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Abstract 
Antibodies have become an attractive class of therapeutic agents for solid tumors, mainly 
because of their high target selectivity and affinity. The target binding properties of antibodies 
are critical for their efficacy and toxicity. Our lab has developed a bioluminescence resonance 
energy transfer (BRET) imaging approach that directly supports measurement of the binding 
dynamics between antibodies and their targets in the native tumor environment. In the present 
study, we have developed a spatially resolved computational model to analyze the longitudinal 
BRET imaging of antibody–target binding and to explore the mechanisms of biphasic binding 
dynamics between cetuximab and its target, the epidermal growth factor receptor (EGFR). The 
model suggested that cetuximab bound differently to EGFR in the stroma-rich area than in 
stroma-poor regions, and this difference was confirmed by immunofluorescence staining. 
Compared to the binding in vitro, cetuximab bound to EGFR to a “slower-but-tighter” degree in 
the living tumors. These findings have provided spatially resolved characterizations of 
antibody–target binding in living tumors and have yielded many mechanistic insights into the 
factors that affect antibody interactions with its targets.     
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Introduction 
The therapeutic antibody is an important class of therapeutics for treating solid tumors. More 
than 30 therapeutic antibodies have been approved for treating tumors at various stages1, 2. 
These broad applications of therapeutic antibodies in solid tumors are due, at least in part, to 
their high target binding selectivity and affinity when compared with traditional cytotoxic 
agents. Once bound to their targets, therapeutic antibodies eradicate tumor cells mainly by 
three mechanisms: blocking the pathogenic ligand–receptor interactions, triggering cell 
apoptosis pathways, or activating host effector functions3. The mechanisms of action are not 
exclusive but usually differ depending on the design of the different classes of antibodies.  
 Regardless of the mode of antibody action, antibody–target engagement is the first and 
most critical step for antibody efficacy. The patterns of target binding are often associated with 
the cellular response of the target cells and with treatment efficacy. Many studies have 
revealed that tumor cells can receive information by altering the temporal behavior (dynamics) 
of their signaling molecules4. A classic example of this behavior is the extracellular signal-
regulated kinase pathway for epidermal growth factor receptor (EGFR). Transient activation (or 
blocking) of EGFR is associated with tumor cell proliferation, whereas sustained activation can 
lead to cell differentiation5. In addition, once antibodies have bound to their target cells, they 
can direct effector cells to elicit antibody–dependent cellular cytotoxicity (ADCC). Thus, the 
residence time of the antibody–target complex on tumor cells (determined by the off-rate) 
becomes critical for increasing lipid raft formation and the probability of ADCC6. Many tumor 
cells can initiate fast endocytosis upon antibody binding, leading to resistance to antibody 
attack7. Therefore, different target binding patterns can lead to distinct cellular reactions and 
treatment responses.  
 The target binding affinity is often assessed in vitro, using either surface plasmon 
resonance (SPR) or ligand competition assays. In SPR analysis, the antibody binds to target 
molecules that are immobilized on the sensing layer. Binding leads to changes in conformation 
and the angle of reflectivity, from which the association (kon) and dissociation (koff) can be 
quantified8. As in other routinely applied technologies that measure binding dynamics, the kon 
and koff that are determined by SPR merely reflect antibody–target interactions at the 
molecular level. These techniques are valuable for antibody screening, but they are not relevant 
to binding under physiological conditions. The target binding properties in living systems 
remain largely uncharacterized. 
 Tumor tissues are known to be very heterogeneous, both between and within tumors. 
In addition to complex tumor genotypes, morphological and phenotypic features can differ, 
even within the same tumor. The stromal environment where each tumor cell resides largely 
shapes its phenotypic properties9. However, how these stromal components can influence the 
binding dynamics between an antibody and its target cell remains largely undefined. Unlike in 
vitro assay systems, where all targets are freely accessible, tumors present many physical 
barriers that influence the diffusion of antibodies, as well as their interactions with the target10. 
Previous studies have shown that antibodies are unable to freely reach their target or cannot 
drift away after dissociating from the target in the presence of spatial obstacles11.The resulting 
shifts in binding dynamics within living tumors can reduce the cellular response or even lead to 
treatment failure. 
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 We have developed a bioluminescence resonance energy transfer (BRET) imaging 
system that can directly monitor the antibody–target binding dynamics in living systems12. This 
imaging system leverages a high signal-to-noise ratio and stringent energy donor-acceptor 
distance to provide specific measurements of antibody–target binding dynamics in a selective 
and temporal fashion. It is a minimally invasive system, so it enables longitudinal monitoring of 
in vivo antibody–target interactions. We have previously used this approach to demonstrate 
that cetuximab binds to its target in a biphasic and dose-shifted manner. In the present study, 
we have developed spatially resolved computational models for analysis of the longitudinal 
imaging data of antibody–target binding in living tumors and we have compared their binding 
dynamics in spatially distinct tumor areas. With these models, we have assessed possible 
mechanisms that could explain the biphasic features of cetuximab–EGFR binding in a xenograft 
tumor. The results of this study have provided many insights into the dynamic features of 
antibody–target binding in living tumors and the stroma factors that potentially influence those 
dynamics.    
 
Methods 
Study Design 
Our lab has developed a BRET approach to support the investigations of antibody–target 
binding dynamics in the native tumor environment. Specifically, a small but bright luciferase, 
NanoLuc, was fused to the extracellular domain of EGFR to serve as the energy donor in the 
BRET pair12. An anti-EGFR antibody, cetuximab, was labeled with DY605, a fluorophore with an 
emission wavelength at 625 nm, to serve as the energy acceptor. Prior to the binding between 
DY605-labeled cetuximab (DY605-CTX) and the NanoLuc-fused EGFR (NLuc-EGFR), the distance 
between NanoLuc and DY605 was too great to trigger BRET, and only the bioluminescence 
emission at 460 nm for NanoLuc was observed. However, binding of DY605-CTX to NLuc-EGFR 
increased the proximity between NanoLuc and DY605 and allowed the transfer of 
bioluminescence energy to DY605 and the emission of fluorescence signals at 625 nm.       
          The experimental design is shown in Fig. 1. In total, 20 nude mice were inoculated with 
NLuc-EGFR-expressing HEK293 cells; and the BRET imaging study was performed when the 
tumor sizes had reached 500 mm3. The imaging study was initiated by injecting the DY605-
labeled cetuximab via the tail vein of the xenograft mice at three doses: 1.0, 8.5, and 50 mg/kg 
(n = 5 mice/dose group), or DY605-labeled human IgG (n = 5/dose group).  Blood samples (30 
µL) were collected at the designated times for PK assessment. The plasma concentrations of 
cetuximab were quantified based on fluorescent intensities. Images at both 460 nm and 625 nm 
were acquired using an IVIS Kinetic optical imaging system (Caliper Life Sciences, Alameda, CA, 
USA) upon intraperitoneal (i.v., 0.25 mg/kg) administration of substrate (0.25 mg/kg). The 
fluorescence intensity was determined to quantify the concentrations of the antibody–target 
complex, and the receptor occupancy (RO) was derived using the following equation.  
           The tumors were collected at the end of the study (at approximately 192 h) and snap-
frozen in liquid nitrogen.  
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Figure 1. The scheme of the experimental design of the Bioluminescence Resonance Energy 
Transfer (BRET) study. A small, but bright, luciferase, NanoLuc, was fused to the extracellular 
domain of EGFR to serve as the energy donor in the BRET pair (Nluc-EGFR). The anti-EGFR 
antibody cetuximab was labeled with DY605 as the energy acceptor (DY605-CTX). Twenty nude 
mice were inoculated with NLuc-EGFR-expressing HEK293 cells; and the BRET imaging study 
was performed after xenograft tumor sizes reached 500 mm3. DY605-CTX at three doses (1.0, 
8.5, and 50 mg/kg) or DY605-human IgG was injected via tail vein (n = 5/dose group). Blood 
samples (30 µL) were collected at designated times for pharmacokinetics assessment. The 
plasma concentrations of DY605-CTX were quantified based on fluorescence intensities. Images 
were acquired using an IVIS Kinetic optical imaging system upon administration of the NanoLuc 
substrate furimazine (i.v., 0.25 mg/kg). The fluorescence intensity was determined to quantify 
the concentrations of the antibody–target complex and to derive the receptor occupancy (RO). 
The tumors were collected at the end of the study (around 192 h) and snap-frozen in liquid 
nitrogen.  

 

Plasma PK model 
The antibody plasma PK was described using a two-compartment model with a linear tissue 
distribution (CLD) and a linear systemic clearance (CLP) (Fig. 2). The PK data in three dose groups 
(1.0, 8.5, and 50 mg/kg) were analyzed simultaneously using the PK model, using a naïve 
pooled-data (NPD) approach. The volume of plasma (Vplasma) was set to 0.001 L for 20 g mice13.  
 
Modeling antibody–target binding dynamics in tumors 
The dynamics of antibody–target binding in solid tumors were further characterized to obtain 
mechanistic insights by implementing a sequential modeling strategy. Here, the PK model was 
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first optimized and then fixed during the second step to explore the antibody–target binding 
dynamics.  

 
Figure 2. The spatially resolved computational model describing the antibody–antigen binding 
kinetics in xenografts. The antibody plasma pharmacokinetics 14 were described using a two-
compartment model with a linear tissue distribution and a linear systemic clearance. The solid 
tumors were conceptually dissected into two anatomical compartments—stroma-rich and 
stroma-poor areas—to account for the spatial heterogeneity. The stroma-poor compartment 
described the area where tumor cells grow without any spatial restriction by stromal cells, 
whereas the stroma-rich tumor compartment represented the area where tumor cells grow in 
the presence of dense tumor-associated stromal cells (e.g., fibroblasts). Antibodies were 
assumed to extravasate from tumor blood vessels into the interstitial space and leave the 
interstitial space via lymphatic vessels. In both tumor compartments, the free receptors were 
synthesized and degraded on the tumor cells. The antibody–receptor complexes were cleared 
by internalization. The free antibodies bound to free receptors at a rate of kon. The antibodies 
dissociated from receptors at a rate of koff_r in the stroma-rich compartment and a rate of koff_p 

in the stroma-poor compartment. 
 
              The solid tumors were conceptually dissected into two anatomical compartments: a 
stroma-rich and a stroma-poor area, to account for the spatial heterogeneity (Fig 2). The 
stromal-rich compartment described the area where tumor cells grew relatively quickly, 
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without any spatial restriction by stromal cells. By contrast, the stroma-poor tumor 
compartment represented the area where tumor cells grew in the presence of dense tumor-
associated stromal cells (e.g., fibroblasts). The relative volume and blood flow in the two tumor 
areas were evaluated as model parameters.  
 The extravasation of the antibody from the tumor blood vessels to the interstitial space 
was assumed to be dominated by convection and was described by a vascular reflection 
coefficient (σv) and the convective lymph flow into either the stroma-rich area (Lr) or the 
stroma-poor area (Lp) 7. The value of σv was set at 0.78, a value reported for subcutaneous 
xenograft models13. The values of Lp and Lr were functions of the tumor blood flow (TBF)14, the 
total tumor volume (Vtumor), and the relative fraction between the two tumor areas (ft), as 
described in the following equations: 

Lr = ((1 − ft) ∙ Vtumor ∙ TBFr) ∙ fL 
Lp = (ft ∙ Vtumor ∙ TBFp) ∙ fL 

where TBFp and TBFr describe the tumor blood flows in two tumor areas. The value of fL was set 
to 0.2%15. The total tumor volumes (Vtumor) were measured using a caliper.  
 The spaces for antibody distribution and for antibody–target interaction in both tumor 
compartments were set to a fraction (fav) of the total interstitial space. 

Vr_a = (1 − ft) ∙ Vtumor ∙ fisf ∙ fav 
Vp_a = ft ∙ Vtumor ∙ fisf ∙ fav 

 The available fraction fav was set at 27.5% 13, 16. Notably, the antibody–antigen bindings 
occurred in the same space that was accessible to antibodies (Vr_a and Vp_a). The target (i.e., 
EGFR) was assumed to be synthesized by tumor cells at a zero-order rate constant (ksyn) and to 
be endocytosed at a first-order rate constant (kdeg). The cetuximab-EGFR complex was assumed 
to be internalized by the tumor cells at a first-order rate constant (kint). All parameters 
regarding the target protein (ksyn, kdeg, and kint) were assumed to be conserved inside the 
tumors. The association rate between the antibody and target is denoted as kon and the 
dissociation rate constant is koff.  
 We used the developed modeling framework primarily to investigate two competing 
hypotheses: (1) the antibodies bind to the targets differentially across two tumor areas (the 
heterogeneous binding model, HBM) and (2) the antibodies are distributed differentially into 
two tumor areas, but with the same binding profile (the heterogeneous distribution model, 
HDM). The differential equations for both models are provided in the Supplementary materials. 
We optimized both models against the data and evaluated which model made more consistent 
predictions to the observed RO data. The selection of the most suitable model and the 
parameter estimates were confirmed by visual inspection, by the observed versus predicted 
plot, by the predicted versus residual plot, by the CV% of estimated parameters, and by the 
physiological plausibility of the estimated parameters.  
 
Immunofluorescence (IF) staining 
We assessed the spatial distributions of the antibody in tumors by IF staining after the imaging 
study. The tumor samples were preserved and sliced in OCT medium (23-730-571, Fisher 
scientific, Waltham, MA, USA). The sliced tumor tissues were fixed in methanol/acetone (1:1) at 
4°C. After blocking with phosphate buffered saline (PBS) containing 2% fetal bovine serum (FBS) 
(F2442, Millipore Sigma, Burlington, MA, USA; 10010023, Thermo, Waltham, MA, USA), the 
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tumor slices were stained with anti-EGFR and anti-α-SMA antibodies. In brief, the slides were 
incubated with Alexa Fluor 555-conjugated primary rabbit anti-human EGFR antibodies (MA7-
00308-A555, Thermo, Waltham, MA, USA, 1:1000 diluted in PBS) and primary mouse anti-
mouse α-SMA antibodies (14-9760-82, Thermo, Waltham, MA, USA, 1:1000 diluted in PBS) at 
4°C overnight and then incubated with Alexa Fluor 555-conjugated goat anti-mouse antibodies 
(A-11001, Thermo, Waltham, MA, USA, 1:1000 diluted in PBS) at room temperature for 1 h. The 
immunofluorescence images were acquired with a Live Cell Imaging Microscope (Nikon, 
Melville, NY, USA). 

 
Model simulation 
The developed model was applied to simulate the profiles of antibody–target binding dynamics 
and the resultant RO at different conditions. The concentrations of free antibodies, free targets, 
and antibody–target complexes in both tumor areas were simulated and compared. In addition, 
the SPR-measured binding parameters were applied to replace the optimized parameters to 
allow an examination of differences in antibody–EGFR binding dynamics in the living tumors 
versus in vitro binding in buffers.   
 
Results 
 
Plasma PK and antibody–target binding dynamics in tumors 
 

 
Figure 3. The profiles of antibody–target binding in tumors were well recapitulated by the 
heterogeneous binding model (HBM).  
(A) The two-compartment PK model adequately recapitulated the PK profiles at all doses. (B) 
The tumor receptor occupancy (RO) profiles were well characterized by the heterogeneous 
binding model (HBM) at three doses. Each data point represents the mean plasma 
concentration or mean RO. Error bars represent ±SD. 
 
In this study, DY605-cetuximab showed bi-exponential and linear PK profiles12, as the area 
under the curve (AUC) and the peak plasma concentrations increased proportionally to the 
doses. A temporal shift was observed from the antibody plasma PK to the ROs in the tumors. 
The tumor ROs peaked at approximately 4 h post-dosing, which was consistent across doses, 
suggesting that the extravasation of DY605-cetuximab into tumors is a slow and linear process. 
The increase in the tumor ROs was less than dose proportional, indicating a nonlinear process 
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was involved in the conversion of free antibodies in the plasma to bound antibodies in tumors. 
Notably, the target EGFR in the tumors was not saturated, even at a supra-therapeutic antibody 
dose (50 mg/kg), suggesting fractional target accessibility. Furthermore, the RO profiles 
declined in a biphasic manner and showed a shallow terminal declining phase, particularly at 
the two higher doses. Interestingly, the transition from the rapid to the slowly declining phases 
was not consistent across doses.  
 
The antibody–target binding profiles in tumors were well recapitulated by the HBM  
The average plasma concentrations and tumor ROs were used for model competition. As shown 
in Fig. 3A, the two-compartment PK model adequately recapitulated the PK profiles at all doses. 
This confirms the linear PK properties of DY605-cetuximab in xenograft mice within the 
assessed dose range. The estimated PK parameters and CV% are shown in Table 1. The 
estimated systemic clearance and half-life were consistent with those of previous reports. 
 
Table 1 Pharmacokinetics (PK) parameter estimations 

Parameter Unit Definition Estimation (CV%) 

CLD L∙hr -1 Tissue distribution flow 0.0012 (15%) 

CLp L∙hr -1 Cetuximab systemic clearance 0.00021 (4.8%) 

Vother L Other tissue volume 0.0076 (7.1%) 

Vplasma L Plasma volume 0.001 (fixed) 

            
            The tumor RO profiles were well characterized by the HBM at all three doses (Fig. 3B and 
4A). The model suggested different antibody–target binding dynamics across two tumor spatial 
areas. The optimized parameters are shown in Table 2. The association rates (i.e., kon) between 
cetuximab and its target EGFR in both tumor compartments were estimated to be close and 
were therefore considered a shared parameter in the two tumor compartments. The estimate 
of kon was 0.03 nM-1∙h-1, a value approximately 1% of the rate measured using SPR17, indicating 
the impact of physical barriers on the association rate in the living tumors compared to the in 
vitro buffer conditions. Interestingly, the complex dissociation rate (i.e., koff) was markedly 
different between the two tumor areas. The optimized koff was 0.61 h-1 in the stroma-poor 
tumor area, which is close to the SPR measured values. However, the complex dissociation rate 
was estimated as much slower (koff_r = 0.0017 h-1) in the stroma-rich tumor area17.  
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Table 2. Heterogeneous binding model (TBM) parameter estimations 

Parameter Unit Definition Estimation (CV%) 

kdeg hr -1 EGFR degradation rate 0.013 (42%) 

R0 nM EGFR initial concentration in tumor 
stroma-rich and stroma-poor space 

0.0020 (73%) 

kon nM-1∙hr -1 Cetuximab-EGFR association rate 0.030 (53%) 

koff_p hr -1 Cetuximab-EGFR dissociation rate in 
stroma-poor regions 

0.61 (55%) 

koff_r hr -1 Cetuximab-EGFR dissociation rate in 
stroma-rich regions 

0.0017 (54%) 

ft 
 

Ratio of tumor stroma-poor volume 
over total space 

0.89 (5.8%) 

TBF hr -1 Tumor Blood Flow per 1 L tumor 9.2 (21%) 

kint hr -1 Cetuximab-EGFR internalization rate 0.14 (26%) 

 
Figure 4. Uneven distributions of antibodies in tumors could not sufficiently explain the 
observed binding dynamic features in comparison to the heterogeneous binding patterns. (A) 
The heterogeneous binding model (HBM) well-captured the antibody–target binding kinetics, 
whereas (B) The heterogeneous distribution model (HDM) failed to capture the receptor 
occupancy (RO) profiles across three doses, and a clear model misspecification was indicated. 
 
 Unfortunately, as shown in Fig. 4B, the HDM failed to capture the RO profiles across the 
three doses and clear model misspecification was indicated. Even with a sharp distribution 
gradient across tumor areas, the model could not provide a good prediction of the biphasic 
dynamic feature in the RO profiles. The RO peaks at 50 mg/kg were drastically under-predicted, 
while the RO values at 1.0 mg/kg were over-predicted. The poor performance of HDM indicated 
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that heterogeneous antibody distribution could not be the primary mechanism for the biphasic 
declining feature of antibody–target binding in tumors. The parameter estimations of HDM are 
presented in Supplementary Table 1. 
 The different performance between HBM and HDM was also indicated by the Akaike 
information criterion (AIC). We concluded that the biphasic dynamic feature of RO was better 
explained by the different binding profiles than by the different distribution profiles in the two 
tumor compartments. Therefore, we selected the HBM as the model for further exploration. 
 
Cetuximab persisted longer in the stroma-rich area than in the stroma-poor area 
 

 
Figure 5. Cetuximab persisted longer in the stroma-rich area than in the stroma-poor area. A 
representative immunofluorescence (IF) image shows the histology of the tumor collected at 
the end of the bioluminescence resonance energy transfer (BRET) imaging study, revealing the 
spatial distribution of the antibody (Cy5 DY605-CTX), tumor-associated fibroblast (GFP 
Fibroblasts), and EGFR-positive tumor cells (TRITC EGFR and DAPI). Area P represents the tumor 
area without many stroma cells and with evenly distributed tumor cells. Area R represents the 
stroma-rich area, where tumor cells were surrounded by tumor-associated fibroblasts. As the 
white arrows indicate, residual antibodies are present at the tumor cell surfaces and largely 
overlap with EGFR staining, indicating that the detected Cy5 signals represent the bound 
DY605-CTX. 
 
At the end of the imaging study, we sectioned the tumors and stained the EGFR-positive tumor 
cells, tumor-associated fibroblasts, and cetuximab to evaluate the residual antibodies and their 
spatial distributions. Fig. 5 shows representative images of the spatial distribution of the 
antibody (DY605-CTX), tumor-associated fibroblast (GFP Fibroblasts), and EGFR-positive tumor 
cells (TRITC EGFR). Area P represents the tumor area without many stroma cells and with 
evenly distributed tumor cells. Area R represents the stroma-rich area, where tumor cells were 
surrounded by tumor-associated fibroblasts. As shown in Fig. 5, by 192 h after antibody dosing, 
some antibodies were still present in the stroma-rich area, while detection of antibodies in the 
stroma-poor area was negligible. No residual antibodies were observed for nonspecific IgG, 
suggesting that the residual antibodies were associated with Fab binding and not with non-
specific binding (Supplementary Figure 1). 
 A close inspection of the spatial location indicated that residual antibodies had a very 
high co-localization with tumor cells (Fig 5). We observed that most of the residual antibodies in 
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the stroma-rich area were retained on the surfaces of the tumor cells, likely as antibody–target 
complexes. This observation is consistent with our model predictions whereby antibodies 
would dissociate from the target much more slowly in the stroma-rich area. Only a small 
amount of bound antibodies was observed at the edge of Area P, and most antibodies had been 
degraded in the stroma-poor tumor area. In addition, the total EGFR was sparser in Area R than 
in Area P, suggesting a higher EGFR suppression in the stroma-rich tumor area. These findings 
agreed with the model simulations described in the next section.  
 
Cetuximab bound EGFR at a “slower-but-tighter” degree in living tumors than in the in vitro 
conditions 

 
Figure 6. Cetuximab bound EGFR at a “slower-but-tighter” degree in the living tumors than in 
the in vitro conditions. The target binding parameters in the heterogeneous binding model 
(HBM) were replaced with the SPR-measured values to predict the receptor occupancy (RO) 
profiles at three doses; these are superimposed on the experimental observations. (A) When 
kon was set to a SPR-measured value in both tumor compartments, the model over-predicted 
the RO. No difference was detected in the predicted RO profiles across the three doses. (B) 
When a SPR-measured koff was used in both tumor compartments, the model under-predicted 
the RO data. (C) SPR-measured kon and koff values could not differentiate the RO profiles across 
the three doses. 
 
We further examined antibody binding dynamics in tumors in comparison to the binding in the 
in vitro condition, which is usually measured using SPR methods. We replaced the target 
binding parameters in the HBM with the SPR-measured values to predict the RO profiles at 
three doses, which were superimposed on the experimental observations. When kon was set to 
an SPR-measured value in both tumor compartments, the model over-predicted the RO. Even 
though the biphasic feature on RO curves was predicted, almost no difference was detected in 
the predicted RO profiles across the three doses (Fig. 6A). With the SPR-measured koff in both 
tumor compartments, the model under-predicted the RO data (Fig. 6B). The biphasic declining 
feature disappeared in this parameter setting. When both target binding parameters were set 
to SPR-derived values, the model also over-predicted ROs (Fig. 6C). Collectively, these findings 
confirmed a marked difference in antibody–target binding dynamics between the living tumors 
and the in vitro buffer systems.   
 
Cetuximab durably suppressed free EGFR but transiently formed antibody–target complexes 
in living tumors 
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Figure 7. Cetuximab durably suppressed free EGFR, but the complex was formed transiently 
in tumors. (A) The free cetuximab concentration, (B) free EGFR concentration, (C) cetuximab-
EGFR complex concentration, and (D) receptor occupancy in the two tumor compartments 
were simulated based on the heterogeneous binding model (HBM). Blue, red, and green lines 
represent the three cetuximab dose groups: 50, 8.5, and 1.0 mg/kg. Solid lines represent the 
tumor stroma-poor compartment, whereas the dashed lines represent the tumor stroma-rich 
compartment. 

 

We simulated free cetuximab, free EGFR, antibody–antigen complexes, and the RO in both 
tumor areas. The free cetuximab was similar in both tumor compartments at all doses (Fig. 7A), 
consistent with the model assumption. Free EGFR was rapidly suppressed, and the suppression 
lasted for over 150 h, particularly at 50 mg/kg (Fig. 7B). Cetuximab was predicted to have a 
stronger suppressive effect on free EGFR in the stroma-rich area. The magnitude and duration 
of EGFR suppression were both dose dependent, so a higher antibody dose gave a larger and 
longer suppression of the free target (Fig. 7B).  
 Compared to the durable target suppression, the formation of the antibody–target 
complex was quite transient (Fig. 7C). In both tumor compartments, the complex 
concentrations peaked at around 5 h after dosing, but the complex decayed shortly after the 
peaks and was subsequently maintained at relatively low levels for an extended period. A small 
difference was evident in complex concentrations across doses during the terminal phase. 
Despite the similar concentrations in the two tumor areas, the different binding properties of 
cetuximab meant that it showed relatively higher and more durable target properties in the 
stroma-rich than in the stroma-poor areas (Fig. 7D). The difference between the two tumor 
areas became smaller as the dose increased.  
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Discussion  
Our understanding of antibody–target interactions, and particularly in the native physiological 
context, is still limited, mainly due to the lack of approaches to detect their binding dynamics 
with temporal and spatial resolution or specificity18. For example, immunohistochemistry (IHC) 
staining can quantify the spatial distribution but it often fails to incorporate the dynamic factors 
present in physiological situations19. Most in vivo imaging methods often cannot distinguish 
signals arising due to specific target engagement versus nonspecific signals12. We previously 
developed a BRET method that enables longitudinal monitoring of the binding dynamics 
between the antibody and its target in living tumors12. Using this method, we observed biphasic 
and dose-shifted binding dynamics between cetuximab and its target EGFR. In the present 
study, we developed a spatially resolved computational model to disentangle the dynamic 
binding patterns and evaluate the mechanisms.  
        Compared to the in vitro systems, an antibody in a living tumor could bind to its target to a 
“slower-and-tighter” degree. We observed that the antibody bound differently to its target in 
the stroma-rich areas than in the stroma-poor regions. Antibodies had a much slower 
dissociation rate in the stroma-rich areas, which was confirmed by immunofluorescence 
staining. The binding features in the stroma-rich tumor area were consistent with experimental 
observations that the stress stroma could restrict the diffusion of antibodies in the tumors20. 
This restricted diffusion could reduce both association and dissociation rates. Another possible 
reason for the lower dissociation rate in the stroma-rich tumor regions was the relaxing of the 
extracellular matrix, which would prevent the antibody from easily drifting away from the 
binding zone, thereby resulting in a high fraction of rebinding11. The slow dissociation rate 
resulted in the accumulation of residual antibodies in the stroma-rich tumor areas, even when 
the systemic antibodies had been largely eliminated, consistent with our immunofluorescence 
staining results.    

We developed two spatially resolved computational models by assuming either 
heterogeneous binding or heterogeneous distribution between the stroma-rich and stroma-
poor tumor regions. We then used competition studies to test which of the two models would 
consistently predict the observed the dynamic features of cetuximab–EGFR binding. The 
performance was much better for the model with the heterogeneous binding assumption than 
with the heterogeneous distribution, indicating that an uneven distribution of antibodies in two 
tumor areas was not the primary reason for the biphasic declining features in the tumor RO 
data.  

One clarification should be made, namely that the inconsistent predictions produced by the 
heterogeneous distribution model only suggest that the uneven distributions of antibodies in 
tumors do not sufficiently explain the observed binding dynamic features. Therefore, this 
precludes making the implication of even distribution of antibodies in the tumor. One limitation 
of this study was that the model was developed based on the imaging data in xenografts, which 
may not recapitulate the complexity of clinical tumors. In addition, the IF staining images were 
acquired at the end of the BRET imaging study, which was preferably conducted in a 
longitudinal manner to match with our model simulation.  

Overall, in the present study, we combined the strengths of BRET imaging and spatially 
resolved computational models to evaluate the dynamics of binding of an antibody to its target 
in living tumors. We demonstrated that spatial heterogeneity exists in antibody-binding profiles 
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between stroma-rich and stroma-poor tumor regions. These findings improve our 
understanding of the complex antibody targeting process and should aid in the design of 
antibodies that show more favorable targeting properties.   
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