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ABSTRACT 
Aging has been shown to be a strong driver of DNA methylation changes, leading to the 
development of robust biomarkers in humans and more recently, in mice. This study aimed to 
generate a novel epigenetic clock in rats—a model with unique physical, physiological, and 
biochemical advantages for studying mammalian aging. Additionally, we incorporated 
behavioral data, unsupervised machine learning, and network analysis to identify epigenetic 
signals that not only track with age, but also relate to phenotypic aging and reflect higher-order 
molecular aging changes. We used DNAm data from reduced representation bisulfite sequencing 
(RRBS) to train an epigenetic age (DNAmAge) measure in Fischer 344 CDF (F344) rats. In an 
independent sample of n=32 F344 rats, we found that this measure correlated with age at 
(r=0.93), and related to physical functioning (5.9e-3), after adjusting for age and differential cell 
counts. DNAmAge was also found to correlate with age in C57BL/6 mice (r=0.79), and was 
decreased in response to caloric restriction (CR), such that the longer the animal was on a CR 
diet, the greater the decrease in DNAm. We also observed resetting of DNAm when kidney and 
lung fibroblasts when converted to induced pluripotent stem cells (iPSCs). Using weighted gene 
correlation network analysis (WGCNA) we identified two modules that appeared to drive our 
DNAmAge measure. These two modules contained CpGs in intergenic regions that showed 
substantial overlap with histone marks H3K9me3, H3K27me3, and E2F1 transcriptional factor 
binding. In moving forward, our ability to unravel the complex signals linking DNA methylation 
changes to functional aging would require experimental studies in model systems in which 
longitudinal epigenetic changes can be related to other molecular and physiological hallmarks of 
aging. 
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INTRODUCTION 

Since first appearing in the literature in 20111, ‘epigenetic clocks’ have emerged as some 
of the most promising potential biomarkers of aging2. Epigenetic clocks are traditionally 
measured by combining information on DNA methylation (DNAm) levels at hundreds of 
cytosine-guanine dinucleotides (CpGs) to produce age predictions. These estimates have been 
shown to strongly correlate with observed age (often r > 0.7)3-7. More importantly, the 
divergence in the predicted age relative to the observed age has been shown to reflect differential 
mortality and/or disease risk/prevalence8-15—suggesting it captures differences in biological 
rather than chronological aging. Furthermore, in mice, evidence is beginning to emerge to show 
that genetic or behavioral interventions known to influence aging produce differences in the 
epigenetic age of birth cohorts5-7,16—leading to the growing enthusiasm surrounding the 
application of epigenetic clocks as powerful biomarkers in aging research. 

The quest to identify measures that can assess biological age is currently a major goal in 
Geroscience research17-19. With the growing list of potential therapeutics to target aging, there is 
an immediate need to establish gold-standard measures for efficacy testing. Accurate biomarkers 
of aging will also enable better prognostic evaluation; they may inform treatment, study 
inclusion, and personal decisions; and perhaps most importantly, they will help uncover the 
underlying mechanisms driving biological aging. However, in order for a biomarker to be 
valuable in these endeavors, we must distinguish between changes that simply track with 
chronological time from those that relate to biological function (both entropic damage and/or 
compensatory mechanisms).  

While up to this point, the vast majority of epigenetic clock studies have been conducted 
using human cohorts, our ability to elucidate the underlying biology of epigenetic aging will 
require mechanistic studies using mammalian animal models. Epigenetic clocks based on blood 
and multiple tissues have been developed for mouse models5-7,20; however, because of their small 
size, drawing sufficient blood volumes for epigenetic analysis require terminal bleeds. Thus, the 
use of mice presents a problem when it comes to tracking epigenetic aging longitudinally or 
using it as a prognostic indicator. Conversely, rats share many of the same advantages as mice, 
yet also are approximately 10 times larger in mass, enabling the safe collection of substantially 
more blood at a given point in time without undue harm to the animal21. The ability to safely 
collect a larger quantity of blood will allow researchers to track animals longitudinally and relate 
molecular changes to changes in phenotypic characteristics—including in vivo brain imaging or 
individual differences in age-related cognitive decline, for which rats may be better models than 
mice21. Allowing for multiple assays from the same samples will enable researchers to draw 
links between various hallmarks of aging.  

The ability to link epigenetics to other phenotypic data is of critical importance in 
developing biomarkers of aging. Traditionally, correlations with chronological age have been 
used to assess validity of aging biomarkers2,4-7,22,23. However, evidence is mounting that this may 
not be the best approach. Indeed, the epigenetic clocks that appear most informative for 
predicting future health and wellness are not necessarily the strongest age predictors2,11. This is 
due to the fact that a number of molecular and physiological traits change over the lifespan, but 
the degree of change does not necessarily reflect their importance in the biological aging 
processes manifesting as death and disease. Therefore, the only way to distinguish changes that 
track chronological time versus those that track biological aging is to validate potential 
biomarkers using variables other than age. 
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The aim of this study was to measure DNAm using blood samples from a large, multi-age 
cohort of Fischer 344 CDF (F344) rats (n=134) and associate DNAm patterns with chronological 
age along with behavioral and cellular changes. In doing so, we identified key epigenetic age 
changes and developed a novel rat epigenetic clock, which we show tracks age and functioning 
in rats. We also demonstrate that this clock can be used to track aging in mice and is responsive 
to interventions such as caloric restriction and cellular reprogramming. 
 

RESULTS 
Age Differences in DNAm  
 Male F344 rats were acquired from the NIA Aged Rodent Colony. The samples were 
evenly distributed over a large age range, spanning 1 to 27 months, with six rats in each age 
group (n=162). Within three weeks of arrival, rats were weighed, blood was drawn for FACS and 
methylation sequencing, and behavioral testing was performed. Our analytic sample included 
134 rats. Excluded samples represent animals that died or were euthanized prior to blood draw, 
those that did not pass quality control for bisulfite sequencing, and/or those without complete 
FACS, rotarod, or open field data.  

Whole blood from retro-orbital sampling was used to perform reduced representation 
bisulfite sequencing (RRBS) and imputation was conducted via a k-nearest neighbor (kNN) 
sliding window, yielding information on DNAm levels at 5,505,909 CpGs across the genome for 
all animals. To train an age predictor, samples were split into training (n=102) and test sets 
(n=32) based on age to ensure equal age distributions (see Methods). By applying elastic net 
regression to the training set, we built an age predictor that selected 68 of the 5.5 million CpGs. 
The age predictor based on the 68 CpGs, which we call DNAmAge, exhibited a correlation of 
r=0.90 with observed age in the validation sample (Fig. 1). As with many of the other human and 
rodent clocks, the relationship between DNAmAge and age exhibits nonlinear properties, 
suggesting a sigmoidal relationship between the two variables.  
 We hypothesize that the aging trends exhibited across the methylome are highly 
redundant, and as a result, dimensionality can be greatly reduced without compromising the 
underlying signal being captured. To test this, we performed principal component analysis (PCA) 
using the training sample to identify orthogonal signals and test for associations with age. 
Results suggest that PC1 only captures 6.7% of the variance in our data, and that jointly, the first 
ten PCs capture 28% of the variance. Nevertheless, PC1 explains 87% of the variance in age 
(r=0.93) in our independent test sample (Fig. 1). Furthermore, when we applied these PCs (in 
contrast to CpGs) to train an age predictor, based on 10-fold cross-validation in the training 
sample, our model suggested that age prediction was not improved by including PCs beyond 
PC1 alone.  
 
DNAm Associations with FACS and Phenotypic Variables 
 To explore the association between DNAm and aging-related functional variables, we 
tested the chronological age-adjusted associations between the DNAmAge measures and 
performance in rotarod and open field behavioral tests of locomotor function. Data was available 
for eight summarized open field test variables and two rotarod variables (max time and mean 
time). Additionally, we also tested for confounding variables heterogeneity in blood cell types 
using Fluorescence Activated Cell Sorter (FACS) comprising information on 39 variables related 
to white blood cell composition. As with the DNAm data, given the redundancy in these 
measures, we ran two PCAs using the training sample—one to reduce the dimensionality of the 
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FACS data and one to reduce dimensionality of the behavioral phenotype data (open field and 
rotarod). When examining the age correlations of the first three PCs, we found that PC1 for both 
types of variables are strongly associated with age in the validation sample (Fig. S1). PC1 based 
on FACS data shows a correlation of r=0.91 with age, and the PC1 based on phenotype data 
(open field and rotarod) correlates with age at r=0.63. As shown in Table S1, PC1 for phenotype 
data is most strongly related to the open field variables, except for time spent in the center zone 
(an anxiety-sensitive measure) and duration of stereotypic movements, including grooming and 
sniffing.  

Using multivariate linear regression models, we tested whether age-adjusted DNAmAge 
was associated with phenotypic variables and/or confounded by FACS (Table 1). In model 1, 
which included DNAmAge regressed on chronological age alone, as expected we observed that 
DNAmAge is strongly related to chronological age—similar to the correlation results. Results 
for Model 2, which included the addition of the phenotypic PC1, showed a significant 
association between DNAmAge and the physical functioning after controlling for age in the 
model. This suggests that among rats of the same chronological age, those with higher epigenetic 
age had worse locomotor function. Moreover, the addition of the phenotypic variable somewhat 
attenuated the chronological age effect, suggesting that part of the age-associated increase in 
DNAmAge is explained by declines in physical functioning (16%). In Model 3, we included PC1 
from the FACS data as an additional covariate. In doing so, we observed further attenuation of 
the age association and a small attenuation of the phenotypic association, suggesting that cell 
composition may account for a small proportion of the associations between DNAmAge and 
either age and/or physical functioning. Nevertheless, the associations with phenotypic PC1 
remained significant, suggesting that among animals of the same chronological age, age-related 
functional decline is related to epigenetic aging independent of cell composition. This was 
further supported by an expanded model in which the association between phenotypic PC1 and 
DNAmAge remains (β=1.7, p=6.3e-3), even after adjustment for the first 10 PCs from the FACS 
PCA (results not shown). 

Table 1 
 Beta Coefficient (P-value) 
 Model 1 Model 2 Model 3 
DNAmAge (PC1)    
 Age 0.75 (6.0e-15) 0.63 (1.27e-11) 0.42 (4.4e-4) 
 Pheno PC1 -- 1.46 (3.4e-3) 1.29 (5.9e-3) 
 FACS PC1  -- 1.91 (2.7e-2) 

 
Validation in C57BL/6 Mice 

To add additional out-of-sample validation, we used publicly available RRBS data from 
mouse models. However, given the sparsity in RRBS coverage, after mapping genomic 
coordinates from rat (rn6) to mouse (mm10), only 3,625 CpGs were available across all samples. 
Given this limitation, we re-calculated PC1 using only CpGs in common between the two 
species. When re-evaluating the performance in the rat data, the new DNAmAge measure from 
the overlapped CpGs was able to equivalently recapture the age signal. This is despite the fact 
that we started with a much smaller number of parameters (~3,600 compared to 5.5 million).  For 
instance, as shown in Fig. 2, the new model based on PC1 explained 85% of the variance in age 
in the rat validation sample (r=0.92 correlation). Furthermore, the association between epigenetic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.13.094292doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.094292
http://creativecommons.org/licenses/by-nc-nd/4.0/


aging and phenotypic aging in rats remained, and if anything, was slightly more robust (Table 
S2).  

To estimate DNAmAge in mice, we applied the PCA model that was calculated in the rat 
data using the 3,625 overlapped CpGs to the overlapping mouse RRBS data. We found that 
DNAmAge explains 62% of the variance in age in the mouse validation sample (r=0.79 
correlation). Interestingly, the mouse data showed high intercept and lower slope for DNAmAge 
as a function of age, suggesting that this DNAmAge measure is initially over-estimated in 
mouse, but that the rate of increase with age is slower than for rats. However, again, we found a 
non-linear sigmoidal association between DNAmAge and chronological age in both the rat and 
the mouse validation data.  

In addition to the age association, we also used the mouse data to test the effect of dietary 
intervention on the rat DNAmAge. Of the n=177 mice, 20 underwent caloric restriction (CR). 
Using an age-adjusted model, we found that DNAmAge was decreased in CR versus ad libitum 
fed animals (Table S3), such that CR was associated with an average decrease of 1.20 months in 
DNAmAge (s.e.=0.31, p=1.6e-4). Although mice were subjected to CR starting at 14 weeks, the 
time they remained on the diet varied from about 6.5-23 months, at which point DNAm was 
assessed. Therefore, we tested whether prolonged CR amplified the deceleration of DNAmAge 
using a model with an interaction between age and CR. Results showed that DNAmAge was 
significantly associated with the interaction between chronological age and CR (β=-0.12, p=9.1e-
3). This suggests a negative correlation between CR duration and DNAmAge. To test this 
directly, we calculated the linear model for DNAmAge regressed on age, using only control 
animals. We then applied the equation to CR animals to calculate the age residual of DNAM, 
which we correlated with during of CR. As shown in Fig. S2, duration of CR was correlated with 
DNAmAge (relative to the expected value based on age) at r=-0.55, p=0.012). 

RRBS data generated from mouse kidney, kidney-derived induced pluripotent stem cells 
(iPSCs), lung, and lung-derived iPSCs was used to test whether cellular reprogramming altered 
DNAmAge. Results (Fig. 3) showed that the DNAmAge was significantly decreased in both 
kidney (p=1.13e-4) and lung (p=6.57e-3), by a little over 3 months. Given that the increase in 
DNAmAge as a function of chronological age is compressed in mice, when refitting so that the 
slope is equal to 1, the difference between tissue and tissue-derived iPSCs actually translates to 
~20 months. 
 
Deconstruction of Epigenetic Aging Measures 

We hypothesize that the DNAmAge measure captures a composite of diverse epigenetic 
aging phenomena. Thus, in order to deconstruct this aging signal into distinct components from 
which we can better study mechanisms, we clustered CpGs based on co-methylation patterns 
across samples. For instance, using the 3,755 CpGs shared across the rat and mouse RRBS data, 
we performed weighted gene correlation network analysis (WGCNA), with the goal of 
identifying co-methylation modules. Co-methylation modules represent clusters of tightly related 
CpGs, whose DNAm values are highly correlated across samples in both the rat and the mouse 
data. Using a signed network with a power of 1, we identified four co-methylation modules (Fig. 
S3)—blue (64 CpGs), pink (47 CpGs), purple (44 CpGs), and green (38 CpGs). The majority of 
CpGs (n=3,432) were not assigned to a module (denoted as the grey module). Next, we tested 
whether certain modules contributed more to the DNAmAge measure. To do this, we compared 
the weights of CpGs as a function of which module they were assigned to. We found that the 
green, purple, and blue modules contained CpGs with higher loadings compared to the grey 
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module. Interestingly, the green module contained CpGs with both the highest positive and 
lowest negative loadings (CpGs that were strongly hypermethylated and hypomethylated with 
age, respectively), whereas the purple and blue modules were exclusively made up of CpGs that 
positively loaded on DNAmAge (CpGs that trended towards hypermethylation with age). 
Conversely, the pink module was made up of CpGs with loadings at or near 0, suggesting that 
these CpGs did not contribute much to the overall DNAmAge score (Fig. 4). 

Given the high loadings in the green, blue and purple modules—suggesting that CpGs in 
these modules may be driving the original DNAmAge measure—we generate DNAmAge 
measures based on CpGs within each module (module-specific DNAmAge measures). This was 
done using the same PCA method in which we constructed the original score (based on all 3,625 
CpGs), but in this case, it was carried out one-by-one for each module, restricting to CpGs in that 
module. As seen in Fig S3, high age correlations were observed for the green module (rrat=0.86, 
rmouse=0.58), the purple module (rrat=0.88, rmouse=0.68), and the grey module (rrat=0.89, 
rmouse=0.84), while moderate age correlations were observed for the blue module (rrat=0.33, 
rmouse=0.39), and non-significant age correlations were found for the pink module (rrat=-0.05, 
rmouse=0.11). 

We next evaluated the associations between module-specific DNAmAge (excluding 
grey) and the age-related physical functioning in rats, CR in mice, and reprogramming in lung 
and kidney fibroblasts. Results using a fully adjusted linear model (controlling for age and FACS 
PC1-5, Table S2) suggest that the green module DNAmAge (β=0.51, p=4.9e-3) and the blue 
module DNAmAge (β=0.34, p=3.1e-3) were positively associated with age-related physical 
functioning, such that higher DNAmAge in these two modules (accounting for chronological age 
and cell composition) was associated with a more functionally impaired phenotype in rats (Table 
S2). When comparing module-specific DNAmAge measures on the basis of CR, we found that 
all four modules were significantly reduced in CR versus control mice (pblue=2.5e-8, ppink=2.9e-
10, pgreen=5.2e-4, ppurple=2.2e-3). Finally, only the blue and green DNAmAges showed significant 
decline after reprogramming in both kidney (pblue=5.2e-4, pgreen=2.3e-4) and lung (pblue=7.6e-3, 
pgreen=1.8e-2).  
  
Genomic Features of Methylation Modules 

In order to identify underlying epigenetic mechanisms associated with the four modules, 
we used the Cistrome Project database (http://cistrome.org) to assess enrichment for binding 
overlap of transcription factors (TFs), chromatic regulators, histone marks, and variants. The 
most striking results were for CpGs in the blue module, which exhibited substantial overlap with 
the repressive histone modification marks H3K9me3 and H3K27me3 and E2F1 TF binding. The 
green module also exhibited high enrichment for H3k9me3 and H3k27me3, but to a somewhat 
lesser degree. Although other modules showed slight enrichments for TFs, chromatic regulators, 
and histone marks, they were substantially lower than what was observed in the blue module 
(Supplemental Material).  

Next, we tested for enrichments based on UCSC Genome Browser features. We found 
that as much as 98% of the CpGs in the blue module and 55% of the CpGs in the green module 
were located far from TSS (103 to 106 downstream (Fig 5A)). Conversely, only about 10% of 
CpGs in the overall data (n=3,625) were located within this proximity to TSS. Similarly, both the 
blue and green modules were substantially enriched for CpGs in intergenic regions—nearly 
every CpG in the blue module is in an intergenic region, as are approximately 60% of CpGs in 
the green module (Fig 5B). This represented enrichments of 7.4-fold and 4.5-fold for the blue 
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and green modules, respectively, relative to all CpGs in the data (only ~13% were found to be 
located in intergenic regions). 

Trends in CpG density was another striking feature that differentiated modules. For 
instance, results showed that the blue module was highly skewed towards CpGs in CG dense 
regions (Fig 5C-D). The green module showed bimodal distribution, such that about half the 
CpGs it contains were in highly dense regions and the other half were in very sparse regions. 
When examining the behaviors of all the CpGs in the models, we found that the CpGs from the 
green module, in the sparse regions, were those that became hypomethylated with age yet 
contributed substantially to the overall DNAmAge score—as indicated by their strong negative 
loadings (Fig 5D). In contrast, the green module CpGs in dense regions had high positive 
loadings, suggesting that hypermethylation of these CpGs was strongly reflective of accelerated 
aging in the DNAmAge variable. Similarly, the blue and purple modules were made up of CpGs 
for which hypermethylation was associated with aging, but the difference was that the blue 
module contained CpGs in dense regions, whereas the purple module contained CpGs in sparser 
regions. Finally, the pink module contained CpGs that did not appear to have a strong aging 
signal, nor have defining characteristics in regards to genomic location.  
 

DISCUSSION 
This study presents the first epigenetic aging clock developed for rats. While it shares 

many of the same experimental advantages with its close relative, the mouse, the rat represents 
an exciting rodent model for studying mammalian aging. Its larger size better enables 
longitudinal tracking and simultaneous assessment of multiple assays and it is also better suited 
to in vivo brain scanning and performing assessments to study heterogeneity in cognitive aging21. 
In moving forward, our ability to track how molecular features change over time in accordance 
with functional phenotypes will be critical for disentangling the causal pathways through which 
aging hallmarks directly contribute to morbidity and mortality. It will also better enable 
assessments of geroprotective therapeutics given that samples can be taken pre- and post-
treatment without causing undue harm to the animal.  

Our novel epigenetic clock was shown to strongly correlate with chronological age and 
relate to physical performance, independent of cell composition and/or chronological age. 
Furthermore, we show that it is also applicable to mice. For instance, we estimated our 
epigenetic clock in whole blood samples from C57BL/6 and found that it correlates with age at 
r=0.79. Moreover, we found that it is decreased in animals that have undergone CR. This is 
consistent with previous studies showing the CR prevent DNA methylation drift and epigenetic 
age in mice24,25. We further observed, that the longer the animals remained on a CR diet, the 
lower their DNAmAge was relative to their chronological age, suggesting that the longer CR is 
maintained, the greater the decrease in epigenetic age. 

Nevertheless, there were also interesting observations that differentiated the performance 
of our DNAmAge measure in mice versus rats. Most notably, the functional form of DNAmAge 
regressed on age. While DNAmAge exhibits a sigmoidal fit with age in rats, this is more 
dramatic in the mouse data. Furthermore, the measure appears compressed at both younger and 
older ages, such that the range in mouse chronological age is 0.66-34.4 months (mean=17.0, 
sd=10.8), yet the range in DNAmAge is 11.1-28.8 months (mean=16.9, sd=2.8). The non-linear 
fit of DNAmAge as a function of age has been repeatedly reported in both human and rodent 
samples2. One possibility for this observation is that the changes in DNAm reflect other non-
linear cellular changes, such as cellular division or mutation accumulation, which increase 
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exponentially in early life and then decelerate upon maturation26. Relatedly, the proportion of 
senescent and/or precancerous cells may accumulate in a non-linear manner with age, such that 
these changes are slow in early life and then accelerate towards the end of the lifespan27. The 
combination of these non-linear patterns in composite DNAmAge measure may therefore 
produce the sigmoidal age trajectories that have been observed. When considering the 
compression of DNAmAge across age in mice versus rats, one explanation is that some of the 
signals captured in epigenetic clocks are conserved, while other are not. If not all age-related 
DNAm changes in rats are conserved in mice this could offset, distend, or constrict the 
DNAmAge measure when applied to mice, even if the overall score still exhibits a significant 
age correlation. 

To understand the “types” of age-related DNAm changes that comprise the epigenetic 
clock, we performed weighted network analysis, which enabled us to identify co-methylation 
modules28. These modules represent groups of CpGs with highly correlated DNAm levels across 
samples that are thought to capture specific epigenetic aging phenomena. Five modules were 
identified, four of which exhibited significant age correlations in both rats and mice. However, 
our ability to relate the modules to phenotypic data—rather than age alone—allowed us to 
identify the most promising aging signals. For instance, the two modules with the strongest age 
correlations (grey and purple) were not related to physical functioning in rats. Conversely, the 
green and blue modules, which had more conservative age correlations, were related to physical 
functioning in rats, independent of age. Interestingly, they exhibited deceleration in response to 
CR and were reset upon reprogramming. The majority of epigenetic clock studies evaluate 
measures on the basis of their age correlations. Here, we were able to start dissecting signals that 
are purely age-derived from those that are related to phenotypic changes and, therefore, are more 
relevant for biological aging. Had we relied exclusively on the robustness of the age predictions, 
it would have been impossible to pinpoint these two modules as being the most informative. 

When examining their characteristics, we found that CpGs in the blue and green modules 
tended to lie in intergenic regions that were more than 10k bp downstream of TSS. Thus, these 
signatures are unlikely to represent promoter hypermethylation that directly repress gene 
transcription. Moreover, enrichment analyses showed that CpGs in these two modules tended to 
co-locate with H3K9me3, H3K27me3, and E2F1 TF, which suggests they are likely located in 
constitutive heterochromatin and/or facultative heterochromatin domains29. Interestingly, these 
patterns are reminiscent of an epigenetic landscape that has been associated with cellular 
senescence—another major hallmark of aging. In the paper by Narita et al.30, the authors 
described a distinct heterochromatic profile of senescent cells, which is characterized by 
heterochromatin protein recruitment (including H3K9me), and stable repression of E2F target 
genes, which have essential roles in cell cycle control.  

Overall, we were able to develop a composite DNAmAge measure in rats that was 
associated with age and with physical functioning (independent of age). It was also found to be 
conserved in mice and exhibited robust responses to aging interventions—CR and cellular 
reprogramming. Unlike previous epigenetic clocks, our novel clock was built using PCA, rather 
than elastic net or other supervised machine learning methods. Interestingly, while we considered 
the additive effects of multiple PCs in generating the DNAmAge measure, PC1 alone was 
sufficient to produce a highly age correlated variable in both the training and validation datasets. 
One explanation is that the F344 rats used in this study were highly homogenous—with the same 
sex, genetic background, and environment. Therefore, the main variance to be explained was 
age, which was subsequently captured in PC1. Because the rats may be aging in the same manner 
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without differencing aging patterns/phenotypes, additional PCs were not picking-up age-related 
changes. That being said, we hypothesize that PCs beyond PC1 will add additional information 
when assessing aging in heterogenous populations—genetic diverse groups (e.g. humans), 
environmentally heterogeneous populations, diverse tissues, etc. 

In moving forward, our ability to continue to unravel the complex signal linking DNAm 
changes to functional aging outcomes will require experiments in diverse model systems in 
which epigenetic changes can be both tracked longitudinally and related to other informative 
molecular and physiological hallmarks of aging. 

 
METHODS 

Animals 
All experimental procedures were conducted in accordance with the Guide for the Care 

and Use of Laboratory Animals and approved by the NIA Animal Care and Use Committee. 
Male F344 rats were obtained from the NIA Aged Rodent Colony housed at the Charles River 
Laboratories (Frederick, MD). After receipt into NIA intramural housing facility (Baltimore, 
MD), animals were housed with Nylabone supplementation and ad libitum access to food (NIH-
31 diet) and water. Rats younger than 3 months were housed in groups of three; all other rats 
were singly housed. Rats were maintained on a 12/12 lighting schedule, with all procedures 
carried out during the animals’ light cycle. Rats were habituated to the facility for at least 3 days 
before 500 ul of whole blood was collected via retro-orbital bleedings for DNA and FACS 
analysis. Blood for DNA was collected in heparinized tubes, spun, and the plasma removed; 
buffy coat and red blood cells were frozen at -80°C until DNA extraction. Blood for FACS 
analysis was collected in EDTA-treated tubes, chilled on ice, and tested immediately. 

The RRBS data from mouse blood and iPSC samples were acquired from Gene 
Expression Omnibus, under the accession number GSE80672. 
 
Behavior  

Rats were recovered from bleeds for at least eight days prior to behavioral testing. For 
open field test, rats were placed for 30 min in a 42x42x33cm Plexiglas chamber. Activity was 
monitored through infrared beams detected with AccuScan Fusion software (Omnitech 
Electronics; Columbus, OH). On a separate day, rats were tested in a rotarod apparatus (MED-
Associates; St Albans, VT) consisting of a 7-cm rotating drum placed 60 cm above a horizontal 
surface. Rats were placed on the drum rotating at a constant 8 RPM for 5 min; rats that fell off 
during that time were placed back on. Rats were then tested in three trials with accelerating drum 
rotation (4-40 RPM) and tested for latency to fall up to 5-min maximum trial duration. Rats 
recovered in their homecage for 15 min between trials. Nails of hindlimbs were trimmed in old 
rats (18+ mo-old) one day prior to testing. 
 
FACS  

One hundred µL of whole rat blood from chilled EDTA-treated tubes was stained and 
then processed using a Beckman Coulter TQ-prep and the Beckman Coulter immunoprep reagent 
system. Immunophenotyping data was acquired on a BD FACSCanto II and analyzed using BD 
FACSDiva. Antibodies used for fluorescence analysis are as follows: FITC-conjugated anti-rat 
CD3 (clone 1F4), PE-conjugated anti-rat CD25 (clone OX-39), PerCP-conjugated anti-rat CD8a 
(clone OX-8), PE-Cy7 conjugated anti-rat CD11b/c (clone OX-42), APC-Cy7 conjugated anti-rat 
CD4 (clone W3/25) from Biolegend (City, state), and AF647-conjugated anti-rat RT1B (clone 
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OX-6), BV421-conjugated anti-rat CD45RA (clone OX-33), and BV605-conjugated anti-rat 
CD45 (clone OX-1) from BD Biosciences (City, state). 
 
DNA Analysis, RRBS Libraries, Sequencing Alignment, and Methylation Matrix Assembly 

Following proteinase K and RNAse A treatments, DNA was isolated from rat blood cells 
using QIAmp DNA Mini Kit (Qiagen, City, state) following manufacturer’s instructions using a 
QIAcube automated device. DNA was eluted from columns in 200 µL of AE buffer, 
concentrated in 20 µL 10 mM Tris-HCl, pH 8.5, 0.1 mM EDTA using Genomic DNA Clean & 
Concentrator-10 (Zymo), City, state), and quantified using a Qubit 2.0 (Life Technologies, City, 
state). RRBS libraries were generated as described previously31,32. Briefly, 100 ng of isolated 
DNA was digested with MspI restriction enzyme (NEB, Ipswich, MA), carried out end-
repair/adenylation (NEB) and ligation with TruSeq barcoded adapters (Illumina, San Diego, 
CA). DNA fragment length between 200-300bp were selected with SPRI magnetic beads (ABM, 
Richmond, BC, Canada), followed by bisulfite treatment (Millipore, Billerica, MA), and PCR 
amplification (Bioline, Taunton, MA). The libraries were sequenced by multiplexing 8 libraries 
per lane on the Illumina HiSeq2500 sequencer, with 100bp single-end reads.  

Sequencing reads were trimmed using CutAdapt33 to remove adapter sequences. 
Trimmed reads were mapped and methylation beta values called from the alignment file using 
BS-Seeker234. Aligned data were filtered to keep only CpG sites with greater than 10x coverage 
in at least 75% of the samples. Missing values were imputed using a kNN sliding window; 
missing methylation values were assigned the average value of the 5 nearest neighbors by 
Euclidean distance within a 3Mb window. 
 
Statistical Analysis 
 Elastic net penalized regression was used to generate a DNAm predictor of chronological 
age in rats based on RRBS data containing approximately 5.5 million CpGs. Prior to training, 
rats were grouped into training and testing sample based on age. For instance, rats ages 2m, 6m, 
10m, 14m, 18m, 22m, and 26m were selected for the test set (n=32), while all others were 
included in the training set (n=104). Next PCA was run using the rats in the training set and 
elastic net was used to train and predictor of age based on PCs rather than individual CpGs. 
Thus, each PC contained the information from all CpGs (weighted according to contribution). 
Both the PC based and the CpG based DNAmAge measures were evaluated in the test sample 
based on biweight midcorrelations with age and multivariate linear regression analysis to assess 
the association between them and PC1 from a PCA of phenotypic variables (i.e. rotarod and open 
filed), after adjusting for age and cell composition (PC1-5 from PCA of FACS data). 
 LiftOver chain file from rn6 to mm10 genome assembly was downloaded from UCSC 
genome browser (https://genome.ucsc.edu/index.html) to provide the alignment from rat to 
mouse genome. rtracklayer liftOver function 
(https://www.bioconductor.org/help/workflows/liftOver/) was used to load the chain file and 
map the rat CpG to corresponding mouse genome coordinates.  We then assessed CpG overlap 
between the mouse and rat data and found that 3,625 of the 5.5 million CpGs were available in 
all datasets. As a result, we reran PCA in the training rat sample and fit a new DNAmAge 
measure based on the PCs from the 3,625 CpGs. We also re-evaluated age correlations and 
associations with phenotypic variables in the rat test data. We then fit this DNAmAge predictor 
in the mouse data and used biweight midcorrelations to assess age associations, and multivariate 
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linear regression analysis to assess the effect of CR on DNAmAge, relative to chronological age, 
as well as the effect of iPSC reprogramming in mouse lung and kidney fibroblasts.  
 To identify co-methylation modules, we applied consensus WGCNA to the mouse and rat 
RRBS data. For this analysis, we input data as a “signed” topological overlap matrix, with a 
power=1. We also used deepSplit=1, minModuleSize=25, and minKMEtoStay=0.4. After 
grouping CpGs in modules, we generated module-specific DNAmAge measures based on PCA. 
We then tested for age association and phenotype associations in a manner consistent with 
models we have previously run. 
 Finally, LOLA (http://databio.org/regiondb) and Cistrome (http://cistrome.org) were used 
to assess enrichment for binding overlap of transcription factors, chromatic regulators, histone 
marks, variants, and genomic locations. For enrichment we used a background comprising all 
3,625 CpGs from the overlapped mouse and rat RRBS data. Enrichment was conducted 
independently for each of the four modules (excluding grey). Mouse (mm10) region sets were 
used for all enrichment analysis, given that Cistrome and LOLA only contain databases for 
human and mouse.   
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FIGURE LEGENDS 
 
Figure 1: Principal Component Analysis (PCA) Based Construction of DNAmAge in rats 
A) Screeplot of variance explained for PCs1-60. A large amount of the variance is captured by 
PCs 1 and 2, with an elbow forming around PC7, suggesting that the amount of variance 
explained drops-off significantly after the first six PCs. 
B) Supervised approach: A sample of male F344 rats, ages 1 to 27 months, were split into 
training (n=102) and test sets (n=32). Using DNAm levels measured at 5,505,909 CpGs across 
the genome as input, we applied elastic net penalized regression to train a predictor of age. Based 
on training data, 68 CpGs were selected for the DNAmAge measure. The plot shows the 
correlation between age (x-axis) and DNAmAge (y-axis) in the test sample. 
C) Unsupervised Approach: We converted PC1 (estimated based on PCA in the training sample) 
to units of years by regressing age on PC1 and then multiplying the coefficient by PC1 and 
adding the constant in the test sample. We then tested the correlation between PC1 DNAmAge 
and chronological age. 
 
Figure 2: Age correlation in rats and mice using the restricted overlapping CpGs 
A) PC1 DNAmAge was re-estimated using only the CpGs that were overlapped between rat and 
mouse (n=3,625). Although this variable contained only 0.066% of the CpGs in the original 
measure, we were able to observe an equivalent age correlation. 
B) This variable was then applied to data from C57BL/6 mice and was found to be strongly 
correlated with age. We also observed the calorie restricted mice (magenta) trended towards 
lower DNAmAge than ad libitum fed animals (green). 
 
Figure 3: Rejuvenation of fibroblast-derived iPSCs  
We applied our DNAmAge measure to data from kidney and lung fibroblast controls and derived 
iPSCs (GSE80672). We find that a significant reduction in DNAmAge for lung- and kidney-
derived iPSCs versus controls. 
 
Fig 4: PC1 Loadings (for Overlapped CpGs from mouse data) by module.  
Each of the 3,625 CpGs was assigned to a module (i.e. green, purple, pink, blue, grey). The y-
axis shows the loadings from PC1 that was used to signify the DNAmAge measure. The Purple 
and Blue modules tend to have CpGs with positive loadings, signifying that DNAm levels for 
CpGs in these modules were more strongly related to higher DNAmAge. The green module had 
CpGs with both high positive and high negative loadings, suggesting that half the CpGs in this 
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module are hypomethylated in accordance with higher DNAmAge whereas the other half are 
hypermethylated with higher DNAmAge. 
 
Fig 5: Module characteristics.  
A) Base-pair proximities of CpGs to Transcription Start Sites (TSS), according to module 
assignment (denoted by color). We find a high proportion of CpGs in the blue module (and to 
some extent the green module) are located 10,000 to 1,000,000 downstream of TSS. 
B) Proportion of CpGs in various genomic regions as a function of module (denoted by color). 
Results suggest that 98% of CpGs in the blue module and 60% of CpGs in the green module are 
in intergenic regions. 
C) Distribution of surrounding CpGs densities according to module (denoted by color). CpG 
density was (x-axis) was calculated as the number of CpGs within a 100-bp window (50 bp on 
either side of the CpG of interest). We observed that the blue module tended to be comprised of 
CpGs located in regions of higher CpG density (island), while the green module was bimodal, 
with half the CpGs in it being located in high density regions, and the other half in low density 
regions. 
D) We then plotted CpG density as a function of the CpG loading for PC1 that was used to 
estimate DNAmAge from overlapped CpGs. We find that for the green module, CpGs with 
strong negative loadings are in low density regions, while those with high loadings are in both 
low and high density regions. 
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