantifying the influence of sensor 
noise on denoising variance lower bound, we found that cCRLB of a 
single pixel was insensitive towards its intrinsic readout-noise level. 
This behavior differed from CRLB which increased rapidly with 
increasing readout-noise standard deviation (SD). To illustrate this 
observation, we compared cCRLB and CRLB of individual pixels at 
different locations (Fig. 4).  As shown in Fig. 4b, when the pixel has 
ignorable readout-noise SD (σ=0) and constant gain of 2.17 (Fig. 4b 
Location 1), the cCRLB was as low as 7.66 (e-)2, 3.5 times lower than 
the CRLB (26.57 (e-)2).  When increasing the readout-noise SD of the 
pixel to 40 ADU, the cCRLB increased to 10.53 (e-)2 compared to 
CRLB 491.3 (e-)2, a 47 times difference.  The ratio between CRLB and 

cCRLB (Fig. 4c) showed that with an increasing readout-noise SD, 
the benefit of denoising on a single pixel increased. However, such 
improvement of cCRLB comparing to CRLB in a single pixel came at 
the cost of slightly increasing cCRLB of its neighbor pixels. Fig. 4c 
showed that with readout-noise SD of center pixel increased from 0 
to 40 ADU, the mean of ratio between CRLB and cCRLB of 8 
neighbor pixels decreased from 3.2 to 2.9. Our result showed the 
possibility of denoising algorithm estimating pixels precisely with 
high readout noise. This further highlighted the importance of 
denoising algorithm development in microscopy images, especially 
for sCMOS sensor where pixel-dependent readout-noise SD varies 
significantly (e.g. from 1.5 to 40 ADU) among pixels.  

 

 

Fig. 4.  Comparison of CRLB and cCRLB of individual pixels at two 
locations. (a) The ideal image with the marked locations. (b) 
Comparisons between CRLB and cCRLB with respect to increasing 
readout-noise SD in the marked locations. (c) The ratios of CRLB/cCRLB 
of the center pixel and the mean ratios of its neighbors (8 surrounding 
pixels). 

Further, we demonstrate that cCRLB was highly related to the 
numerical aperture (𝑁𝐴) as well as the effective camera pixel size 
in the specimen.  We expressed the radius of the OTF boundary in 
the unit of numbers of pixels in the Fourier space as 

𝑅OTF =
2𝑁𝐴

𝜆
∙ 𝑛img ∙ 𝑙pixel,        (21) 

where 𝑛img  is the number of pixels of the image in one lateral 

dimension (assuming a square image), and 𝑙pixel  is the effective 

camera pixel size (the physical length of one pixel occupied in the 
specimen). Therefore, increasing 𝑁𝐴  increases the radius of the 
OTF boundary causing fewer number of constraints imposed on 
parameters. As cCRLB depends on the number of constraints and 
the number of pixels within the image, larger 𝑁𝐴 results in larger 
cCRLB (Fig. 5). An extreme case will be when the 𝑁𝐴 is sufficiently 
large such that OTF occupies the entire field of the Fourier 
transform of the image. In such a case, there is no constraint 
imposed on the parameters and cCRLB will be equal to CRLB.  
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Fig. 5. The relationship between 𝑁𝐴 and cCRLB. The red circle on the 
OTF indicates the OTF boundary.  

Next, we investigated the influence of effective pixel size on 
cCRLB. In order to maintain the size of the field of view as well as the 
photon flux emitted per area, we changed pixel size while adjusting 
number of pixels of the image and the expected photon counts per 
pixel accordingly. Here, we calculated cCRLB in two settings: one 
with an image of 128*128 pixels, a pixel size of 40 nm, peak photon 
counts of 5 per pixel, and background photon counts of 2.5 per pixel 
and the other with an image of 64*64 pixels, a pixel size of 80 nm, 
peak photon counts of 20 per pixel, and background photon counts 
of 10 per pixel. In order to compare these two cCRLB maps, we 
binned the cCRLB map of 128×128 pixels into a 64×64 pixels map 
(Fig. 6a).  The binned cCRLB represents an approximation of the 
variance lower bound of binned denoised image. As shown in Fig. 6, 
we found that the cCRLB with the pixel size of 40 nm are four times 
smaller than that of 80 nm on average. This observation suggested 
that choosing a smaller effective pixel size during microscopy 
experiments benefited denoising performance with a lower 
achievable variance bound. 

 

Fig. 6. Comparison of cCRLB maps calculated from different pixel sizes 
while photo flux per area remains constant. (a) cCRLB map was 
calculated from a simulated image of 128×128 pixels with the pixel size 
of 40 nm and binned to 64×64 pixels. (b) cCRLB map was calculated 
from a simulated image of 64×64 pixels with the pixel size of 80 nm. In 
these two maps, the underlying structure, the field of view, and photon 
count per area were kept the same. Here, 𝑁𝐴  was set to 1.4, the 
wavelength of light was set to 700 nm and a uniform readout-noise SD 
was assumed across the field of view at 3.46 ADU with a uniform gain of 
2.0. 

cCRLB represents the theoretical lower bound on variance of 
unbiased estimation of microscopy images. However, to approach 
unbiased estimation, most denoising algorithms will have to 
sacrifice their ability of reducing estimation variance (Fig. 7). For 
example, NCS algorithm has an inherent parameter 𝛼 serving as a 
balancing parameter between its likelihood function based on the 
noise model and the prior knowledge. By tuning this parameter, one 
can balance the tradeoff between bias and variance. We 
demonstrated this effect in Fig. 7. When 𝛼 = 0.1, we observed the 
denoised image with relative small bias while its variance 
performance was far from the theoretical bound (cCRLB). However, 
as parameter 𝛼 increased to 3, the variance of denoised image had 
reached to 7.04 (e-)2 compared to variance of original noisy image 
14.89 (e-)2 while introducing the bias with ~0.28 e- on average at 
structure regions and the ratio between variance and cCRLB was 
1.54 on average. As this parameter further increased (𝛼 = 10 and 
𝛼 = 100 ), the variance was reduced to 3.55 (e-)2 and 1.70 (e-)2 on 
average respectively, at the same time, the absolute bias at the 
structure regions increased to an average amplitude of 0.35 e-  and 
0.5 e-.  

 

Fig. 7. Trade-off between variance and bias of NCS denoising algorithm. 
Here we applied a simulated microtubule image for denoising 
demonstration.  The variance maps (second row) and bias maps (third 
row) were calculated by using different parameter 𝛼  in NCS. Every 
pixel’s cCRLB and its denoising variance were shown in the scatter plot 
(fourth row) with the solid red line representing the cases where cCRLB 
and the estimation variances are equal. 

Our development of cCRLB provides a theoretical lower bound 
on the estimation variance of unbiased denoising algorithms for 
microscopy images by considering the finite spatial frequency 
response in a microscope system. This work provides a general 
framework to incorporate additional knowledge, either from the 
imaging system or potentially from the specimen, to estimate the 
precision performance limit of the denoising estimation by 
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formulating a set of constraint equations representing the prior 
knowledge.  In addition, by using cCRLB, we show that the readout 
statistics (readout-noise SD) of individual pixel has little influence 
on how precise the pixel intensity can be estimated, suggesting the 
importance of developing denoising algorithms especially for 
camera sensors with readout-noise variation in different pixels (e.g. 
CMOS sensor). Although cCRLB does not guarantee the existence of 
an estimator or an algorithm achieving such limit, we expect cCRLB 
will be a useful tool predicting the variance limit for a proposed 
microscopy denoising algorithm. 
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