
Transcriptomic profiling of human effector and regulatory T cell subsets identifies 
predictive population signatures 

Barbara Höllbacher1‡, Thomas Duhen1‡, Samantha Motley1, Maria M. Klicznik2, Iris K. Gratz1,2,3, 
and Daniel J. Campbell1,4* 

 

1Immunology Program, Benaroya Research Institute, Seattle, WA 98101 
2Department of Biosciences, University of Salzburg, Salzburg, Austria 
3EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical 

University, Salzburg, Austria 
4Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195 

 
‡Equal contribution 

 

*Corresponding Author: Daniel J. Campbell, Benaroya Research Institute, 1201 Ninth Avenue, 

Seattle, WA 98101-2795. E-mail address: campbell@benaroyaresearch.org 

 

 

 

 

Running Title: Transcriptional signatures of human CD4+ T cells 

 

 

Funding: This work was supported through a collaborative research agreement with Novo 

Nordisk, and by a grant from the NIH to D.J.C. and I.K.G. (R01AI127726). M.M.K. was part of 

the PhD program Immunity in Cancer and Allergy, funded by the Austrian Science Fund (FWF, 

grant W 1213) and was recipient of a DOC Fellowship of the Austrian Academy of Sciences. 

 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.13.093567doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093567
http://creativecommons.org/licenses/by-nc/4.0/


Abstract 

After activation, CD4+ T helper (Th) cells differentiate into functionally specialized populations 
that coordinate distinct immune responses and protect against different types of pathogens.  In 
humans, these effector and memory Th cell subsets can be readily identified in peripheral blood 
based on their differential expression of chemokine receptors that govern their homeostatic and 
inflammatory trafficking.  Foxp3+ regulatory T (Treg) cells can also be divided into subsets that 
phenotypically mirror each of these effector populations, and share expression of key 
transcription factors and effector cytokines.  In this study, we performed comprehensive 
transcriptional profiling of 11 phenotypically distinct Th and Treg cell subsets sorted from 
peripheral blood of healthy individuals.  Despite their shared phenotypes, we found that mirror 
Th and Treg subsets were transcriptionally dissimilar, and that Treg cell populations showed 
limited transcriptional diversity compared to Th cells.  We identified core transcriptional 
signatures shared across all Th and Treg cell populations, and unique signatures that define 
each of the Th or Treg populations.  Finally, we applied these signatures to bulk Th and Treg 
RNA-seq data and found enrichment of specific Th and Treg cell populations in different human 
tissues.  These results further define the molecular basis for the functional specialization and 
differentiation of Th and Treg cell populations, and provide a new resource for examining Th 
and Treg specialization in RNA-seq data. 
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Introduction 
The outcome of adaptive immune responses is dictated in large part by the activity of CD4+ T 
helper (Th) cells.  Th cells differentiate into functionally specialized populations that through 
secretion of effector cytokines coordinate the activities of immune and stromal cells to control 
different types of pathogens and dangerous toxins (Sallusto, 2016).  Thus IFN-γ-producing Th1 
cells are essential for control of intracellular pathogens, Th2 cells that produce IL-4, IL-5 and IL-
13 mediate protection against helminth infection and poisonous venoms, and Th17 cells that 
produce IL-17 and IL-22 provide immunity to extracellular bacteria and fungal pathogens such 
as Staphylococcus aureus and Candida albicans.  More recently described Th populations 
include Th22 cells (Duhen et al., 2009; Trifari et al., 2009), which produce IL-22 but not IL-17, 
and appear to function specifically within the skin during tissue-repair responses, and Th1/17 
cells that share key features with both Th1 and Th17 cells including co-production IFN-γ and IL-
17, and are enriched in cells producing GM-CSF (Annunziato et al., 2007; Duhen and Campbell, 
2014).  In human blood, these Th subsets can be readily identified based on their differential 
expression of chemoattractant receptors and adhesion molecules that control their specific 
migration to distinct inflammatory sites and likely sites of pathogen entry. 

Although essential for protection against infection, dysregulated Th cell responses are 
pathogenic in immune-mediated diseases.  These include organ-specific autoimmune diseases 
such Type-1 diabetes (Th1), psoriasis (Th17, Th22), and multiple sclerosis (Th1/17), as well as 
allergic hypersensitivities and asthma (Th2).  The activities of Th cells are restrained by T 
regulatory (Treg) cells, a subset of CD4+ T cells that constitutively expresses the IL-2 receptor 
alpha chain CD25 and the transcription factor Foxp3.  Treg cells dampen the activation and 
function of Th cells via multiple mechanisms, including production of anti-inflammatory cytokines 
such as IL-10, IL-35 and TGF-β, CTLA4-mediated blockade of T cell co-stimulation, 
sequestration of effector cytokines, metabolic disruption of Th cells, competition for 
peptide:MHC complexes, and direct cell lysis (Shevach, 2018).  Importantly, we and others have 
shown that Treg cells are not homogenous, but instead like Th cells can be divided into diverse 
subsets (Campbell and Koch, 2011).  These phenotypically ‘mirror’ each of the major Th 
populations, share expression of lineage-defining transcription factors such as T-bet and RORγt, 
and can even produce effector cytokines such as IFN-γ and IL-17 (Dominguez-Villar et al., 2011; 
Duhen et al., 2012).  These shared features suggest that Th and Treg cells may be more similar 
than previously appreciated.  We also showed that production of the immunosuppressive 
cytokine IL-10 was limited to Th1- and Th17-like Treg cells, suggesting that different Treg cell 
subsets may employ specialized immunoregulatory mechanisms to modulate different types of 
inflammatory responses. 

To address these issues, we performed comprehensive transcriptional profiling of 11 
distinct CD4+ T cell subsets sorted from the peripheral blood of 3 healthy donors.  We found that 
although they shared many phenotypic features, mirror Th and Treg cell populations were 
transcriptionally divergent, and that the Treg cell populations showed limited transcriptional 
diversity compared to Th cells.  We further identified core transcriptional signatures shared 
across all Th or Treg cells, as well as unique signatures that define each of the Th or Treg cell 
populations.  Finally, we applied these signatures to RNA-seq data from bulk Th and Treg cells 
to show enrichment of specific Th and Treg cell populations in healthy and diseased human 
tissues. 
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Materials and Methods 
Flow cytometric sorting 
Blood samples were obtained from healthy donors participating in the Benaroya Research 
Institute Immune-Mediated Disease Registry. Informed consent was obtained from all subjects 
according to institutional review board–approved protocols at Benaroya Research Institute and 
following the Declaration of Helsinki. CD4+CD25high Treg cells were enriched from PBMCs after 
staining with PE-cyanine 5 (PE-Cy5)–labeled anti-CD25 Ab (BioLegend), followed by positive 
selection using anti-PE and anti-Cy5 microbeads (Miltenyi Biotec). On the negative fraction, 
CD4+CD25− Th cells were purified by positive selection with CD4-specific microbeads (Miltenyi 
Biotec). Memory T-cell subsets were sorted to more than 97% purity as CD4+CD45RA-

RO+CD127+CD25− using APC-780–conjugated anti-CD45RA Ab (eBioscience), Alexa 700-
conjugated anti-CD45RO Ab (BioLegend), v450–conjugated anti-CD127 Ab (BD Bioscience), 
PE-Cy5–conjugated anti-CD25 Ab (BioLegend) and Qdot655–conjugated anti-CD4 Ab 
(eBioscience). Abs used for sorting of memory Th and Treg cell subsets were: PE-Cy7-
conjugated anti-CCR6 Ab (BioLegend), PE-conjugated anti-CCR10 Ab (R&D Systems), 
PerCP/Cy5.5–conjugated anti-CCR4 Ab (BioLegend), and Alexa Fluor 488–conjugated anti-
CXCR3 Ab (BD Bioscience). Cells were sorted with a FACSAria II (BD Biosciences). 
 
Library construction and RNA-seq 
RNA-seq libraries were constructed from up to100 ng of total RNA using the TruSeq RNA 
Sample Prep Kit v2 (Illumina).  Libraries were clustered on a flowcell using the TruSeq Paired-
end Cluster Kit, v3 using a cBot clustering instrument (Illumina), followed by paired-end 
sequencing on a HiScanSQ (Illumina) for 50 cycles in either direction.  After the run was 
completed, the reads were demultiplexed and FASTQs were generated for each sample using 
CASAVA. 
 
RNA-seq Analysis 
Base-calling was performed automatically by Illumina real time analysis software and 
demultiplexing was performed with the program Casava. One 3'-end base was removed from all 
reads, followed by quality-based trimming from both ends until minimum base quality for each 
read was >= 30. Tophat aligned reads to GRCh38, using Ensembl annotation release number 
77 and the read counts per Ensembl gene ID were computed with featureCounts. Sequencing, 
alignment, and quantitation metrics were obtained for FASTQ, BAM/SAM, and count files using 
FastQC, Picard, TopHat, Samtools, and htseq-count.  All samples passed QC with mapped 
reads with duplicates > 80%, median CV coverage < 0.8 and total fastq reads of > 5 Mio. 
Protein coding transcripts with a minimum of 1 CPM in at least 5% of the total number of 
libraries were retained and the ensembl gene IDs mapped to HGNC gene symbols. Count data 
was normalized using edgeR’s TMM (Robinson and Oshlack, 2010). For linear modelling we 
computed a coefficient for each subset with the Naïve population as reference and accounted 
for donor variation as random factor using the R package limma (Ritchie et al., 2015). To 
determine differences between the Th and Treg cells that are common for all subsets, we set up 
pairwise contrasts between mirror Th and Treg subsets and examined the overlap.  For 
visualizations such as PCA and expression plots, this is approximated with the limma function 
removebatcheffect. Cluster means were computed with the kmeans function for 3 total clusters, 
transformed into PCA space and added to the PCA plot. For gene expression dotplots the base 
of 2 was raised to the power of rembatch corrected values (which were originally taken from 
output of the voomwithqualityweights function) in order to unlog them. P values for the venn 
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diagrams of DE genes between Tregs and their respective Th counterpart were adjusted using 
global BH adjustment of FDR=0.05 and summarized with the limma::decideTest function 
including a cutoff of absolute log2 fold change > 1. Heatmaps are based on log-transformed 
expression values, are z-scaled by rows and were plotted using the R package 
ComplexHeatmap (Gu et al., 2016).  Euclidean distances between all samples were computed 
with default settings from the stats::dist() function and plotted as a heatmap with manually 
defined sample order.  To compare the heterogeneity of Th and Treg populations, we 
recomputed the distances of Treg to Treg samples, Th to Th samples and Treg to Th samples 
separately. The results are summarized and plotted as density estimates using ggplot. Unique 
subset signatures were determined by making contrasts of a given subset with all other Th or 
Treg populations (excluding Th1/17 cells), and genes that were differentially expressed at adj. p 
value < 0.05 between a given subset and all other subsets were termed to be part of a 
population signature. To evaluate the relative expression of signature genesets in other 
samples, we rank ordered all genes for a given samples and computed the mean rank for the 
significantly upregulated genes in each signature.  Gene expression data of IFN-γ- and IL10-
producing Treg populations from the public dataset GSE116283 were accessed through GEO 
and filtered for genes with CPM >1 in at least 25% of all samples that were also present in our 
dataset. Gene expression matrix and series matrix of breast cancer and PBMC samples were 
retrieved through the GEO accession number GSE89225. The samples run on the Iontorrent 
platform were downloaded and assigned to their corresponding HGNC gene keys. Gene 
expression data was filtered for protein coding genes that were also expressed in our dataset 
and those with CPM > 1 in at least 25% of the samples.  
 
Data accessibility 
RNA-seq data generated for this study are available from GEO as SuperSeries GSE149090.  
 
Results 
RNA-seq analysis of human CD4+ T cell populations 

To comprehensively profile human CD4+ Th and Treg cells, we performed RNA-seq on 
11 distinct CD4+ T cell populations sorted directly from peripheral blood of 3 healthy individuals 
on the basis of surface markers and chemokine receptors as previously described (Duhen et al., 
2012) (Fig 1).  Th cells were identified as CD127+CD25-, and were sorted into naïve (CD45RA+), 
as well as Th1 (CD45RA-CXCR3+CCR6-), Th17 (CD45RA-CXCR3-CCR6+CCR4+CCR10-), 
Th1/17 (CD45RA-CXCR3+CCR6+), Th2 (CD45RA-CXCR3-CCR6-CCR4+) and Th22 (CD45RA-

CXCR3-CCR6+CCR4+CCR10+) cell fractions.  Treg1, Treg17, Treg1/17, Treg2 and Treg22 
populations were sorted within the CD127-CD25+ Treg cells using the same markers (Fig 1).  
Expression of genes encoding the surface receptors used for cell sorting faithfully segregated 
into the various Th and Treg transcriptional profiles, and analysis of genes encoding key 
transcription factors associated with Treg cells (FOXP3), or with Th1/Treg1 (TBX21), 
Th17/Treg17 (RORC) and Th2/Treg2 (GATA3) subsets were expressed as expected within the 
appropriate cell populations (Fig 2A).  Thus, the sorting strategy we employed properly isolated 
functionally specialized Th and Treg cell populations, and our data provide a novel and 
comprehensive transcriptional analysis of in vivo differentiated Th and Treg cells. 

Th and Treg cells are transcriptionally distinct 
Using principle component analysis (PCA), we compared the overall transcriptional 

profile of all Th and Treg subsets (Fig 2B).  Kmeans clustering was used to identify three distinct 
clusters, which corresponded to samples from naïve Th cells (cluster 1), memory Th cells 
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(cluster 2) and Treg cells (cluster 3).  Thus, despite their phenotypical similarity and shared 
expression of key lineage-defining transcription factors, mirror Th and Treg cell populations 
(e.g., Th1 and Treg1 cells) are transcriptionally distinct and more closely resemble other Th and 
Treg cells.  To define core Th and Treg transcriptional signatures, we performed pairwise 
comparisons between each of the individual Th and Treg cell mirror pairs, and identified 294 
genes that were significantly higher (log2 fold change>1, adjusted p-value<0.05) in all Treg cell 
populations, and 492 that were more highly expressed in all Th populations (Fig 2C).  Analysis 
of these gene sets revealed many genes previously identified as differentially expressed in Treg 
vs. Th (Bhairavabhotla et al., 2016; Pesenacker et al., 2016) (Supplementary Table 1). These 
included FOXP3, CTLA4, ENTPD1 (CD39), IKZF2 (Helios), and TNFRSF9 that are 
preferentially expressed in Treg cells, and BHLHE40, CD40LG, ID2, and IL2 that are more 
highly expressed in Th cells. 

Because Treg cells are largely specific for either auto-antigens or for components of the 
microbiome present on barrier surfaces, they are subject to chronic stimulation and many of the 
genes previously associated with Treg cells are activation-induced genes that are not actually 
Treg cell specific (Pesenacker et al., 2016).  Consistent with this, among genes more highly 
expressed in Treg cells, several were genes we previously found to be downregulated in 
subjects treated with the co-stimulation blocking drug abatacept (CTLA4-Ig) (Glatigny et al., 
2019), including ARHGAP11A, CENPE, DUSP4, ERI1, GXYLT1, HELLS, NUSAP1, PMAIP1, 
SGMS1, and TOP2A (Supplementary Table 1).  To account for these and other activation-
induced genes, Pesenacker et al. compared the transcriptomes of resting and activated Th and 
Treg cells, and identified a 31-gene ‘activation-independent’ Treg cell signature (Pesenacker et 
al., 2016).  Of these, 21 were differentially expressed in all 5 Th/Treg cell comparisons, and of 
the remaining genes 3 were significant in 4 out of 5 comparisons (Fig 2D,E). 

In our PCA analysis (Fig 2B), all Treg cell populations clustered tightly together (cluster 
3), whereas there was substantially more spreading within the cluster of memory Th cell 
populations (cluster 2), indicating that overall Treg cells are transcriptionally less diverse than 
the Th cells.  To further examine this, we calculated the Euclidian distance of all samples 
relative to each other in order to quantitatively assess their overall similarity (Fig 3A, B).  As 
evidenced in the PCA, Treg and Th subsets were highly divergent, with a mean Euclidian 
distance in these comparisons of 129.7. The Euclidian distance comparing all the Th cell 
samples to each other had a bi-modal distribution, with a peak of highly similar samples 
corresponding to comparisons between the same Th populations isolated from the 3 donors 
(e.g., comparing all Th1 samples, mean Euclidian distance 59.06), and a second significantly 
more distant peak corresponding to comparisons between the different types of Th cell 
populations (mean Euclidian distance 82.44, p<2x10-16, Welch two sample t-test). By contrast, 
we found that the Euclidian distance between different Treg populations was relatively uniform, 
and that the mean Euclidian distance between all of the Treg populations was significantly 
smaller than observed in the comparisons of the Th populations (mean Euclidian distance 
69.71, p<2x10-16, Welch two sample t-test). Thus, despite their similar degree of phenotypic 
heterogeneity, the different Treg cell populations are transcriptionally less diverse than their Th 
counterparts. 

Functional specialization of Treg cells 
The differentiation of Th cells into specialized subsets is accompanied by acquisition of 

distinct effector functions that coordinate different types of immune responses.  Similarly, a large 
number of effector mechanisms are used by Treg cells to dampen inflammation and prevent 
autoimmunity.  These include production of anti-inflammatory cytokines, expression of co-
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inhibitory receptors, cytokine sequestration, modulation of pro- and anti-inflammatory 
metabolites, and direct target cell lysis.  This raises the intriguing possibility that like Th cells, 
different Treg cell subsets may employ specialized immunoregulatory mechanisms to modulate 
different types of inflammatory responses.  Indeed, we previously demonstrated that production 
of the anti-inflammatory cytokine IL-10 was restricted to Treg1 and Treg17 cells (Duhen et al., 
2012).  To further examine the functional specialization of Treg cells, we assessed expression 
of a set of key genes controlling Treg cell activity in different settings (Fig 4A).  Consistent with 
our previous findings, IL10 expression was largely limited to the Treg1, Treg17 and Treg1/17 
populations, and these also selectively expressed the effector cytokines IFNG and IL17A which 
has previously been reported for human Treg cells.  Treg1 cells also most highly expressed the 
co-inhibitory receptors LAG3 and HAVCR2 (TIM-3), and the cytolytic effectors GZMA and 
GZMK.  By contrast, expression the TGF-β-activating molecule LRRC32 (GARP) was highest in 
Treg 2 cells, the decoy IL-1 receptor IL1R2 was most highly expressed by Treg 17 and Treg1/17 
cells, and HPGD, which is used by Treg cells to degrade the pro-inflammatory prostaglandin 
PGE2 (Schmidleithner et al., 2019), was most highly expressed in Treg22 cells.  Other genes 
implicated in Treg function including TGFB1, ITGAV, ITGB8, IL12A (a component of the anti-
inflammatory cytokine IL-35), CTLA4, PDCD1 (PD1), TIGIT, PRF1, and ENTPD1 (CD39) did not 
show strong preferential expression in any Treg population, and NT5E (CD73) was barely 
detected in these ex vivo isolated Treg cells. 

Treg cell specialization depends on their selective expression of a set of transcription 
factors that alter their migration and function.  In addition to T-bet (TBX21), GATA3 (GATA3) 
and RORγt (RORC) that promote Treg1, Treg2 and Treg17 differentiation, other transcription 
factors implicated in control of Treg cell function include IRF4, BACH2, RORa, PPARG, BCL6, 
IKZF2 (Helios), IKZF4 (Eos), ID2, ID3, and FOXO1.  Indeed, IRF4, RORA, IKZF2, IKZF4 and 
ID3 were significantly differentially expressed between various Treg cell subsets, and this may 
contribute to their molecular specialization. Expression of PPARG was highest in Treg17 cells, 
but this did not reach statistical significance.  By contrast, BCL6 and FOXO1 were expressed 
equally in all Treg populations whereas ID2 and BACH2 showed limited expression in all Treg 
populations relative to naïve T cells, and therefore these factors are unlikely to contribute to 
their phenotypic and functional heterogeneity. 

Identification of subset specific transcriptional signatures in Th and Treg cells 
Although the functional specialization of Th cells was first described over 30 years ago, 

their complex phenotypes, specialized functions and pathways of differentiation are still being 
defined.  Much of our understanding of human Th cell differentiation has been derived from cells 
differentiated in vitro, and these may differ substantially from cells differentiated in vivo.  
Therefore, to gain further insight into the functional specialization of Th cells, we identified the 
unique transcriptional signature for each Th subset based on genes significantly up- or down-
regulated in comparison with all other Th subsets (Fig 5A).  Because Th1/17 cells are a hybrid 
population with characteristics of both Th1 and Th17 cells (Annunziato et al., 2007), we 
excluded them from these comparisons in order to more readily define the Th1 and Th17 subset 
signatures.  Analysis of these signatures revealed selective expression of genes that were 
previously implicated in Th cell specialization, localization and function including IFNG, 
IL12RB2, TBX21, and EOMES that are selectively expressed in Th1 cells; IL12RB1 and ABCB1 
in Th17 cells; GATA3, PTGDR2, and IL4R in Th2 cells; and ITGAE, CD9, and CD101 in Th22 
cells.  We also identified genes in each of the subset signatures that may differentially influence 
cell metabolism (decreased HK2 expression in Th1 cells), cell signaling (increased SOCS2 
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expression in Th17 cells), and cell function (increased TNFSF11 (RANKL) expression in Th2 
cells).  Similarly, by comparing the transcriptional profiles of the Treg subsets (excluding 
Treg1/17 cells), we identified population-specific transcriptional signatures in Treg cells (Fig 5B). 
A full list of upregulated and downregulated genes in all Th and Treg population signatures is 
found in Supplementary Table 2. 

To assess expression of the gene signatures between different populations, we ranked 
all genes in order of expression for each sample, and determined the mean genelist rank for 
each set of signature genes in all populations examined.  For this, we focused on genes that 
were upregulated in each of the signatures and therefore positively identified a given population.  
This analysis demonstrated that the signatures of both the Th1 and Th17 populations were also 
shared in the Th1/17 cells (Fig 6A), consistent with the Th17/17 population having hybrid 
characteristics of both Th1 and Th17 cells.  Analysis of the gene signatures of mirror Th and 
Treg populations revealed little overlap in the identity of the differentially expressed genes (Fig 
6B).  However, examining the mean genelist rank showed that in all cases, Th cell subset 
signatures were significantly enriched in the corresponding Treg cell subset, and that Treg 
subset signatures were significantly enriched in the corresponding Th populations (Fig 6C). 
Thus, despite their overall transcriptional dissimilarity, the Th and Treg cell populations do share 
some common phenotype-associated transcriptional programs. 

Enrichment of Th and Treg transcriptional signatures in bulk RNA-seq data 
The identification of specific transcriptional signatures for each of the Th and Treg cell subsets 
from peripheral blood raises the possibility that the genelist rank approach could be used to 
functionally characterize bulk Th and Treg samples.  To test this idea, we first applied the Treg 
subset signatures to ranked genelists of RNA-seq samples from peripheral blood Treg cells that 
were sorted into 4 populations based on their expression of the cytokines IFN-γ and IL-10 
(Sumida et al., 2018).  As expected based on their preferential production of these cytokines, 
we found that genes specifically upregulated in Treg1 cells were significantly enriched in the 
IFN-γ+IL-10+ and IFN-γ+IL-10- cells, that Treg17 signature genes were also enriched in the IFN-γ-

IL-10+ cells, and that Treg2 and Treg22 signature genes were elevated in the IFN-γ-IL-10- cells 
(Fig 7A). To further extend this approach, we applied our signatures to data from bulk Th and 
Treg cells isolated from either peripheral blood or from human breast carcinoma (Plitas et al., 
2016).  In this case, Th cells from tumors were enriched in Th1 signature genes, whereas those 
from PBMC were comparatively enriched in Th17 and Th2 signature genes.  This is consistent 
with the initial characterization of these data reporting high expression of Th1 signature genes 
EOMES, GZMK, CXCR3 and IFNG in tumor-infiltrating Th cells (Plitas et al., 2016).  Similarly, 
Treg cells from the tumors were enriched in Treg1 signature genes, but showed decreased 
expression of Treg17 and Treg22 signature genes.  Lastly, we applied the Th cell signatures to 
RNA-seq data comparing gene expression by CCR7+ central memory T (TCM) cells and CCR7- 
effector memory T (TEM) Th cells that express the skin homing receptor cutaneous lymphocyte 
antigen (CLA) from peripheral blood with CLA+ TCM and TEM from skin.  In this analysis, we 
found a significant enrichment of Th22 signature genes in both TCM and TEM populations from 
skin. Th22 cells in the blood express a set of surface adhesion molecules and chemokine 
receptors indicative of skin-tropism, including CLA, CCR4 and CCR10, and IL-22-producing T 
cells are enriched in the skin where this cytokine can act directly on keratinocytes to induce 
tissue-repair and anti-microbial responses (REF). Together, these examples demonstrate the 
utility of the gene signatures we have identified for functional analysis of bulk Th and Treg cells 
isolated from both healthy and diseased tissues. 
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Discussion 
 The functional specialization of CD4+ T cells is the cornerstone of effective adaptive 
immune responses that prevent the growth and spread of various pathogens while limiting 
collateral tissue damage and autoimmunity (Mahnke et al., 2013).  Through analysis of 11 
human CD4+ T cell populations sorted directly ex vivo, we have comprehensively defined the 
transcriptional basis for human CD4+ T cell specialization, resulting in several important and 
novel insights. We assessed the transcriptional relationship between the various CD4+ T cell 
populations, and defined core Th and Treg gene signatures as well as unique signatures of 
each population that can be applied to analysis of existing RNA-seq data sets for functional 
profiling of human Th and Treg cells in different tissue sites.  

The majority of Treg cells are believed to develop in the thymus upon encounter with 
self-antigen, and therefore this can be thought of as the first branch point in the functional 
differentiation of CD4+ T cells. At barrier sites, Treg cells can also develop from conventional 
naïve T cells activated in tolerogenic conditions to help enforce tolerance to harmless 
environmental antigens, including components of the skin and intestinal microbiomes (Lee et al., 
2011).  The fact that all of the Treg cell populations differentially expressed genes generally 
involved in T cell activation and proliferation is indeed consistent with each containing large 
fractions of highly reactive cells.  Among these, it is interesting that each Treg population 
showed increased expression of the transcription factor TOX, which has recently been found to 
promote and exhausted phenotype in chronically stimulated CD8+ T cells and thus to prevent 
activation induced cell death (Alfei et al., 2019; Khan et al., 2019; Scott et al., 2019).   
 Interestingly, despite displaying similar phenotypic diversity, transcriptionally the Treg 
populations were far more uniform then their Th counterparts.  This likely reflects the dominant 
role of Foxp3 on the Treg transcriptome, and the ability of this single factor to convert potentially 
pathogenic effector T cells into potent Treg cells (Hori et al., 2003).  Induction of Foxp3 in Treg 
cells initiates dramatic changes in gene expression that underlie their suppressive functions.  
Foxp3 activates a broad transcriptional program that controls Treg cell function and 
homeostasis, and includes genes such as CTLA4 and IL2RA (CD25).  Foxp3 also inhibits 
expression of key effector cell molecules such as IL2, IFNG, and CD40LG that were more highly 
expressed in Th cells (Bhairavabhotla et al., 2016).  Indeed, our analysis clearly shows that 
despite these shared properties, functionally specialized Th subsets are transcriptionally distinct 
from their Treg cell mirror counterparts, and we used each of these comparisons to identify 
‘core’ Th and Treg gene signatures that confirm and extend previous analysis of the specific 
Treg cell transcriptome.  All Treg populations showed increased expression of core 
immunosuppressive genes (CTLA4, TIGIT, ITGB8, LRRC32, ENTPD1) and specific 
chemokine/cytokine receptors (CCR3, CXCR6, CSF2RB, IL1R1). Unlike Th cells that undergo 
extensive functional diversification based on differential expression of key effector cytokines, 
most of the key functional immunoregulatory molecules expressed by Treg cells were 
expressed to some degree by all of the Treg cell populations. Thus, the phenotypic diversity 
observed among Treg cell populations may function primarily to direct Treg cells with the 
appropriate specificities to sites of Th1, Th2, Th17 or Th22 mediated inflammatory responses 
(Campbell and Koch, 2011).    

The phenotypic and functional diversity of Th cells has been extensively studied.  
Although initially thought of as terminally differentiated subsets, it has become increasingly clear 
that there is significant plasticity among different Th populations (Bonelli et al., 2014).  In 
particular, there is substantial plasticity in Th17 cells, which can adopt a hybrid Th1/17 
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phenotype in response to inflammatory cytokines such as IL-12 or IL-1β (Duhen and Campbell, 
2014; Sallusto et al., 2012).  This trans-differentiation is most relevant in the context of 
autoimmune and inflammatory diseases such as multiple sclerosis and Crohns disease in which 
hybrid populations and/or ‘ex-Th17’ cells have been implicated in pathogenesis (Hirota et al., 
2011; Ramesh et al., 2014).  Indeed, our transcriptional analysis of Th1/17 cells showed that 
they are hybrid population that shares the transcriptional signature of both Th1 and Th17 cells.  
This includes not only shared expression of RORC and TBX21, but also the highest levels of the 
cytokine receptors IL23R and IL12RB2 and some unique genes such as the multi-drug 
resistance transporter ABCB1 and the inhibitory receptor KLRB1 (CD161). Similarly, Treg1/17 
cells transcriptionally resembled both the Treg1 and Treg17 populations, indicating that there 
may be significant phenotypic plasticity among these populations as well. 
 The identification and isolation of distinct Th and Treg populations based on differential 
chemokine receptor expression works well in CD4+ T cells isolated from healthy human blood.  
However, similar analyses from non-lymphoid tissues can be challenging due to changes in 
phenotype that occur upon cellular entry into certain tissue sites, cleavage of specific markers 
during enzymatic digestion required for isolation of T cells from some non-lymphoid tissues, and 
the small number of T cells obtained from clinical samples and tissue biopsies. Our identification 
of unique subset-specific transcriptional signatures provides the opportunity to re-analyze bulk 
RNA-seq data of tissue Th and Treg cells to determine if any of these signatures are enriched.  
We validate the utility of this approach in 3 independent data sets derived from cytokine 
producing Treg cells from peripheral blood, Th and Treg cells infiltrating breast carcinomas, and 
Th cells found in the skin.  Thus, these signatures can be used to guide analyses of both bulk 
and single-cell RNA-seq data to assess Th and Treg cell specialization.  This will be particularly 
useful in analyses of small clinical samples that are limiting for conventional flow cytometric or 
functional analyses. 
 Our comprehensive analysis of human CD4+ T cells provides a new framework for 
understanding the transcriptional basis of Treg and Th specialization, and an important resource 
for analysis of transcriptomic data from T cells in healthy and diseased tissues.  Cross-
referencing these transcriptional profiles with analyses of epigenetic modification and 
transcription factor binding in different Treg and Th populations will help to further define the 
molecular mechanisms that underlie the diversity of CD4+ T cells, and suggest new ways to 
manipulate specific pathways to tune Th or Treg responses in cancer, autoimmunity and chronic 
infection. 
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Figure Legends 

Figure 1: Gating strategy used to sort Th, Treg and Naive cell populations. 

Representative flow cytometric analysis of gated CD4+ peripheral blood mononuclear cells 
showing gating strategy used to sort each of the 11 T cell populations for RNA-seq analysis. 

Figure 2: Identification of core Th and Treg cell signatures. 

A) Expression analysis of the indicated chemokine receptors and transcription factors that 
define the different T cell populations. Values represent batch-effect corrected counts per 
million. B) Principal component analysis of all samples run on all expressed genes.  Cluster 
centers representing naïve T cells (1), Th cells (2) and Treg cells (3) returned by k-means 
clustering. C) Venn diagrams showing the overlap in genes that were significantly (adjusted p 
value < 0.05 and absolute log2 fold change > 1) up-regulated (left) or down-regulated (right) 
when comparing Tregs with their mirror Th counterpart as indicated. Numbers indicate genes 
that were up-/down-regulated in all comparisons (core of the venn diagrams), or genes that 
were differentially expressed in only one comparison.  D) Heatmap showing expression of 31 
genes identified by Pesenacker et al. as activation independent Treg markers in the indicated 
samples. Bolded genes were significantly differentially expressed in all comparisons of mirror Th 
and Treg populations. E) Volcano plots showing pairwise comparisons of mirror Th and Treg 
cell  populations. Genes identified by Pesenacker et al. as higher in Treg cells are highlighted in 
red, those higher in Th cells in blue. Chisquare test statistic and p-values indicate whether the 
sets of up- and down-regulated identified by Pesenacker et al. are differentially distributed in the 
indicated Treg vs. Th comparison.  

Figure 3: Treg cell subsets show limited transcriptional diversity. 

A) Heatmap representing the Euclidian distances (based on batch effect corrected expression 
values) in pairwise comparisons of all samples as indicated. B) Histograms showing the 
distributions of Euclidian distances in comparisons of all Treg vs Th, Th vs. Th, or Treg vs. Treg 
as indicated. 

Figure 4: Functional and molecular specialization of Treg cell populations.  

A) Expression analysis of genes controlling different functions of Treg cells as indicated. B) 
Expression analysis of transcription factors implicated in Treg specialization.  Values represent 
batch-effect corrected counts per million. Significance levels were determined by ANOVA 
followed by TukeyHSD for testing pairwise differences. Significant differences with the naïve 
samples are not highlighted. 

Figure 5: Identification of subset-specific transcriptional signatures in Th and Treg cells. 

Heatmaps representing expression of genes in each of the indicated cell samples (top labels) 
that were up-regulated or down-regulated (adjusted p value < 0.05 and absolute log2 fold 
change > 1) in each of the A) Th cell or B) Treg cell populations (side labels) as indicated. 
Select genes in each of the population signatures are highlighted. 

Figure 6: Shared transcriptional signatures of mirror Th and Treg cell populations. 

A) Mean genelist rank of the Th1/17 subset compared to the Th1 and the Th17 subset 
examining genes significantly upregulated in the Th1 (left) and Th17 (right) populations. B) 
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Venn diagram showing the overlap in genes specifically upregulated in mirror Th and Treg cell 
populations. C) Mean genelist rank of Th signature genes in each Treg cell population (top), or 
mean genelist rank of Treg signature genes in each Th cell population (bottom) as indicated.  
Significance determined by ANOVA followed by Tukey HSD, and significantly different 
comparisons with the population of interest (highlighted with color) are indicated. 

Figure 7: Predictive use of Th and Treg population signatures in bulk RNA-seq data. 

A) Mean genelist rank of each of the Treg population signatures was applied to RNA-seq data 
from Tregs sorted on the basis of IFN-γ and IL-10 production as indicated (data from GEO 
dataset GSE116283). Significance determined by ANOVA followed by Tukey HSD. B) Mean 
genelist rank of each of the Th and Treg population signatures was applied to RNA-seq data 
from Th and Treg cells sorted from tumor or peripheral blood of patients with breast carcinoma 
(data from GSE89225). Significance determined by Student t-test. C) Mean genelist rank of 
each of the Th population signatures was applied to RNA-seq data from CLA+CCR7+ TCM and 
CLA+CCR7- TEM sorted from blood and skin (data from GSE149090). Significance determined by 
Student t-test. 
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Figure 4
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