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ABSTRACT

Psychedelic drugs, including lysergic acid diethylamide (LSD) and other agonists of the serotonin 2A receptor (5HT2A-R),
induce drastic changes in subjective experience, and provide a unique opportunity to study the neurobiological basis of
consciousness. One of the most notable neurophysiological signatures of psychedelics, increased entropy in spontaneous
neural activity, is thought to be of relevance to the psychedelic experience, encoding both acute alterations in consciousness
and mediating long-term effects. However, no clear mechanistic explanation for this ’entropic’ phenomenon has been put
forward so far. We sought to do this here by building upon a recent whole-brain model of serotonergic neuromodulation, to study
the entropic effects of 5HT2A-R activation. Our results reproduce the overall entropy increase observed in previous experiments
in vivo, providing the first model-based explanation for this phenomenon. We also found that entropy changes were not uniform
across the brain: entropy increased in some regions and decreased in others, suggesting a topographical reconfiguration
mediated by 5HT2A-R activation. Interestingly, at the whole-brain level, this reconfiguration was not well explained by 5HT2A-R
density, but related closely to the topological properties of the brain’s anatomical connectivity. These results help us understand
the mechanisms underlying the psychedelic state and, more generally, the pharmacological modulation of whole-brain activity.

Introduction
Psychedelic drugs provide a privileged opportunity to study the mind-brain relationship, and promise to revolutionise some
of our current mental health treatments.1–3 However, while some aspects of the neurochemical action of psychedelics at
the neuronal and sub-neuronal level are well known,4, 5 our current understanding of their action at the whole-brain level, is
still very limited. A deeper understanding of the mechanisms that trigger the changes in conscious experience produced by
psychedelics would greatly advance our knowledge of human consciousness, and medical development of psychedelics.

At a subjective level, serotonergic psychedelics (including LSD, dimethyltryptamine [DMT] and psilocybin, among others)
potentially modulate mood, cognition, perception and self-awareness. At a neurophysiological level, recent research has
identified (among many) two particularly prominent signatures of the psychedelic state: an overall disregulation of neural
population activity, most clearly seen as suppression of spectral power in the alpha (8-12 Hz) band;6–8 and an increase in the
signal diversity of the neural activity, measured through the information-theoretic notion of entropy.9 In particular, this acute
entropy increase has been linked to both short- and long-term effects of the psychedelic experience, including certain aspects of
the reported subjective experience9 and subsequent personality changes.10.

Interestingly, the opposite effects have been reported for states of loss of consciousness, where a strong decrease in brain
entropy has been repeatedly observed. This seems to be a core feature of loss of consciousness, generalising across states such
as deep sleep,11 general anaesthesia,12 and disorders of consciousness.13 Together, these divergences are yielding converging
evidence that entropy and related measures offer simple and powerful indices of conscious states.

Relatedly, Carhart-Harris and colleagues have put forward the Entropic Brain Hypothesis (EBH) an entropy based theory of
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conscious states.1, 14 The EBH proposes the simple, yet powerful idea that the variety of states of consciousness can be indexed
by the entropy of key parameters of brain activity, or in other words, that the richness of subjective experience is directly
related to the richness of on-going neural activity, where richness can be defined most simply as diversity. Investigating the
neurobiological origins of such changes in brain activity is therefore a key step in the study of altered states of consciousness.

Multiple experiments in humans and animal models have established that the mind-altering effects of psychedelics depend
on agonism specifically at the serotonin 2A receptor (5HT2A-R).15–17 A recent simulation study involving whole-brain
computational modelling confirmed that the topographic distribution of 5HT2A-R in the human brain is critical to reproduce
the functional connectivity dynamics of human fMRI data recorded under the acute effects of LSD.18 Here we build upon this
model to characterise the interplay between the entropy of brain signals, the distribution of 5HT2A receptors, and structural
connectivity properties of the brain, with the overarching goal of explaining the sources of entropic effects, and thus altered
consciousness, elicited by psychedelic drugs.

Results

We simulated whole-brain activity using the Dynamic Mean-Field (DMF) model by Deco et al.,19 using parameter values fit
to reproduce the dynamics of fMRI recordings in humans during wakeful rest, as well as under the acute effects of LSD.18

The model consists of interacting pools of excitatory and inhibitory neural populations, coupled via long-range excitatory
connections informed by the anatomical connectivity of the brain. The DMF model combines a theoretical model of neural and
synaptic dynamics with two empirical sources of information about the human brain: the human connectome, i.e. DTI-estimated
connectivity between the 90 regions of the AAL20 atlas; and average 5HT2A-R expression across the human brain obtained
with Positron Emission Tomography (PET) scans21.

Each simulation of the DMF model generates 90 time series of excitatory firing rates, one for each region of the AAL
atlas (Fig. 1A). These excitatory firing rates have a non-linear dependency on the local excitatory inputs, determined by a
frequency-current (F-I) curve; and 5HT2A-R activation is modelled as a response-gain modulation of this F-I curve dependent
on the receptor density at a given region (Fig. 1B). We simulated the model in two conditions, with and without 5HT2A-R
activation, which, in an analogy with neuroscientific terminology, we refer to as placebo (PLA) and 5HT2A-R conditions,
respectively. In this way, we obtain 90 time series for each condition, which we keep for further analysis.

Finally, using these time series, we estimate Shannon’s differential entropy for each region under both conditions, yielding a
topographical distribution of entropy values (Fig. 1C) that constitutes the main subject of analysis in this study. Further details
about model specification and entropy estimation, as well as other methodological caveats, are presented in the Methods section
at the end of this article.

5HT2A-R activation causes a heterogeneous, non-linear increase in the entropy of simulated brain activity
In our first analysis, we used the DMF model to test the main prediction of the EBH: that 5HT2A-R activation causes an increase
in the overall entropy of neural signals (Fig. 2). In line with previous experimental findings with psychedelic drugs,9 the model
shows a significant increase in the brain’s entropy h due to 5HT2A-R activation, with an average entropy of hPLA = 2.20nat in
the placebo condition, and h5HT2A = 2.30nat in the 5HT2A-R condition (dashed vertical lines in Fig. 2B, Wilcoxon signed-rank
test p < 10−6, Cohen’s d = 0.262± 0.011). A closer look at the distribution of entropy changes, however, reveals a more
nuanced picture, with some regions increasing and some decreasing their entropy as a result of 5HT2A-R activation (Fig. 2D).
This suggests that, according to the model, 5HT2A-R agonism might trigger a complex reconfiguration of the topographically
specifc distribution of entropy, and not a mere homogeneous overall increase.

To investigate this reconfiguration, we analysed the local changes in entropy by plotting the entropy of the nth region in both
PLA and 5HT2A conditions, denoted by h5HT2A

n and hPLA
n respectively (Fig. 2D). Our results show that 5HT2A-R activation

affects local entropy in a highly non-linear manner, especially in regions with low baseline resting state entropy. In particular,
in such regions the effect of 5HT2A-R activation could either increase or decrease entropy, such that the local entropy in the
5HT2A-R condition could not always be determined by the region’s baseline entropy. This finding hints towards a more general
theme: that local dynamical properties alone are not able to explain the local changes in activity induced by 5HT2A-R agonists
like psychedelic drugs. We will explore this phenomenon in depth in the following sections.

Next, we studied the effect of 5HT2A-R agonism on local entropy by considering the relative change scores,

∆hn =
h5HT2A

n −hPLA
n

hPLA
n

.

Based on recent in vivo experiments with serotonergic psychedelics we expect to find localized entropy increases on occipital,
cingulate and parietal regions9, 10 as well as several changes on regions belonging to Resting State Networks (RSNs)7, 22, 23.
Then, we split brain regions by standard anatomical and functional groupings, finding that occipital and cingulate areas tend
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Figure 1. Modelling the effect of 5HT2A-R activation on the whole-brain topographical distribution of entropy. (A)
Resting state activity is simulated using the Dynamic Mean-Field (DMF) model, in which each region’s activity is represented
by a time series of excitatory firing rates. The differential entropy of each region is then estimated, obtaining a topographical
distribution of entropy values. (B) 5HT2A-R agonism is modelled as a receptor-density-dependent response gain modulation.
Black line is the frequency-current (F-I) curve of a population without 5HT2A-R agonism, and coloured curves show the
resulting F-I curves of regions with increasing 5HT2A-R agonism. (C) 5HT2A-R activation changes the topographical
distribution of entropy with respect to resting state activity, which constitutes the main subject of analysis in this study.

to show a strong relative increase in their entropy, while parietal and subcortical areas tend to show a decrease (Fig. 2A,
Supp. Fig. 1). Additionally, regions participating in the primary visual and Default Mode (DMN) RSNs – including occipital
and cingulate areas, respectively – showed a marked tendency to increase their entropy, while regions participating in the
Frontoparietal Executive Network (FPN) showed the opposite behaviour. Further discussion about the relation between these
results and recent in vivo experiments with psychedelic drugs is presented in the Discussion section.

The topography of entropy changes is explained by local connectivity strength and 5HT2A-R density
Given the results above, and given the potential clinical and neuroscientific relevance of entropy reconfiguration in the
psychedelic state, our next task is to elucidate what neurobiological factors underlie such phenomenon. In this section we
investigate which structural and dynamical features of the model are able to predict local entropy changes due to 5HT2A-R
activation, and what we can learn about the large-scale action mechanism of psychedelic drugs and other 5HT2A-R agonists.

To explain the effects of 5HT2A-R activation, the first natural step is to factor in the density of 5HT2A-R at each region.
Somewhat surprisingly, at a whole-brain level, receptor density was a very poor predictor of the entropy change due to
5HT2A-R activation (Fig. 3A, R2 = 0.078±0.004). In contrast, we found that the connectivity strength (based on the DTI
human connectome), defined as the sum of all the weighted links connecting a given region, exhibits a strong correlation with
local entropy changes (Fig. 3B, R2 = 0.801±0.006).

By visual inspection, however, it is clear that the relationship between DTI-informed connectivity strength and ∆hn is
linear for intermediate values of strength, but it departs from linearity in both extremes of the distribution. To investigate this
phenomenon, we implemented a simple optimisation algorithm to find the set of regions with the strongest linear relationship
between strength and ∆hn. This yielded a set of regions with a higher strength-∆hn correlation (R2 = 0.886± 0.007, as
opposed to R2 = 0.801±0.006 for the whole-brain), and induced a partition of all brain regions into three groups: those with
intermediate strength (IS, 76±4 brain regions, grey dots in Fig. 3A), high strength (HS, 12±3 regions, red dots), and low
strength (LS, 2±2 regions, blue dots).

Building up on this partition, we studied the effect of receptor density on those regions where entropy change could not be
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Figure 2. Non-linear heterogeneous increase of entropy following 5HT2A-R activation. (A) Effect of 5HT2A-R
agonism on the local entropy each of region in the AAL atlas. Bars indicate the (bilateral) average relative change in local
entropy, ∆hn, and error bars indicate 1 standard deviation across 1000 simulations. (B) Histograms of local entropy values for
the condition with (red) and without (blue) 5HT2A-R activation. 5HT2A-R activation increased both the average and the
spread of the local entropy distribution. (C) Topographical map of entropy changes. Brain regions are coloured according to
their ∆hn values. (D) 5HT2A-R agonism changed the topographical distribution of entropy in a heavily non-linear manner.
Black dots indicate single simulations and red circles indicate the averages across all simulations.

predicted from connectivity strength – the HS and LS groups. We found a strong relationship between receptor density and
entropy changes for both the HS and LS groups, which resulted in positive (R2 = 0.95±0.02) and negative (R2 = 0.999±0.001)
correlation, respectively. On the contrary, receptor density does not predict entropy changes for areas in the IS category. This
shows a complementary role of density and strength in LS, IS, and HS regions: entropy changes in HS and LS regions strongly
depend on the receptor density, but not connectivity strength; while changes in IS regions depend on connectivity strength, but
not receptor density.

Overall, to assess the predictive power of connectivity strength and the receptor density on local entropy changes, we built a
linear mixed model for ∆hn using connectivity strength, 5HT2A-R density, and the aforementioned three-way separation of
brain regions as the predictor variables. Together these variables explain 95.91±0.01% of the variance of ∆hn, confirming that
they provide an accurate model for predicting the entropic effects of 5HT2A-R activation. This suggests that psychedelic drugs
and other 5HT2A-R agonists do not have a simple, localised effect on brain activity, but instead amplify the fundamentally
collective, emergent properties of the brain as a complex system of interacting elements.
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Figure 3. Changes in local entropy are explained best by connectivity strength, then receptor density. (A) Changes in
entropy were overall independent from receptor density, although (B) they were well predicted by the connectivity strength of
each region. We split into groups of low (blue), intermediate (grey) and high (red) connectivity strength, only those regions
with low and high connectivity strength were well predicted by their receptor density. Regions with intermediate strength show
no significant relationship with receptor density, but are even more accurately predicted by their strength. (C) Topographical
localisation of the three groups, following the same colour code. Low-strength regions are mainly located in the parietal area,
while high-strength ones are in occipital and cingulate areas.

The specific connectivity strength distribution explains relative changes in entropy
As a final analysis, we set out to investigate exactly which topological properties of the brain’s structural connectivity explain
the observed changes in entropy. With this exercise, we aim to answer two questions: whether any property simpler than
connectivity strength can explain the results; and whether any property more complicated than connectivity strength is needed
to do so.

To this end, we ran further simulations of the DMF model using suitable null network models of the human connectome
(Fig. 4A), with the 5HT2A-R density map held fixed. In particular, we used three null models designed to test increasingly
strict null hypotheses that preserved different network attributes of the original connectome: i) the overall density and strength
(RAND, Fig. 4B), ii) the degree distribution (degree-preserving randomisation [DPR], Fig. 4C); and iii) the strength distribution
(strength-preserving randomisation, [DSPR], Fig. 4D). We simulated the DMF model in these surrogate networks, with and
without neuromodulation, and computed the resulting entropy changes ∆hn.

Our first result is that random and degree-preserving surrogate networks are unable to reproduce the entropy changes
observed in the human connectome: when compared against the ∆hn values obtained from the unperturbed network, neither
of them produce values close to the original (Figs. 4E, 4F). This result asserts the findings in the previous section, showing
that indeed node strength plays an important role in shaping the global pattern of entropy change associated with the action of
psychedelics and other 5HT2A-R agonists. Simpler topological features, like the degree distribution, are not enough to explain
such changes.

Perhaps more interestingly, the connectivity strength-preserving surrogate networks not only reproduced the entropy
changes, but did so almost exactly (Fig. 4G). Furthermore, we repeated the analyses in the previous section trying to predict
∆hn using other local connectivity measures (e.g. betweenness, eigenvector centrality), and none of them produced a model
as accurate as strength (Supp. Fig. 2). Together, these results show that, once the receptor distribution is fixed, the network
strength distribution is both necessary and sufficient to explain the entropic effects of 5HT2A-R activation. Of course, this is
not to say that strength explains every aspect of 5HT2A-R action – other topological network features are known to mediate
transitions of consciousness in other contexts,24 and investigating which network properties explain high-order dynamical
signatures25 of psychedelics remains an exciting avenue of future work.

Discussion
In this study we investigated the brain entropy changes induced by serotonergic psychedelics, by simulating whole-brain
resting state activity with and without 5HT2A-R activation. In contrast to empirical studies, which usually only have access to
coarse-grained fMRI or M/EEG data, our approach allows us to study firing rates of brain regions and hence to directly assess
the effect of 5HT2A-R agonism at the level of neural population activity.

In agreement with the Entropic Brain Hypothesis,14 the model shows a significant increase of global brain entropy, albeit in
a highly inhomogeneous and non-linear reconfiguration. The diversity of effects stresses the importance of extending the scope
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Figure 4. Relative changes in entropy are reproduced by a strength-preserving null model of the connectome.
(A)–(D) Connectivity matrices used to control the role of local properties of the connectome on ∆hn. See main text for the
description of the matrices and randomisation algorithm. (E)–(G). Scatter plots of ∆hn for the human connectome against the
three null models. DSPR yielded almost the same results than the human connectome, showing that only local network
properties of human connectome are sufficient to capture the effect of 5HT2A-R activation.

of the EBH from a simple level-based approach towards a multi-dimensional perspective, which might better characterise the
richness of 5HT2A-R activation effect both on the brain and consciousness.

These results have important consequences for our understanding of consciousness, neurodynamics, and the psychedelic
state. In the following, we highlight some of those implications, and propose possibilities for future work.

5HT2A-R-induced entropy changes are regionally heterogeneous
Our main result in this study is a mechanistic explanation of the main prediction of the EBH that serotonergic psychedelics
increase the entropy of brain activity. However, one of the main takeaways is that this overall increase is tied to a spatially
heterogeneous reconfiguration, rather than a globally consistent increase, in entropy.

Our simulation results show that 5HT2A-R activation triggers an entropy increase in sensory areas, as observed in fusiform
and olfactory cortices, as well as the primary visual RSN and occipital regions (Supp. Fig. 1). This agrees with the increased
perceptual ‘bandwidth’ that characterises the psychedelic state,26 as higher entropy might be related to richer perceptual
experience in a given moment of consciousness – potentially related to reduced gating. As a matter of fact, all the primary
visual RSN regions (with the exception of the lingual area) are part of the high-strength group, suggesting that the effect of
psychedelics on perceptual experience might be directly related to 5HT2A-R density in those regions. The localisation of the
entropy increases may relate to domain specific changes in consciousness, which could be interpreted as consistent with a
recent dimensions of consciousness characterization of the psychedelic experience.27

Comparison to in vivo experiments with psychedelic drugs
Throughout the paper, we have focused on one particular signature of 5HT2A-R agonists on the brain – a global increase in
average entropy. But much more is known about the effect of psychedelics on the brain, and studying these more nuanced
effects is key to understanding the rich phenomenology of the psychedelic state. In this section we deepen this connection by
providing a more detailed comparison between the behaviour of the model and experimental results with psychedelic drugs.

Our findings are in agreement with earlier studies where the effect of psychedelic drugs on the topographical distribution
of entropy-related measures was correlated with subjective effects. For example, Schartner et al.9 studied the effect of LSD,
psilocybin, and ketamine on the entropy rate of binarized MEG signals, and found localised increases in entropy rate on
occipital and parietal regions. Similarly, Lebedev et al.10 analysed the sample entropy of fMRI recordings of subjects under the
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effect of LSD, finding localized increases on frontoparietal, medial occipital, posterior and dorsal cingulate regions. Many of
those regions showed a consistent increase of their entropy with 5HT2A-R agonism in our study (Fig. 2A).

Moreover, many of those regions actually belong to the high connectivity strength group (c.f. Fig. 3), which suggests that
their entropy increase in experimental data might be directly related to the high 5HT2A-R density in those regions. Together,
these findings support the conclusion that the DMF model, once optimised, can reproduce not only functional connectivity,18

but also some of the most salient localised entropy increases found on in vivo human studies up to date.
Also, on a more fundamental level, our findings suggest that psychedelics dysregulate the functional organisation of the

brain with an especially focal and pronounced action on highly anatomically connected brain regions. This finding has very
important implications for our understanding of global brain function where a possible inference on this would be that the
maintenance of regular (i.e. non entropic) activity in such key connector hubs is critical for the maintenance of normal waking
consciousness, and moreover, perturbing the activity in these specific regions (via 5HT2A-R agonism) has particularly profound
implications for the quality of conscious experience.

On a separate line of inquiry, there is strong evidence associating the DMN to high-level cognitive functions, including the
sense of space, time and recognition of (self) boundaries. Disruptions to the DMN have been linked to fundamental changes in
experience, such as ego dissolution14, 28. Our simulation results show that 5HT2A-R activation increases the entropy of all
DMN regions (with the exception of the angular cortex), which is consistent with the reported decrease in the DMN network
integrity29 induced by psychedelic drugs. In contrast, low-level motor functions such as motor regulation remain largely
unaffected during the psychedelic state,30 which is consistent with the modest entropy changes observed in the lingual and
superior motor areas.

Finally, it is worth noting that both angular regions showed particularly important decreases in local entropy, specially in
the left hemisphere (Fig. 2A). Damage to this region is associated with impairments on language processing, and electrical
stimulation can induce out-of-body experiences31 (both experiences can feature within psychedelic states32). Since both
structural damage and electrical stimulation can be related to entropy reduction (e.g. by stimulus-driven synchronisation), these
experimental findings are consistent with the strong entropy decrease in angular regions predicted by the model. We speculate
that the reduced entropy observed on the angular region induced by 5HT2A-R agonism could be related to a smaller local
bandwidth, which in turn might impair the multi-modal and integrative functions of this region.31

Current limitations and future research
The approach employed in this work presents certain limitations related to several aspects of the simulation and analysis.
Acknowledging and understanding these limitations can help us extend and improve our approach, while introducing new
questions in the field of psychedelic computational neuroscience.

To our knowledge, the DMF model is the only whole-brain model that implements neuromodulation and is capable of
reproducing neuroimaging data in the placebo and psychedelic states. Nonetheless, it makes some important simplifications that
are worth discussing. At the network level, the DTI-based connectome used here is known to be incomplete, thus improvements
could be made to the model parameters of brain connectivity.33 At the dynamical level, the DMF model models neuronal
populations as perfectly homogeneous within a given region, and it is known that finer-grained local structure of certain brain
regions, such as the lattice structure of the primary visual cortex, is likely to be key to explaining certain subjective effects of
the psychedelic state (e.g. lattice structure in the visual cortex and geometric visual hallucinations34). Additionally, the version
of the DMF model used here only considers 5HT2A-R agonism, while classic serotonergic psychedelic drugs also have high
binding affinities for other receptors (e.g. in the case of LSD, the D1 and D2 dopamine receptors35).

These simplifications do not prevent the model from reproducing statistical features of brain signals under the placebo and
LSD conditions, but could result in an inability to reproduce finer aspects of the dynamics of the whole-brain activity in these
conditions. Extending the model to reproduce other dynamical signatures of psychedelics (like alpha suppression8 or reduced
directed functional connectivity36) constitutes a natural extension of this work.

Another potentially fruitful line of future work involves making more detailed comparisons with in vivo psychedelic
neuroimaging data, and, potentially, subjective experience reports. For example, one natural option would be to use forward
models of fMRI37 or M/EEG38 to bridge between the firing rates produced by the DMF model and other data modalities, to
produce simulated data that is more directly comparable with available empirical data.

Another exciting possibility is to explore model parameters to examine potential non-linearities in their implications for
different relevant aspects of brain function. For example, there are some reasons to believe that the dose-response relationship
is non-linear for psychedelics and that over a certain threshold dosage (level of 5HT2A-R stimulation) - new subjective and
global brain function properties can feature39.

Most interestingly, a potentially very useful extension of this work would be to include individual subject-level connectome
and receptor data to build personalised models of response to psychedelic drugs. This would enable a much more comprehensive
modelling framework, capable of correlating structural brain features with subjective experience reports. Such a framework
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could potentially make individualised predictions of the action of serotonergic psychedelics on specific individuals, aiding
patient stratification and treatment customization.2

Finally, it is worth noting that all our analyses here are based on the univariate statistics of individual brain regions, not
including any correlation or information flow between them. However, it is known that some high-level subjective effects of
psychedelics (such as complex imagery7 and ego dissolution28) are related to network, as opposed to single region, dynamics.
Therefore, building a richer statistical description of the brain’s dynamics using recent information-theoretic tools (such as
multivariate extensions of mutual information25) remains an exciting open problem.

Final remarks
In this paper we have provided the first mechanistic explanation of the neural entropy increase elicited by psychedelic drugs,
using a whole-brain dynamical model with 5HT2A-R neuromodulation. Furthermore, we built a simple model able to predict
a region’s relative change in entropy from its local 5HT2A-R density and topological properties, showing that, somewhat
paradoxically, at a whole-brain level receptor density is a poor predictor of 5HT2A-R activation effect.

Key to developing this predictive model was a three-way partition of brain regions according to their connectivity strength,
suggesting a differentiated action mechanism of 5HT2A-R agonists that depends on the local topology of brain regions. In
summary, our results suggest that the local changes in entropy, as well as the global entropy increase, induced by 5HT2A-R
activation can be explained from a region-specific interplay between structural connectivity and receptor density. Finally,
controlled experiments with null network models confirm that receptor density and connectivity strength are not only necessary,
but also sufficient, to explain the entropic effects of 5HT2A-R activation.

The spatially heterogeneous, complex nature of the observed effects of 5HT2A-R activation opens a challenging problem
for understanding the clinical and scientific relevance of psychedelic drugs, and implies a domain specificity to the so-called
’entropic’ action of psychedelics.

Methods

Dynamic mean-field model with 5HT2A-R neuromodulation
The main computational tool used in this study is the Dynamic Mean-Field (DMF) model by Deco et al.,18, 19 which consists
of a set of coupled differential equations modelling the average activity of one or more interacting brain regions. In this
model, each brain region n is modelled as two reciprocally coupled neuronal masses, one excitatory and one inhibitory, and the
excitatory and inhibitory synaptic currents I(E) and I(I) are mediated by NMDA and GABAA receptors respectively. Different
brain regions are coupled via their excitatory populations only, and the structural connectivity is given by the matrix C.

The full model, including the neuromodulatory effect described below, is given by

I(E)n =WE I0 +w+JNMDAS(E)n +GJNMDA

N

∑
p

CnpS(E)p − JFIC
n S(I)n

I(I)n =WII0 + JNMDAS(E)n −S(I)n

r(E)n = F
(

I(E)n

)
=

gNM gE

(
I(E)n − I(E)thr

)
1− exp

(
−dE gNM gE

(
I(E)n − I(E)thr

))
r(I)n = F

(
I(I)n

)
=

gI

(
I(I)n − I(I)thr

)
1− exp

(
−dI gI

(
I(I)n − I(I)thr

))
dS(E)n (t)

dt
=− S(E)n

τNMDA
+
(

1−S(E)n

)
γr(E)n +σvn(t)

dS(I)n (t)
dt

=− S(I)n

τGABA
+ r(I)n +σvn(t)

gNM
n = 1+ sEdrec

n .

Above, for each excitatory (E) and inhibitory (I) neural mass, the quantities I(E,I)n , r(E,I)n , and S(E,I)n represent its total input
current (nA), firing rate (Hz) and synaptic gating variable, respectively. The function F(·) is the transfer function (or F-I curve),
representing the non-linear relationship between the input current and the output firing rate of a neural population. Finally,
JFIC

n is the local feedback inhibitory control of region n, which is optimized19 to keep its average firing rate at approximately
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Table 1. Dynamic Mean Field (DMF) model parameters

Parameter Symbol Value

External current I0 0.382 nA
Excitatory scaling factor for I0 WE 1
Inhibitory scaling factor for I0 WI 0.7
Local excitatory recurrence w+ 1.4
Excitatory synaptic coupling JNMDA 0.15 nA

Threshold for F(I(E)n ) I(E)thr 0.403 nA

Threshold for F(I(I)n ) I(I)thr 0.288 nA

Gain factor of F(I(E)n ) gE 310 nC−1

Gain factor of F(I(I)n ) gI 615 nC−1

Shape of F(I(E)n ) around I(E)thr dE 0.16 s

Shape of F(I(I)n ) around I(I)thr dI 0.087 s
Excitatory kinetic parameter γ 0.641
Amplitude of uncorrelated Gaussian noise vn σ 0.01 nA
Time constant of NMDA τNMDA 100 ms
Time constant of GABA τGABA 10 ms

3Hz, and vn is uncorrelated Gaussian noise injected to region n. The interested reader is referred to the original publication for
further details.19

Key to this study is the recent extension of this model including neuromodulatory effects.18 In the equations above, gNM
n is

a neuromodulatory scaling factor modulating the F-I curve of all brain regions in the model, which affects region n depending
on its density of the receptor of interest, drec

n . Including neuromodulation, the free parameters of the model are G, the global
coupling parameter, and sE , the excitatory neuromodulatory gain, that are set to 2 and 0.2 respectively following Deco et al.18

The model was simulated using a standard Euler-Maruyama integration method,40 using the parameter values shown in Table 1.

Parcellation, connectome, and 5HT2A receptor maps
In addition to the DMF equations above, to simulate whole-brain activity we need three more ingredients: a suitable parcellation
of the cortex into well-defined regions, a structural connectivity matrix between those regions, and the density map of a receptor
of interest – in our case, the serotonin 2A receptor.

As a basis for our simulation, we used the Automated Anatomical Labelling (AAL) atlas,20 a sulci-based parcellation of
brain volume registered in MNI space. The AAL parcellation specifies a partition of the brain into 90 Regions Of Interest
(ROIs), that provides sufficient level of detail to obtain a picture of the topographical distribution of entropy, while being
suitable for computationally intensive simulations.

Structural connectivity data between the 90 AAL ROIs was obtained from 16 healthy subjects (5 female) using diffusion
Magnetic Resonance Imaging (dMRI), registered to the MNI space and parcellated according to the AAL atlas on the subject’s
native space. Then, for each subject the histogram of fiber directions at each voxel was obtained, yielding an estimate of the
number of fibers passing trough each voxel. The weight of the connection between regions i and j was defined as the proportion
of fibers passing through region i that reach region j, which (since the directionality of connections cannot be determined using
dMRI) yields a symmetric 90×90 Structural Connectivity (SC) matrix. Finally, the SC matrix of each subject was thresholded,
pruning any connection lower than 0.1%, and SC matrices of all subjects were averaged to obtain a single SC matrix used in all
simulations. This average matrix was kindly provided by Deco et al.18

For the density map of 5HT2A receptors, we used the Positron Emission Tomography (PET) data made public by Beliveau
et al.,21 which can be combined with the AAL parcellation to obtain an estimate of receptor density in every AAL region.
Further details can be found in the original publications.18, 21

Together with the DMF equations, these three elements fully specify our whole-brain model and allow us to run simulations
and obtain time series of excitatory firing rates, r(E)n , which we save for further analysis.
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Estimating the differential entropy of firing rates
The result of each simulation is a set of 90 time series representing the firing rate of each excitatory population (r(E)n ), which we
analysed to measure the entropy of the activity of each ROI. For a continuous random variable X with associated probability
distribution p(x) and support  , its differential entropy is defined as41

h(X) =−
∫


p(x) ln p(x) dx .

Estimating differential entropy from data is in general a hard problem, stemming (for the most part) from the difficulties
in estimating a probability density from samples42. We found that the probability distributions of firing rates r(E)n were
well approximated by a gamma distribution: goodness-of-fit, measured with a standard Kolmogorov-Smirnov statistic, was
satisfactory and comparable across brain regions and conditions (see Supp. Fig. 3).

This observation greatly simplifies the estimation of the differential entropy of each region, which is now reduced to
estimating the shape and scale parameters of the gamma distribution, k and θ . Once these parameters are estimated (in our case
by standard maximum likelihood estimation), the differential entropy of a gamma distribution can be computed analytically in
closed form as

h(X) = k+ lnθ + lnΓ(k)+(1− k)ψ(k),

where Γ(·) and ψ(·) are the standard gamma and digamma functions, respectively.

Linear models for ∆hn and three-way separation of AAL regions
To explain the changes in differential entropy across regions and conditions, we trained several linear mixed-effects models43

using different sets of covariates designed to test specific hypotheses about the relation between entropy, 5HT2A-R density, and
network topology.

First, we implemented a simple algorithm to find the group of regions where the change in entropy depends linearly on
region strength. To do so, we designed an optimisation procedure to find the optimal linear fit between ∆hn and connectivity
strength after the removal of some regions from the fit by setting a threshold on hPLA

n . The procedure consisted in iteratively
i) setting a threshold on hPLA

n ; ii) fitting a linear model with strength as a regressor and ∆hn as target for those regions below
the threshold; and iii) computing the goodness of fit measured by R2. This process is repeated for the whole range of entropy
values, yielding one R2 value per threshold. The threshold that maximises goodness of fit gives the optimal separation between
regions, separating those regions whose change in entropy linearly depends on connectivity strength from those that it does not.

With this three-way grouping fixed, we investigated the power of several dynamical and topological features to explain
the changes in local entropy (∆hn) by including them as covariates in the linear model. The three-way separation of brain
regions induces a model with 7 terms: a constant term and 2 fixed-effect terms for each group of regions: one for the
connectivity strength and one for the receptor density. The model was fit by maximum likelihood using off-the-shelf software,
and explanatory power measured using R2.

Null network models of the human connectome
Null network models of the human structural connectivity were used to evaluate the role of the local connectivity properties44

on the local changes in entropy induced by 5HT2A-R activation. To this end, we applied three different randomisation schemes
to the structural connectivity in order to produce suitable surrogate networks. These surrogates were designed to preserve
different network attributes of the original connectome: i) the overall density and strength (RAND), ii) the degree distribution
(degree-preserving randomisation [DPR]); and iii) the strength distribution (strength-preserving randomisation [DSPR]) After
randomisation, the DMF model was run with and without 5HT2A-R activation, and entropies estimated and analysed following
the same procedure as in the rest of the article. Every surrogate model was run 120 times, and the results averaged across runs.

In addition to the network surrogates, we computed several topological measures to include in the linear model reported
in Fig. 3. These measures included betweenness, eigenvector centrality, closeness, communicability, PageRank index, and
sub-graph centrality. All of these computations, including the surrogate networks and the topology measures, were performed
using the Brain Connectivity Toolbox45.
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