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Abstract

The present study investigates whether predictions during language comprehension are
generated by engaging the production system. We recorded EEG from participants
performing both a comprehension and a production task in two separate blocks.
Participants listened to high and low constraint incomplete sentences and were asked
either to name a picture to complete it (production) or to simply listen to the final word
(comprehension). We found that in a silent gap before the final stimulus, predictable
stimuli elicited alpha (8-10 Hz) and beta (13-30 Hz) desynchronization in both tasks.
Source estimation highlighted not only the involvement of the left-lateralized language
network, but also of temporo-parieta areas in the right hemisphere. Furthermore,
correlations between the desynchronizations in comprehension and production showed
gpatiotemporal  commonalities in language-relevant areas in the left hemisphere,
especiadly in the temporal, lateral inferior and dorsal frontal, and inferior parietal
corteces. As proposed by prediction-by-production models, our results show that

comprehenders engage the production system while predicting upcoming words.

Keywords: language prediction, language production, alpha—beta oscillations, internal
model
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1. I ntroduction

Top-down prediction of upcoming stimuli has been proposed as a prominent
feature of human cognition in order to optimize processing (Clark, 2013; de Lange,
Heilbron, and Kok, 2018; Friston, 2005). This has been put forward also for language
comprehension, whereby sentential and contextual information guide the preactivation
of linguistic representations before it is actually encountered, thus facilitating
subsequent elaboration (Federmeier, 2007; Kuperberg & Jaeger, 2016). Prediction has
been investigated by employing different paradigms and techniques (see e.g. reading
and eye-tracking: Staub, 2005 for a review; visual world paradigm: Huettig, Rommers
& Meyer, 2011 for areview; event-related potentials (ERP): Nieuwland et al., 2020 for
alarge-scale study; Van Petten & Luka, 2012 for areview).

Despite the general agreement on the importance of prediction in language
comprehension, what are the linguistic representations involved, the underlying
mechanisms and their neural underpinnings is still largely unknown (Huettig, 2015). In
the present study we investigated the hypothesis that prediction is implemented by
engaging the language production system. To do so, we compared how the same person
predicted a target word in two contexts: when s/he had to produce it and when s’he had
to listen to it. In order to tap predictive processes, we anayzed the EEG oscillatory
activity immediately before the production or the presentation of the target words in
contexts in which the target word was either predictable or not. We anticipate that the
results revealed large commonalities between predictive processes in the two

modalities.

1.1  Prediction—by—production models

Traditionally, language comprehension and production have been independently
investigated. However, recent work highlights several commonalities in the
representations, processes and the underlying neural circuitry (AbdulSabur et al., 2014;
Dell & Chang, 2014; Okada & Hickok, 2006; Gambi & Pickering, 2017; Pickering &
Garrod, 2014; Silbert, Honey, Simony, Poeppel, and Hasson, 2014). In particular, it has
been proposed that prediction during comprehension is implemented through processes
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traditionally attributed to language production (Huettig, 2015; Pickering & Gambi,
2018; Pickering & Garrod, 2013). The proposals in the literature, however, are not
entirely in agreement regarding which processes and representations are involved.

Pickering and Garrod (2013) [P&G2013] envisaged language production and
comprehension as a form of action and action perception respectively. In studies of
action control, internal forward models are used to predict sensory consequences and
future states (Wolpert, 1997; Wolpert & Fanagan, 2001). Similarly, P& G2013
proposed that forward models are used not only to predict the speaker’s own speech
during production (Hickok, 2012; Hickok, Houde & Rong 2011), but also to predict
others’ speech during comprehension. P& G2013 posited that comprehenders covertly
imitate the speakers' utterance. The inferred communicative intention is fed into a
forward model that predicts aspects of upcoming speech (prediction-by-simulation).
Such forward models are “impoverished” representations and are extended to all the
linguistic hierarchy (semantics, syntax and phonology). According to this view,
predictions are rapidly generated without engaging fully-fledged production
representations.

According to Huettig (2015), prediction is based on the interaction between
multiple mechanisms activated during comprehension (i.e. PACS: production-,
association-, combinatorial-, simulation-based prediction). Comprehenders make use of
fully-fledged production representations that can be pre-activated through simple
associative learning (priming) and through active event simulation. Activation within
linguistic representation is further constrained by combinatorial mechanisms sensitive to
different linguistic levels. Critically, these mechanisms are shared between
comprehension and production.

More recently, Pickering and Gambi (2018) [P&G2018] proposed that the
communicative intention derived by the integration of contextual and shared knowledge
is fed into the production implementer, as in the PACS model by Huettig (2015).
P& G2018 differentiated processes related to prediction-by-association (PA) and to
prediction by production (PP). PA is based on the spreading of activation among
linguistic levels and it can be equated to semantic/phonological priming. PP is very
effective but slow and, since it requires cognitive resources, it is optional.
Comprehenders do not necessarily need to go through all the stages of the production


https://doi.org/10.1101/2020.05.13.092528
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.092528; this version posted May 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

implementer and, according to the specific circumstances, they might predict semantic
and syntactic features but not the phonology of upcoming words. On the other hand, PA
is automatic and mandatory, but less effective. It leads to the pre-activation of all
representations that are semantically and phonologically connected, independently of
their relevance to the context, which is taken into consideration only in PP.

Summing up, al three proposals assume an important role of priming and event
simulation, athough for P& G2013 and P& G2018 simulation is part and parcel of the
act of production, while in the PACS model it is a separate mechanism interacting with
production; P&G2013 ascribe a prominent role to impoverished representations in the
form of forward models, while both the PACS model and P& G2018 propose that
prediction is based on the implementation of fully-fledged production representations.

1.2  Experimental evidence on production-based accounts of prediction

Direct experimental evidence is still relatively scarce. Mani and Huettig (2012) showed
that predictive abilities in 2-year old children were correlated with their production
vocabulary size (number of words they were able to produce, according to their parents)
and not the comprehension vocabulary size (number of words that they could
comprehend only). Some ERP studies during sentence reading focused on the N400
effect in relation not only to prediction of meaning but also to prediction of form,
showing that form needed longer to pre-activate than meaning (Ito, Corley, Pickering,
Martin, and Nieuwland, 2016) and that mismatches a the article preceding the
unexpected noun elicited effects at longer latencies for phonology than for grammatical
gender (Ito, Gambi, Pickering, Fuellenbach, and Husband, 2020). Assuming that formis
encoded after meaning (Levelt, Roelofs, and Meyer, 1999; Indefrey, 2011), these
studies suggest that prediction is based on the implementation of production processes.
Additionally, it has been shown that taxing the speech production system in a secondary
task (silent syllable production) led to reduced N40O responses at the article preceding
the unexpected noun, while other secondary tasks (tongue tapping, listening to
syllables) did not (Martin, Branzi and Bar, 2018; for a debate on N400 effects at the
article, see eg. Nieuwland et a. 2018; Nicenboim, Vasishth, and Rosler, 2020).

Interestingly, a study on German Sign Language (Hosemann, Herrmann, Steinbach,
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Bornkessel-Schlesewsky, and Schlesewsky, 2013) showed that the N400 effect was
already present in the transition between the target unexpected sign and the preceding
one, revealing that participants were predicting the phonological features of the
upcoming sign, including the trajectory leading from one sign to the other in a modality-
specific manner. The authors attribute these modality-specific predictions to forward
models, thus supporting a version of production-based accounts of predictions.

Finally, circumstantial evidence is provided by studies on the cerebellum. This
structure is contralaterally connected with the neocortex and is assumed to be a crucial
node for forward modeling in action and cognition (Ishikawa, Tomatsu, lzawa, and
Kakel, 2016; Sokolov, Mial & Ivry, 2017), including language production (Runngvist
et a., 2016; Tourville & Guenther, 2011). Interestingly, the cerebellum has been found
to be involved in prediction during comprehension (see Argyropoulos, 2016 and
Moberget & Ivry, 2016 for reviews).

Studies of brain-damaged patients present cases of dissociation between
comprehension and production abilities, suggesting functional independence between
the two systems. However, it should be noted that aphasic deficits in production and
comprehension are aways a matter of degree rather than all-or-nothing phenomena
(Kemmerer, 2015). For instance, Broca' s aphasia, sometimes referred to as ‘ agrammatic
aphasia’ and traditionally categorized as an expressive impairment, also involves to
some degree degraded comprehension (Choy & Thompson, 2010; Rogalsky & Hickok,
2011; Swaab, Brown, and Hagoort, 1997). Interestingly, it has been shown that patients
with agrammatic aphasia display impaired lexical prediction (Mack, Ji, and Thompson,
2006). In conclusion, experimental evidence suggests that even though production and
comprehension do not fully overlap, the degree of overlap is greater than previously
thought.

1.3  Neural oscillationsin language prediction and production

Differently from ERPs that allow to retain information that is both time- and phase-
locked to the onset of a stimulus, timefrequency analysis of the
el ectroencephal ographic (EEG) signal enables to observe also the modulation unfolding
over time of non-phase-locked oscillatory activity at specific frequency bands
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(Bastiaansen, Mazaheri & Jensen, 2011). The literature on neural oscillations in
language comprehension and production has recently revealed oscillatory correlates of
linguistic processing (for reviews, see Meyer, 2018 for speech perception and language
comprehension, and Piai and Zheng, 2019 for language production). With respect to the
prediction process, the literature is still largely developing. Lewis, Wang and
Bastiaansen (2015) proposed that oscillations in the beta band (13-30 Hz) could reflect
the generation of predictions whereas oscillations in the gamma band (>30 Hz) could
reflect the propagation of prediction error, in line with the domain-general framework
proposed by Engel and Fries (2010). From this perspective, in the domain of language
processing it has been hypothesized that neural synchronization (reflected in power
increase) and desynchronization (reflected in power decrease or suppression) in the beta
band signal the maintenance and the change of the current interpretation of the meaning
of the sentence. Past literature focused on modulations following syntactic and semantic
violations (post-target modulations). These studies observed beta desynchronization in
the violation condition (Davidson & Indefrey, 2007; Luo, Zhang, Feng, and Zhou, 2010;
Wang et al., 2012), consistent with the idea that sentence structure and meaning, built
on the basis of previous context, has to be changed according to the new unexpected
target. However, when focusing on pre-target activity, a different modulatory pattern
should be observed. In this case during the presentation of the constraining context
before the predictable target, the interpretation of the sentence should be changed
accordingly, leading to the pre-activation of plausible linguistic information. This
change should be associated to the desynchronization of beta band oscillatory activity.
Hence, relative to pre- and post-target activity, it can be hypothesized that
synchronization (power increase) should be observed after a predictable target and
desynchronization (power decrease) should be observed during the interval preceding
such atarget.

Congruently, oscillatory studies of prediction during comprehension consistently
show desynchronization in the beta (but also alpha) range before a predictable target
(see Table 1). These studies employed the written modality, with words presented one at
a time for fixed durations. While most studies employed high and low constraining
sentences (Rommers, Dickson, Norton, Wlotko, and Federmeier, 2017; Wang, Hagoort,
and Jensen, 2018), Terporten, Schoffelen, Dai, Hagoort, and Késem (2020) studied the
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oscillatory activity pre- and post-target, and the evoked response post-target (M/N400)
while reading low, medium and high constraining sentences. The results showed alpha
and beta desynchronization before target onset. Interestingly, the oscillatory data
showed a non-monotonic relation with constraint level (i.e. the strongest
desynchronization was elicited by the medium constraint, followed by the high and then
the low constraint). The authors argued that pre-target power modulations reflected
working memory demands for target pre-selection. These were maximal for the
condition of intermediate levels of constraint in which the pool of activated lexical
candidates is larger than in the high constrain condition in which only one candidate is
activated. In other studies, however, maintenance in working memory has been more
often associated to alpha-beta synchronization (see Weiss & Miuiller, 2012; Meyer,
2018; Piai, Roelofs, Rommers, Dahlslétt, and Maris, 2015). Moreover, as can be seenin
Table 1, effects in oscillatory activity have been detected only in partially overlapping
cortical areas. Given these inconsistencies in the results, it is still largely unclear what
the processes associated to alpha-beta desynchronization are.*

With respect to language production, in a series of studies, Piai and collaborators
focused on the oscillatory correlates of word production by employing context-induced
picture naming tasks. In these paradigms, the sentential context preceding the
presentation of the target picture either allows or not for predicting the name of the
target picture. Time-frequency analyses focus on the interval preceding the target,
revealing apha-beta desynchronization before predictable pictures (see Table 1). An
open question is what kind of processes and representations are reflected in the apha—
beta desynchronization found in this kind of production task. Piai, Roelofs, Rommers,
and Maris (2015) dissociated the memory- and motor-related components by comparing
pre-target beta and apha desynchronization in two different tasks. In one case the task
required to name the picture that followed a constraining or non—constraining sentence

frame, in the other case participants were asked to judge whether the picture was

! It is also worth considering that alpha and beta oscillations have been found to be implicated in a variety
of functions, both outsde and within the language domain, e.g. sensorimotor processing in action
(Zaepffel, Brovelli, MacKay, and Riehle, 2013) and speech planning and execution (Saltuklaroglu et al.,
2018), motor imagery and action semantics, working memory, information binding (Weiss & Mueller,
2012 for a review), time perception (Wiener, Parikh, Krakow, and Coslett, 2018), and temporal
expectations (Morillon & Baillet, 2017).
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predictable or not by pressing a key with their left hand. Results showed alpha—beta
desynchronization in different areas, depending on the task. The activity in the left
temporal areas and in ventral premotor areas observed during picture naming was
associated to word retrieval and speech motor programming. The activity in left
posterior temporal and inferior parietal areas and in the right motor area observed
during the categorization task were associated to conceptual processing and manual
response preparation. In Piai, Klaus and Rossetto (2020), auditory distractors were
introduced before picture onset. Alpha—beta desynchronization was delayed when the
distractors were semantically related to the target picture with respect to unrelated
distractors, suggesting that these power modulations are sensitive to lexico-semantic
processing. Along the same lines, Piai, Rommers and Knight (2018) showed that
aphasic patients with concomitant left temporal and inferior parietal lesions did not
benefit from constraining contexts and did not display the characteristic alpha—beta
desynchronization, while patients with left frontal and left temporal (but not inferior
parietal) lesons did. According to the authors, this pattern suggests that the
desynchronization in the alpha and beta bands elicited in context-induced word
production is functionally associated to core semantic memory and lexical retrieval.

Whether phonological encoding is captured and reflected in these modulations remains

unanswered.
EEG/ : Time- L :
Task Study Frequencies : Scalp distribution Cortical sources
MEG window
Alpha stronger over
occipital and centra
Rommers dpha(7-12 Hz)
electrodes
eta. EEG and beta (16-24 -500, 0 ms
Beta: stronger over left
(2017) Hz) . .
posterior and anterior

% electrodes
7]
E Alpha: left inferior fronta
ﬁ cortex, left posterior temporal
o ] R
o . cortex (including visua word
= apha(8-12 H) Alpha: |eft anterior, central
@] Wang & ] form area, VWFA), left
o MEG  andbeta(16-20  -550,-250 ms and posterior ] )

a. (2018) . hippocampus, and right

Hz) Beta: left centro-posterior
cerebellum
Beta: |eft posterior temporal
cortex
Terporten MEG dpha(8-12 Hz) -540, 0 ms Alpha: frontal and Alpha: parieta regionswith a
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etal. and beta (16-20 posterior, stronger in the biasto the right hemisphere
(2020) Hz) right hemisphere Beta: left and right frontal
Beta: frontal, stronger in and parietal regions
the right hemi sphere
Piai et a. alpha—beta Left frontal, central and
EEG -400, 200 ms .
(2014) (6-30 Hz) posterior
- Average Left anterior and posterior
Piai et al. apha—beta ) Left frontal, central and )
> MEG modulation . tempora areas, bilateral
o) (2015b) (4-25 Hz) posterior
P -800, 0 ms ventral premotor areas
(8] - -
8 Group average in aphasic
o Piai et al. alpha-beta patients: bilateral frontal
x EEG -300, 0 ms )
(2018) (8-25Hz) and left posterior (see

reference for details).

Piai et al. apha—beta .
EEG -350,0 ms Posterior sensors
(2020) (5-20 Hz)

Table 1: Summary of the studies on neura oscillations pre-target in prediction during
comprehension and in context-induced word production. All these studies report
desynchronization in the frequency bands and time-windows specified in the table.

(EEG: electroencephal ography, M EG: magnetoencephal ography)

The oscillatory activity in the beta band reported both in prediction during
comprehension and in production has led to the hypothesis of a common mechanism
shared by the two processes (Molinaro, Monsalve and Lizarazu, 2016). Until now,
however, no study has directly compared the oscillatory alpha—beta activity in the two
domains. Indirect support pointing towards common mechanisms comes from Pérez,
Carreiras, and Dufiabeitia (2017) who performed an experiment with hyperscanning
where the EEG activity was registered while two participants interacted in a
conversation. The results showed that alpha and beta bands oscillations of the speaker
and the listener were temporally synchronized. Synchronization within these bands has
been interpreted as reflecting coordination between speaker and listener and predictive
processing.

1.4  Thepresent study
We implemented a within-subject design in which the same participant accomplished a

production and a comprehension task in order to directly compare how linguistic
information is anticipated in the two tasks. To that end, we targeted the alpha and beta

10
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oscillatory activity in an interva immediately preceding the relevant target. More
precisely, we used both the cloze probability comprehension task and the context-
induced picture naming task in two separated blocks. Participants listened to sentence
frames which could either constrain or not towards a target word (see Table 2). After a
silent pause of 800 ms, they either listened to the target word or they completed the
sentence by naming the target picture. Time-frequency analyses focused on the silent
interval between the sentence frame and the target. The structure of the paradigm
allowed to directly compare the effects elicited by the same stimuli in the two tasks. In
the constraining condition participants could anticipate (and in the production task even
plan the response) the target word before hearing it or seeing the corresponding picture.
Measuring oscillatory activity before target presentation in the production task allowed
us to tap into processes associated to word production planning. The comparison with
word prediction during comprehension in the same time interval would highlight the
extent to which the two tasks share common mechanisms.

To our knowledge, this is the first study alowing for such direct comparison. In
fact, as previously mentioned, shared mechanisms have been proposed in the literature
on the bases of similar oscillatory patterns in separate studies investigating either
prediction during comprehension or production. In addition, the present study made use
of naturalistic auditory stimuli, contrary to most of the previous studies which employed
the written modality in an artificial (word-by-word) fashion.

Following the literature, we expect to replicate the pre-target predictability
effects of alpha and beta desynchronization in both comprehension and production. If
prediction and production share some common mechanisms, we should observe
temporal overlaps of apha-beta modulations between the two tasks in language-
relevant areas of the left hemisphere. Moreover, since derivation of communicative
intention and event simulation seem essential for anticipating linguistic content both in
production and in comprehension, apha and beta desynchronization could be observed
also in cortical regions supporting supramodal integration and traditionally not involved

in linguistic processing.

11
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2. M aterials and methods

21 Participants

Forty participants were recruited on a voluntary basis (11 males; mean age = 23.7, sd =
4.84). All participants were right-handed native speakers of Italian (handedness
evaluated by means of an Italian translation of the Edinburgh Handedness
Questionnaire, Oldfield, 1971; mean laterality index = 86, sd = 15.28). None of them
reported a history of neurological, language-related or psychiatric disorders. All
participants signed an informed consent to participate in the experiment. The study was
approved by the Ethical Committee for the Psychological Research of the University of
Padova (protocol n. 2920).

22  Stimuli

One hundred twenty-eight concrete, animate and inanimate nouns were selected and
paired with a black-and-white line picture (240 x 240 pixels) representing the word
referent. For each picture, a scrambled version was also created, in such a way that the
referent was not recognizable. For each target noun, two sentence frames were
constructed: one whose semantic content leads to the target word with a high probability
(highly constraining; HC) and one for which the target word is not particularly likely
but is still plausible given the sentential content (low constraining; LC, see Table 2).
This resulted in 256 sentences in total (128 HC, 128 LC). Sentence frames associated to
the same target were matched for number of syllables, had a similar syntactic structure,
and had the same article or preposition as the final word. The constraint was modeled as
cloze probability (CP) of the target word given the frame, assessed with an online
sentence compl etion questionnaire involving 71 respondents, none of whom took part in
the subsequent experiment, who were asked to complete each sentence frame with the
word they considered most appropriate (HC sentences: mean CP = 0.873, sd = 0.092;
LC sentences: mean CP = 0.052, sd = 0.078). Subsequently, al sentence frames and
target words were recorded from a female native speaker in a quiet room using a

microphone connected to a PC using Audacity (sampling rate of 44.1 KHz). Frames and

12
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targets were recorded separately. The speaker was instructed to keep the reading pace as
steady as possible and to keep a constant distance from the microphone. Sentence
frames were then appropriately trimmed at the beginning and at the end using Audacity.
The approximate number of syllables per second, assuming a constant pace, for each
sentence frame was estimated as the number of syllables of the sentence divided by the
length of each audio file.

Target words and their associated sentence frames were then divided into two
lists, A and B, each containing 64 target words and the associated 128 sentence frames
(64 HC and 64 LC). The two lists were matched for lexical frequency (log-scaled;
obtained from COLFIS, Bertinetto et al., 2005), number of phonemes and number of
syllables (obtained from Phonlta 1.10, Goslin, Galluzzi, and Romani, 2014), number of
syllables per second, audio file duration, both across conditions and within conditions.
The difference of CP was not significant across condition, and was significant between
conditions, both in the whole set and within each list (see Table 3 for stimuli matching).

Task Condition Sentence frame Target Trials
Il contadino munge una...
COMPREHENSION HC 64
‘Thefarmer milksa...’ mucca
"a Il bambino disegna una... ‘cow’
@6 LC 5 64

‘The child drawsa...’

Il calciatore colpiva la...
PRODUCTION HC 64
‘The soccer player kicked the...’ 3

) II bambino voleva la... &
LC 64

‘The child wanted the...’

Table 2: Examples of stimuli used in the experiments.

LISTS
Mean (sd) Liss A Mean («d) List B t-value df p-value
Lexical frequency (log-scaled) 3.776 (1.251) 3.847 (1.31) -051 23575 0.6104
No. phonemes (wor d) 6.063 (1.701) 6.281 (1.631) -1.05 25355 0.2947
No. syllables (word) 2.578 (0.728) 2.672 (0.641) -1.09  250.06 0.2751
No. syllables (sentence frame) 10.680 (2.012) 10.672 (2.248) 0.03 251.07 0.9766
Audio length (sec) (sentence 2.388 (0.397) 2.381 (0.414) 015 25354 0.8851
frame)
No. syllables/sec (sentence 4.482 (0.485) 4.480 (0.523) 005 25252 0.9643

frame)
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Cloze probability overall 0.456 (0.421) 0.468 (0.421) -0.23 245 0.8215
Cloze probability HC 0.868 (0.094) 0.878 (0.09) -062 12584 0.5351
Cloze probability LC 0.045 (0.068) 0.058 (0.086) -1 119.69 0.3193

CONDITIONS
Mean (sd) HC Mean (sd) LC  t-value df p-value
No. syllables (sentence frame) 10.750 (2.074) 10.602 (2.182) 056  253.34 05774
Audio length (sec) (sentence 2.413 (0.407) 2.356 (0.402) 112 25397 0.2629
frame)

No. syllables/sec 4.459 (0.441) 4.504 (0.56) 071  240.87 0.4758
Cloze probability overall 0.873 (0.092) 0.052 (0.077) 7747  246.66 <0.001
Cloze probability List A 0.868 (0.094) 0.045 (0.068) 56.96 114.71 <0.001
Cloze probability List B 0.878 (0.09) 0.058 (0.086) 5269 125.62 <0.001

Table 3: Variables controlled across lists and conditions (Welch's t-tests). Means and
standard deviations (in parenthesis) are reported. HC: high constraint, LC: low

constraint.

2.3 Procedure

Participants were seated in a comfortable chair in a soundproof room with a computer
connected to a CRT monitor, built-in speakers, a keyboard and a microphone to record
responses. Stimuli were presented with E-Prime 2.0 (Psychology Software Tools,
Pittsburgh, PA). Each participant performed the comprehension task and the production
task in ablocked design. The structure of the trials in the two tasks is shown in Figure 1.
After a silent interval of 800 ms, a sentence frame was played through the computer
speakers, and it was followed by a second silent gap of 800 ms. Throughout this phase
the fixation cross remained on the screen. Afterwards, the target was presented together
with avisual stimulus for 2 seconds. In the comprehension task the visual stimulus was
constructed by scrambling the picture corresponding to the target in such away that the
referent was not recognizable. In the production task, the visual stimulus was the picture
of the target word. In the comprehension task, participants were instructed to listen
carefully to the sentence. To ensure that they paid attention to the sentence, 26 trials
(20%) included a statement about the preceding sentence appearing as written text after
the target for 2 seconds. Participants were asked to judge whether it was true or false by
providing a vocal response. In the production task, participants were instructed to name

the picture as fast and as accurately as possible.
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L D) ¢
800 ms sentence frame silent gap target
1550-3500ms 800 ms 2000 ms

Figure 1: Trial structure in the comprehension (top) and the production (bottom) tasks.

For each participant, list A or B was associated to one of the tasks (e.g. list A
for comprehension and list B for production). Task order and the lists associated to the
tasks were counterbalanced across participants, resulting in a 2x2 design (2 lists x 2
tasks). Trial order presentation was pseudo-randomized for each participant by using
Mix (van Casteren & Davis, 2006) in such a way that the minimum number of trials
between the first and the second presentation of the same target word was seven, and no
more than three consecutive trials belonged to the same condition. The inter-trial
interval varied from trial to trial (1, 1.2 and 1.5 seconds). After every 32 trials
participants could take a short break. Responses were recorded through the microphone,
positioned at a fixed distance from the participant (~50 cm). During the experimental
session participants were instructed to minimize eye movements, blinks and facial
muscle activity during the presentation of the stimuli. Before each task, a training
session of 8 trials (not included in the experimental session) was used to familiarize the
participant. Each task lasted approximately 20 minutes.

24  Responsecoding and production RT analyses

For the comprehension task, true/false responses were coded as correct or incorrect.
Trials with incorrect responses were excluded from the EEG analyses.

In the production task, audio recording started at the onset of the picture and
lasted for 2 sec. Responses were manually coded as incorrect when participant 1) failed

to provide an answer, 2) produced hesitation sounds, 3) started producing a word but
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then produced another word, 4) produced the correct target word before recording onset.
Trials with incorrect responses were excluded from the EEG analyses. Response onset
was measured from each audio recording using Chronset (Roux, Armstrong, and
Carreiras, 2017). In case Chronset returned some NA values, the correspondent audio
waveforms were inspected manually with Audacity in order to determine the response
onset. The set of correct responses was then analyzed using R (R Core Team, 2014).
RTs were analyzed by means of linear mixed-effects models (Baayen, Davidson,
and Bates, 2008) using the Ime4 package (Bates, Méachler, and Walker, 2015), with
random intercept for participant and target word. The ImerTest package (Kuznetsova,
Brockhoff, and Christensen, 2017) was used to estimate the p-values for model
parameters. First, a null model including random effects was computed, and in each
subsequent model a predictor or an interaction between predictors was added. An
ANOVA between models was then performed, and the best-fit model was selected
considering AIC (Akaike Information Criterion) and BIC (Bayesian Information

Criterion) as indices of fit and the p-value of the test between models.

25 EEG data acquisition and pre-processing

Electroencephalogram was recorded with a system of 64 active Ag/AgCl electrodes
(Brain Products), placed according to the 10-20 convention (ActiCap). Sixty of them
were used as active electrodes (Fpl, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6,
F7, F8, Fz, FT7, FT8, F1, F2, F3, F4, F5, F6, Fz, FC1, FC2, FC3, FC4, FC5, FC6, T7,
T8, C1, C2, C3, C4, C5, C6, Cz, TP7, TP8, CP, CP2, CP3, CP4, CP5, CP6, CPz, P1, P2,
P3, P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, PO9, PO10 POz, O1, O2, Oz). Reference
was placed at the left earlobe. Three electrodes were used to record blinks and saccades
(external canthi and below the left eye). Electrode impedance was kept below 10 kQ
throughout the experiment. The signa was amplified and digitized at a sampling rate of
1000 Hz. Before the tasks, a resting state of 5 minutes was recorded, which is not
analyzed further here. Each task was recorded separately. As aresult, 3 recordings were
obtained for each participant (resting state, production, comprehension).

Pre-processing and analyses were performed using the MATLAB toolbox
Brainstorm (Tadel, Baillet, Mosher, Pantazis, and Leahy, 2011; Tadel et al. 2019),
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which is documented and freely available for download online under the GNU general
public license. A high-pass filter at 0.5 Hz with 60 dB attenuation was applied to the
raw data. Noisy or flat channels were marked as ‘bad’ and excluded (max 2 channels
marked as ‘bad’ per participant). No interpolation of bad channels was performed.
Segments with extreme muscle artifacts were marked as ‘bad’. Subsequently,
Independent Component Analyses (ICA) with 60 components was computed to detect
and remove artifact components with known time-series and topographies (blinks,
saccades, and power-line noise at 50 Hz).? Markers for incorrect responses were
manually added to the continuous EEG recording according to the off-line evaluation of
the audio files. Finally, 3-second epochs (from -1.5 to 1.5 s) were imported around two
event markers: (1) the onset of the trial (fixation cross), and (2) the onset of the 800 ms
gap pre-target. The epochs in (1) were not divided into conditions and constitute the
condition-average baseline for the event-related synchronization / desynchronization
(baseline,m, and baselingyog). This ensures a higher signal-to-noise ratio given the
higher number of trials included as baseline, and therefore a better estimate of the
relative power change (Cohen, 2014). The epochs in (2) were divided into HC and LC
conditions (HCcomp, L Ccomp, HCprod @Nd LCprod). All epochs were visually inspected, and
those with artifacts (uncorrected blinks/saccades, muscle activity, channel drifts,
transient electrode displacements) were rejected. All trials in (2) which included a

marker of incorrect response were rejected.
26  Timefrequency decomposition and statistical analyses (sensor-level)

In the time-frequency (TF) decomposition, power was computed by using Morlet
wavelets. According to Morlet Wavelet implementation in Brainstorm software,
wavelets were built starting from a mother wavelet with central frequency = 1 and
FWHM = 3 (7-cycle wavelets), and then generating new wavelets spanning from 5 Hz

2 |f any channels were marked as ‘bad’, the number of components for the ICA was reduced to the

number of good channels.
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to 30 Hz with step 1 Hz.> TF maps were obtained for each trial for all conditions
(basdlinecomp, HCcomp, LCcomp, baselingprod, HCprod, LCprod). Due to the large windows for
epoching (3 seconds), edge effects at the selected frequencies did not involve the
windows of interest. Subsequently, TF maps were averaged within each condition for
each participant.

Event-related synchronization/desynchronization (ERS/ERD) was used as
normalization method.* For each participant, the average TF map of the two conditions
were normalized against the mean computed over the interval [-550 -250] ms of the
average baseline TF map (baselinecomp for HCeomp and LCeomp; baselingyod for HCprod
and LCyod). This yielded the %-change of power over time relative to the baseline for
each frequency.

After having obtained the normalized TF map for each participant, non-
parametric cluster-based permutation tests were performed for each task on the 800 ms
pre-target gap (paired one-tailed t-test with cluster correction; Maris & Oostenveld,
2007). The critical o level was set to 0.05, the minimum number of neighboring
channels set to 2, and the number of Monte Carlo simulations for the permutations to
1000. Following existing literature, we used one-tailed tests to ensure higher statistical
power to detect an effect in a specific direction. Specificaly, the expected alternative
hypothesis was that HC conditions elicited reduced power compared to LC conditions.
An additional two-tailed analysis with cluster-based permutation (same parameters as
above) was performed also between the differentials (HC-LC) between tasks
(comprehension vs production) to test for an interaction. From now on we refer to the
difference between HC and LC in each task as Acomp and Apreg, and to the statistical

contrast between them as interaction.

® The delta band (0.1-4 Hz) was excluded because the wavelets at these frequencies were too large and
temporal smearing introduced noise in the production task (HC condition) due to muscle activity after the
gap of interest.

*ERS/ERD, = (Power, — Powergseime )/ POWeTpasorme X 100
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2.7  Time-frequency decomposition and statistical analyses (sour ce-level)

To estimate EEG activity at source level we implemented the following steps. First, a
noise covariance matrix for each task was computed from the baseline epochs in the
time-window [-550 -250] ms. OpenMEEG BEM (Boundary Element Method) with
8002 vertices was used as forward solution® (Gramfort, Papadopoulo, Olivi, and Clerc,
2010) with ICBM152 as template anatomy. This method models three redistic layers
(scalp, inner and outer skull) in addition to the cortical surface; for this reason, it is
recommended for EEG data, given the differential electrical propagation through the
different types of tissue. Minimum Norm Imaging (NMI) normalization with SLORETA
(Standardized Low Resolution Brain Electromagnetic Tomography; Pascual-Marqui,
Michel, and Lehmann, 1994) was used as inverse solution. The dipole orientation was
unconstrained, to obtain a better estimation in lack of individual anatomy scans.® Time-
frequency decomposition was performed on each epoch, averaged and normalized
against the baseline as for the TF at sensor level. TF maps were then averaged across
frequencies in four bands. alpha (8-12 Hz), betal (13-19 Hz), beta2 (20-25 Hz) and
beta3 (26-30 Hz). Subsequently, ERS'ERD maps were downsampled at 150 Hz, to
reduce the computational burden. Cluster-based permutation tests (one-tailed paired t-
tests) for main effects and interaction (two-tailed paired t-tests) on source-space TF data

were performed as previously described.

2.8 Between-task sour ce-level correlations

Pearson correlations between Acomp and Agrg 8t the source level were performed. This
provides an estimate of putative shared cortical generators of the desynchronizations in
prediction during comprehension and in word planning in production. Correlations were
computed separately for the alpha band (8-12 Hz) and the three beta sub-bands (13-19,
20-25 and 26-30 Hz) on %-power change averaged in intervals of 200 ms (0-200, 200-
400, 400-600 and 600-800 ms), resulting in 16 correlation maps. For each vertex of the

® For the other layers (scalp, inner and outer skull) Brainstorm defaults settings were kept.
® The other settings were kept at Brainstorm default settings (Noise covariance regularization: 0.1;
Signal-to-noiseratio: 3).
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cortex model, two vectors of values were correlated. Each vector contained 36 values,
one for each participant, representing the average A%-power change at a given
frequency band and time-window in the two tasks. We decided to average in time
because it is likely that cortical modulations underlying possible shared processes are
not temporally aligned across the two tasks due to different demands influencing
participants’ performance. In this way we can capture desynchronizations at the same
vertex that are slightly shifted in time. For each frequency band, correlations were
thresholded for p < 0.05 and minimum size = 50 (number of connected vertices), in
order to exclude not only statistical non-significant correlations, but also statistically
significant but isolated and likely meaningless correlations, given the very low spatial
resolution of the technique. Then, correlation maps were inspected, and the interval with
the strongest and more spatially extended correlations were identified. In a more
exploratory fashion, we performed additional correlations on the averages of the
identified time-windows in order to provide a clearer summary of the results and
capture the possible commonalities between the tasks. For this additional analysis, we

only focused on the positive correlations.

3. Results

3.1  Word production response times

Response accuracy was very high (98.5%). Only 84 responses were coded as incorrect,

59 in the LC condition and 25 in the HC condition. Error rates were not analyzed.

Figure 2 shows response times of correct trials divided by condition.
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Figure2: Violin plot of the response times of correct trials in the production task for the
HC and the LC conditions. HC: mean = 507 ms, sd = 184.786; LC: mean = 698 ms, sd
=172.22.

Latencies of correct responses were fitted to mixed-effects models; Table 4
shows the results of the ANOVA between models. The model which best explained the
data is M4, which included Repetition, Condition, Lexical frequency and the interaction
Condition x Lexical Frequency as fixed effects.

M odel Effects Df AlC BIC X? p-value
MO Random effects (R.E.) 4 66966 66992
M1 R.E. + Repetition 5 66705 66737 263.22 <0.001
M2 R.E. + Repetition + Condition 6 64857 64897 1849.1 <0.001
M3 R.E. + Repetition + Condition + Lexical 7 64858 64904 1134 0.287
Frequency
M4 R.E. + Repetition + Condition + Lexical 8 64851 64903 9.258 0.002
Frequency + Condition x Lexical
Frequency
M5 R.E. + Repetition + Condition + Lexical 9 64852 64911 1231 0.267

Frequency + Condition x Lexical
Frequency + Condition x Repetition

Table 4: Statistics of model selection.
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The model showed a main effect of Repetition (estimate = -85.023, t = -20.74, p
< .001, 95% CI: -93.060 — -76.990) — with estimated faster responses at the second
presentation of the same target picture — and of Condition (estimate = 232.135, t =
17.909, p < .001, 95% CI: 206.724 — 257.545) — with estimated faster responses in the
HC relative to LC condition. There was no main effect of Lexical Frequency (p = .959),
but there was an interaction between Frequency and Condition (estimate = -9.795, t = -
3.044, p < .01, 95% ClI: -16.102 — -3.487): the effect of Lexical Frequency was present
in the LC condition, with decreasing RTs when lexical frequency increases. Table 5

shows all the parameter estimates of the model.

Parameter Estimate SE df t-value  p-value 95% Cls
Inter cept 547.970 22.126 188.392 14.766 <0.001 [504.384 —591.563]
Repetition -85.023 4.099 4870.025 -20.740 <0.001  [-93.060—-76.990]
Condition 232.135 12.962 4870.763 17.909 <0.001 [206.724 —257.545]
Lexical Frequency 0.236 4.595 162.165 0.051 0.959 [-8.822 —9.297]

Condition x Lexical
-9.795 3.128 4870.514 -3.044 <0.01 [-16.102 — -3.487]
Frequency

Table5: Parameter estimates of model M4.

3.2  Sensor-level time-frequency analysis

The data of two participants were excluded from the analyses due to an excess of trials
coded as incorrect in the comprehension task (34.6% and 53.9%). Another two
participants were excluded due to excessively noisy recordings in the EEG. The mean
percentage of epochs retained are the following: baselinegomp: 88.8%, HCeomp: 89.7%,
LCcomp: 87.5%, baselineyrog: 87.7%, HCprod: 89.3%, LCprod: 89.7%.

The cluster-based permutation tests contrasting HC vs LC conditions in the two
tasks were significant. In the comprehension task, the effect was associated to a
negative cluster (p = 0.003, t-sum = -324052, size = 134070; Figure 3a). In the
production task, the effect was associated to a negative cluster (p = 0.001, t-sum = -
946882, size = 361719; Figure 3b). This suggests that high word predictability elicited
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desynchronization before target presentation, be it an auditory word or a picture to name

overtly. The effects were widespread across all sensors and appeared to span the entire

alpha and beta ranges, with variability of modulations across the gap. The analysis

testing for the interaction did not yield significant results (all clusters p > 0.05; see

Supplementary Material).
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Figure 3. Timefrequency maps averaged across groups of sensors for the
comprehension (a) and the production (b) tasks. The averaging is only for visualization
purposes; statistical testing was performed on all electrodes. Each column represents a
group of sensors, specified on the scalp model above. The rows represent the average
TF maps of the HC condition, the LC condition, the HC-LC differential (Acomp/prod), @nd
the t-values of the statistical contrast (t-maps are masked for values associated to the

significant cluster).

3.3  Source-level time-frequency analysis

Source-level contrasts identified two significant negative clusters in the comprehension
task (cluster 1, left hemisphere: p = 0.02597, t-sum = -742975, size = 326126; cluster 2,
right hemisphere: p = 0.04995, t-sum = -645503, size = 280809) and two negative
clusters in the production task (cluster 1, left hemisphere: p = 0.001, t-sum = -1820707,
size = 719067; cluster 2, right hemisphere: p = 0.002, t-sum = -1405540, size =
562307). The interaction analysis did not yield significant results (all clusters p > 0.05;
see Supplementary Material). Results are shown in Figure 4a and Figure 4b.

In comprehension, apha desynchronization was stronger towards the end of the
gap and involved the bilateral frontal and temporal cortex; early in the gap it involved
the left posterior temporal cortex. Beta desynchronization was found in the temporal
(betal) and inferior frontal (betal, beta2, beta3) corteces of the left hemisphere, and in
temporo-parietal-occipital areas (betal, beta2, beta3) of the right hemisphere. In
production, alpha desynchronization involved the bilateral prefrontal, temporal and
inferior parietal corteces, with a bias in the right hemisphere. Beta desynchronization
involved an extended cortical network, including the temporal, parietal and frontal
cortex in the left hemisphere, and the parietal cortex in the right hemisphere.
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Figure 4: Summary of the statistical contrasts between HC and LC conditions in the
comprehension (a) and production (b) tasks. Selected cortical maps of t-values are
shown for each of the frequency bands (a: 8-12 Hz; f1: 13-19 Hz; 32: 20-25 Hz; 33: 26-
30 Hz) in averaged time-windows determined from inspecting the time-course of the
results. For each map, the time-window used for averaging is indicated by the red line
below each plot (comprehension: o: 0-100, 500-800 ms; f1: 300-400, 400-800 ms; p2:
400-600 ms; 3: 400-700 ms; production: a: 0-600 ms; f1: 0-200, 200-600 ms; 2: 250-
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350; 500-800 ms; B3: 500-800 ms). Averaging is for visualization purposes only;
analyses were performed on all timepoints after downsampling. Only t-values ranging
from -1 to -4 and part of a significant cluster are shown. Complete results are provided

in the Supplementary Material.

34 Sour ce-level correlations

Figure 5 shows positive correlations between Acomp and Apoq S defined in the
Method section (complete correlation maps are reported in the Supplementary
Material). The areas highlighted include the left tempora cortex, the inferior frontal

cortex, motor and supplementary motor corteces, the left insula, and the left inferior

parietal cortex.
B3
07 2
0.6
05
0.4 Bl
03

0 200 400 600 800 ms
Figure 5: Positive correlations between Acmp and Apg @ the source level at each
frequency band. The timeline at the bottom represents the 800 ms slent interval
between sentence frame and target; the red lines below each cortical map represent the
time-window of the correlation displayed above it (a: 400-800 ms; $1: 200-600 ms;  2:
200-400 ms; $3: 0-400 ms).
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4. Discussion

We employed a within-subject design in order to directly compare alpha and beta
oscillatory modulations elicited by predictive processes in comprehension and
production by manipulating cloze probability. We found apha and beta
desynchronization in HC relative to LC conditions preceding the target stimulus. The
cortical sources appeared to be left frontal, temporal and inferior parietal, involving the
traditional language network, but also right parietal and temporo-parietal, possibly
reflecting ‘extra-linguistic’ processes. Positive correlations between Acomp and Aprod
were found in the left temporal, frontal, and inferior parietal cortices.

In the following paragraphs we will discuss: 1) the desynchronizationsin the left
hemisphere in relation to language-specific and domain-general processing; 2) the
desynchronizations in the rTPJ in relation to contextual updating of internal models; 3)
how these results are compatible with production-based accounts of prediction; 4)

limitations of the present study and future developments and directions.

41  Alpha-beta desynchronization in the left language network as index of

predictive information retrieval and encoding

In both tasks, HC contexts induce desynchronization of the alpha and beta bands
relative to LC contexts. We interpret the desynchronization as marker of preactivation
of linguistic information, both in predicting during comprehension and in planning for
word production.

In the comprehension task, the language network is engaged in actively updating
the sentence-level representation in a top-down fashion. In the HC condition the
preceding context allows for the generation of strong predictions about the upcoming
word. The information retrieved from long-term memory in this case is rich and
specific. This predictive process is reflected in the desynchronization of oscillatory
activity in the alpha and beta band observed in language-relevant areas (left temporal
and left inferior frontal areas).

In the production task, the HC condition leads to faster naming latencies with
respect to the LC condition. Moreover, the effect of lexical frequency was found in the
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LC but not in the HC context (replicating previous studies, Griffin & Bock, 1998; Piai
et a., 2014). The pattern clearly signds that lexical retrieval in the HC condition occurs
before picture onset, and the alpha—beta desynchronization effect observed before
picture presentation reflects the retrieval of specific lexical information.

These conclusions are compatible with the ‘information by desynchronization’
hypothesis put forward by Hansimayr, Staudigl, and Fellner (2012). According to this
study, information encoding and retrieval is associated with desynchronized firing of
neural populations in the apha and beta frequencies. By applying mathematical
modeling, the authors showed that the power of local field potentials at these
frequencies (and consequently of the scalp-level EEG fluctuations) is negatively related
to the richness of information represented in the brain. The stronger the
desynchronization of neural populations, the stronger the decrease in alpha—beta power,
and the richer the information encoded or retrieved. From this perspective, therefore,
our results are in line with studies showing that apha—beta desynchronization is related
to prediction precision in spatial attention (Bauer, Stenner, Friston, and Dolan, 2014)
and pitch change (Chang, Bosnyak, and Trainor, 2018), in successful word memory
formation (Griffiths, Mazaheri, Debener, and Hanslmayr, 2016) and word encoding
(Meeuwissen, Takashima, Fernandez, and Jensen, 2011), and fidelity of stimulus-
specific information tracking in the visual and auditory domains (Griffiths et al., 2019).

In conclusion, our findings are in line with previous studies showing alpha—beta
desynchronization in the language network before target onset, compatible with the role
of alpha—beta desynchronization in signaling active change in the cognitive set.

4.2  Alpha—beta desynchronization in the right temporo-parietal junction as

index of internal modeling and expectation updating

The alpha and beta desynchronization effects we reported aso involved the right
hemisphere. Source analyses showed that the effect extended mainly in the prefrontal
cortex (alpha range) and in the occipito-temporo-parietal cortex (beta range) in
comprehension, and in the temporal, parietal and prefrontal cortex (both alpha and beta
ranges) in production. Terporten et a. (2020) reported oscillatory effects in the right

parietal cortex in a comprehension task and interpreted this activity as reflecting
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attentional and working memory demands. The effect we found in the same area in both
tasks may capture attentional effects, particularly in the production task which requires
participants to shift from listening to preparing to speak.

Our results also suggest that a particular region, the right temporo-parietal
junction (rTPJ), is involved in anticipatory language processing in both comprehension
and production, although not entirely in the same frequency bands (in beta2-3 in
comprehension; alpha and betal-2 in production). The label ‘rTPJ does not describe a
well-defined region, and it includes portions of the inferior supramarginal gyrus, the
angular gyrus, the posterior superior and middle temporal sulcus and gyrus (Geng &
Vossel, 2013). In the literature, this area has been considered to be implicated in
different domains of cognition, including bottom-up attention, self-perception, episodic
memory, social cognition and Theory of Mind (Igelstrom & Graziano, 2017).
Interestingly, by using fMRI it has been shown that the networks involved in language
comprehension and in Theory of Mind — especially the rTPJ, — are synchronized at rest
and during story comprehension (Paunov, Blank, and Fedorenko, 2019), implying that
coordinated processing of linguistic and social information is crucia for
communication. Moreover, activity in the right or bilateral TPJ has been associated to
the processing of pragmatic aspects of language (Basnakova, Weber, Petersson, Van
Berkum, and Hagoort, 2014; Carotenuto et al., 2018; Spotorno, Koun, Prado, Van Der
Henst, and Noveck, 2012).

Based on the vast literature on rTPJ, Geng and Vossel (2013) proposed a
unifying role of rTPJ as a hub whose specific function is determined by the network it is
co-activated with. Specifically, the authors suggested that this region is responsible for
the contextual updating of internal models in order to adjust expectations about
upcoming events and guide planning of future actions. It is likely that during language
processing this region contributes to the interfacing of extra-linguistic with linguistic
information (including pragmatic knowledge). Our results support this view and suggest
that rTPJ works in concert with the left-lateralized language network to construct and
update an internal model of the communicative intention for the generation of
contextually appropriate predictions and responses. Congruent with prediction-by-
production models, the effects in rTPJ highlighted the contribution of contextually
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appropriate information beyond mere priming (Camblin, Gordon & Swaab, 2007; Hintz,
Meyer, and Huettig, 2020; Lowder & Ferreira, 2016; Otten & Van Berkum, 2008).

4.3  Compatibility with prediction-by-production models

We observed that in both comprehension and production alpha—beta power decreased
before encountering a predictable stimulus. To what extent do these effects reflect
common processes involving shared representations? The pasitive correlations between
desynchronizations in the two tasks reveal common activity in areas of the left
hemisphere, and more specifically the anterior temporal, inferior parietal, temporo-
parietal, and inferior frontal corteces. It is relevant to note that all these areas are
generally associated not only with lexical-semantic retrieval but aso with word
production. This suggests that when predicting a word, comprehenders engage, at least
to some extent, the word production network, as proposed by prediction-by-production
accounts (Huettig, 2015; Pickering & Gambi, 2018; Pickering & Garrod, 2013). The
consensus on the neural bases of word production is that lexical-semantic retrieval
involves the anterior and middle temporal cortex, phonological retrieval involves the
posterior temporal—inferior parietal cortex and syllabic planning involves the inferior
frontal cortex and premotor cortex, which activates the associated articulatory
sequences in the motor cortex (for reviews see Indefrey, 2011; Roelofs & Ferreira,
2019; Strijkers & Costa, 2016). Correlation analyses highlight the involvement of all
these areas, suggesting that prediction in comprehension implies activation of fully-
fledged representations involved in word production.

In the previous section we suggested that the effects found in the rTPJ may
reflect the modeling of communicative intention and the updating of such model. Both
Huettig (2015) and Pickering and Gambi (2018) propose that this kind of interna
modeling is part of the prediction-by-production accounts: comprehenders simulate the
communicative intention of the speaker and feed this to the production implementer.
We argue that the lack of temporal overlap between task desynchronizations in this
region may be due to the fact that the actua intention to produce a word may be
responsible for the anticipation of the recruitment of rTPJ in the production task.
Indeed, the effect emerged in beta2 around 300 ms in production and later, around 500
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ms, in comprehension. Consistently, Strijkers and Costa (2016) suggest that top-down
intentions (including the intention to speak) originating in the prefrontal cortex and in
the temporo-parietal junction can influence the timing of subsequent computations of
word production.

4.4 Limitations and future dir ections

Our study alows us to bring brain oscillatory evidence for the engagement of the
production system in prediction during spoken language comprehension. However, our
results do not alow us to make strong claims on the exact representations involved,
specifically whether phonology is activated or not. Techniques with higher spatial
resolution (such as MEG), experimental manipulations that better elicit phonological
planning, and the study of special populations with speech-language disorders would
contribute to characterize the cortical locations of the effects and help in understanding
what representational levels are implicated. In addition, it must be underlined that EEG
oscillatory activity is merely correlated with the observed experimental conditions.
Because of this, we cannot make strong claims about whether the activity in a given
brain area is necessary to a given process. However, the results of this study set the
basis for further investigations with neurostimulation techniques (such as TMS) that
could tease apart and clarify the role of these areas in language comprehension and
production. Finally, individual differences may heavily hinder the ability to detect
shared cognitive elaboration and neural activation, since we are assuming that if there
are shared processes, they are unfolding at the same time in the two tasks; this may well
not be the case. Despite these limitations, we argue that we bring sufficient evidence to
stimulate further research along these lines, in an emerging effort to reconcile the study

of language comprehension and production (McQueen & Meyer, 2019).

5. Conclusion

In this study we tested whether prediction-by-production accounts are supported by
patterns of alpha and beta neura oscillations. Participants performed both a
comprehension and a production task with predictable and non-predictable (but always

31


https://doi.org/10.1101/2020.05.13.092528
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.092528; this version posted May 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

plausible) target stimuli following constraining and non-constraining incomplete
sentences. To our knowledge, this is the first attempt at studying both processes in the
same set of participants, thereby investigating how the same mind-brain tackles the two
tasks and directly comparing their neural responses. In addition, we employed
naturalistic auditory stimuli differently from previous studies, replicating the
modulations in a less artificial setting. We found alpha and beta power decrease
(desynchronization) before predictable targets in both tasks, signaling that participants
were retrieving and encoding rich linguistic information, compatible with the
‘information via desynchronization’ hypothesis. Source estimation and correlations
suggest that 1) participants engage the left-lateralized word production network when
predicting in comprehension and 2) internal modeling and contextual prediction is aided
by the right temporo-parietal junction in both comprehension and production. These
results stress the strict relationship between production and comprehension processes,

lending support to prediction-by-production models.
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Appendix A. Supplementary data
Supplementary material for this manuscript can be found on the Open Science
Framework at the following URL.: https://osf.io/tchsh/
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