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ABSTRACT

The worldwide increase and proliferation of drug resistant microbes, coupled with the lag in
new drug development represents a major threat to human health. In order to reduce the time and
cost for exploring the chemical search space, drug discovery increasingly relies on computational
biology approaches. One key step in these approaches is the need for the rapid and accurate

prediction of the binding affinity for potential leads.

Here, we present RosENet (Rosetta Energy Neural Network), a three-dimensional (3D)
Convolutional Neural Network (CNN), which combines voxelized molecular mechanics energies
and molecular descriptors for predicting the absolute binding affinity of protein — ligand
complexes. By leveraging the physico-chemical properties captured by the molecular force field,
our model achieved a Root Mean Square Error (RMSE) of 1.26 on the PDBBind v2016 core set.
We also explored some limitations and the robustness of the PDBBind dataset and our approach,
on nearly 500 structures, including structures determined by Nuclear Magnetic Resonance and
virtual screening experiments. Our study demonstrated that molecular mechanics energies can be
voxelized and used to help improve the predictive power of the CNNs. In the future, our
framework can be extended to features extracted from other biophysical and biochemical

models, such as molecular dynamics simulations.

Availability: https://github.com/DS3Lab/RosENet

INTRODUCTION
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The alarming worldwide increase in drug resistant microbes is rapidly challenging and in
certain cases, defeating the effectiveness of existing antibiotics, thus representing a serious threat
to human health. The chemical search space for the discovery of small molecule therapeutics is
immense, estimated at 10 molecules. A brute force approach is thus not realistic. Advances in
computational biology have proven to be valuable tools for more efficiently exploring this
chemical search space and have led to the discovery of several leads for high affinity drugs. In
addition, these computational methods permit significantly reducing the cost and workload for
drug discovery.

One critical step in the drug design process is the scoring and ranking of the predicted drug —
target interactions. Most methods aim to predict the binding affinity of the complex that
represents the binding free energy in the target-ligand interactions. Experimentally, the binding
affinity is commonly measured and reported by the equilibrium dissociation constant (Kp), the
inhibition constant (K;) or half maximal inhibitory concentration (IC,). The direct estimation of
the free energy of the binding can be determined computationally with biased molecular
simulations, such as umbrella sampling, thermodynamic integration and free energy perturbation.
Although these methods have achieved in some cases very accurate estimates of the binding
affinity (error smaller than 0.5 kcal/mol), they are extremely slow and compute intensive.
Therefore, they are not adapted for large scale screens.

To overcome this problem, a variety of classical machine-learning algorithms have been
applied, e.g., linear regressions;'” kernel ridge regression;’* support vector machines;”” Gaussian
processes;' random forests.””® RF-Score, one of the best performing models, is based on a
random forest, that relies on 42 molecular descriptors extracted from AutoDock Vina.” RF-Score

reported a Root Mean Square Error (RMSE) of 1.51 for pK, prediction on the PDBBind test set
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(v2007 core set). Its RMSE further decreased to 1.39, when trained with the larger 2016 version
of PDBBind.*” AGL-Score utilizes a graph representation of the complexes to obtain statistical
features of the adjacency and laplacian matrices of the graph.'” These statistics are then used as
features in a gradient boosted decision tree. AGL-Score obtained an RMSE of 1.27 on the
PDBBind v2016 core set.

Recently, Deep Learning approaches have allowed major breakthroughs in several fields of
research and are being increasingly applied to structural biology and computational chemistry.
Deep learning is a powerful framework built around neural networks, a class of algorithms
inspired by the nervous system. These methods can learn more complex representations and
automatically extract the features relevant to a problem.''™ In particular, various Convolutional
Neural Network (CNN) architectures have been used to predict the binding affinity. These
include AtomNet,"” Atomic Convolutional Neural Network,” TopologyNet,'® DeepDTA,"
DeepMHC,"® KDeep'®, OnionNet'? and Pafnucy.” These methods mainly differ by their feature
extraction and embedding. For example, DeepDTA uses textual representations of protein and
ligand for predicting pK, values equal to or greater than 9 and achieves a Mean Square Error
(MSE) of 0.261 on a split of the Davis dataset* and 0.194 on a split of the KIBA dataset.”> The
Atomic Convolutional Neural Network (ACNN) estimates the change in energy of the protein —
ligand complex with an intermediate representation of pairwise atom distances and atom types
obtained by custom convolution. ACNN reports an mean absolute error (MAE) of 0.77 kcal/mol
on PDBBind’s refined set. TopologyNet uses topological fingerprints called Betti numbers with
convolutions and predicts the pK, with an RMSE of 1.37 on the PDBBind core set. OnionNet

represents the pairwise interactions between 8 types of atoms with respect to a set of 60
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distances. The resulting features were input to a two-dimensional (2D) convolutional neural
network and obtained an RMSE of 1.28 on the PDBBind v2016 core set.

KDeep, Pafnucy and AtomNet employ a three dimensional (3D) image-like representation
approach, where the attributes of the protein and ligand atoms are distributed on a 3D grid.
AtomNet describes the protein — ligand complex with a combination of attributes ranging from
atom types to complex interaction fingerprints and obtains an Area Under the ROC Curve (AUC)
for virtual screening greater than 0.9 for nearly two-thirds of the targets in the DUD-E
benchmark.” Pafnucy employs 19 different atomic features, and reports an RMSE of 1.42 on the
PDBBind v2016 core set. Finally, KDeep uses eight molecular descriptors defined by AutoDock
Vina software and obtains an RMSE of 1.27 on the PDBBind v2016 core set. When tested on
other datasets, KDeep was shown to be sensitive to the specific proteins.

Here, we present RosENet (Rosetta Energy Network), a 3D Convolutional Neural Network
(CNN), which combines molecular mechanics energies (computed with the Rosetta force field*)
with molecular descriptors. Molecular mechanics rely on a physical model for describing the
interaction between atoms and have proven to be valuable methods for understanding the
function and dynamics in biomolecular systems. They are therefore at the core of major
computational tools for the modeling and design of biomolecules. We hypothesized that the high
non-linearity and complexity of molecular mechanics energies could benefit from the use of deep
neural network architectures. Since residual networks have the capacity to learn variations
between the input and output, they would be ideal for capturing the binding differential of
energy.

In this study, the molecular energies and descriptors were embedded onto a 3D grid and the

CNN was based on the ResNet architecture.” We tested RosENet on a set of 446 diverse protein
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— ligand complexes. In addition, we investigated the robustness RoseENet on virtual screening
experiments and compared it with two recent CNN models, OnionNet'? and Pafnucy.” The code,
processed data and all generated datasets needed to reproduce our results are freely accessible on
our GitHub repository.

RESULTS

The data pre-processing, training and testing of RosENet was implemented as a modularized
pipeline (Figure 1). In total, six different structural datasets were used for the training, validation
and testing of RosENet. Each protein — ligand complex was first uniformized by renaming the
protein, metallic, water and ligand chain identifiers and substituting non-standard residues with
their standard counterparts. A minimization with the Rosetta software® was then performed,
where the ligand was randomly relaxed twenty times and the structure with the lowest total
energy was saved. Next, the molecular energies and descriptors were voxelized onto a 25 x 25 x
25 A grid, with a spacing of 1 A. And finally, RosENet was used for predicting the absolute
binding affinity (pK,), defined as the negative logarithm of the dissociation or inhibition

constant, i.e., - log(K;) or - log(K}), respectively.
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Figure 1. Schematic representation of the RosENet workflow. The PDBBind refined set,

core set and several other datasets were used, respectively, for training, validating and testing the
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model. Each protein — ligand complex was first minimized using Rosetta software. The
molecular energies and descriptors of the binding pocket were extracted and voxelized (feature
embedding). RosENet was used to predict the binding affinity (pKy).

Feature extraction and embedding

One novelty of our approach is the use of molecular energies as a source for 3D features of the
complexes. In a 3D set-up, many approaches implicitly use force-fields for ligand docking,
where the position of the ligand is optimized by minimizing the energy of a molecular force
field. We further exploited this information by directly integrating the energy terms as feature
maps. We focused on the Rosetta all-atom force field and considered the attractive, repulsive,
electrostatic and implicit solvation energies between pairs of non-bonded atoms (Figure 2). The
pairwise interactions between the protein and the ligand were clearly visible in their respective
voxelized energy maps where high intensity voxels were collocalized (red and blue surfaces,
respectively, in Figure 2b).

For the molecular descriptors, we followed a similar approach as used for KDeep,” and
selected a subset of the following 4 molecular descriptors from AutoDock Vina:’ i) aromatic
carbon, i1) hydrogen bond acceptor, iii) positive ionizable, and iv) negative ionizable. These
descriptors provide the chemical nature of the atomic interactions that we hypothesized would
complement the energy terms. For example, aromatic carbons are involved in important and

specific interactions, such as 7 stacking.
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Figure 2. Representative voxelization of the energy features. a. Human Glutathione in
complex with the TER117 inhibitor (PDB id: 10GS). The protein and ligand are represented as a
red ribbon and light blue sticks, respectively. The cube delineates the binding site used for the 25
X 25 x 25 A grid, and b. Voxelized representation of energy features. The upper panels display
the negative energy terms and the lower panels display the positive energy terms. The protein is
shown as a surface representation, where the color scale ranges from 0 (white) to 1 (red); see
legend. The ligand is shown with light blue sticks and the 0.65 isocontour of the voxelized ligand
is illustrated as a blue surface.

Training and validation

RosENet was initially trained with the PDBBind refined set minus the core set for 300 epochs.
We trained twenty replicas from scratch, and for each replica, the model that minimized the
validation error of the core set was saved. This usually occurred after approximately 270 epochs.
The model with the overall least validation error (RMSE of 1.27, 95% Confidence interval (CI):
[1.18, 1.38]) was chosen for further analysis. We observed that the predictions tended to be more

accurate for complexes with binding affinity in the medium range (RMSE of 0.88 for pK, = 6 to
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8). Conversely, the prediction for weak and strong binders decreased in accuracy, with an RMSE
of 1.45 and 1.69 for pK;, < 6 and pK;, > 9, respectively. The core set can be further divided into
the CASF-2013 subset,”’* which is commonly used for benchmarking computational tools. For
this subset, the error was slightly higher (RMSE of 1.53), but the overall correlation coefficient
remained the same for both sets (R: 0.8). These results are comparable to alternative Deep
Learning approaches.'>""*

Due to the apparent dataset bias, we retrained RosENet with an extended dataset, combining
the previous complexes from the PDBBind refined set and added complexes from the
BindingMOAD? with pKj, < 4 or pK;, > 9.” This newly generated model achieved an RMSE of
1.26 (95% CI: [1.16, 1.37]) (Figure 3). The accuracy was closer to the average for binding
affinities on the low range (pK, < 6, RMSE 1.28) and medium range (pK; >= 6 and pK, <=9,
RMSE 1.04). The higher binding affinities (pK, > 9, RMSE 1.84) were still not as well
represented as the rest of the range. For the CASF-2013 subset, the error and correlation
coefficient remained similar (RMSE 1.55,R: 0.77).

Lastly, the effect of the Rosetta relaxation procedure on the prediction error was tested. The
PDBBind core set was relaxed using a slightly different protocol that allowed less movement for

the ligand. The error and correlation coefficient remained similar (RMSE: 1.3, R: 0.8), thus

supporting the robustness of the RosENet.
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Figure 3. Binding affinity predictions for the validation set. The PDBBind core set is
shown with light blue circles and the CASF-2013 subset is highlighted with dark purple
triangles. The Root Mean Square Error (RMSE) and Spearman’s correlation coefficient (R) are

reported for the full core set and for the CASF-2013 subset (see legend).

Data from 60 different protein families/targets were used to build the core set. When analyzing
the RMSE and correlation coefficient for the disaggregated core set, the predictions for the
majority of the targets were highly correlated with the experimental affinity (Spearman’s
correlation coefficient: average R: 0.74, median R: 0.84, Figure 4). Only one target reported a

negative correlation for the predictions: O-GIcNAcase (BT4395: 12 structures, average pKp:

10
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6.21 +/- 1.04, R: -0.04). We did not observe a direct dependence between the prediction error

and correlation.
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Figure 4. Disaggregated correlation and RMSE for each target of the PDBBind core set.
The bar length represents the Spearman’s correlation coefficient, and the bar’s width and color,

the RMSE within the target cluster.
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In total, RosENet was tested on 446 structures from 4 different datasets: CSAR, Astex, FEP
and PDBBind NMR. These datasets were significantly different from the training data, since
only 52 target proteins were similar to a protein present in the PDBBind refined set (90%
sequence identity). The RMSE and Spearman’s correlation coefficient (R) of the prediction
against the true binding affinities were computed for each test set (Figure 5 and Table S1 in the
Supplementary Information (SI) section). The CSAR dataset was further subdivided into two
sets: HQ1 and HQ2.***' The RMSE increased for HQ1 and HQ2 (1.75,95% CI: [1.51,2.21] and
143, 95% CI: [1.21, 1.81], respectively). The Astex dataset considerably overlapped with the
PDBBind refined and core sets and therefore was the smallest test dataset with only 17
complexes.

The FEP dataset was composed of eight different proteins for which the binding affinity of 11
to 42 ligands have been measured.” As a whole set, the predictions were good, although it
should be noted that the complexes’ binding affinity ranges mainly from 6 to 8, where the
predictions seem to be the most accurate. When disaggregating the data, we observed a large
variability in the predictions (Figure S1 in SI). For example, BACE and P38 achieved very low
Spearman’s correlation coefficients (R: 0.03 and R: 0.01 respectively), whereas TYRK?2 obtained

a much better correlation coefficient (R: 0.64).

We also tested the impact of the experimental structure determination technique and thus
extracted structures obtained by Nuclear Magnetic Resonance (NMR) for the PDBBind general
set. Structures for which the ligand moved by a Root Mean Square Deviation (RMSD) greater
than 2 A after minimization were excluded from the dataset. A 2 A cut-off is commonly used for

docking benchmarks. We observed a considerable decrease of predictive performance in the

12
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complexes that were displaced by maximum 2.0 A after minimization compared to all of those
displaced by maximum 1.5 A. This difference is appreciable in both the RMSE and Spearman’s
correlation coefficient (RMSE: 1.51, 95% CI: [1.34, 1.72], R: 0.42 and RMSE: 1.35, 95% CI:
[1.15, 1.58], R: 0.59, respectively). No difference was measured when comparing thresholds of 1
A and 1.5 A, respectively.
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Figure 5. Binding affinity predictions for the test sets. Four datasets, i.e., CSAR, Astex FEP
and NMR were used to test RosENet. Subsets are shown with different colors and markers (see

legend).

Lastly, we compared RosENet to two recent methods that are also based on CNNs and for
which the codes were available: OnionNet and Pafnucy. Since OnionNet was trained on the
entire PDBBind general set, we could only consider structures from CSAR and FEP that did not
overlap with it. RosENet and Pafnucy achieved the best performance for the CSAR dataset
(RMSE: 1.62, 95% CI: [1.34, 2.00], R: 0.70) and FEP dataset (RMSE: 0.93, 95% CI: [0.84,
1.03], R: 0.39), respectively (Figure 6). OnionNet did not perform well on the FEP dataset

(RMSE: 1.53,R: -0.02).

CSAR FEP

'R RMS

B RosENet OnionNet Pafnucy

Figure 6. Circular bar plot comparing RosENet to OnionNet and Pafnucy for prediction
accuracy. The RMSE and Spearman’s correlation coefficient (R) are reported in red, cyan and

pink, respectively, for RosENet, OnionNet and Pafnucy. The RMSE is shown with the lighter

14
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shades of color, and R with the darker shades of color. Note that the correlation coefficient for

OnionNet on the FEP was negative and therefore omitted on the plot (R: -0.02, p-value: 0.69)

Robustness testing

It has been shown that the accuracy of some Machine Learning models can be very sensitive to
small changes in the input data. To test the robustness of RosENet, OnionNet and Pafnucy, we
carried virtual screening experiments. Data generated from these experiments would also be
more representative of a computational drug discovery pipeline. Each complex in the PDBBind
core set and test set (CSAR and Astex) was docked 20 times. The poses with lowest Rosetta
Energy score and smallest RMSD were considered for building the two docking test datasets.
Overall, RosENet achieved the best performance (RMSE: 1.62, R: 0.70) (Figure 7). The
prediction error for the PDBBind core set increased when selecting the lowest energy and lowest
RMSD structures for RosENet (RMSE: 1.26 95% CI: [1.16, 1.37] and RMSE: 142, 95%
CI: [1.30, 1.54], respectively) and OnionNet (RMSE: 1.32., 95% CI: [1.22, 1.44] and RMSE:
1.52,95% CI: [1.41, 1.66], respectively). However, the error for Pafnucy remained comparable
for both datasets (RMSE: 1.67, 95% CI: [1.54, 1.82] and RMSE: 1.62, 95% CI: [1.50, 1.77],
respectively). For the Test set, the prediction error remained comparable for all models

independent of the docking dataset.
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Figure 7. Circular bar plot comparing RosENet to OnionNet and Pafnucy for the virtual
screen experiments. The RMSE and Spearman’s correlation coefficient (R) are reported in red,
cyan and pink, respectively, for RosENet, OnionNet and Pafuncy. The RMSE is shown with the

lighter shades of color, and R with the darker shades of color.

We lastly compared the correlations between the predictions of RosENet and OnionNet or
Pafnucy. The predictions from RosENet correlated slightly better with the ones of Pafnucy (R:
0.65) than with OnionNet (R: 0.44), but remained low in both cases (Figure 8). These noticeable
differences would suggest that ensemble methods could improve the accuracy of the predictions.
We estimated the theoretical minimum RMSE on the combined test sets, by choosing the most
accurate prediction from each network. Pafnucy predominantly made the predictions that were
closest to the experimental measure (105 closest predictions), followed by RosENet (90) and
OnionNet (65). By combining all three networks, an RMSE of 0.80 and R of 0.84 (p-value:

1.88e-66) could theoretically be achieved.
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Figure 8. Predictions for RosENet compared to Pafnucy and OnionNet. Each circle
represents the prediction for a complex. The radius of the circle is scaled to the RMSE of the best
prediction and the color indicates which network achieved the best prediction, i.e., red: RosENet,

cyan: OnionNet, and pink: Pafnucy.

Feature ablation and the effect of Network architecture

We tested the effect of feature ablation and network architecture on the quality of the
predictions. A feature ablation was first carried out comparing the performance of the models
using only: 1) the energy terms, ii) the 4 molecular descriptors (4 HTMD), or iii) the 8 molecular
descriptors (8 HTMD) provided by HTMD.* A smaller network architecture (SqueezeNet)** was

then tested, that was similar to the one used for KDeep."
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Overall, RosENet showed the best performance. The model using only 4 molecular descriptors
(4 HTMD) achieved a comparable level of accuracy, whereas the use of additional molecular
descriptors (8 HTMD) marginally affected the accuracy (Figure 9, top panel and Table S3 in
SI). The greatest decrease in performance was observed when using the energy terms alone. The
8 HTMD features performed better with SqueezeNet architecture than with ResNet (Figure 9,
lower panel, and Table S4 in SI). For the SqueezeNet architecture, the addition of energy
features systematically had a deleterious effect on the performances. We performed a T-test to
evaluate the statistical significance of differences in the predictions between RosENet and the
other configurations. For this analysis, all the test datasets were merged and a total of 7 T-tests
were carried out. In all cases, RosENet achieved a significantly lower Mean Square Error (MSE),
with the highest p-value being approximately 5% (Table S5 in SI).

CSAR Astex FEP NMR

SqueezeNet

ResNet
.N .N
.I\J .N
.N .N
.N .N

RMSE B RosENet Energies 8 HTMD 4 HTMD

W=

Figure 9. Circular bar plot comparing the effect of feature ablation and network
architecture. Each set of features is represented with a different color (see legend). The RMSE

is shown with the lighter shades of color and Spearman’s correlation coefficient (R) with the
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darker shades of color. The ResNet and SqueezeNet architectures were used for the models in the

upper and lower panels, respectively.

DISCUSSION

In this study, we developed RosENet, a 3D Convolutional Neural Network that combines
voxelized molecular mechanics energies and molecular descriptors in order to improve the
prediction of the binding affinity of protein — ligand complexes. We have shown that the
molecular energies can be embedded into a 3D grid and complement molecular descriptors when
training a CNN. When presented unseen data, RosENet was able to better generalize than
previously proposed methods (Figures 6 and 7). We hypothesized that the energy terms provide
critical information for estimating the binding affinity (e.g., the solvation energy) that cannot be
captured using only molecular descriptors. Models using the SqueezeNet architecture and trained
with the energy terms did not perform as well, indicating that the relation between the energy
features and the experimental binding affinity cannot be easily represented in a shallower
network. Furthermore, the residual connections that appear in the ResNet architecture might also
help identify important differences in energies within the complexes instead of simply the
absolute energies.

The parameters of the ligand were determined using the procedure provided by Rosetta, which
has the advantage of being fast. This parameterization remains coarse, especially for the atomic
charges. A more refined procedure, such as those used for molecular dynamics, might help to
further improve the prediction of the binding affinity. One drawback, however, would be that
this would be computationally more intensive. In this study, only a subset of energies computed

by Rosetta was considered. In the future, other energy terms can be added, but this would also

19


https://doi.org/10.1101/2020.05.12.090191
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.090191; this version posted May 14, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

significantly increase the complexity and size of the feature maps. To deal with that, a feature
selection procedure would probably first be required. It should be noted that our voxelization
procedure could also be extended to energy terms computed with other force fields (e.g.,

CHARMM,” AMBER .** OPLS*” or GROMOS™) or docking packages (e.g., AutoDock Vina’).

During validation and testing, we observed that the performance of the prediction was strongly
dependent on the range of the binding affinity and the protein family. Such a behavior has been
reported for most of the previously proposed models. Typically, a broader range of sampled
binding affinity values leads to an increase in the RMSE of the predictions, due to a degradation
of the prediction for high and low binding affinities. As described in previous studies,” the
accuracy of the predictions also depends on the protein family. This type of behavior is typically
indicative of overfitting. It was also discussed that the PDBBind dataset is strongly
unbalanced.””** Some protein families, such as the HIV integrase with 282 structures, are
overrepresented in the PDBBind refined set (Figure S2 in SI). Furthermore, the distribution in
pKp is not uniform (Figure S3 in SI), but follows a quasi-normal distribution centered around
6.4 with a standard deviation of 2. This could explain why our model performed better for
predicting binding affinities in the median range; in particular, since the RMSE was used as a
loss function during training and would thus maximize the likelihood of an assumed normal
distribution. By integrating structures from the BindingMOAD in an effort to rebalance the
PDBBind training set, we observed a small improvement for the lower values of pK,. Balancing
or resampling procedures could thus be applied in the future to prioritize underrepresented

structures. When comparing RosENet to OnionNet and Pafnucy, we observed that certain models
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performed better for some complexes. One could take advantage of this by training and
combining several models using ensemble methods (e.g., boosting).

CONCLUSIONS

We demonstrated that molecular energies can be voxelized and combined with molecular
descriptors in order to predict the binding affinity of protein — ligand complexes. In the future,
this framework can be extended to other features extracted from biophysical models, e.g.,
molecular dynamics simulations. The dynamics of the protein and ligand are known to have a
significant effect on the binding affinity. In order to further improve the development of Deep
Learning approaches, an important effort would be required for building well-balanced training,
validation and testing datasets. Working in that direction, we have already collected and curated
almost 400 structures that can be used for testing models. We have also built a new dataset of
structures solved by NMR, where the ligand RMSD after minimization was used to assess the
quality of the structures. Lastly, we have shown the potential for improving the predictions by

using ensemble methods.

MATERIALS AND METHODS

This section is divided into six parts. In the first part, we will present the different datasets
used for training, validating and testing our models. The features computed for the protein —
ligand complex, the voxelization and the representation procedure used for embedding will then
be described. The architectures and training procedure of the different convolutional neural
networks will follow. And finally, we will present the analyses that were used to compare the

accuracy of the different models.

A. Datasets
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A.1 Training and validation set

PDBBind

The PDBBind dataset was used for training and validating our models. PDBBind is divided
into three concentric sets. The general set contains the experimental data for the 3D structure and
the experimentally measured binding affinity of 19 588 biomolecule complexes. From the
general set, a curated refined set of 4 463 protein — ligand complexes of high structural
resolution (< 2.5 A and an R-factor higher than 0.25) with accurate binding measurements (1 pM
<K,/ K;< 10 uM) was extracted. Finally, a 90% sequence similarity cut-off was used to group
the structures in the refined set into 58 different clusters. Complexes from 58 representative
clusters were chosen and constituted the core set. The binding affinity pK,, was defined as the
negative logarithm of the dissociation or inhibition constants, -log(K,) or -log(K}), respectively.

The models were trained with the refined set (combining versions 2016 and 2018), excluding

the core set structures. The core set was used as the validation set.

A.2 Test datasets
In total, the four datasets described below were used for testing our models. Structures already
present in the training or validation sets were excluded. The full list of PDB IDs for each dataset

is provided in the Supporting Information section.

A.2.1 Community Structure-Activity Resource (CSAR)
The Community Structure-Activity Resource (CSAR) was designed for testing and improving
computational methods for drug discovery. In this study, the CSAR NRC-HiQ datasets was

chosen. This dataset was part of the CSAR 2010 exercise and was composed of two sets:
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structures discovered between 2004 and 2006, and structures from 2007 and 2008. Both sets
were balanced in terms of different statistical properties of the structures. We excluded the
structures that were already used in other datasets (for training, validation or testing), which
resulted in 55 structures for CSAR HIQ (Set 1) and 49 structures for CSAR HIQ (Set 2).

A2.2 FEP

The FEP dataset was used for a Free Energy Perturbation study’ and was composed of the
following eight proteins: BACE, CDK2, JNK1, MCL1, P38, PTP1B, Thrombin and Tyk2. In
addition, 199 ligands were included, thus forming 40 complexes with BACE, 16 with CDK2, 21

with JNK1, 42 with MCL1, 34 with P38, 23 with PTP1B, 11 with Thrombin and 12 with Tyk?2.

A.2.3 PDBBind 2018 NMR structures

Complexes obtained by Nuclear Magnetic Resonance (NMR) from the PDBBind 2018 dataset
were extracted. A filtered version of the NMR dataset was produced by restricting it to structures
with a buried Solvent-Accessible Surface Area (SASA) ratio larger than 15%, a molecular mass
of maximum 1000 g/mol, and a RMSD after minimization smaller or equal to 2 A. This yielded

126 structures.

A2.4 Astex Diverse dataset
The Astex Diverse dataset is a manually curated dataset composed of 85 complexes with drug-
like ligands. After excluding structures overlapping with previous datasets, 17 complexes were

kept.

A.3 Features
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Two different types of features were considered in this study, namely molecular descriptors
and molecular energies. Molecular descriptors were defined using AutoDock Vina atom types.
Molecular energies were computed with the Rosetta full-atom force field.

A.3.1 Molecular descriptors

Eight different molecular descriptors were generated with the Python library HTMD™ (Table
1). From these eight descriptors, the following four were selected to be combined with the
molecular energies: 1) aromatic carbon, ii) hydrogen bond acceptors, iii) positive ionizable, and
1v) negative ionizable. Each atom was assigned a binary value for every descriptor.

Table 1. Molecular descriptors computed with HTMD. The descriptors marked with an asterix

were combined with the molecular energies.

Molecular descriptor Atom type

Hydrophobic carbon Aliphatic or aromatic carbon
Aromatic carbon* Aromatic carbon

Hydrogen bond acceptor* N, O, S hydrogen bond acceptors
Hydrogen bond donor Hydrogen bond donor from N, O, S
Positive ionizable* Gasteiger positive charge

Negative ionizable* Gasteiger negative charge

Metal ion Mg, Zn, Mn, Ca, or Fe

Excluded volume All atom types
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A.3.2 Molecular energies

The ligands were parameterized using Rosetta’s molfile_to_params.py script. The interface
between the ligand and protein was then minimized using RosettaScript. The XML description of
the full procedure is available on the github repository. In total 10 complexes were generated for
each protein - ligand complex, and the full-atom energies for the structure with the lowest energy
score were extracted. The four main full-atom energy terms in REF15 were considered: attractive

(fa_atr), repulsive (fa_rep), electrostatic (fa_elec) and implicit solvation (fa_sol).

Emulating the separation of positive and negative charges in the molecular descriptors, we split
the energies into 6 terms: attractive, repulsive, positive electrostatic, negative electrostatic,
positive implicit solvation, and negative implicit solvation. Each energy term was then
normalized to the interval of O to 1 over the entire dataset, in order to match the range of the rest
of molecular descriptor features.

A3.3. Representation

A 3D grid representation was used for embedding the features of the protein — ligand complex.
The features for the protein and ligand were voxelized separately. For each feature, a 25 x 25 x
25 A cubic grid with a spacing of 1 A and centered around the geometric center of the ligand was
created. The position of each atom within the grid was mapped to a voxel and the value of the

corresponding feature was assigned to the voxel.

The values of each voxel were then spatially distributed using the function:

Ty

() =1 - CFIm
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where 1 is the distance between the grid point and the atom, and r,, is the Van der Waals
radius of the atom. Only the largest contribution was considered for voxels where the values
from several atoms overlapped. These grids were combined to form a 25 x 25 x 25 image with
one channel for each feature. Three sets of images were created with the following channels for
the protein and ligand: 8 molecular descriptors, 4 molecular descriptors, and 4 molecular
descriptors with 6 molecular energies.

A4 Architectures of the Convolutional Neural Networks

Two different Convolutional Neural Networks were evaluated, namely ResNet and
SqueezeNet.

A 4.1 ResNet

To predict the binding affinities of the complexes, we used a version of the well-established

neural network architecture ResNet” (Figure 10 and Table 2).

2335)(25@20 RosENet - ResNet 101

12412x12@64
2048

, ‘ BY6Y6@256 Pl

J 3X3x3@512

2X2x2@1024
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Figure 10. Schematic representation of the architecture of RosENet. The input was

composed of a 25 x 25 x 25 image with 20 channels. The blue cubes show the convolution filter

size.

Table 2. Architecture of the ResNet 101-layer one.

Layer Output size Filter Strid Inner Copi
size dimension  es

Input 25x25x25@?20

convl 12x12x12@64 TXTXT 2x2x

maxpool 1 6x6x6@64 3x3x3 2x2x

inner-res-0 6x6x6@256 64 3

start-res-1 3x3x3@512 128

inner-res-1 3x3x3@512 128 3

start-res-2 2x2x2@1024 256

inner-res-2 2x2x2@1024 256 23

start-res-3 Ix1x1@2048 512

inner-res-3 Ix1x1@2048 512 2
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flatten 2048

dense 1

ResNet is composed of “residual modules.” Each module has three layers, with filter sizes
Ix1x1, 3x3x3 and 1x1x1, respectively. Residual modules include skip connections, with the
assumption that the modules should not learn all attributes of the data, but only the perturbations
between input and output. Residual modules do not reduce the size of the images, so ResNet
assembles them in blocks separated by max pooling layers that perform the downsampling.
There are also skip connections between contiguous blocks, skipping the separating max pooling
layers.

In our architecture, the first convolutional layer was followed by a ReLU, whereas the rest of
the convolutional layers used in the residual modules, were preceded by a ReLU, as
recommended in."

A 4.2 SqueezeNet

The SqueezeNet architecture is composed of fire modules, which are two-layered modules of
convolutional layers (Figure 11 and Table 3). The first layer of the module is the squeeze layer,
a convolutional layer with a filter size 1 x 1 x 1 and a small number of filters. This squeeze layer
is supposed to constrain the network to a more compact representation in order to find the
features that are more important and reject the noisier ones. The second layer is the expand layer,
composed of two side-by-side convolutional layers, one with a size 1 x 1 x 1 and the other one
with a size 3 x 3 x 3, with a larger channel count than the squeeze layer. This layer is dedicated
to performing transformations over the “squeezed” representation. These side-by-side

convolutions are then concatenated to form an output with a much larger channel count. Each
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fire module maintains the dimensions of the images, and either maintains or increases the

number of channels.

25x25x25@20 13824

3x3x3@512

Figure 11. Schematic representation of the architecture of SqueezeNet. The input was
composed of a 25 x 25 x 25 image with 20 channels. The blue cubes show the convolution filter
size.

Table 3. Architecture of the SqueezeNet

Layer Output size Filter Stride Squeez Expan
size e d
Input 25x25x25@?20
convl 12x12x12@96 TXTXT 2x2x2
firel 12x12x12@12 16 64
8
fire2 12x12x12@12 16 64
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8
fire3 12x12x12@?25 32 128
6
maxpool 1 6x6x6@256 3x3x3 2x2x2
fire4 6x6x6@256 32 128
fire5 6x6x6@384 48 192
fire6 6x6x6@384 48 192
fire7 6x6x6@512 64 256
avgpooll 3x3x3@512 3x3x3 2x2x2
flatten 13824
dense 1

The implementation of these neural networks is available on our GitHub site.
https://github.com/DS3Lab/RosENet/tree/master/models
A5 Training

The loss function was defined as the Root Mean Square Error (RMSE):

RMSE =\/ o =)’
n

where ¥, is the predicted binding affinity and y; is the true binding affinity.
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Batch Normalization (BN) and Dropout were not used, since they significantly worsened the

performance of our models for all of our experiments.

For training, the AdaM optimizer** with its default parameters and a learning rate of 104 was
used. We trained the networks for 300 epochs using a batch size of 128. The variables are
initialized with the default settings of Tensorflow, which corresponds to the Glorot uniform
initializer.” In order to guarantee the rotation invariance of our models, each image was
augmented by rotating it by 90°, providing 24 additional data points per protein — ligand
complex.

A.6 Analyses

In addition to the RMSE and Spearman’s correlation, the standard deviation of the linear

regression was calculated in order to quantify the quality of the predictions:

ILo((ayr +b) —yi)°

SD =
n—1

where ¥, is the predicted binding affinity, y; is the true binding affinity, and a and b are the
slope and interception of the linear regression line of the ¥, and y;.
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