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Abstract

After activation, CD4" T helper (Th) cells differentiate into functionally specialized populations
that coordinate distinct immune responses and protect against different types of pathogens. In
humans, these effector and memory Th cell subsets can be readily identified in peripheral blood
based on their differential expression of chemokine receptors that govern their homeostatic and
inflammatory trafficking. Foxp3* regulatory T (Treg) cells can also be divided into subsets that
phenotypically mirror each of these effector populations, and share expression of key
transcription factors and effector cytokines. In this study, we performed comprehensive
transcriptional profiling of 11 phenotypically distinct Th and Treg cell subsets sorted from
peripheral blood of healthy individuals. Despite their shared phenotypes, we found that mirror
Th and Treg subsets were transcriptionally dissimilar, and that Treg cell populations showed
limited transcriptional diversity compared to Th cells. We identified core transcriptional
signatures shared across all Th and Treg cell populations, and unique signatures that define
each of the Th or Treg populations. Finally, we applied these signatures to bulk Th and Treg
RNA-seq data and found enrichment of specific Th and Treg cell populations in different human
tissues. These results further define the molecular basis for the functional specialization and
differentiation of Th and Treg cell populations, and provide a new resource for examining Th
and Treg specialization in RNA-seq data.
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Introduction

The outcome of adaptive immune responses is dictated in large part by the activity of CD4" T
helper (Th) cells. Th cells differentiate into functionally specialized populations that through
secretion of effector cytokines coordinate the activities of immune and stromal cells to control
different types of pathogens and dangerous toxins (Sallusto, 2016). Thus IFN-y-producing Th1
cells are essential for control of intracellular pathogens, Th2 cells that produce IL-4, IL-5 and IL-
13 mediate protection against helminth infection and poisonous venoms, and Th17 cells that
produce IL-17 and IL-22 provide immunity to extracellular bacteria and fungal pathogens such
as Staphylococcus aureus and Candida albicans. More recently described Th populations
include Th22 cells (Duhen et al., 2009; Trifari et al., 2009), which produce IL-22 but not IL-17,
and appear to function specifically within the skin during tissue-repair responses, and Th1/17
cells that share key features with both Thl and Th17 cells including co-production IFN-y and IL-
17, and are enriched in cells producing GM-CSF (Annunziato et al., 2007; Duhen and Campbell,
2014). In human blood, these Th subsets can be readily identified based on their differential
expression of chemoattractant receptors and adhesion molecules that control their specific
migration to distinct inflammatory sites and likely sites of pathogen entry.

Although essential for protection against infection, dysregulated Th cell responses are
pathogenic in immune-mediated diseases. These include organ-specific autoimmune diseases
such Type-1 diabetes (Thl), psoriasis (Th17, Th22), and multiple sclerosis (Th1/17), as well as
allergic hypersensitivities and asthma (Th2). The activities of Th cells are restrained by T
regulatory (Treg) cells, a subset of CD4" T cells that constitutively expresses the IL-2 receptor
alpha chain CD25 and the transcription factor Foxp3. Treg cells dampen the activation and
function of Th cells via multiple mechanisms, including production of anti-inflammatory cytokines
such as IL-10, IL-35 and TGF-B, CTLA4-mediated blockade of T cell co-stimulation,
sequestration of effector cytokines, metabolic disruption of Th cells, competition for
peptide:MHC complexes, and direct cell lysis (Shevach, 2018). Importantly, we and others have
shown that Treg cells are not homogenous, but instead like Th cells can be divided into diverse
subsets (Campbell and Koch, 2011). These phenotypically ‘mirror’ each of the major Th
populations, share expression of lineage-defining transcription factors such as T-bet and ROR,
and can even produce effector cytokines such as IFN-y and IL-17 (Dominguez-Villar et al., 2011,
Duhen et al., 2012). These shared features suggest that Th and Treg cells may be more similar
than previously appreciated. We also showed that production of the immunosuppressive
cytokine IL-10 was limited to Thl- and Thl7-like Treg cells, suggesting that different Treg cell
subsets may employ specialized immunoregulatory mechanisms to modulate different types of
inflammatory responses.

To address these issues, we performed comprehensive transcriptional profiling of 11
distinct CD4" T cell subsets sorted from the peripheral blood of 3 healthy donors. We found that
although they shared many phenotypic features, mirror Th and Treg cell populations were
transcriptionally divergent, and that the Treg cell populations showed limited transcriptional
diversity compared to Th cells. We further identified core transcriptional signatures shared
across all Th or Treg cells, as well as unique signatures that define each of the Th or Treg cell
populations. Finally, we applied these signatures to RNA-seq data from bulk Th and Treg cells
to show enrichment of specific Th and Treg cell populations in healthy and diseased human
tissues.
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Materials and Methods

Flow cytometric sorting

Blood samples were obtained from healthy donors participating in the Benaroya Research
Institute Immune-Mediated Disease Registry. Informed consent was obtained from all subjects
according to institutional review board—approved protocols at Benaroya Research Institute and
following the Declaration of Helsinki. CD4*CD25"%" Treg cells were enriched from PBMCs after
staining with PE-cyanine 5 (PE-Cy5)—labeled anti-CD25 Ab (BioLegend), followed by positive
selection using anti-PE and anti-Cy5 microbeads (Miltenyi Biotec). On the negative fraction,
CD4'CD25™ Th cells were purified by positive selection with CD4-specific microbeads (Miltenyi
Biotec). Memory T-cell subsets were sorted to more than 97% purity as CD4'CD45RA
RO'CD127°CD25™ using APC-780-conjugated anti-CD45RA Ab (eBioscience), Alexa 700-
conjugated anti-CD45RO Ab (BioLegend), v450—conjugated anti-CD127 Ab (BD Bioscience),
PE-Cy5—-conjugated anti-CD25 Ab (BioLegend) and Qdot655—conjugated anti-CD4 Ab
(eBioscience). Abs used for sorting of memory Th and Treg cell subsets were: PE-Cy7-
conjugated anti-CCR6 Ab (BioLegend), PE-conjugated anti-CCR10 Ab (R&D Systems),
PerCP/Cy5.5—conjugated anti-CCR4 Ab (BioLegend), and Alexa Fluor 488—conjugated anti-
CXCR3 Ab (BD Bioscience). Cells were sorted with a FACSAria Il (BD Biosciences).

Library construction and RNA-seq

RNA-seq libraries were constructed from up t0100 ng of total RNA using the TruSeq RNA
Sample Prep Kit v2 (lllumina). Libraries were clustered on a flowcell using the TruSeq Paired-
end Cluster Kit, v3 using a cBot clustering instrument (lllumina), followed by paired-end
sequencing on a HiScanSQ (lllumina) for 50 cycles in either direction. After the run was
completed, the reads were demultiplexed and FASTQs were generated for each sample using
CASAVA.

RNA-seq Analysis

Base-calling was performed automatically by Illumina real time analysis software and
demultiplexing was performed with the program Casava. One 3'-end base was removed from all
reads, followed by quality-based trimming from both ends until minimum base quality for each
read was >= 30. Tophat aligned reads to GRCh38, using Ensembl annotation release number
77 and the read counts per Ensembl gene ID were computed with featureCounts. Sequencing,
alignment, and quantitation metrics were obtained for FASTQ, BAM/SAM, and count files using
FastQC, Picard, TopHat, Samtools, and htseg-count. All samples passed QC with mapped
reads with duplicates > 80%, median CV coverage < 0.8 and total fastq reads of > 5 Mio.
Protein coding transcripts with a minimum of 1 CPM in at least 5% of the total number of
libraries were retained and the ensembl gene IDs mapped to HGNC gene symbols. Count data
was normalized using edgeR’s TMM (Robinson and Oshlack, 2010). For linear modelling we
computed a coefficient for each subset with the Naive population as reference and accounted
for donor variation as random factor using the R package limma (Ritchie et al., 2015). To
determine differences between the Th and Treg cells that are common for all subsets, we set up
pairwise contrasts between mirror Th and Treg subsets and examined the overlap. For
visualizations such as PCA and expression plots, this is approximated with the limma function
removebatcheffect. Cluster means were computed with the kmeans function for 3 total clusters,
transformed into PCA space and added to the PCA plot. For gene expression dotplots the base
of 2 was raised to the power of rembatch corrected values (which were originally taken from
output of the voomwithqualityweights function) in order to unlog them. P values for the venn
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diagrams of DE genes between Tregs and their respective Th counterpart were adjusted using
global BH adjustment of FDR=0.05 and summarized with the limma::decideTest function
including a cutoff of absolute log2 fold change > 1. Heatmaps are based on log-transformed
expression values, are z-scaled by rows and were plotted using the R package
ComplexHeatmap (Gu et al., 2016). Euclidean distances between all samples were computed
with default settings from the stats::dist() function and plotted as a heatmap with manually
defined sample order. To compare the heterogeneity of Th and Treg populations, we
recomputed the distances of Treg to Treg samples, Th to Th samples and Treg to Th samples
separately. The results are summarized and plotted as density estimates using ggplot. Unique
subset signatures were determined by making contrasts of a given subset with all other Th or
Treg populations (excluding Th1/17 cells), and genes that were differentially expressed at adj. p
value < 0.05 between a given subset and all other subsets were termed to be part of a
population signature. To evaluate the relative expression of signature genesets in other
samples, we rank ordered all genes for a given samples and computed the mean rank for the
significantly upregulated genes in each signature. Gene expression data of IFN-y- and IL10-
producing Treg populations from the public dataset GSE116283 were accessed through GEO
and filtered for genes with CPM >1 in at least 25% of all samples that were also present in our
dataset. Gene expression matrix and series matrix of breast cancer and PBMC samples were
retrieved through the GEO accession number GSE89225. The samples run on the lontorrent
platform were downloaded and assigned to their corresponding HGNC gene keys. Gene
expression data was filtered for protein coding genes that were also expressed in our dataset
and those with CPM > 1 in at least 25% of the samples.

Data accessibility
RNA-seq data generated for this study are available from GEO as SuperSeries GSE149090.

Results
RNA-seq analysis of human CD4" T cell populations

To comprehensively profile human CD4" Th and Treg cells, we performed RNA-seq on
11 distinct CD4" T cell populations sorted directly from peripheral blood of 3 healthy individuals
on the basis of surface markers and chemokine receptors as previously described (Duhen et al.,
2012) (Fig 1). Th cells were identified as CD127°CD25’, and were sorted into naive (CD45RA"),
as well as Thl (CD45RA'CXCR3'CCR6), Th17 (CD45RA'CXCR3'CCR6'CCR4'CCR10),
Th1/17 (CD45RA'CXCR3*CCR6"), Th2 (CD45RA'CXCR3'CCR6'CCR4") and Th22 (CD45RA
CXCR3 CCR6'CCR4'CCR10") cell fractions. Tregl, Tregl7, Tregl/17, Treg2 and Treg22
populations were sorted within the CD127° CD25" Treg cells using the same markers (Fig 1).
Expression of genes encoding the surface receptors used for cell sorting faithfully segregated
into the various Th and Treg transcriptional profiles, and analysis of genes encoding key
transcription factors associated with Treg cells (FOXP3), or with Thl/Tregl (TBX21),
Th17/Tregl7 (RORC) and Th2/Treg2 (GATA3) subsets were expressed as expected within the
appropriate cell populations (Fig 2A). Thus, the sorting strategy we employed properly isolated
functionally specialized Th and Treg cell populations, and our data provide a novel and
comprehensive transcriptional analysis of in vivo differentiated Th and Treg cells.

Th and Treg cells are transcriptionally distinct

Using principle component analysis (PCA), we compared the overall transcriptional
profile of all Th and Treg subsets (Fig 2B). Kmeans clustering was used to identify three distinct
clusters, which corresponded to samples from naive Th cells (cluster 1), memory Th cells
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(cluster 2) and Treg cells (cluster 3). Thus, despite their phenotypical similarity and shared
expression of key lineage-defining transcription factors, mirror Th and Treg cell populations
(e.g., Thl and Tregl cells) are transcriptionally distinct and more closely resemble other Th and
Treg cells. To define core Th and Treg transcriptional signatures, we performed pairwise
comparisons between each of the individual Th and Treg cell mirror pairs, and identified 294
genes that were significantly higher (log, fold change>1, adjusted p-value<0.05) in all Treg cell
populations, and 492 that were more highly expressed in all Th populations (Fig 2C). Analysis
of these gene sets revealed many genes previously identified as differentially expressed in Treg
vs. Th (Bhairavabhotla et al., 2016; Pesenacker et al., 2016) (Supplementary Table 1). These
included FOXP3, CTLA4, ENTPD1 (CD39), IKZF2 (Helios), and TNFRSF9 that are
preferentially expressed in Treg cells, and BHLHE40, CD40LG, ID2, and IL2 that are more
highly expressed in Th cells.

Because Treg cells are largely specific for either auto-antigens or for components of the
microbiome present on barrier surfaces, they are subject to chronic stimulation and many of the
genes previously associated with Treg cells are activation-induced genes that are not actually
Treg cell specific (Pesenacker et al., 2016). Consistent with this, among genes more highly
expressed in Treg cells, several were genes we previously found to be downregulated in
subjects treated with the co-stimulation blocking drug abatacept (CTLA4-1g) (Glatigny et al.,
2019), including ARHGAP11A, CENPE, DUSP4, ERI1, GXYLT1, HELLS, NUSAP1, PMAIP1,
SGMS1, and TOP2A (Supplementary Table 1). To account for these and other activation-
induced genes, Pesenacker et al. compared the transcriptomes of resting and activated Th and
Treg cells, and identified a 31-gene ‘activation-independent’ Treg cell signature (Pesenacker et
al., 2016). Of these, 21 were differentially expressed in all 5 Th/Treg cell comparisons, and of
the remaining genes 3 were significant in 4 out of 5 comparisons (Fig 2D,E).

In our PCA analysis (Fig 2B), all Treg cell populations clustered tightly together (cluster
3), whereas there was substantially more spreading within the cluster of memory Th cell
populations (cluster 2), indicating that overall Treg cells are transcriptionally less diverse than
the Th cells. To further examine this, we calculated the Euclidian distance of all samples
relative to each other in order to quantitatively assess their overall similarity (Fig 3A, B). As
evidenced in the PCA, Treg and Th subsets were highly divergent, with a mean Euclidian
distance in these comparisons of 129.7. The Euclidian distance comparing all the Th cell
samples to each other had a bi-modal distribution, with a peak of highly similar samples
corresponding to comparisons between the same Th populations isolated from the 3 donors
(e.g., comparing all Thl samples, mean Euclidian distance 59.06), and a second significantly
more distant peak corresponding to comparisons between the different types of Th cell
populations (mean Euclidian distance 82.44, p<2x10™®, Welch two sample t-test). By contrast,
we found that the Euclidian distance between different Treg populations was relatively uniform,
and that the mean Euclidian distance between all of the Treg populations was significantly
smaller than observed in the comparisons of the Th populations (mean Euclidian distance
69.71, p<2x10™*®, Welch two sample t-test). Thus, despite their similar degree of phenotypic
heterogeneity, the different Treg cell populations are transcriptionally less diverse than their Th
counterparts.

Functional specialization of Treg cells

The differentiation of Th cells into specialized subsets is accompanied by acquisition of
distinct effector functions that coordinate different types of immune responses. Similarly, a large
number of effector mechanisms are used by Treg cells to dampen inflammation and prevent
autoimmunity. These include production of anti-inflammatory cytokines, expression of co-
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inhibitory receptors, cytokine sequestration, modulation of pro- and anti-inflammatory
metabolites, and direct target cell lysis. This raises the intriguing possibility that like Th cells,
different Treg cell subsets may employ specialized immunoregulatory mechanisms to modulate
different types of inflammatory responses. Indeed, we previously demonstrated that production
of the anti-inflammatory cytokine IL-10 was restricted to Tregl and Tregl7 cells (Duhen et al.,
2012). To further examine the functional specialization of Treg cells, we assessed expression
of a set of key genes controlling Treg cell activity in different settings (Fig 4A). Consistent with
our previous findings, IL10 expression was largely limited to the Tregl, Tregl7 and Tregl/17
populations, and these also selectively expressed the effector cytokines IFNG and IL17A which
has previously been reported for human Treg cells. Tregl cells also most highly expressed the
co-inhibitory receptors LAG3 and HAVCR2 (TIM-3), and the cytolytic effectors GZMA and
GZMK. By contrast, expression the TGF-B-activating molecule LRRC32 (GARP) was highest in
Treg 2 cells, the decoy IL-1 receptor ILLR2 was most highly expressed by Treg 17 and Tregl/17
cells, and HPGD, which is used by Treg cells to degrade the pro-inflammatory prostaglandin
PGE2 (Schmidleithner et al., 2019), was most highly expressed in Treg22 cells. Other genes
implicated in Treg function including TGFB1, ITGAV, ITGBS8, IL12A (a component of the anti-
inflammatory cytokine IL-35), CTLA4, PDCD1 (PD1), TIGIT, PRF1, and ENTPD1 (CD39) did not
show strong preferential expression in any Treg population, and NT5E (CD73) was barely
detected in these ex vivo isolated Treg cells.

Treg cell specialization depends on their selective expression of a set of transcription
factors that alter their migration and function. In addition to T-bet (TBX21), GATA3 (GATA3)
and RORyt (RORC) that promote Tregl, Treg2 and Tregl7 differentiation, other transcription
factors implicated in control of Treg cell function include IRF4, BACH2, RORa, PPARG, BCLS6,
IKZF2 (Helios), IKZF4 (Eos), ID2, ID3, and FOXO1. Indeed, IRF4, RORA, IKZF2, IKZF4 and
ID3 were significantly differentially expressed between various Treg cell subsets, and this may
contribute to their molecular specialization. Expression of PPARG was highest in Tregl7 cells,
but this did not reach statistical significance. By contrast, BCL6 and FOXO1 were expressed
equally in all Treg populations whereas 1D2 and BACH2 showed limited expression in all Treg
populations relative to naive T cells, and therefore these factors are unlikely to contribute to
their phenotypic and functional heterogeneity.

Identification of subset specific transcriptional signatures in Th and Treg cells

Although the functional specialization of Th cells was first described over 30 years ago,
their complex phenotypes, specialized functions and pathways of differentiation are still being
defined. Much of our understanding of human Th cell differentiation has been derived from cells
differentiated in vitro, and these may differ substantially from cells differentiated in vivo.
Therefore, to gain further insight into the functional specialization of Th cells, we identified the
unique transcriptional signature for each Th subset based on genes significantly up- or down-
regulated in comparison with all other Th subsets (Fig 5A). Because Th1/17 cells are a hybrid
population with characteristics of both Thl and Thl7 cells (Annunziato et al., 2007), we
excluded them from these comparisons in order to more readily define the Thl and Th17 subset
signatures. Analysis of these signatures revealed selective expression of genes that were
previously implicated in Th cell specialization, localization and function including IFNG,
IL12RB2, TBX21, and EOMES that are selectively expressed in Thl cells; IL12RB1 and ABCB1
in Th17 cells; GATA3, PTGDR2, and IL4R in Th2 cells; and ITGAE, CD9, and CD101 in Th22
cells. We also identified genes in each of the subset signatures that may differentially influence
cell metabolism (decreased HK2 expression in Thl cells), cell signaling (increased SOCS2
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expression in Th17 cells), and cell function (increased TNFSF11 (RANKL) expression in Th2
cells). Similarly, by comparing the transcriptional profiles of the Treg subsets (excluding
Tregl/17 cells), we identified population-specific transcriptional signatures in Treg cells (Fig 5B).
A full list of upregulated and downregulated genes in all Th and Treg population signatures is
found in Supplementary Table 2.

To assess expression of the gene signatures between different populations, we ranked
all genes in order of expression for each sample, and determined the mean genelist rank for
each set of signature genes in all populations examined. For this, we focused on genes that
were upregulated in each of the signatures and therefore positively identified a given population.
This analysis demonstrated that the signatures of both the Thl and Th17 populations were also
shared in the Th1/17 cells (Fig 6A), consistent with the Th17/17 population having hybrid
characteristics of both Thl and Thl7 cells. Analysis of the gene signatures of mirror Th and
Treg populations revealed little overlap in the identity of the differentially expressed genes (Fig
6B). However, examining the mean genelist rank showed that in all cases, Th cell subset
signatures were significantly enriched in the corresponding Treg cell subset, and that Treg
subset signatures were significantly enriched in the corresponding Th populations (Fig 6C).
Thus, despite their overall transcriptional dissimilarity, the Th and Treg cell populations do share
some common phenotype-associated transcriptional programs.

Enrichment of Th and Treg transcriptional signatures in bulk RNA-seq data

The identification of specific transcriptional signatures for each of the Th and Treg cell subsets
from peripheral blood raises the possibility that the genelist rank approach could be used to
functionally characterize bulk Th and Treg samples. To test this idea, we first applied the Treg
subset signatures to ranked genelists of RNA-seq samples from peripheral blood Treg cells that
were sorted into 4 populations based on their expression of the cytokines IFN-y and IL-10
(Sumida et al., 2018). As expected based on their preferential production of these cytokines,
we found that genes specifically upregulated in Tregl cells were significantly enriched in the
IFN-y'IL-10" and IFN-y'IL-10" cells, that Treg17 signature genes were also enriched in the IFN-y
IL-10" cells, and that Treg2 and Treg22 signature genes were elevated in the IFN-yIL-10" cells
(Fig 7A). To further extend this approach, we applied our signatures to data from bulk Th and
Treg cells isolated from either peripheral blood or from human breast carcinoma (Plitas et al.,
2016). In this case, Th cells from tumors were enriched in Thl signature genes, whereas those
from PBMC were comparatively enriched in Thl7 and Th2 signature genes. This is consistent
with the initial characterization of these data reporting high expression of Thl signature genes
EOMES, GZMK, CXCR3 and IFNG in tumor-infiltrating Th cells (Plitas et al., 2016). Similarly,
Treg cells from the tumors were enriched in Tregl signature genes, but showed decreased
expression of Tregl7 and Treg22 signature genes. Lastly, we applied the Th cell signatures to
RNA-seq data comparing gene expression by CCR7" central memory T (Tcw) cells and CCR7
effector memory T (Tem) Th cells that express the skin homing receptor cutaneous lymphocyte
antigen (CLA) from peripheral blood with CLA™ Tcw and Tgy from skin. In this analysis, we
found a significant enrichment of Th22 signature genes in both Tcy and Tgw populations from
skin. Th22 cells in the blood express a set of surface adhesion molecules and chemokine
receptors indicative of skin-tropism, including CLA, CCR4 and CCR10, and IL-22-producing T
cells are enriched in the skin where this cytokine can act directly on keratinocytes to induce
tissue-repair and anti-microbial responses (REF). Together, these examples demonstrate the
utility of the gene signatures we have identified for functional analysis of bulk Th and Treg cells
isolated from both healthy and diseased tissues.
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Discussion

The functional specialization of CD4" T cells is the cornerstone of effective adaptive
immune responses that prevent the growth and spread of various pathogens while limiting
collateral tissue damage and autoimmunity (Mahnke et al., 2013). Through analysis of 11
human CD4" T cell populations sorted directly ex vivo, we have comprehensively defined the
transcriptional basis for human CD4" T cell specialization, resulting in several important and
novel insights. We assessed the transcriptional relationship between the various CD4" T cell
populations, and defined core Th and Treg gene signatures as well as unique signatures of
each population that can be applied to analysis of existing RNA-seq data sets for functional
profiling of human Th and Treg cells in different tissue sites.

The majority of Treg cells are believed to develop in the thymus upon encounter with
self-antigen, and therefore this can be thought of as the first branch point in the functional
differentiation of CD4" T cells. At barrier sites, Treg cells can also develop from conventional
naive T cells activated in tolerogenic conditions to help enforce tolerance to harmless
environmental antigens, including components of the skin and intestinal microbiomes (Lee et al.,
2011). The fact that all of the Treg cell populations differentially expressed genes generally
involved in T cell activation and proliferation is indeed consistent with each containing large
fractions of highly reactive cells. Among these, it is interesting that each Treg population
showed increased expression of the transcription factor TOX, which has recently been found to
promote and exhausted phenotype in chronically stimulated CD8" T cells and thus to prevent
activation induced cell death (Alfei et al., 2019; Khan et al., 2019; Scott et al., 2019).

Interestingly, despite displaying similar phenotypic diversity, transcriptionally the Treg
populations were far more uniform then their Th counterparts. This likely reflects the dominant
role of Foxp3 on the Treg transcriptome, and the ability of this single factor to convert potentially
pathogenic effector T cells into potent Treg cells (Hori et al., 2003). Induction of Foxp3 in Treg
cells initiates dramatic changes in gene expression that underlie their suppressive functions.
Foxp3 activates a broad transcriptional program that controls Treg cell function and
homeostasis, and includes genes such as CTLA4 and IL2RA (CD25). Foxp3 also inhibits
expression of key effector cell molecules such as IL2, IFNG, and CD40LG that were more highly
expressed in Th cells (Bhairavabhotla et al., 2016). Indeed, our analysis clearly shows that
despite these shared properties, functionally specialized Th subsets are transcriptionally distinct
from their Treg cell mirror counterparts, and we used each of these comparisons to identify
‘core’ Th and Treg gene signatures that confirm and extend previous analysis of the specific
Treg cell transcriptome. All Treg populations showed increased expression of core
immunosuppressive genes (CTLA4, TIGIT, ITGB8, LRRC32, ENTPD1l) and specific
chemokine/cytokine receptors (CCR3, CXCR6, CSF2RB, IL1R1). Unlike Th cells that undergo
extensive functional diversification based on differential expression of key effector cytokines,
most of the key functional immunoregulatory molecules expressed by Treg cells were
expressed to some degree by all of the Treg cell populations. Thus, the phenotypic diversity
observed among Treg cell populations may function primarily to direct Treg cells with the
appropriate specificities to sites of Thl, Th2, Thl7 or Th22 mediated inflammatory responses
(Campbell and Koch, 2011).

The phenotypic and functional diversity of Th cells has been extensively studied.
Although initially thought of as terminally differentiated subsets, it has become increasingly clear
that there is significant plasticity among different Th populations (Bonelli et al., 2014). In
particular, there is substantial plasticity in Th17 cells, which can adopt a hybrid Th1/17
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phenotype in response to inflammatory cytokines such as IL-12 or IL-13 (Duhen and Campbell,
2014; Sallusto et al., 2012). This trans-differentiation is most relevant in the context of
autoimmune and inflammatory diseases such as multiple sclerosis and Crohns disease in which
hybrid populations and/or ‘ex-Th17’ cells have been implicated in pathogenesis (Hirota et al.,
2011; Ramesh et al., 2014). Indeed, our transcriptional analysis of Th1/17 cells showed that
they are hybrid population that shares the transcriptional signature of both Thl and Th17 cells.
This includes not only shared expression of RORC and TBX21, but also the highest levels of the
cytokine receptors IL23R and IL12RB2 and some unique genes such as the multi-drug
resistance transporter ABCB1 and the inhibitory receptor KLRB1 (CD161). Similarly, Tregl/17
cells transcriptionally resembled both the Tregl and Tregl7 populations, indicating that there
may be significant phenotypic plasticity among these populations as well.

The identification and isolation of distinct Th and Treg populations based on differential
chemokine receptor expression works well in CD4" T cells isolated from healthy human blood.
However, similar analyses from non-lymphoid tissues can be challenging due to changes in
phenotype that occur upon cellular entry into certain tissue sites, cleavage of specific markers
during enzymatic digestion required for isolation of T cells from some non-lymphoid tissues, and
the small number of T cells obtained from clinical samples and tissue biopsies. Our identification
of unique subset-specific transcriptional signatures provides the opportunity to re-analyze bulk
RNA-seq data of tissue Th and Treg cells to determine if any of these signatures are enriched.
We validate the utility of this approach in 3 independent data sets derived from cytokine
producing Treg cells from peripheral blood, Th and Treg cells infiltrating breast carcinomas, and
Th cells found in the skin. Thus, these sighatures can be used to guide analyses of both bulk
and single-cell RNA-seq data to assess Th and Treg cell specialization. This will be particularly
useful in analyses of small clinical samples that are limiting for conventional flow cytometric or
functional analyses.

Our comprehensive analysis of human CD4" T cells provides a new framework for
understanding the transcriptional basis of Treg and Th specialization, and an important resource
for analysis of transcriptomic data from T cells in healthy and diseased tissues. Cross-
referencing these transcriptional profiles with analyses of epigenetic modification and
transcription factor binding in different Treg and Th populations will help to further define the
molecular mechanisms that underlie the diversity of CD4" T cells, and suggest new ways to
manipulate specific pathways to tune Th or Treg responses in cancer, autoimmunity and chronic
infection.
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Figure Legends

Figure 1: Gating strateqy used to sort Th, Treq and Naive cell populations.

Representative flow cytometric analysis of gated CD4" peripheral blood mononuclear cells
showing gating strategy used to sort each of the 11 T cell populations for RNA-seq analysis.

Figure 2: Identification of core Th and Treq cell signatures.

A) Expression analysis of the indicated chemokine receptors and transcription factors that
define the different T cell populations. Values represent batch-effect corrected counts per
million. B) Principal component analysis of all samples run on all expressed genes. Cluster
centers representing naive T cells (1), Th cells (2) and Treg cells (3) returned by k-means
clustering. C) Venn diagrams showing the overlap in genes that were significantly (adjusted p
value < 0.05 and absolute log2 fold change > 1) up-regulated (left) or down-regulated (right)
when comparing Tregs with their mirror Th counterpart as indicated. Numbers indicate genes
that were up-/down-regulated in all comparisons (core of the venn diagrams), or genes that
were differentially expressed in only one comparison. D) Heatmap showing expression of 31
genes identified by Pesenacker et al. as activation independent Treg markers in the indicated
samples. Bolded genes were significantly differentially expressed in all comparisons of mirror Th
and Treg populations. E) Volcano plots showing pairwise comparisons of mirror Th and Treg
cell populations. Genes identified by Pesenacker et al. as higher in Treg cells are highlighted in
red, those higher in Th cells in blue. Chisquare test statistic and p-values indicate whether the
sets of up- and down-regulated identified by Pesenacker et al. are differentially distributed in the
indicated Treg vs. Th comparison.

Figure 3: Treq cell subsets show limited transcriptional diversity.

A) Heatmap representing the Euclidian distances (based on batch effect corrected expression
values) in pairwise comparisons of all samples as indicated. B) Histograms showing the
distributions of Euclidian distances in comparisons of all Treg vs Th, Thvs. Th, or Treg vs. Treg
as indicated.

Figure 4: Functional and molecular specialization of Treqg cell populations.

A) Expression analysis of genes controlling different functions of Treg cells as indicated. B)
Expression analysis of transcription factors implicated in Treg specialization. Values represent
batch-effect corrected counts per million. Significance levels were determined by ANOVA
followed by TukeyHSD for testing pairwise differences. Significant differences with the naive
samples are not highlighted.

Figure 5: Identification of subset-specific transcriptional signatures in Th and Treg cells.

Heatmaps representing expression of genes in each of the indicated cell samples (top labels)
that were up-regulated or down-regulated (adjusted p value < 0.05 and absolute log2 fold
change > 1) in each of the A) Th cell or B) Treg cell populations (side labels) as indicated.
Select genes in each of the population signatures are highlighted.

Figure 6: Shared transcriptional signatures of mirror Th and Treg cell populations.

A) Mean genelist rank of the Th1/17 subset compared to the Thl and the Th17 subset
examining genes significantly upregulated in the Th1l (left) and Th17 (right) populations. B)
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Venn diagram showing the overlap in genes specifically upregulated in mirror Th and Treg cell
populations. C) Mean genelist rank of Th signature genes in each Treg cell population (top), or
mean genelist rank of Treg signature genes in each Th cell population (bottom) as indicated.
Significance determined by ANOVA followed by Tukey HSD, and significantly different
comparisons with the population of interest (highlighted with color) are indicated.

Figure 7: Predictive use of Th and Treq population signatures in bulk RNA-seq data.

A) Mean genelist rank of each of the Treg population signatures was applied to RNA-seq data
from Tregs sorted on the basis of IFN-y and IL-10 production as indicated (data from GEO
dataset GSE116283). Significance determined by ANOVA followed by Tukey HSD. B) Mean
genelist rank of each of the Th and Treg population signatures was applied to RNA-seq data
from Th and Treg cells sorted from tumor or peripheral blood of patients with breast carcinoma
(data from GSE89225). Significance determined by Student t-test. C) Mean genelist rank of
each of the Th population signatures was applied to RNA-seq data from CLA'CCR7" T¢y and
CLA'CCRTY Tgy sorted from blood and skin (data from GSE149090). Significance determined by
Student t-test.
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