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ABSTRACT
Aging has been shown to be a strong driver of DNA methylation changes, leading to the
development of robust biomarkers in humans and more recently, in mice. This study aimed to
generate a novel epigenetic clock in rats—a model with unique physical, physiological, and
biochemical advantages for studying mammalian aging. Additionally, we incorporated
behavioral data, unsupervised machine learning, and network analysis to identify epigenetic
signals that not only track with age, but also relate to phenotypic aging and reflect higher-order
molecular aging changes. We used DNAm data from reduced representation bisulfite sequencing
(RRBS) to train an epigenetic age (DNAmMAge) measure in Fischer 344 CDF (F344) rats. In an
independent sample of n=32 F344 rats, we found that this measure correlated with age at
(r=0.93), and related to physical functioning (5.9e-3), after adjusting for age and differential cell
counts. DNAmMAge was also found to correlate with age in C57BL/6 mice (r=0.79), and was
decreased in response to caloric restriction (CR), such that the longer the animal was on a CR
diet, the greater the decrease in DNAmM. We also observed resetting of DNAmM when kidney and
lung fibroblasts when converted to induced pluripotent stem cells (iPSCs). Using weighted gene
correlation network analysis (WGCNA) we identified two modules that appeared to drive our
DNAmMAge measure. These two modules contained CpGs in intergenic regions that showed
substantial overlap with histone marks H3K9me3, H3K27me3, and E2F1 transcriptional factor
binding. In moving forward, our ability to unravel the complex signals linking DNA methylation
changes to functional aging would require experimental studies in model systems in which
longitudinal epigenetic changes can be related to other molecular and physiological hallmarks of

aging.
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INTRODUCTION

Since first appearing in the literature in 2011%, ‘epigenetic clocks have emerged as some
of the most promising potential biomarkers of aging®. Epigenetic clocks are traditionally
measured by combining information on DNA methylation (DNAm) levels at hundreds of
cytosine-guanine dinucleotides (CpGs) to produce age predictions. These estimates have been
shown to strongly correlate with observed age (often r > 0.7)*’. More importantly, the
divergencein the predicted age relative to the observed age has been shown to reflect differential
mortality and/or disease risk/prevalence®®>—suggesting it captures differences in biological
rather than chronological aging. Furthermore, in mice, evidence is beginning to emerge to show
that genetic or behavioral interventions known to influence aging produce differences in the
epigenetic age of birth cohorts”"**—leading to the growing enthusiasm surrounding the
application of epigenetic clocks as powerful biomarkersin aging research.

The quest to identify measures that can assess biological age is currently a major goal in
Geroscience research'’*°. With the growing list of potential therapeutics to target aging, thereis
an immediate need to establish gold-standard measures for efficacy testing. Accurate biomarkers
of aging will aso enable better prognostic evaluation; they may inform treatment, study
inclusion, and personal decisions; and perhaps most importantly, they will help uncover the
underlying mechanisms driving biological aging. However, in order for a biomarker to be
valuable in these endeavors, we must distinguish between changes that smply track with
chronological time from those that relate to biological function (both entropic damage and/or
compensatory mechanisms).

While up to this point, the vast majority of epigenetic clock studies have been conducted
using human cohorts, our ability to elucidate the underlying biology of epigenetic aging will
require mechanistic studies using mammalian animal models. Epigenetic clocks based on blood
and multiple tissues have been developed for mouse models®"?; however, because of their small
size, drawing sufficient blood volumes for epigenetic analysis require terminal bleeds. Thus, the
use of mice presents a problem when it comes to tracking epigenetic aging longitudinally or
using it as a prognostic indicator. Conversely, rats share many of the same advantages as mice,
yet also are approximately 10 times larger in mass, enabling the safe collection of substantially
more blood at a given point in time without undue harm to the animal®. The ability to safely
collect alarger quantity of blood will allow researchers to track animals longitudinally and relate
molecular changes to changes in phenotypic characteristics—including in vivo brain imaging or
individual differences in age-related cognitive decline, for which rats may be better models than
mice?’. Allowing for multiple assays from the same samples will enable researchers to draw
links between various hallmarks of aging.

The ability to link epigenetics to other phenotypic data is of critical importance in
developing biomarkers of aging. Traditionally, correlations with chronological age have been
used to assess validity of aging biomarkers®*"“*?*. However, evidence is mounting that this may
not be the best approach. Indeed, the epigenetic clocks that appear most informative for
predicting future health and wellness are not necessarily the strongest age predictors®*’. Thisis
due to the fact that a number of molecular and physiological traits change over the lifespan, but
the degree of change does not necessarily reflect their importance in the biological aging
processes manifesting as death and disease. Therefore, the only way to distinguish changes that
track chronological time versus those that track biological aging is to validate potential
biomarkers using variables other than age.
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The aim of this study was to measure DNAm using blood samples from a large, multi-age
cohort of Fischer 344 CDF (F344) rats (n=134) and associate DNAm patterns with chronological
age along with behavioral and cdlular changes. In doing so, we identified key epigenetic age
changes and developed a novel rat epigenetic clock, which we show tracks age and functioning
in rats. We also demonstrate that this clock can be used to track aging in mice and is responsive
to interventions such as caloric restriction and cellular reprogramming.

RESULTS
Age Differencesin DNAmM

Male F344 rats were acquired from the NIA Aged Rodent Colony. The samples were
evenly distributed over a large age range, spanning 1 to 27 months, with six rats in each age
group (n=162). Within three weeks of arrival, rats were weighed, blood was drawn for FACS and
methylation sequencing, and behavioral testing was performed. Our anaytic sample included
134 rats. Excluded samples represent animals that died or were euthanized prior to blood draw,
those that did not pass quality control for bisulfite sequencing, and/or those without complete
FACS, rotarod, or open field data.

Whole blood from retro-orbital sampling was used to perform reduced representation
bisulfite sequencing (RRBS) and imputation was conducted via a k-nearest neighbor (KNN)
dliding window, yielding information on DNAm levels at 5,505,909 CpGs across the genome for
al animals. To train an age predictor, samples were split into training (n=102) and test sets
(n=32) based on age to ensure equal age distributions (see Methods). By applying eastic net
regression to the training set, we built an age predictor that selected 68 of the 5.5 million CpGs.
The age predictor based on the 68 CpGs, which we call DNAmMAQge, exhibited a correlation of
r=0.90 with observed age in the validation sample (Fig. 1). As with many of the other human and
rodent clocks, the relationship between DNAmMAge and age exhibits nonlinear properties,
suggesting a sigmoidal relationship between the two variables.

We hypothesize that the aging trends exhibited across the methylome are highly
redundant, and as a result, dimensionality can be greatly reduced without compromising the
underlying signal being captured. To test this, we performed principal component analysis (PCA)
using the training sample to identify orthogonal signals and test for associations with age.
Results suggest that PC1 only captures 6.7% of the variance in our data, and that jointly, the first
ten PCs capture 28% of the variance. Nevertheless, PC1 explains 87% of the variance in age
(r=0.93) in our independent test sample (Fig. 1). Furthermore, when we applied these PCs (in
contrast to CpGs) to train an age predictor, based on 10-fold cross-validation in the training
sample, our model suggested that age prediction was not improved by including PCs beyond
PC1 aone.

DNAmM Associations with FACS and Phenotypic Variables

To explore the association between DNAmM and aging-related functional variables, we
tested the chronological age-adjusted associations between the DNAmMAge measures and
performance in rotarod and open field behavioral tests of locomotor function. Data was available
for eight summarized open field test variables and two rotarod variables (max time and mean
time). Additionally, we also tested for confounding variables heterogeneity in blood cell types
using Fluorescence Activated Cell Sorter (FACS) comprising information on 39 variables related
to white blood cell composition. As with the DNAm data, given the redundancy in these
measures, we ran two PCAs using the training sample—one to reduce the dimensionality of the
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FACS data and one to reduce dimensionality of the behavioral phenotype data (open field and
rotarod). When examining the age correlations of the first three PCs, we found that PC1 for both
types of variables are strongly associated with age in the validation sample (Fig. S1). PC1 based
on FACS data shows a correlation of r=0.91 with age, and the PC1 based on phenotype data
(open field and rotarod) correlates with age at r=0.63. As shown in Table S1, PC1 for phenotype
datais most strongly related to the open field variables, except for time spent in the center zone
(an anxiety-sensitive measure) and duration of stereotypic movements, including grooming and
sniffing.

Using multivariate linear regression models, we tested whether age-adjusted DNAmMAge
was associated with phenotypic variables and/or confounded by FACS (Table 1). In modd 1,
which included DNAmMAge regressed on chronological age alone, as expected we observed that
DNAmMAGge is strongly related to chronological age—similar to the correlation results. Results
for Model 2, which included the addition of the phenotypic PC1, showed a significant
association between DNAmMAge and the physical functioning after controlling for age in the
model. This suggests that among rats of the same chronological age, those with higher epigenetic
age had worse locomotor function. Moreover, the addition of the phenotypic variable somewhat
attenuated the chronological age effect, suggesting that part of the age-associated increase in
DNAmMAgeis explained by declines in physical functioning (16%). In Model 3, we included PC1
from the FACS data as an additional covariate. In doing so, we observed further attenuation of
the age association and a small attenuation of the phenotypic association, suggesting that cell
composition may account for a small proportion of the associations between DNAmMAge and
either age and/or physical functioning. Nevertheless, the associations with phenotypic PC1
remained significant, suggesting that among animals of the same chronological age, age-related
functional decline is related to epigenetic aging independent of cell composition. This was
further supported by an expanded model in which the association between phenotypic PC1 and
DNAmMAge remains (p=1.7, p=6.3e-3), even after adjustment for the first 10 PCs from the FACS
PCA (results not shown).

Tablel
Beta Coefficient (P-value)
Mode 1 Mode 2 Mode 3
DNAmMAge (PC1)
Age 0.75 (6.0e-15) 0.63 (1.27e-11) 0.42 (4.4e-4)
Pheno PC1 -- 1.46 (3.4e-3) 1.29 (5.9e-3)
FACS PC1 -- 191 (2.7e-2)

Validation in C57BL/6 Mice

To add additional out-of-sample validation, we used publicly available RRBS data from
mouse models. However, given the sparsity in RRBS coverage, after mapping genomic
coordinates from rat (rn6) to mouse (MmM10), only 3,625 CpGs were available across all samples.
Given this limitation, we re-calculated PC1 using only CpGs in common between the two
species. When re-evaluating the performance in the rat data, the new DNAmMAge measure from
the overlapped CpGs was able to equivalently recapture the age signal. This is despite the fact
that we started with a much smaller number of parameters (~3,600 compared to 5.5 million). For
instance, as shown in Fig. 2, the new model based on PC1 explained 85% of the variance in age
in the rat validation sample (r=0.92 correlation). Furthermore, the association between epigenetic
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aging and phenotypic aging in rats remained, and if anything, was sightly more robust (Table
S2).

To estimate DNAmMAge in mice, we applied the PCA model that was calculated in the rat
data using the 3,625 overlapped CpGs to the overlapping mouse RRBS data. We found that
DNAmMAge explains 62% of the variance in age in the mouse validation sample (r=0.79
correlation). Interestingly, the mouse data showed high intercept and lower slope for DNAmAge
as a function of age, suggesting that this DNAmMAge measure is initialy over-estimated in
mouse, but that the rate of increase with age is slower than for rats. However, again, we found a
non-linear ssgmoidal association between DNAmMAge and chronological age in both the rat and
the mouse validation data.

In addition to the age association, we also used the mouse data to test the effect of dietary
intervention on the rat DNAmAge. Of the n=177 mice, 20 underwent caloric restriction (CR).
Using an age-adjusted model, we found that DNAmMAge was decreased in CR versus ad libitum
fed animals (Table S3), such that CR was associated with an average decrease of 1.20 months in
DNAmMAge (s.e.=0.31, p=1.6e-4). Although mice were subjected to CR starting at 14 weeks, the
time they remained on the diet varied from about 6.5-23 months, a which point DNAmM was
assessed. Therefore, we tested whether prolonged CR amplified the deceleration of DNAmMAge
using a model with an interaction between age and CR. Results showed that DNAmAge was
significantly associated with the interaction between chronological age and CR (f=-0.12, p=9.1e-
3). This suggests a negative correlation between CR duration and DNAmMAge. To test this
directly, we calculated the linear model for DNAmMAge regressed on age, using only control
animals. We then applied the equation to CR animals to calculate the age residual of DNAM,
which we correlated with during of CR. As shown in Fig. S2, duration of CR was correlated with
DNAmMAGge (relative to the expected value based on age) at r=-0.55, p=0.012).

RRBS data generated from mouse kidney, kidney-derived induced pluripotent stem cells
(iPSCs), lung, and lung-derived iPSCs was used to test whether cellular reprogramming altered
DNAmMAge. Results (Fig. 3) showed that the DNAmMAge was significantly decreased in both
kidney (p=1.13e-4) and lung (p=6.57e-3), by a little over 3 months. Given that the increase in
DNAmMAQge as a function of chronological age is compressed in mice, when refitting so that the
slope is equal to 1, the difference between tissue and tissue-derived iPSCs actually translates to
~20 months.

Deconstruction of Epigenetic Aging Measures

We hypothesize that the DNAMAge measure captures a composite of diverse epigenetic
aging phenomena. Thus, in order to deconstruct this aging signal into distinct components from
which we can better study mechanisms, we clustered CpGs based on co-methylation patterns
across samples. For instance, using the 3,755 CpGs shared across the rat and mouse RRBS data,
we peformed weighted gene correlation network analysis (WGCNA), with the goal of
identifying co-methylation modules. Co-methylation modules represent clusters of tightly related
CpGs, whose DNAm values are highly correlated across samples in both the rat and the mouse
data. Using a signed network with a power of 1, we identified four co-methylation modules (Fig.
S3)—Dblue (64 CpGs), pink (47 CpGs), purple (44 CpGs), and green (38 CpGs). The majority of
CpGs (n=3,432) were not assigned to a module (denoted as the grey module). Next, we tested
whether certain modules contributed more to the DNAmMAge measure. To do this, we compared
the weights of CpGs as a function of which module they were assigned to. We found that the
green, purple, and blue modules contained CpGs with higher loadings compared to the grey
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module. Interestingly, the green module contained CpGs with both the highest positive and
lowest negative loadings (CpGs that were strongly hypermethylated and hypomethylated with
age, respectively), whereas the purple and blue modules were exclusively made up of CpGs that
positively loaded on DNAmMAge (CpGs that trended towards hypermethylation with age).
Conversely, the pink module was made up of CpGs with loadings at or near O, suggesting that
these CpGs did not contribute much to the overall DNAmAge score (Fig. 4).

Given the high loadings in the green, blue and purple modules—suggesting that CpGs in
these modules may be driving the original DNAmMAge measure—we generate DNAmMAge
measures based on CpGs within each module (module-specific DNAmMAge measures). This was
done using the same PCA method in which we constructed the original score (based on all 3,625
CpGs), but in this case, it was carried out one-by-one for each module, restricting to CpGs in that
module. As seen in Fig S3, high age correlations were observed for the green module (r,4=0.86,
Nmouse=0.58), the purple module (r#=0.88, rmous<=0.68), and the grey module (r.4=0.89,
Nmouse=0.84), while moderate age correlations were observed for the blue module (r.4=0.33,
Nouse=0.39), and non-significant age correlations were found for the pink module (r;z=-0.05,
IMmouse=0.11).

We next evaluated the associations between module-specific DNAmMAge (excluding
grey) and the age-related physical functioning in rats, CR in mice, and reprogramming in lung
and kidney fibroblasts. Results using a fully adjusted linear model (controlling for age and FACS
PC1-5, Table S2) suggest that the green module DNAmMAge ($=0.51, p=4.9e-3) and the blue
module DNAmMAge (p=0.34, p=3.1e-3) were positively associated with age-related physical
functioning, such that higher DNAmMAGge in these two modules (accounting for chronological age
and cell composition) was associated with a more functionally impaired phenotypein rats (Table
S2). When comparing module-specific DNAmAge measures on the basis of CR, we found that
all four modules were significantly reduced in CR versus control mice (poiue=2.5€-8, ppink=2.9€e-
10, Pgreen=5.2€-4, ppurpe=2.2€-3). Finally, only the blue and green DNAmMAges showed significant
decline after reprogramming in both kidney (Puiue=5.2€-4, Pgreen=2.3e-4) and lung (Puiwe=7.6€-3,
Pgreen=1.8€-2).

Genomic Features of Methylation Modules

In order to identify underlying epigenetic mechanisms associated with the four modules,
we used the Cistrome Project database (http://cistrome.org) to assess enrichment for binding
overlap of transcription factors (TFs), chromatic regulators, histone marks, and variants. The
most striking results were for CpGs in the blue module, which exhibited substantial overlap with
the repressive histone modification marks H3K9me3 and H3K27me3 and E2F1 TF binding. The
green module also exhibited high enrichment for H3k9me3 and H3k27me3, but to a somewhat
lesser degree. Although other modules showed slight enrichments for TFs, chromatic regulators,
and histone marks, they were substantially lower than what was observed in the blue module
(Supplemental Material).

Next, we tested for enrichments based on UCSC Genome Browser features. We found
that as much as 98% of the CpGs in the blue module and 55% of the CpGs in the green module
were located far from TSS (10° to 10° downstream (Fig 5A)). Conversely, only about 10% of
CpGsinthe overall data (n=3,625) were located within this proximity to TSS. Similarly, both the
blue and green modules were substantially enriched for CpGs in intergenic regions—nearly
every CpG in the blue module is in an intergenic region, as are approximately 60% of CpGs in
the green module (Fig 5B). This represented enrichments of 7.4-fold and 4.5-fold for the blue



https://doi.org/10.1101/2020.05.13.094292
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094292; this version posted May 17, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and green modules, respectively, relative to all CpGs in the data (only ~13% were found to be
located in intergenic regions).

Trends in CpG density was another striking feature that differentiated modules. For
instance, results showed that the blue module was highly skewed towards CpGs in CG dense
regions (Fig 5C-D). The green module showed bimodal distribution, such that about half the
CpGs it contains were in highly dense regions and the other half were in very sparse regions.
When examining the behaviors of all the CpGs in the models, we found that the CpGs from the
green module, in the sparse regions, were those that became hypomethylated with age yet
contributed substantially to the overall DNAmMAQge score—as indicated by their strong negative
loadings (Fig 5D). In contrast, the green module CpGs in dense regions had high positive
loadings, suggesting that hypermethylation of these CpGs was strongly reflective of accelerated
aging in the DNAmAge variable. Similarly, the blue and purple modules were made up of CpGs
for which hypermethylation was associated with aging, but the difference was that the blue
module contained CpGs in dense regions, whereas the purple module contained CpGs in sparser
regions. Finaly, the pink module contained CpGs that did not appear to have a strong aging
signal, nor have defining characteristics in regards to genomic location.

DISCUSSION

This study presents the first epigenetic aging clock developed for rats. While it shares
many of the same experimental advantages with its close relative, the mouse, the rat represents
an exciting rodent mode for studying mammalian aging. Its larger size better enables
longitudinal tracking and simultaneous assessment of multiple assays and it is also better suited
to in vivo brain scanning and performing assessments to study heterogeneity in cognitive aging™.
In moving forward, our ability to track how molecular features change over time in accordance
with functional phenotypes will be critical for disentangling the causal pathways through which
aging hallmarks directly contribute to morbidity and mortality. It will also better enable
assessments of geroprotective therapeutics given that samples can be taken pre- and post-
treatment without causing undue harm to the animal.

Our nove epigenetic clock was shown to strongly correlate with chronological age and
relate to physical performance, independent of cell composition and/or chronological age.
Furthermore, we show that it is also applicable to mice. For instance, we estimated our
epigenetic clock in whole blood samples from C57BL/6 and found that it correlates with age at
r=0.79. Moreover, we found that it is decreased in animals that have undergone CR. This is
consistent with previous studies showing the CR prevent DNA methylation drift and epigenetic
age in mice®*®. We further observed, that the longer the animals remained on a CR diet, the
lower their DNAmMAge was relative to their chronological age, suggesting that the longer CR is
maintained, the greater the decrease in epigenetic age.

Nevertheless, there were also interesting observations that differentiated the performance
of our DNAmMAge measure in mice versus rats. Most notably, the functional form of DNAmMAge
regressed on age. While DNAmMAge exhibits a sigmoidal fit with age in rats, this is more
dramatic in the mouse data. Furthermore, the measure appears compressed at both younger and
older ages, such that the range in mouse chronological age is 0.66-34.4 months (mean=17.0,
sd=10.8), yet the range in DNAmMAge is 11.1-28.8 months (mean=16.9, sd=2.8). The non-linear
fit of DNAmMAQge as a function of age has been repeatedly reported in both human and rodent
samples’. One possibility for this observation is that the changes in DNAm reflect other non-
linear celular changes, such as celular divison or mutation accumulation, which increase
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exponentialy in early life and then decelerate upon maturation®. Relatedly, the proportion of
senescent and/or precancerous cells may accumulate in a non-linear manner with age, such that
these changes are slow in early life and then accelerate towards the end of the lifespan®’. The
combination of these non-linear patterns in composite DNAmMAge measure may therefore
produce the sigmoidal age trgectories that have been observed. When considering the
compression of DNAmMAQge across age in mice versus rats, one explanation is that some of the
signals captured in epigenetic clocks are conserved, while other are not. If not all age-related
DNAmM changes in rats are conserved in mice this could offset, distend, or constrict the
DNAmMAge measure when applied to mice, even if the overall score till exhibits a significant
age correlation.

To understand the “types’ of age-related DNAmM changes that comprise the epigenetic
clock, we performed weighted network analysis, which enabled us to identify co-methylation
modules”®. These modules represent groups of CpGs with highly correlated DNAm levels across
samples that are thought to capture specific epigenetic aging phenomena. Five modules were
identified, four of which exhibited significant age correlations in both rats and mice. However,
our ability to relate the modules to phenotypic data—rather than age alone—allowed us to
identify the most promising aging signals. For instance, the two modules with the strongest age
correlations (grey and purple) were not related to physical functioning in rats. Conversely, the
green and blue modules, which had more conservative age correlations, were related to physical
functioning in rats, independent of age. Interestingly, they exhibited deceleration in response to
CR and were reset upon reprogramming. The majority of epigenetic clock studies evaluate
measures on the basis of their age correlations. Here, we were able to start dissecting signals that
are purely age-derived from those that are related to phenotypic changes and, therefore, are more
relevant for biological aging. Had we relied exclusively on the robustness of the age predictions,
it would have been impossible to pinpoint these two modules as being the most informative.

When examining their characteristics, we found that CpGs in the blue and green modules
tended to lie in intergenic regions that were more than 10k bp downstream of TSS. Thus, these
signatures are unlikely to represent promoter hypermethylation that directly repress gene
transcription. Moreover, enrichment analyses showed that CpGs in these two modules tended to
co-locate with H3K9me3, H3K27me3, and E2F1 TF, which suggests they are likely located in
constitutive heterochromatin and/or facultative heterochromatin domains®. Interestingly, these
patterns are reminiscent of an epigenetic landscape that has been associated with cellular
senescence—another major hallmark of aging. In the paper by Narita et a.*’, the authors
described a distinct heterochromatic profile of senescent cells, which is characterized by
heterochromatin protein recruitment (including H3K9me), and stable repression of E2F target
genes, which have essential rolesin cell cycle contral.

Oveall, we were able to develop a composite DNAmMAge measure in rats that was
associated with age and with physical functioning (independent of age). It was also found to be
conserved in mice and exhibited robust responses to aging interventions—CR and cellular
reprogramming. Unlike previous epigenetic clocks, our novel clock was built using PCA, rather
than elastic net or other supervised machine learning methods. Interestingly, while we considered
the additive effects of multiple PCs in generating the DNAmMAge measure, PC1 alone was
sufficient to produce a highly age correlated variable in both the training and validation datasets.
One explanation is that the F344 rats used in this study were highly homogenous—with the same
sex, genetic background, and environment. Therefore, the main variance to be explained was
age, which was subsequently captured in PC1. Because the rats may be aging in the same manner
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without differencing aging patterns/phenotypes, additional PCs were not picking-up age-related
changes. That being said, we hypothesize that PCs beyond PC1 will add additional information
when assessing aging in heterogenous populations—genetic diverse groups (e.g. humans),
environmentally heterogeneous populations, diverse tissues, etc.

In moving forward, our ability to continue to unravel the complex signal linking DNAmM
changes to functional aging outcomes will require experiments in diverse model systems in
which epigenetic changes can be both tracked longitudinally and related to other informative
molecular and physiological hallmarks of aging.

METHODS

Animals

All experimental procedures were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals and approved by the NIA Animal Care and Use Committee.
Male F344 rats were obtained from the NIA Aged Rodent Colony housed at the Charles River
Laboratories (Frederick, MD). After receipt into NIA intramural housing facility (Baltimore,
MD), animals were housed with Nylabone supplementation and ad libitum access to food (NIH-
31 diet) and water. Rats younger than 3 months were housed in groups of three; al other rats
were singly housed. Rats were maintained on a 12/12 lighting schedule, with al procedures
carried out during the animals' light cycle. Rats were habituated to the facility for at least 3 days
before 500 ul of whole blood was collected via retro-orbital bleedings for DNA and FACS
analysis. Blood for DNA was collected in heparinized tubes, spun, and the plasma removed;
buffy coat and red blood cells were frozen at -80°C until DNA extraction. Blood for FACS
analysis was collected in EDTA-treated tubes, chilled on ice, and tested immediately.

The RRBS data from mouse blood and iPSC samples were acquired from Gene
Expression Omnibus, under the accession number GSE80672.

Behavior

Rats were recovered from bleeds for at least eight days prior to behavioral testing. For
open field test, rats were placed for 30 min in a 42x42x33cm Plexiglas chamber. Activity was
monitored through infrared beams detected with AccuScan Fusion software (Omnitech
Electronics, Columbus, OH). On a separate day, rats were tested in a rotarod apparatus (MED-
Associates; St Albans, VT) consisting of a 7-cm rotating drum placed 60 cm above a horizontal
surface. Rats were placed on the drum rotating at a constant 8 RPM for 5 min; rats that fell off
during that time were placed back on. Rats were then tested in three trials with accelerating drum
rotation (4-40 RPM) and tested for latency to fall up to 5-min maximum trial duration. Rats
recovered in their homecage for 15 min between trials. Nails of hindlimbs were trimmed in old
rats (18+ mo-old) one day prior to testing.

FACS

One hundred pL of whole rat blood from chilled EDTA-treated tubes was stained and
then processed using a Beckman Coulter TQ-prep and the Beckman Coulter immunoprep reagent
system. Immunophenotyping data was acquired on a BD FACSCanto Il and analyzed using BD
FACSDiva. Antibodies used for fluorescence analysis are as follows: FITC-conjugated anti-rat
CD3 (clone 1F4), PE-conjugated anti-rat CD25 (clone OX-39), PerCP-conjugated anti-rat CD8a
(clone OX-8), PE-Cy7 conjugated anti-rat CD11b/c (clone OX-42), APC-Cy7 conjugated anti-rat
CD4 (clone W3/25) from Biolegend (City, state), and AF647-conjugated anti-rat RT1B (clone
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0OX-6), BV421-conjugated anti-rat CD45RA (clone OX-33), and BV605-conjugated anti-rat
CD45 (clone OX-1) from BD Biosciences (City, state).

DNA Analysis, RRBS Libraries, Sequencing Alignment, and Methylation Matrix Assembly

Following proteinase K and RNAse A treatments, DNA was isolated from rat blood cells
using QIAmp DNA Mini Kit (Qiagen, City, state) following manufacturer’s instructions using a
QlAcube automated devicee DNA was eluted from columns in 200 pyL of AE buffer,
concentrated in 20 uL 10 mM Tris-HCI, pH 8.5, 0.1 mM EDTA using Genomic DNA Clean &
Concentrator-10 (Zymo), City, state), and quantified using a Qubit 2.0 (Life Technologies, City,
state). RRBS libraries were generated as described previously® . Briefly, 100 ng of isolated
DNA was digested with Mspl restriction enzyme (NEB, Ipswich, MA), carried out end-
repair/adenylation (NEB) and ligation with TruSeq barcoded adapters (Illumina, San Diego,
CA). DNA fragment length between 200-300bp were selected with SPRI magnetic beads (ABM,
Richmond, BC, Canada), followed by bisulfite treatment (Millipore, Billerica, MA), and PCR
amplification (Bioline, Taunton, MA). The libraries were sequenced by multiplexing 8 libraries
per lane on the Illumina HiSeq2500 sequencer, with 100bp single-end reads.

Sequencing reads were trimmed using CutAdapt™ to remove adapter sequences.
Trimmed reads were mapped and methylation beta values called from the alignment file using
BS-Seeker2*. Aligned data were filtered to keep only CpG sites with greater than 10x coverage
in at least 75% of the samples. Missing values were imputed using a KNN dsliding window;
missing methylation values were assigned the average value of the 5 nearest neighbors by
Euclidean distance within a 3Mb window.

Satistical Analysis

Elastic net penalized regression was used to generate a DNAmM predictor of chronological
age in rats based on RRBS data containing approximately 5.5 million CpGs. Prior to training,
rats were grouped into training and testing sample based on age. For instance, rats ages 2m, 6m,
10m, 14m, 18m, 22m, and 26m were selected for the test set (n=32), while all others were
included in the training set (n=104). Next PCA was run using the rats in the training set and
elastic net was used to train and predictor of age based on PCs rather than individual CpGs.
Thus, each PC contained the information from all CpGs (weighted according to contribution).
Both the PC based and the CpG based DNAmMAge measures were evaluated in the test sample
based on biweight midcorrelations with age and multivariate linear regression analysis to assess
the associ ation between them and PC1 from a PCA of phenotypic variables (i.e. rotarod and open
filed), after adjusting for age and cell composition (PC1-5 from PCA of FACS data).

LiftOver chain file from rn6 to mm10 genome assembly was downloaded from UCSC
genome browser (https:.//genome.ucsc.edu/index.html) to provide the alignment from rat to
mouse genome. rtracklayer liftOver function
(https://www.bioconductor.org/hel p/workflows/liftOver/) was used to load the chain file and
map the rat CpG to corresponding mouse genome coordinates. We then assessed CpG overlap
between the mouse and rat data and found that 3,625 of the 5.5 million CpGs were available in
all datasets. As a result, we reran PCA in the training rat sample and fit a new DNAmMAge
measure based on the PCs from the 3,625 CpGs. We also re-evaluated age correlations and
associations with phenotypic variables in the rat test data. We then fit this DNAmMAge predictor
in the mouse data and used biweight midcorrelations to assess age associations, and multivariate
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linear regression analysis to assess the effect of CR on DNAmMAQge, relative to chronological age,
aswell as the effect of iPSC reprogramming in mouse lung and kidney fibroblasts.

To identify co-methylation modules, we applied consensus WGCNA to the mouse and rat
RRBS data. For this analysis, we input data as a “signed” topological overlap matrix, with a
power=1. We also used deepSplit=1, minModuleSize=25, and minKMEtoStay=0.4. After
grouping CpGs in modules, we generated module-specific DNAmMAge measures based on PCA.
We then tested for age association and phenotype associations in a manner consistent with
models we have previously run.

Finally, LOLA (http://databio.org/regiondb) and Cistrome (http://cistrome.org) were used
to assess enrichment for binding overlap of transcription factors, chromatic regulators, histone
marks, variants, and genomic locations. For enrichment we used a background comprising all
3,625 CpGs from the overlapped mouse and rat RRBS data. Enrichment was conducted
independently for each of the four modules (excluding grey). Mouse (mm10) region sets were
used for all enrichment analysis, given that Cistrome and LOLA only contain databases for
human and mouse.
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FIGURE LEGENDS

Figure 1. Principal Component Analysis (PCA) Based Construction of DNAmMAgein rats
A) Screeplot of variance explained for PCs1-60. A large amount of the variance is captured by
PCs 1 and 2, with an elbow forming around PC7, suggesting that the amount of variance
explained drops-off significantly after thefirst six PCs.

B) Supervised approach: A sample of male F344 rats, ages 1 to 27 months, were split into
training (N=102) and test sets (n=32). Using DNAm levels measured at 5,505,909 CpGs across
the genome as input, we applied elastic net penalized regression to train a predictor of age. Based
on training data, 68 CpGs were selected for the DNAmMAge measure. The plot shows the
correlation between age (x-axis) and DNAmMAQge (y-axis) in the test sample.

C) Unsupervised Approach: We converted PC1 (estimated based on PCA in the training sample)
to units of years by regressing age on PC1 and then multiplying the coefficient by PC1 and
adding the constant in the test sample. We then tested the correlation between PC1 DNAmMAge
and chronological age.

Figure 2: Agecorrelation in ratsand mice using therestricted overlapping CpGs

A) PC1 DNAmAge was re-estimated using only the CpGs that were overlapped between rat and
mouse (n=3,625). Although this variable contained only 0.066% of the CpGs in the original
measure, we were able to observe an equivalent age correlation.

B) This variable was then applied to data from C57BL/6 mice and was found to be strongly
correlated with age. We also observed the calorie restricted mice (magenta) trended towards
lower DNAmMAGge than ad libitum fed animals (green).

Figure 3: Rguvenation of fibroblast-derived iPSCs

We applied our DNAmAge measure to data from kidney and lung fibroblast controls and derived
iIPSCs (GSE80672). We find that a significant reduction in DNAmAge for lung- and kidney-
derived iPSCs versus controls.

Fig 4: PC1 Loadings (for Overlapped CpGsfrom mouse data) by module.

Each of the 3,625 CpGs was assigned to a module (i.e. green, purple, pink, blue, grey). The y-
axis shows the loadings from PC1 that was used to signify the DNAmMAge measure. The Purple
and Blue modules tend to have CpGs with positive loadings, signifying that DNAm levels for
CpGs in these modules were more strongly related to higher DNAmMAGge. The green module had
CpGs with both high positive and high negative loadings, suggesting that half the CpGs in this
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module are hypomethylated in accordance with higher DNAmMAge whereas the other half are
hypermethylated with higher DNAmMAge.

Fig 5: Module characteristics.

A) Base-pair proximities of CpGs to Transcription Start Sites (TSS), according to module
assignment (denoted by color). We find a high proportion of CpGs in the blue module (and to
some extent the green module) are located 10,000 to 1,000,000 downstream of TSS.

B) Proportion of CpGs in various genomic regions as a function of module (denoted by color).
Results suggest that 98% of CpGs in the blue module and 60% of CpGs in the green module are
in intergenic regions.

C) Digtribution of surrounding CpGs densities according to module (denoted by color). CpG
density was (x-axis) was calculated as the number of CpGs within a 100-bp window (50 bp on
either side of the CpG of interest). We observed that the blue module tended to be comprised of
CpGs located in regions of higher CpG density (island), while the green module was bimodal,
with half the CpGsin it being located in high densty regions, and the other half in low density
regions.

D) We then plotted CpG density as a function of the CpG loading for PC1 that was used to
estimate DNAmMAge from overlapped CpGs. We find that for the green module, CpGs with
strong negative loadings are in low density regions, while those with high loadings are in both
low and high density regions.
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