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Abstract 

The present study investigates whether predictions during language comprehension are 

generated by engaging the production system. We recorded EEG from participants 

performing both a comprehension and a production task in two separate blocks. 

Participants listened to high and low constraint incomplete sentences and were asked 

either to name a picture to complete it (production) or to simply listen to the final word 

(comprehension). We found that in a silent gap before the final stimulus, predictable 

stimuli elicited alpha (8-10 Hz) and beta (13-30 Hz) desynchronization in both tasks. 

Source estimation highlighted not only the involvement of the left-lateralized language 

network, but also of temporo-parietal areas in the right hemisphere. Furthermore, 

correlations between the desynchronizations in comprehension and production showed 

spatiotemporal commonalities in language-relevant areas in the left hemisphere, 

especially in the temporal, lateral inferior and dorsal frontal, and inferior parietal 

corteces. As proposed by prediction-by-production models, our results show that 

comprehenders engage the production system while predicting upcoming words. 

 

Keywords: language prediction, language production, alpha–beta oscillations, internal 

model 
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1. Introduction 

 

Top-down prediction of upcoming stimuli has been proposed as a prominent 

feature of human cognition in order to optimize processing (Clark, 2013; de Lange, 

Heilbron, and Kok, 2018; Friston, 2005). This has been put forward also for language 

comprehension, whereby sentential and contextual information guide the preactivation 

of linguistic representations before it is actually encountered, thus facilitating 

subsequent elaboration (Federmeier, 2007; Kuperberg & Jaeger, 2016). Prediction has 

been investigated by employing different paradigms and techniques (see e.g. reading 

and eye-tracking: Staub, 2005 for a review; visual world paradigm: Huettig, Rommers 

& Meyer, 2011 for a review; event-related potentials (ERP): Nieuwland et al., 2020 for 

a large-scale study; Van Petten & Luka, 2012 for a review). 

Despite the general agreement on the importance of prediction in language 

comprehension, what are the linguistic representations involved, the underlying 

mechanisms and their neural underpinnings is still largely unknown (Huettig, 2015). In 

the present study we investigated the hypothesis that prediction is implemented by 

engaging the language production system. To do so, we compared how the same person 

predicted a target word in two contexts: when s/he had to produce it and when s/he had 

to listen to it. In order to tap predictive processes, we analyzed the EEG oscillatory 

activity immediately before the production or the presentation of the target words in 

contexts in which the target word was either predictable or not. We anticipate that the 

results revealed large commonalities between predictive processes in the two 

modalities. 

 

1.1 Prediction–by–production models 

 

Traditionally, language comprehension and production have been independently 

investigated. However, recent work highlights several commonalities in the 

representations, processes and the underlying neural circuitry (AbdulSabur et al., 2014; 

Dell & Chang, 2014; Okada & Hickok, 2006; Gambi & Pickering, 2017; Pickering & 

Garrod, 2014; Silbert, Honey, Simony, Poeppel, and Hasson, 2014). In particular, it has 

been proposed that prediction during comprehension is implemented through processes 
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traditionally attributed to language production (Huettig, 2015; Pickering & Gambi, 

2018; Pickering & Garrod, 2013). The proposals in the literature, however, are not 

entirely in agreement regarding which processes and representations are involved. 

Pickering and Garrod (2013) [P&G2013] envisaged language production and 

comprehension as a form of action and action perception respectively. In studies of 

action control, internal forward models are used to predict sensory consequences and 

future states (Wolpert, 1997; Wolpert & Flanagan, 2001). Similarly, P&G2013 

proposed that forward models are used not only to predict the speaker’s own speech 

during production (Hickok, 2012; Hickok, Houde & Rong 2011), but also to predict 

others’ speech during comprehension. P&G2013 posited that comprehenders covertly 

imitate the speakers’ utterance. The inferred communicative intention is fed into a 

forward model that predicts aspects of upcoming speech (prediction-by-simulation). 

Such forward models are “impoverished” representations and are extended to all the 

linguistic hierarchy (semantics, syntax and phonology). According to this view, 

predictions are rapidly generated without engaging fully-fledged production 

representations. 

According to Huettig (2015), prediction is based on the interaction between 

multiple mechanisms activated during comprehension (i.e. PACS: production-, 

association-, combinatorial-, simulation-based prediction). Comprehenders make use of 

fully-fledged production representations that can be pre-activated through simple 

associative learning (priming) and through active event simulation. Activation within 

linguistic representation is further constrained by combinatorial mechanisms sensitive to 

different linguistic levels. Critically, these mechanisms are shared between 

comprehension and production. 

More recently, Pickering and Gambi (2018) [P&G2018] proposed that the 

communicative intention derived by the integration of contextual and shared knowledge 

is fed into the production implementer, as in the PACS model by Huettig (2015). 

P&G2018 differentiated processes related to prediction-by-association (PA) and to 

prediction by production (PP). PA is based on the spreading of activation among 

linguistic levels and it can be equated to semantic/phonological priming. PP is very 

effective but slow and, since it requires cognitive resources, it is optional. 

Comprehenders do not necessarily need to go through all the stages of the production 
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implementer and, according to the specific circumstances, they might predict semantic 

and syntactic features but not the phonology of upcoming words. On the other hand, PA 

is automatic and mandatory, but less effective. It leads to the pre-activation of all 

representations that are semantically and phonologically connected, independently of 

their relevance to the context, which is taken into consideration only in PP.  

Summing up, all three proposals assume an important role of priming and event 

simulation, although for P&G2013 and P&G2018 simulation is part and parcel of the 

act of production, while in the PACS model it is a separate mechanism interacting with 

production; P&G2013 ascribe a prominent role to impoverished representations in the 

form of forward models, while both the PACS model and P&G2018 propose that 

prediction is based on the implementation of fully-fledged production representations. 

 

1.2 Experimental evidence on production-based accounts of prediction 
 

Direct experimental evidence is still relatively scarce. Mani and Huettig (2012) showed 

that predictive abilities in 2-year old children were correlated with their production 

vocabulary size (number of words they were able to produce, according to their parents) 

and not the comprehension vocabulary size (number of words that they could 

comprehend only). Some ERP studies during sentence reading focused on the N400 

effect in relation not only to prediction of meaning but also to prediction of form, 

showing that form needed longer to pre-activate than meaning (Ito, Corley, Pickering, 

Martin, and Nieuwland, 2016) and that mismatches at the article preceding the 

unexpected noun elicited effects at longer latencies for phonology than for grammatical 

gender (Ito, Gambi, Pickering, Fuellenbach, and Husband, 2020). Assuming that form is 

encoded after meaning (Levelt, Roelofs, and Meyer, 1999; Indefrey, 2011), these 

studies suggest that prediction is based on the implementation of production processes. 

Additionally, it has been shown that taxing the speech production system in a secondary 

task (silent syllable production) led to reduced N400 responses at the article preceding 

the unexpected noun, while other secondary tasks (tongue tapping, listening to 

syllables) did not (Martin, Branzi and Bar, 2018; for a debate on N400 effects at the 

article, see e.g. Nieuwland et al. 2018; Nicenboim, Vasishth, and Rösler, 2020). 

Interestingly, a study on German Sign Language (Hosemann, Herrmann, Steinbach, 
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Bornkessel-Schlesewsky, and Schlesewsky, 2013) showed that the N400 effect was 

already present in the transition between the target unexpected sign and the preceding 

one, revealing that participants were predicting the phonological features of the 

upcoming sign, including the trajectory leading from one sign to the other in a modality-

specific manner. The authors attribute these modality-specific predictions to forward 

models, thus supporting a version of production-based accounts of predictions. 

Finally, circumstantial evidence is provided by studies on the cerebellum. This 

structure is contralaterally connected with the neocortex and is assumed to be a crucial 

node for forward modeling in action and cognition (Ishikawa, Tomatsu, Izawa, and 

Kakei, 2016; Sokolov, Miall & Ivry, 2017), including language production (Runnqvist 

et al., 2016; Tourville & Guenther, 2011). Interestingly, the cerebellum has been found 

to be involved in prediction during comprehension (see Argyropoulos, 2016 and 

Moberget & Ivry, 2016 for reviews). 

Studies of brain-damaged patients present cases of dissociation between 

comprehension and production abilities, suggesting functional independence between 

the two systems. However, it should be noted that aphasic deficits in production and 

comprehension are always a matter of degree rather than all-or-nothing phenomena 

(Kemmerer, 2015). For instance, Broca’s aphasia, sometimes referred to as ‘agrammatic 

aphasia’ and traditionally categorized as an expressive impairment, also involves to 

some degree degraded comprehension (Choy & Thompson, 2010; Rogalsky & Hickok, 

2011; Swaab, Brown, and Hagoort, 1997). Interestingly, it has been shown that patients 

with agrammatic aphasia display impaired lexical prediction (Mack, Ji, and Thompson, 

2006). In conclusion, experimental evidence suggests that even though production and 

comprehension do not fully overlap, the degree of overlap is greater than previously 

thought. 

 

1.3 Neural oscillations in language prediction and production 

 

Differently from ERPs that allow to retain information that is both time- and phase-

locked to the onset of a stimulus, time-frequency analysis of the 

electroencephalographic (EEG) signal enables to observe also the modulation unfolding 

over time of non-phase-locked oscillatory activity at specific frequency bands 
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(Bastiaansen, Mazaheri & Jensen, 2011). The literature on neural oscillations in 

language comprehension and production has recently revealed oscillatory correlates of 

linguistic processing (for reviews, see Meyer, 2018 for speech perception and language 

comprehension, and Piai and Zheng, 2019 for language production). With respect to the 

prediction process, the literature is still largely developing. Lewis, Wang and 

Bastiaansen (2015) proposed that oscillations in the beta band (13-30 Hz) could reflect 

the generation of predictions whereas oscillations in the gamma band (>30 Hz) could 

reflect the propagation of prediction error, in line with the domain-general framework 

proposed by Engel and Fries (2010). From this perspective, in the domain of language 

processing it has been hypothesized that neural synchronization (reflected in power 

increase) and desynchronization (reflected in power decrease or suppression) in the beta 

band signal the maintenance and the change of the current interpretation of the meaning 

of the sentence. Past literature focused on modulations following syntactic and semantic 

violations (post-target modulations). These studies observed beta desynchronization in 

the violation condition (Davidson & Indefrey, 2007; Luo, Zhang, Feng, and Zhou, 2010; 

Wang et al., 2012), consistent with the idea that sentence structure and meaning, built 

on the basis of previous context, has to be changed according to the new unexpected 

target. However, when focusing on pre-target activity, a different modulatory pattern 

should be observed. In this case during the presentation of the constraining context 

before the predictable target, the interpretation of the sentence should be changed 

accordingly, leading to the pre-activation of plausible linguistic information. This 

change should be associated to the desynchronization of beta band oscillatory activity. 

Hence, relative to pre- and post-target activity, it can be hypothesized that 

synchronization (power increase) should be observed after a predictable target and 

desynchronization (power decrease) should be observed during the interval preceding 

such a target. 

Congruently, oscillatory studies of prediction during comprehension consistently 

show desynchronization in the beta (but also alpha) range before a predictable target 

(see Table 1). These studies employed the written modality, with words presented one at 

a time for fixed durations. While most studies employed high and low constraining 

sentences (Rommers, Dickson, Norton, Wlotko, and Federmeier, 2017; Wang, Hagoort, 

and Jensen, 2018), Terporten, Schoffelen, Dai, Hagoort, and Kösem (2020) studied the 
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oscillatory activity pre- and post-target, and the evoked response post-target (M/N400) 

while reading low, medium and high constraining sentences. The results showed alpha 

and beta desynchronization before target onset. Interestingly, the oscillatory data 

showed a non-monotonic relation with constraint level (i.e. the strongest 

desynchronization was elicited by the medium constraint, followed by the high and then 

the low constraint). The authors argued that pre-target power modulations reflected 

working memory demands for target pre-selection. These were maximal for the 

condition of intermediate levels of constraint in which the pool of activated lexical 

candidates is larger than in the high constrain condition in which only one candidate is 

activated. In other studies, however, maintenance in working memory has been more 

often associated to alpha–beta synchronization (see Weiss & Müller, 2012; Meyer, 

2018; Piai, Roelofs, Rommers, Dahlslätt, and Maris, 2015). Moreover, as can be seen in 

Table 1, effects in oscillatory activity have been detected only in partially overlapping 

cortical areas. Given these inconsistencies in the results, it is still largely unclear what 

the processes associated to alpha–beta desynchronization are.1  

With respect to language production, in a series of studies, Piai and collaborators 

focused on the oscillatory correlates of word production by employing context-induced 

picture naming tasks. In these paradigms, the sentential context preceding the 

presentation of the target picture either allows or not for predicting the name of the 

target picture. Time-frequency analyses focus on the interval preceding the target, 

revealing alpha–beta desynchronization before predictable pictures (see Table 1). An 

open question is what kind of processes and representations are reflected in the alpha–

beta desynchronization found in this kind of production task. Piai, Roelofs, Rommers, 

and Maris (2015) dissociated the memory- and motor-related components by comparing 

pre-target beta and alpha desynchronization in two different tasks. In one case the task 

required to name the picture that followed a constraining or non–constraining sentence 

frame, in the other case participants were asked to judge whether the picture was 
                                                           

1
 It is also worth considering that alpha and beta oscillations have been found to be implicated in a variety 

of functions, both outside and within the language domain, e.g. sensorimotor processing in action 

(Zaepffel, Brovelli, MacKay, and Riehle, 2013) and speech planning and execution (Saltuklaroglu et al., 

2018), motor imagery and action semantics, working memory, information binding (Weiss & Mueller, 

2012 for a review), time perception (Wiener, Parikh, Krakow, and Coslett, 2018), and temporal 

expectations (Morillon & Baillet, 2017). 
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predictable or not by pressing a key with their left hand. Results showed alpha–beta 

desynchronization in different areas, depending on the task. The activity in the left 

temporal areas and in ventral premotor areas observed during picture naming was 

associated to word retrieval and speech motor programming. The activity in left 

posterior temporal and inferior parietal areas and in the right motor area observed 

during the categorization task were associated to conceptual processing and manual 

response preparation. In Piai, Klaus and Rossetto (2020), auditory distractors were 

introduced before picture onset. Alpha–beta desynchronization was delayed when the 

distractors were semantically related to the target picture with respect to unrelated 

distractors, suggesting that these power modulations are sensitive to lexico-semantic 

processing. Along the same lines, Piai, Rommers and Knight (2018) showed that 

aphasic patients with concomitant left temporal and inferior parietal lesions did not 

benefit from constraining contexts and did not display the characteristic alpha–beta 

desynchronization, while patients with left frontal and left temporal (but not inferior 

parietal) lesions did. According to the authors, this pattern suggests that the 

desynchronization in the alpha and beta bands elicited in context-induced word 

production is functionally associated to core semantic memory and lexical retrieval. 

Whether phonological encoding is captured and reflected in these modulations remains 

unanswered. 

 

Task Study 
EEG/

MEG 
Frequencies 

Time-

window 
Scalp distribution Cortical sources 

C
O

M
P

R
E

H
E

N
SI

O
N

 

Rommers 

et al. 

(2017) 

EEG 

alpha (7-12 Hz) 

and beta (16-24 

Hz) 

-500, 0 ms 

Alpha: stronger over 

occipital and central 

electrodes 

Beta: stronger over left 

posterior and anterior 

electrodes 

- 

Wang et 

al. (2018) 
MEG 

alpha (8-12 H) 

and beta (16-20 

Hz) 

-550, -250 ms 

Alpha: left anterior, central 

and posterior 

Beta: left centro-posterior 

Alpha: left inferior frontal 

cortex, left posterior temporal 

cortex (including visual word 

form area, VWFA), left 

hippocampus, and right 

cerebellum 

Beta: left posterior temporal 

cortex 

Terporten MEG alpha (8-12 Hz) -540, 0 ms Alpha: frontal and Alpha: parietal regions with a 
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et al. 

(2020) 

and beta (16-20 

Hz) 

posterior, stronger in the 

right hemisphere 

Beta: frontal, stronger in 

the right hemisphere 

bias to the right hemisphere 

Beta: left and right frontal 

and parietal regions 

P
R

O
D

U
C

T
IO

N
 

Piai et al. 

(2014) 
EEG 

alpha–beta 

(6-30 Hz) 
-400, 200 ms 

Left frontal, central and 

posterior 
- 

Piai et al. 

(2015b) 
MEG 

alpha–beta 

(4-25 Hz) 

Average 

modulation 

-800, 0 ms 

Left frontal, central and 

posterior 

Left anterior and posterior 

temporal areas, bilateral 

ventral premotor areas 

Piai et al. 

(2018) 
EEG 

alpha–beta 

(8-25 Hz) 
-300, 0 ms 

Group average in aphasic 

patients: bilateral frontal 

and left posterior (see 

reference for details). 

- 

Piai et al. 

(2020) 
EEG 

alpha–beta 

(5-20 Hz) 
-350, 0 ms Posterior sensors - 

Table 1: Summary of the studies on neural oscillations pre-target in prediction during 

comprehension and in context-induced word production. All these studies report 

desynchronization in the frequency bands and time-windows specified in the table. 

(EEG: electroencephalography, MEG: magnetoencephalography) 

 

The oscillatory activity in the beta band reported both in prediction during 

comprehension and in production has led to the hypothesis of a common mechanism 

shared by the two processes (Molinaro, Monsalve and Lizarazu, 2016). Until now, 

however, no study has directly compared the oscillatory alpha–beta activity in the two 

domains. Indirect support pointing towards common mechanisms comes from Pérez, 

Carreiras, and Duñabeitia (2017) who performed an experiment with hyperscanning 

where the EEG activity was registered while two participants interacted in a 

conversation. The results showed that alpha and beta bands oscillations of the speaker 

and the listener were temporally synchronized. Synchronization within these bands has 

been interpreted as reflecting coordination between speaker and listener and predictive 

processing. 

 

1.4 The present study 

 

We implemented a within-subject design in which the same participant accomplished a 

production and a comprehension task in order to directly compare how linguistic 

information is anticipated in the two tasks. To that end, we targeted the alpha and beta 
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oscillatory activity in an interval immediately preceding the relevant target. More 

precisely, we used both the cloze probability comprehension task and the context-

induced picture naming task in two separated blocks. Participants listened to sentence 

frames which could either constrain or not towards a target word (see Table 2). After a 

silent pause of 800 ms, they either listened to the target word or they completed the 

sentence by naming the target picture. Time-frequency analyses focused on the silent 

interval between the sentence frame and the target. The structure of the paradigm 

allowed to directly compare the effects elicited by the same stimuli in the two tasks. In 

the constraining condition participants could anticipate (and in the production task even 

plan the response) the target word before hearing it or seeing the corresponding picture. 

Measuring oscillatory activity before target presentation in the production task allowed 

us to tap into processes associated to word production planning. The comparison with 

word prediction during comprehension in the same time interval would highlight the 

extent to which the two tasks share common mechanisms. 

To our knowledge, this is the first study allowing for such direct comparison. In 

fact, as previously mentioned, shared mechanisms have been proposed in the literature 

on the bases of similar oscillatory patterns in separate studies investigating either 

prediction during comprehension or production. In addition, the present study made use 

of naturalistic auditory stimuli, contrary to most of the previous studies which employed 

the written modality in an artificial (word-by-word) fashion. 

Following the literature, we expect to replicate the pre-target predictability 

effects of alpha and beta desynchronization in both comprehension and production. If 

prediction and production share some common mechanisms, we should observe 

temporal overlaps of alpha–beta modulations between the two tasks in language-

relevant areas of the left hemisphere. Moreover, since derivation of communicative 

intention and event simulation seem essential for anticipating linguistic content both in 

production and in comprehension, alpha and beta desynchronization could be observed 

also in cortical regions supporting supramodal integration and traditionally not involved 

in linguistic processing. 
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2. Materials and methods 

 

2.1 Participants 

 

Forty participants were recruited on a voluntary basis (11 males; mean age = 23.7, sd = 

4.84). All participants were right-handed native speakers of Italian (handedness 

evaluated by means of an Italian translation of the Edinburgh Handedness 

Questionnaire, Oldfield, 1971; mean laterality index = 86, sd = 15.28). None of them 

reported a history of neurological, language-related or psychiatric disorders. All 

participants signed an informed consent to participate in the experiment. The study was 

approved by the Ethical Committee for the Psychological Research of the University of 

Padova (protocol n. 2920).  

 

2.2 Stimuli 

 

One hundred twenty-eight concrete, animate and inanimate nouns were selected and 

paired with a black-and-white line picture (240 x 240 pixels) representing the word 

referent. For each picture, a scrambled version was also created, in such a way that the 

referent was not recognizable. For each target noun, two sentence frames were 

constructed: one whose semantic content leads to the target word with a high probability 

(highly constraining; HC) and one for which the target word is not particularly likely 

but is still plausible given the sentential content (low constraining; LC, see Table 2). 

This resulted in 256 sentences in total (128 HC, 128 LC). Sentence frames associated to 

the same target were matched for number of syllables, had a similar syntactic structure, 

and had the same article or preposition as the final word. The constraint was modeled as 

cloze probability (CP) of the target word given the frame, assessed with an online 

sentence completion questionnaire involving 71 respondents, none of whom took part in 

the subsequent experiment, who were asked to complete each sentence frame with the 

word they considered most appropriate (HC sentences: mean CP = 0.873, sd = 0.092; 

LC sentences: mean CP = 0.052, sd = 0.078). Subsequently, all sentence frames and 

target words were recorded from a female native speaker in a quiet room using a 

microphone connected to a PC using Audacity (sampling rate of 44.1 KHz). Frames and 
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targets were recorded separately. The speaker was instructed to keep the reading pace as 

steady as possible and to keep a constant distance from the microphone. Sentence 

frames were then appropriately trimmed at the beginning and at the end using Audacity. 

The approximate number of syllables per second, assuming a constant pace, for each 

sentence frame was estimated as the number of syllables of the sentence divided by the 

length of each audio file. 

Target words and their associated sentence frames were then divided into two 

lists, A and B, each containing 64 target words and the associated 128 sentence frames 

(64 HC and 64 LC). The two lists were matched for lexical frequency (log-scaled; 

obtained from COLFIS, Bertinetto et al., 2005), number of phonemes and number of 

syllables (obtained from PhonIta 1.10, Goslin, Galluzzi, and Romani, 2014), number of 

syllables per second, audio file duration, both across conditions and within conditions. 

The difference of CP was not significant across condition, and was significant between 

conditions, both in the whole set and within each list (see Table 3 for stimuli matching). 

 

Task Condition Sentence frame Target Trials 

COMPREHENSION 

 

HC 
Il contadino munge una… 

‘The farmer milks a…’ mucca 

‘cow’ 

64 

LC 
Il bambino disegna una… 

‘The child draws a…’ 
64 

PRODUCTION 

 

HC 
Il calciatore colpiva la… 

‘The soccer player kicked the…’ 

 

64 

LC 
Il bambino voleva la… 

‘The child wanted the…’ 
64 

Table 2: Examples of stimuli used in the experiments. 

 

 LISTS 

 Mean (sd) List A Mean (sd) List B t-value df p-value 

Lexical frequency (log-scaled) 3.776 (1.251) 3.847 (1.31) -0.51 235.75 0.6104 

No. phonemes (word) 6.063 (1.701) 6.281 (1.631) -1.05 253.55 0.2947 

No. syllables (word) 2.578 (0.728) 2.672 (0.641) -1.09 250.06 0.2751 

No. syllables (sentence frame) 10.680 (2.012) 10.672 (2.248) 0.03 251.07 0.9766 

Audio length (sec) (sentence 

frame) 

2.388 (0.397) 2.381 (0.414) 0.15 253.54 0.8851 

No. syllables/sec (sentence 

frame) 

4.482 (0.485) 4.480 (0.523) 0.05 252.52 0.9643 
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Cloze probability overall 0.456 (0.421) 0.468 (0.421) -0.23 245 0.8215 

Cloze probability HC 0.868 (0.094) 0.878 (0.09) -0.62 125.84 0.5351 

Cloze probability LC 0.045 (0.068) 0.058 (0.086) -1 119.69 0.3193 

 CONDITIONS 

 Mean (sd) HC Mean (sd) LC t-value df p-value 

No. syllables (sentence frame) 10.750 (2.074) 10.602 (2.182) 0.56 253.34 0.5774 

Audio length (sec) (sentence 

frame) 

2.413 (0.407) 2.356 (0.402) 1.12 253.97 0.2629 

No. syllables/sec 4.459 (0.441) 4.504 (0.56) -0.71 240.87 0.4758 

Cloze probability overall 0.873 (0.092) 0.052 (0.077) 77.47 246.66 <0.001 

Cloze probability List A 0.868 (0.094) 0.045 (0.068) 56.96 114.71 <0.001 

Cloze probability List B 0.878 (0.09) 0.058 (0.086) 52.69 125.62 <0.001 

Table 3: Variables controlled across lists and conditions (Welch’s t-tests). Means and 

standard deviations (in parenthesis) are reported. HC: high constraint, LC: low 

constraint. 

 

2.3 Procedure 

 

Participants were seated in a comfortable chair in a soundproof room with a computer 

connected to a CRT monitor, built-in speakers, a keyboard and a microphone to record 

responses. Stimuli were presented with E-Prime 2.0 (Psychology Software Tools, 

Pittsburgh, PA). Each participant performed the comprehension task and the production 

task in a blocked design. The structure of the trials in the two tasks is shown in Figure 1. 

After a silent interval of 800 ms, a sentence frame was played through the computer 

speakers, and it was followed by a second silent gap of 800 ms. Throughout this phase 

the fixation cross remained on the screen. Afterwards, the target was presented together 

with a visual stimulus for 2 seconds. In the comprehension task the visual stimulus was 

constructed by scrambling the picture corresponding to the target in such a way that the 

referent was not recognizable. In the production task, the visual stimulus was the picture 

of the target word. In the comprehension task, participants were instructed to listen 

carefully to the sentence. To ensure that they paid attention to the sentence, 26 trials 

(20%) included a statement about the preceding sentence appearing as written text after 

the target for 2 seconds. Participants were asked to judge whether it was true or false by 

providing a vocal response. In the production task, participants were instructed to name 

the picture as fast and as accurately as possible. 
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Figure 1: Trial structure in the comprehension (top) and the production (bottom) tasks. 

 

 For each participant, list A or B was associated to one of the tasks (e.g. list A 

for comprehension and list B for production). Task order and the lists associated to the 

tasks were counterbalanced across participants, resulting in a 2×2 design (2 lists × 2 

tasks). Trial order presentation was pseudo-randomized for each participant by using 

Mix (van Casteren & Davis, 2006) in such a way that the minimum number of trials 

between the first and the second presentation of the same target word was seven, and no 

more than three consecutive trials belonged to the same condition. The inter-trial 

interval varied from trial to trial (1, 1.2 and 1.5 seconds). After every 32 trials 

participants could take a short break. Responses were recorded through the microphone, 

positioned at a fixed distance from the participant (~50 cm). During the experimental 

session participants were instructed to minimize eye movements, blinks and facial 

muscle activity during the presentation of the stimuli. Before each task, a training 

session of 8 trials (not included in the experimental session) was used to familiarize the 

participant. Each task lasted approximately 20 minutes. 

 

2.4 Response coding and production RT analyses 

 

For the comprehension task, true/false responses were coded as correct or incorrect. 

Trials with incorrect responses were excluded from the EEG analyses.  

In the production task, audio recording started at the onset of the picture and 

lasted for 2 sec. Responses were manually coded as incorrect when participant 1) failed 

to provide an answer, 2) produced hesitation sounds, 3) started producing a word but 
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then produced another word, 4) produced the correct target word before recording onset. 

Trials with incorrect responses were excluded from the EEG analyses. Response onset 

was measured from each audio recording using Chronset (Roux, Armstrong, and 

Carreiras, 2017). In case Chronset returned some NA values, the correspondent audio 

waveforms were inspected manually with Audacity in order to determine the response 

onset. The set of correct responses was then analyzed using R (R Core Team, 2014). 

RTs were analyzed by means of linear mixed-effects models (Baayen, Davidson, 

and Bates, 2008) using the lme4 package (Bates, Mächler, and Walker, 2015), with 

random intercept for participant and target word. The lmerTest package (Kuznetsova, 

Brockhoff, and Christensen, 2017) was used to estimate the p-values for model 

parameters. First, a null model including random effects was computed, and in each 

subsequent model a predictor or an interaction between predictors was added. An 

ANOVA between models was then performed, and the best-fit model was selected 

considering AIC (Akaike Information Criterion) and BIC (Bayesian Information 

Criterion) as indices of fit and the p-value of the test between models. 

 

2.5 EEG data acquisition and pre-processing 

 

Electroencephalogram was recorded with a system of 64 active Ag/AgCl electrodes 

(Brain Products), placed according to the 10–20 convention (ActiCap). Sixty of them 

were used as active electrodes (Fp1, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, 

F7, F8, Fz, FT7, FT8, F1, F2, F3, F4, F5, F6, Fz, FC1, FC2, FC3, FC4, FC5, FC6, T7, 

T8, C1, C2, C3, C4, C5, C6, Cz, TP7, TP8, CP, CP2, CP3, CP4, CP5, CP6, CPz, P1, P2, 

P3, P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, PO9, PO10 POz, O1, O2, Oz). Reference 

was placed at the left earlobe. Three electrodes were used to record blinks and saccades 

(external canthi and below the left eye). Electrode impedance was kept below 10 kΩ 

throughout the experiment. The signal was amplified and digitized at a sampling rate of 

1000 Hz. Before the tasks, a resting state of 5 minutes was recorded, which is not 

analyzed further here. Each task was recorded separately. As a result, 3 recordings were 

obtained for each participant (resting state, production, comprehension). 

Pre-processing and analyses were performed using the MATLAB toolbox 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, and Leahy, 2011; Tadel et al. 2019), 
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which is documented and freely available for download online under the GNU general 

public license. A high-pass filter at 0.5 Hz with 60 dB attenuation was applied to the 

raw data. Noisy or flat channels were marked as ‘bad’ and excluded (max 2 channels 

marked as ‘bad’ per participant). No interpolation of bad channels was performed. 

Segments with extreme muscle artifacts were marked as ‘bad’. Subsequently, 

Independent Component Analyses (ICA) with 60 components was computed to detect 

and remove artifact components with known time-series and topographies (blinks, 

saccades, and power-line noise at 50 Hz).2 Markers for incorrect responses were 

manually added to the continuous EEG recording according to the off-line evaluation of 

the audio files. Finally, 3-second epochs (from -1.5 to 1.5 s) were imported around two 

event markers: (1) the onset of the trial (fixation cross), and (2) the onset of the 800 ms 

gap pre-target. The epochs in (1) were not divided into conditions and constitute the 

condition-average baseline for the event-related synchronization / desynchronization 

(baselinecomp and baselineprod). This ensures a higher signal-to-noise ratio given the 

higher number of trials included as baseline, and therefore a better estimate of the 

relative power change (Cohen, 2014). The epochs in (2) were divided into HC and LC 

conditions (HCcomp, LCcomp, HCprod and LCprod). All epochs were visually inspected, and 

those with artifacts (uncorrected blinks/saccades, muscle activity, channel drifts, 

transient electrode displacements) were rejected. All trials in (2) which included a 

marker of incorrect response were rejected. 

 

2.6 Time-frequency decomposition and statistical analyses (sensor-level) 

 

In the time-frequency (TF) decomposition, power was computed by using Morlet 

wavelets. According to Morlet Wavelet implementation in Brainstorm software, 

wavelets were built starting from a mother wavelet with central frequency = 1 and 

FWHM = 3 (7-cycle wavelets), and then generating new wavelets spanning from 5 Hz 

                                                           

2 If any channels were marked as ‘bad’, the number of components for the ICA was reduced to the 

number of good channels. 
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to 30 Hz with step 1 Hz.3 TF maps were obtained for each trial for all conditions 

(baselinecomp, HCcomp, LCcomp, baselineprod, HCprod, LCprod). Due to the large windows for 

epoching (3 seconds), edge effects at the selected frequencies did not involve the 

windows of interest. Subsequently, TF maps were averaged within each condition for 

each participant.  

Event-related synchronization/desynchronization (ERS/ERD) was used as 

normalization method.4 For each participant, the average TF map of the two conditions 

were normalized against the mean computed over the interval [-550 -250] ms of the 

average baseline TF map (baselinecomp for HCcomp and LCcomp; baselineprod for HCprod 

and LCprod). This yielded the %-change of power over time relative to the baseline for 

each frequency. 

After having obtained the normalized TF map for each participant, non-

parametric cluster-based permutation tests were performed for each task on the 800 ms 

pre-target gap (paired one-tailed t-test with cluster correction; Maris & Oostenveld, 

2007). The critical α level was set to 0.05, the minimum number of neighboring 

channels set to 2, and the number of Monte Carlo simulations for the permutations to 

1000. Following existing literature, we used one-tailed tests to ensure higher statistical 

power to detect an effect in a specific direction. Specifically, the expected alternative 

hypothesis was that HC conditions elicited reduced power compared to LC conditions. 

An additional two-tailed analysis with cluster-based permutation (same parameters as 

above) was performed also between the differentials (HC–LC) between tasks 

(comprehension vs production) to test for an interaction. From now on we refer to the 

difference between HC and LC in each task as Δcomp and Δprod, and to the statistical 

contrast between them as interaction. 

 

 

 

                                                           

3 The delta band (0.1-4 Hz) was excluded because the wavelets at these frequencies were too large and 

temporal smearing introduced noise in the production task (HC condition) due to muscle activity after the 

gap of interest. 
4 ���/���� � �	
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2.7 Time-frequency decomposition and statistical analyses (source-level) 

 

To estimate EEG activity at source level we implemented the following steps. First, a 

noise covariance matrix for each task was computed from the baseline epochs in the 

time-window [-550 -250] ms. OpenMEEG BEM (Boundary Element Method) with 

8002 vertices was used as forward solution5 (Gramfort, Papadopoulo, Olivi, and Clerc, 

2010) with ICBM152 as template anatomy. This method models three realistic layers 

(scalp, inner and outer skull) in addition to the cortical surface; for this reason, it is 

recommended for EEG data, given the differential electrical propagation through the 

different types of tissue. Minimum Norm Imaging (NMI) normalization with sLORETA 

(Standardized Low Resolution Brain Electromagnetic Tomography; Pascual-Marqui, 

Michel, and Lehmann, 1994) was used as inverse solution. The dipole orientation was 

unconstrained, to obtain a better estimation in lack of individual anatomy scans.6 Time-

frequency decomposition was performed on each epoch, averaged and normalized 

against the baseline as for the TF at sensor level. TF maps were then averaged across 

frequencies in four bands: alpha (8-12 Hz), beta1 (13-19 Hz), beta2 (20-25 Hz) and 

beta3 (26-30 Hz). Subsequently, ERS/ERD maps were downsampled at 150 Hz, to 

reduce the computational burden. Cluster-based permutation tests (one-tailed paired t-

tests) for main effects and interaction (two-tailed paired t-tests) on source-space TF data 

were performed as previously described.  

 

2.8 Between-task source-level correlations 

 

Pearson correlations between Δcomp and Δprod at the source level were performed. This 

provides an estimate of putative shared cortical generators of the desynchronizations in 

prediction during comprehension and in word planning in production. Correlations were 

computed separately for the alpha band (8-12 Hz) and the three beta sub-bands (13-19, 

20-25 and 26-30 Hz) on %-power change averaged in intervals of 200 ms (0-200, 200-

400, 400-600 and 600-800 ms), resulting in 16 correlation maps. For each vertex of the 

                                                           

5 For the other layers (scalp, inner and outer skull) Brainstorm defaults settings were kept. 
6 The other settings were kept at Brainstorm default settings (Noise covariance regularization: 0.1; 

Signal-to-noise ratio: 3). 
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cortex model, two vectors of values were correlated. Each vector contained 36 values, 

one for each participant, representing the average Δ%-power change at a given 

frequency band and time-window in the two tasks. We decided to average in time 

because it is likely that cortical modulations underlying possible shared processes are 

not temporally aligned across the two tasks due to different demands influencing 

participants’ performance. In this way we can capture desynchronizations at the same 

vertex that are slightly shifted in time. For each frequency band, correlations were 

thresholded for p < 0.05 and minimum size = 50 (number of connected vertices), in 

order to exclude not only statistical non-significant correlations, but also statistically 

significant but isolated and likely meaningless correlations, given the very low spatial 

resolution of the technique. Then, correlation maps were inspected, and the interval with 

the strongest and more spatially extended correlations were identified. In a more 

exploratory fashion, we performed additional correlations on the averages of the 

identified time-windows in order to provide a clearer summary of the results and 

capture the possible commonalities between the tasks. For this additional analysis, we 

only focused on the positive correlations. 

 

3. Results 

 

3.1 Word production response times 

  

Response accuracy was very high (98.5%). Only 84 responses were coded as incorrect, 

59 in the LC condition and 25 in the HC condition. Error rates were not analyzed. 

Figure 2 shows response times of correct trials divided by condition. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.092528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.092528
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Figure 2: Violin plot of the response times of correct trials in the production task for the 

HC and the LC conditions. HC: mean = 507 ms, sd = 184.786; LC: mean = 698 ms, sd 

= 172.22. 

 

Latencies of correct responses were fitted to mixed-effects models; Table 4 

shows the results of the ANOVA between models. The model which best explained the 

data is M4, which included Repetition, Condition, Lexical frequency and the interaction 

Condition × Lexical Frequency as fixed effects. 

 

Model Effects Df AIC BIC X2 p-value 

M0 Random effects (R.E.) 4 66966 66992   

M1 R.E. + Repetition 5 66705 66737 263.22 < 0.001 

M2 R.E. + Repetition + Condition 6 64857 64897 1849.1 < 0.001 

M3 R.E. + Repetition + Condition + Lexical 

Frequency 

7 64858 64904 1.134 0.287 

M4 R.E. + Repetition + Condition + Lexical 

Frequency + Condition × Lexical 

Frequency 

8 64851 64903 9.258 0.002 

M5 R.E. + Repetition + Condition + Lexical 

Frequency + Condition × Lexical 

Frequency + Condition × Repetition 

9 64852 64911 1.231 0.267 

Table 4: Statistics of model selection. 
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The model showed a main effect of Repetition (estimate = -85.023, t = -20.74, p 

< .001, 95% CI: -93.060 – -76.990) – with estimated faster responses at the second 

presentation of the same target picture – and of Condition (estimate = 232.135, t = 

17.909, p < .001, 95% CI: 206.724 – 257.545) – with estimated faster responses in the 

HC relative to LC condition. There was no main effect of Lexical Frequency (p = .959), 

but there was an interaction between Frequency and Condition (estimate = -9.795, t = -

3.044, p < .01, 95% CI: -16.102 – -3.487): the effect of Lexical Frequency was present 

in the LC condition, with decreasing RTs when lexical frequency increases. Table 5 

shows all the parameter estimates of the model. 

 

Parameter Estimate SE df t-value p-value 95% CIs 

Intercept 547.970 22.126 188.392 14.766 < 0.001  [504.384 – 591.563] 

Repetition -85.023 4.099 4870.025 -20.740 < 0.001  [-93.060 – -76.990] 

Condition 232.135 12.962 4870.763 17.909 < 0.001  [206.724 – 257.545] 

Lexical Frequency 0.236 4.595 162.165 0.051 0.959 [-8.822 – 9.297] 

Condition × Lexical 

Frequency 
-9.795 3.128 4870.514 -3.044 < 0.01 [-16.102 – -3.487] 

Table 5: Parameter estimates of model M4. 

 

3.2 Sensor-level time-frequency analysis  

 

The data of two participants were excluded from the analyses due to an excess of trials 

coded as incorrect in the comprehension task (34.6% and 53.9%). Another two 

participants were excluded due to excessively noisy recordings in the EEG. The mean 

percentage of epochs retained are the following: baselinecomp: 88.8%, HCcomp: 89.7%, 

LCcomp: 87.5%, baselineprod: 87.7%, HCprod: 89.3%, LCprod: 89.7%. 

The cluster-based permutation tests contrasting HC vs LC conditions in the two 

tasks were significant. In the comprehension task, the effect was associated to a 

negative cluster (p = 0.003, t-sum = -324052, size = 134070; Figure 3a). In the 

production task, the effect was associated to a negative cluster (p = 0.001, t-sum = -

946882, size = 361719; Figure 3b). This suggests that high word predictability elicited 
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desynchronization before target presentation, be it an auditory word or a picture to name 

overtly. The effects were widespread across all sensors and appeared to span the entire 

alpha and beta ranges, with variability of modulations across the gap. The analysis 

testing for the interaction did not yield significant results (all clusters p > 0.05; see 

Supplementary Material). 
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Figure 3: Time-frequency maps averaged across groups of sensors for the 

comprehension (a) and the production (b) tasks. The averaging is only for visualization 

purposes; statistical testing was performed on all electrodes. Each column represents a 

group of sensors, specified on the scalp model above. The rows represent the average 

TF maps of the HC condition, the LC condition, the HC-LC differential (Δcomp/prod), and 

the t-values of the statistical contrast (t-maps are masked for values associated to the 

significant cluster). 

 

3.3 Source-level time-frequency analysis 

 

Source-level contrasts identified two significant negative clusters in the comprehension 

task (cluster 1, left hemisphere: p = 0.02597, t-sum = -742975, size = 326126; cluster 2, 

right hemisphere: p = 0.04995, t-sum = -645503, size = 280809) and two negative 

clusters in the production task (cluster 1, left hemisphere: p = 0.001, t-sum = -1820707, 

size = 719067; cluster 2, right hemisphere: p = 0.002, t-sum = -1405540, size = 

562307). The interaction analysis did not yield significant results (all clusters p > 0.05; 

see Supplementary Material). Results are shown in Figure 4a and Figure 4b. 

In comprehension, alpha desynchronization was stronger towards the end of the 

gap and involved the bilateral frontal and temporal cortex; early in the gap it involved 

the left posterior temporal cortex. Beta desynchronization was found in the temporal 

(beta1) and inferior frontal (beta1, beta2, beta3) corteces of the left hemisphere, and in 

temporo-parietal-occipital areas (beta1, beta2, beta3) of the right hemisphere. In 

production, alpha desynchronization involved the bilateral prefrontal, temporal and 

inferior parietal corteces, with a bias in the right hemisphere. Beta desynchronization 

involved an extended cortical network, including the temporal, parietal and frontal 

cortex in the left hemisphere, and the parietal cortex in the right hemisphere. 
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Figure 4: Summary of the statistical contrasts between HC and LC conditions in the 

comprehension (a) and production (b) tasks. Selected cortical maps of t-values are 

shown for each of the frequency bands (α: 8-12 Hz; β1: 13-19 Hz; β2: 20-25 Hz; β3: 26-

30 Hz) in averaged time-windows determined from inspecting the time-course of the 

results. For each map, the time-window used for averaging is indicated by the red line 

below each plot (comprehension: α: 0-100, 500-800 ms; β1: 300-400, 400-800 ms; β2: 

400-600 ms; β3: 400-700 ms; production: α: 0-600 ms; β1: 0-200, 200-600 ms; β2: 250-
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350; 500-800 ms; β3: 500-800 ms). Averaging is for visualization purposes only; 

analyses were performed on all timepoints after downsampling. Only t-values ranging 

from -1 to -4 and part of a significant cluster are shown. Complete results are provided 

in the Supplementary Material. 

 

3.4 Source-level correlations  

 

Figure 5 shows positive correlations between Δcomp and Δprod as defined in the 

Method section (complete correlation maps are reported in the Supplementary 

Material). The areas highlighted include the left temporal cortex, the inferior frontal 

cortex, motor and supplementary motor corteces, the left insula, and the left inferior 

parietal cortex. 

 

 

Figure 5: Positive correlations between Δcomp and Δprod at the source level at each 

frequency band. The timeline at the bottom represents the 800 ms silent interval 

between sentence frame and target; the red lines below each cortical map represent the 

time-window of the correlation displayed above it (α: 400-800 ms; β1: 200-600 ms; β 2: 

200-400 ms; β3: 0-400 ms). 
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4. Discussion 

 

We employed a within-subject design in order to directly compare alpha and beta 

oscillatory modulations elicited by predictive processes in comprehension and 

production by manipulating cloze probability. We found alpha and beta 

desynchronization in HC relative to LC conditions preceding the target stimulus. The 

cortical sources appeared to be left frontal, temporal and inferior parietal, involving the 

traditional language network, but also right parietal and temporo-parietal, possibly 

reflecting ‘extra-linguistic’ processes. Positive correlations between Δcomp and Δprod 

were found in the left temporal, frontal, and inferior parietal cortices. 

In the following paragraphs we will discuss: 1) the desynchronizations in the left 

hemisphere in relation to language-specific and domain-general processing; 2) the 

desynchronizations in the rTPJ in relation to contextual updating of internal models; 3) 

how these results are compatible with production-based accounts of prediction; 4) 

limitations of the present study and future developments and directions. 

 

4.1 Alpha–beta desynchronization in the left language network as index of 

predictive information retrieval and encoding 

 

In both tasks, HC contexts induce desynchronization of the alpha and beta bands 

relative to LC contexts. We interpret the desynchronization as marker of preactivation 

of linguistic information, both in predicting during comprehension and in planning for 

word production. 

In the comprehension task, the language network is engaged in actively updating 

the sentence-level representation in a top-down fashion. In the HC condition the 

preceding context allows for the generation of strong predictions about the upcoming 

word. The information retrieved from long-term memory in this case is rich and 

specific. This predictive process is reflected in the desynchronization of oscillatory 

activity in the alpha and beta band observed in language-relevant areas (left temporal 

and left inferior frontal areas).  

In the production task, the HC condition leads to faster naming latencies with 

respect to the LC condition. Moreover, the effect of lexical frequency was found in the 
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LC but not in the HC context (replicating previous studies, Griffin & Bock, 1998; Piai 

et al., 2014). The pattern clearly signals that lexical retrieval in the HC condition occurs 

before picture onset, and the alpha–beta desynchronization effect observed before 

picture presentation reflects the retrieval of specific lexical information. 

These conclusions are compatible with the ‘information by desynchronization’ 

hypothesis put forward by Hanslmayr, Staudigl, and Fellner (2012). According to this 

study, information encoding and retrieval is associated with desynchronized firing of 

neural populations in the alpha and beta frequencies. By applying mathematical 

modeling, the authors showed that the power of local field potentials at these 

frequencies (and consequently of the scalp-level EEG fluctuations) is negatively related 

to the richness of information represented in the brain. The stronger the 

desynchronization of neural populations, the stronger the decrease in alpha–beta power, 

and the richer the information encoded or retrieved. From this perspective, therefore, 

our results are in line with studies showing that alpha–beta desynchronization is related 

to prediction precision in spatial attention (Bauer, Stenner, Friston, and Dolan, 2014) 

and pitch change (Chang, Bosnyak, and Trainor, 2018), in successful word memory 

formation (Griffiths, Mazaheri, Debener, and Hanslmayr, 2016) and word encoding 

(Meeuwissen, Takashima, Fernández, and Jensen, 2011), and fidelity of stimulus-

specific information tracking in the visual and auditory domains (Griffiths et al., 2019).  

In conclusion, our findings are in line with previous studies showing alpha–beta 

desynchronization in the language network before target onset, compatible with the role 

of alpha–beta desynchronization in signaling active change in the cognitive set. 

 

4.2 Alpha–beta desynchronization in the right temporo-parietal junction as 

index of internal modeling and expectation updating 

 

The alpha and beta desynchronization effects we reported also involved the right 

hemisphere. Source analyses showed that the effect extended mainly in the prefrontal 

cortex (alpha range) and in the occipito-temporo-parietal cortex (beta range) in 

comprehension, and in the temporal, parietal and prefrontal cortex (both alpha and beta 

ranges) in production. Terporten et al. (2020) reported oscillatory effects in the right 

parietal cortex in a comprehension task and interpreted this activity as reflecting 
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attentional and working memory demands. The effect we found in the same area in both 

tasks may capture attentional effects, particularly in the production task which requires 

participants to shift from listening to preparing to speak. 

Our results also suggest that a particular region, the right temporo-parietal 

junction (rTPJ), is involved in anticipatory language processing in both comprehension 

and production, although not entirely in the same frequency bands (in beta2-3 in 

comprehension; alpha and beta1-2 in production). The label ‘rTPJ’ does not describe a 

well-defined region, and it includes portions of the inferior supramarginal gyrus, the 

angular gyrus, the posterior superior and middle temporal sulcus and gyrus (Geng & 

Vossel, 2013). In the literature, this area has been considered to be implicated in 

different domains of cognition, including bottom-up attention, self-perception, episodic 

memory, social cognition and Theory of Mind (Igelström & Graziano, 2017). 

Interestingly, by using fMRI it has been shown that the networks involved in language 

comprehension and in Theory of Mind – especially the rTPJ, – are synchronized at rest 

and during story comprehension (Paunov, Blank, and Fedorenko, 2019), implying that 

coordinated processing of linguistic and social information is crucial for 

communication. Moreover, activity in the right or bilateral TPJ has been associated to 

the processing of pragmatic aspects of language (Bašnáková, Weber, Petersson, Van 

Berkum, and Hagoort, 2014; Carotenuto et al., 2018; Spotorno, Koun, Prado, Van Der 

Henst, and Noveck, 2012). 

Based on the vast literature on rTPJ, Geng and Vossel (2013) proposed a 

unifying role of rTPJ as a hub whose specific function is determined by the network it is 

co-activated with. Specifically, the authors suggested that this region is responsible for 

the contextual updating of internal models in order to adjust expectations about 

upcoming events and guide planning of future actions. It is likely that during language 

processing this region contributes to the interfacing of extra-linguistic with linguistic 

information (including pragmatic knowledge). Our results support this view and suggest 

that rTPJ works in concert with the left-lateralized language network to construct and 

update an internal model of the communicative intention for the generation of 

contextually appropriate predictions and responses. Congruent with prediction-by-

production models, the effects in rTPJ highlighted the contribution of contextually 
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appropriate information beyond mere priming (Camblin, Gordon & Swaab, 2007; Hintz, 

Meyer, and Huettig, 2020; Lowder & Ferreira, 2016; Otten & Van Berkum, 2008). 

 

4.3 Compatibility with prediction-by-production models  

 

We observed that in both comprehension and production alpha–beta power decreased 

before encountering a predictable stimulus. To what extent do these effects reflect 

common processes involving shared representations? The positive correlations between 

desynchronizations in the two tasks reveal common activity in areas of the left 

hemisphere, and more specifically the anterior temporal, inferior parietal, temporo-

parietal, and inferior frontal corteces. It is relevant to note that all these areas are 

generally associated not only with lexical-semantic retrieval but also with word 

production. This suggests that when predicting a word, comprehenders engage, at least 

to some extent, the word production network, as proposed by prediction-by-production 

accounts (Huettig, 2015; Pickering & Gambi, 2018; Pickering & Garrod, 2013). The 

consensus on the neural bases of word production is that lexical-semantic retrieval 

involves the anterior and middle temporal cortex, phonological retrieval involves the 

posterior temporal–inferior parietal cortex and syllabic planning involves the inferior 

frontal cortex and premotor cortex, which activates the associated articulatory 

sequences in the motor cortex (for reviews see Indefrey, 2011; Roelofs & Ferreira, 

2019; Strijkers & Costa, 2016). Correlation analyses highlight the involvement of all 

these areas, suggesting that prediction in comprehension implies activation of fully-

fledged representations involved in word production. 

In the previous section we suggested that the effects found in the rTPJ may 

reflect the modeling of communicative intention and the updating of such model. Both 

Huettig (2015) and Pickering and Gambi (2018) propose that this kind of internal 

modeling is part of the prediction-by-production accounts: comprehenders simulate the 

communicative intention of the speaker and feed this to the production implementer. 

We argue that the lack of temporal overlap between task desynchronizations in this 

region may be due to the fact that the actual intention to produce a word may be 

responsible for the anticipation of the recruitment of rTPJ in the production task. 

Indeed, the effect emerged in beta2 around 300 ms in production and later, around 500 
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ms, in comprehension. Consistently, Strijkers and Costa (2016) suggest that top-down 

intentions (including the intention to speak) originating in the prefrontal cortex and in 

the temporo-parietal junction can influence the timing of subsequent computations of 

word production.  

 

4.4 Limitations and future directions 

 

Our study allows us to bring brain oscillatory evidence for the engagement of the 

production system in prediction during spoken language comprehension. However, our 

results do not allow us to make strong claims on the exact representations involved, 

specifically whether phonology is activated or not. Techniques with higher spatial 

resolution (such as MEG), experimental manipulations that better elicit phonological 

planning, and the study of special populations with speech–language disorders would 

contribute to characterize the cortical locations of the effects and help in understanding 

what representational levels are implicated. In addition, it must be underlined that EEG 

oscillatory activity is merely correlated with the observed experimental conditions. 

Because of this, we cannot make strong claims about whether the activity in a given 

brain area is necessary to a given process. However, the results of this study set the 

basis for further investigations with neurostimulation techniques (such as TMS) that 

could tease apart and clarify the role of these areas in language comprehension and 

production. Finally, individual differences may heavily hinder the ability to detect 

shared cognitive elaboration and neural activation, since we are assuming that if there 

are shared processes, they are unfolding at the same time in the two tasks; this may well 

not be the case. Despite these limitations, we argue that we bring sufficient evidence to 

stimulate further research along these lines, in an emerging effort to reconcile the study 

of language comprehension and production (McQueen & Meyer, 2019). 

 

5. Conclusion 

 

In this study we tested whether prediction-by-production accounts are supported by 

patterns of alpha and beta neural oscillations. Participants performed both a 

comprehension and a production task with predictable and non-predictable (but always 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.092528doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.092528
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

plausible) target stimuli following constraining and non-constraining incomplete 

sentences. To our knowledge, this is the first attempt at studying both processes in the 

same set of participants, thereby investigating how the same mind–brain tackles the two 

tasks and directly comparing their neural responses. In addition, we employed 

naturalistic auditory stimuli differently from previous studies, replicating the 

modulations in a less artificial setting. We found alpha and beta power decrease 

(desynchronization) before predictable targets in both tasks, signaling that participants 

were retrieving and encoding rich linguistic information, compatible with the 

‘information via desynchronization’ hypothesis. Source estimation and correlations 

suggest that 1) participants engage the left-lateralized word production network when 

predicting in comprehension and 2) internal modeling and contextual prediction is aided 

by the right temporo-parietal junction in both comprehension and production. These 

results stress the strict relationship between production and comprehension processes, 

lending support to prediction-by-production models. 
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Appendix A. Supplementary data 

Supplementary material for this manuscript can be found on the Open Science 

Framework at the following URL: https://osf.io/tcbsh/ 
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