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Abstract  64 

Genome-wide association studies (GWAS) are not fully comprehensive as current strategies 65 

typically test only the additive model, exclude the X chromosome, and use only one 66 

reference panel for genotype imputation. We implemented an extensive GWAS strategy, 67 

GUIDANCE, which improves genotype imputation by using multiple reference panels, 68 

includes the analysis of the X chromosome and non-additive models to test for association. 69 

We applied this methodology to 62,281 subjects across 22 age-related diseases and 70 

identified 94 genome-wide associated loci, including 26 previously unreported. We observed 71 

that 27.6% of the 94 loci would be missed if we only used standard imputation strategies and 72 

only tested the additive model. Among the new findings, we identified three novel low-73 

frequency recessive variants with odds ratios larger than 4, which would need at least a 74 

three-fold larger sample size to be detected under the additive model. This study highlights 75 

the benefits of applying innovative strategies to better uncover the genetic architecture of 76 

complex diseases.  77 

  78 
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Introduction  79 

Genome-wide association studies (GWAS) have been successful in identifying thousands of 80 

associations between genetic variation and human complex diseases and traits 1. 81 

Nevertheless, for most complex diseases, only a small fraction of their genetic architecture is 82 

known and a small amount of the estimated heritability is explained 2. Variants that 83 

individually have small contributions to the risk of disease, and/or are rare in the population, 84 

are often missed by the majority of GWAS even though their role in the pathophysiology of 85 

complex diseases can be crucial. Some of the current limitations of GWAS could be 86 

overcome by increasing sample sizes and, as recently demonstrated, by applying more 87 

comprehensive analytical methods with improved imputation strategies 3. Though the 88 

increase of sample size might allow the detection of more genetic signals, it also imposes 89 

major methodological and computational requirements. These can require scientists to 90 

restrict and simplify the analysis by limiting it to autosomal chromosomes, a single reference 91 

panel for imputation, and a single (additive) inheritance model for association testing, leaving 92 

a relevant fraction of the genetic architecture of the disease unexplored 4.  93 

The genetic variants that modify the risk to develop a particular complex disease may 94 

contribute to the final phenotype through different functional mechanism defined by a 95 

particular model of inheritance, which is further reflected in a characteristic distribution of 96 

affected alleles across patients and healthy individuals in GWAS. For example, the additive 97 

inheritance model, which is often the only genetic model tested, assumes that the risk of the 98 

disease is proportional to the number of risk alleles in an individual, i. e., that the effect of the 99 

heterozygous genotype is halfway between the two possible homozygous genotypes. 100 

However, some variants follow non-additive inheritance models, which include dominant, 101 

recessive and heterodominant. The additive model is expected to capture a large fraction of 102 

the genetic risk for disease 5 and can identify some variants that follow non-additive 103 

inheritance patterns. However, the additive model is not sufficient to provide a 104 

comprehensive overview of the genetic architecture of diseases. In particular, most GWAS 105 

may have insufficient power to identify low-frequency variants that show recessive effects 6, 106 
7. The importance of evaluating non-additive inheritance models is well reported in the 107 

context of Mendelian diseases 8 and occasionally for complex traits as well, such as the 108 

recessive effects of the FTO locus in obesity 9, the ITGA1 10, TBC1D4 11 and CDKAL1 9, 12 109 

genes in type 2 diabetes, as well as the known non-additive effects of HLA haplotypes in 110 

autoimmune diseases 13 and ulcerative colitis 14. The increasing ability to capture low-111 

frequency variants using modern imputation reference panels and the need to uncover the 112 

still missing heritability estimated for most complex diseases, call for comprehensive 113 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.084608doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.084608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 

association strategies that should include, among other improvements, the analysis of non-114 

additive inheritance models.    115 

To fill this gap and to determine the prevalence and contribution of the different inheritance 116 

patterns involved in the genetic architecture of complex diseases, we have designed and 117 

implemented a comprehensive strategy for genetic association analysis that combines 118 

dense imputation from multiple reference panels with association testing under five different 119 

inheritance models across multiple phenotypes. We have applied this strategy to the Kaiser 120 

Permanente Research Program on Genes, Environment and Health: A Genetic 121 

Epidemiology Research on Adult Health and Aging (GERA) cohort 15, which includes 62,281 122 

subjects from European ancestry and 22 diseases. 123 

Finally, we release here both the summary statistics for all the models of inheritance as well 124 

as the complete methodology, provided to the community as an easy-to-use and standalone 125 

pipeline. This pipeline allows for analysis of existing and newly generated GWAS data with 126 

better efficiency and more comprehensive testing, improving the chances of variant 127 

discovery.  128 

 129 

Results  130 

In order to assess the potential benefits of applying more in-depth GWAS methodologies to 131 

available genetic datasets, and to investigate the relative contribution of different inheritance 132 

models to the risk to develop complex diseases, we have applied a global analysis strategy 133 

to the GERA cohort, an age-related disease-based cohort with an average age of 63, well 134 

powered to study a broad range of clinically defined age-related conditions. By using this 135 

particular cohort, we expect to minimize a possible loss of power due to the misclassification 136 

of controls, as often happens in datasets with younger individuals that can include cases at 137 

pre-disease stages classified as controls. 138 

 139 

Genotype Imputation and association testing using multiple reference panels 140 

After applying strict genetic quality control to the GERA cohort (see Methods), we retained 141 

56,637 individuals with European ancestry for further downstream analysis (Supplementary 142 

Table 1). To cover the maximum number and type of genetic variants, we next applied an 143 

extensive imputation strategy with four reference panels: the Genome of the Netherlands 144 

(GoNL) 16, 17, the UK10K Project 18, the 1000 Genomes Project (1000G) phase 3 19 and 145 

Haplotype Reference Consortium (HRC) 20, and imputed 11.2 M, 11.4 M, 13.1 M, and 11.7 146 

M high quality imputed variants (IMPUTE2 21 info score ≥ 0.7 and minor allele frequency 147 
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[MAF] ≥ 0.001) with each panel, respectively. After combining the results of the four 148 

reference panels by choosing, for each variant, the panel that provided the highest 149 

imputation accuracy, we retained a total of 16,059,686 variants covering all the autosomes 150 

and the X chromosome (Figure 1a). This strategy was particularly powerful to impute 2.6 M 151 

and 5.5 M high quality, low-frequency (0.05 > MAF > 0.01) and rare variants (0.01 > MAF > 152 

0.001), respectively, as well as 1.6 M indels. Note that as many as 684,393 common 153 

variants (MAF ≥ 0.05), 255,106 low-frequency, 1.7 M rare, and all indels (1.6 M) would be 154 

missed if only the HRC reference panel was used. This highlights the benefit of combining 155 

different reference panels for comprehensive association testing (Figure 1b).  156 

We next tested all the 16 M variants for association with the 22 conditions available in the 157 

GERA cohort considering the entire genome and five different inheritance models 158 

(Supplementary Figure 1-22). This analysis identified 94 independent loci associated with 17 159 

phenotypes at a genome-wide significance level (p < 5.0 × 10-8) of which 63 for 14 160 

phenotypes were also experiment-wide significant (p < 2.0 × 10-8) after considering 161 

correction for the different models of inheritance (see methods) (Supplementary Table 2). 162 

According to the GWAS catalog, 68 of the 94 genome-wide significant loci had been 163 

previously reported to be associated with the same disease (Supplementary Table 3), 164 

whereas 26 of them correspond to previously unreported loci with associations across 16 165 

phenotypes (Table 1). Of these new loci, 16 correspond to common, 3 to low-frequency, and 166 

7 to rare variants. Interestingly, only a fraction of the 26 new loci would have been genome-167 

wide significant by using individual imputation panels (Figure 1c), namely 20/26 using HRC, 168 

14/26 using 1000G Phase 3, 14/26 using UK10K or 15/26 using GoNL. In addition, the lead 169 

marker for three of the novel signals is an indel, further confirming the benefits of combining 170 

multiple panels with our approach. 171 

 172 

Identification of recessive variants with large effects 173 

The implementation of refined GWAS strategies not only increases the number of 174 

associated variants, but also allows the identification of loci with large impact on the disease. 175 

Among the variants that were not detected under the additive model, and hence are 176 

expected to be missed by the majority of current GWAS, we highlight three variants with 177 

remarkably large recessive effects. First, an intronic indel in the CACNB4 gene, 178 

rs201654520, associated with a nearly twenty-fold increase in risk for cardiovascular 179 

disease (MAF= 0.017, OR [CI 95%] = 19.0 [5.5 - 65.8], p = 4.3 × 10-8). CACNB4 encodes the 180 

β4 subunit of the voltage-dependent calcium channel. This subunit contributes to the flux of 181 

calcium ions into the cell by increasing peak calcium current and triggering muscle 182 
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contraction. Interestingly, an intronic single nucleotide polimorphism (SNP) within CACNB4, 183 

rs150793926, was associated with idiopathic dilated cardiomyopathy in African Americans 184 
22, but this variant is not in linkage disequilibrium (LD) with rs201654520 (LD r2 23 = 0.0016). 185 

A second recessive variant with large effect, rs77704739, near the PELO gene, is 186 

associated with a four-fold risk for type 2 diabetes (MAF= 0.036, OR [CI 95%] = 4.3 [2.7 - 187 

6.9], p = 1.75 × 10-8). We also found this variant associated with type 2 diabetes (OR-188 

recessive [95% CI] = 1.9 [1.4 - 2.6], p = 4.95 × 10-4) and metformin use (OR-recessive [95% 189 

CI] = 2.3 [1.6 - 3.4], p = 3.8 × 10-5) in the UK Biobank 24 (Supplementary Table 4), also only 190 

under the recessive model. An independent signal that is about 112 K base pairs away 191 

(rs870992, LD r2 = 0.0009) was previously associated with type 2 diabetes in the 192 

Greenlandic population, also with a recessive effect 10. To provide insights into the 193 

underlying molecular mechanisms in disease, we interrogated comprehensive catalogues of 194 

genetic effects on gene expression; eQTLGen Consortium 25 and GTEx 26. The rs77704739 195 

variant was significantly associated with gene expression of PELO in multiple tissues, 196 

including diabetes-relevant tissues such as adipose tissue, skeletal muscle, and pancreas. 197 

Colocalization analyses showed a probability higher than 0.8 in several tissues, including 198 

subcutaneous adipose tissue and skeletal muscle, suggesting this gene as the effector 199 

transcript (Figure 3a, 3b, and Supplementary Table 5). In addition, we found that the lead 200 

variants in the PELO locus overlap with active promoter annotations in human pancreatic 201 

islets and open chromatin sites highly-bounded by islet specific transcription factors 27, 28 202 

(Figure 3c). 203 

Third, a rare indel, rs557998486, located near the THUMPD2 gene, is associated with age-204 

related macular degeneration (MAF= 0.009, OR = 10.5, p = 2.75 × 10-8). Also under the 205 

recessive model in UK Biobank, this indel was associated with age-related macular 206 

degeneration (OR [CI 95%] = 7.6 [1.5-37.3], p = 4.1 × 10-2), eye surgery (beta [CI 95%] = 1.6 207 

[0.6-2.6], p = 1.17 × 10-3) (Supplementary Table 4), and C-reactive protein, a known 208 

biomarker for macular degeneration 29 (beta [CI 95%] =1.1 [0.7 - 1.5], p = 1.15 × 10-4) 209 

(Supplementary Table 6). Interestingly, the fact that we found no SNPs in LD with this lead 210 

indel further confirms the benefits of multiple reference panel imputation strategies that 211 

include alternative forms of variation. The lead indel rs557998486 overlaps DNAse I 212 

hypersensitivity sites in retinal and iris cell lines 30, highlighting a candidate open chromatin 213 

region that is also predicted to be an enhancer assigned to the THUMPD2 gene according to 214 

GeneHancer 31. One of the variants with the highest LD with rs557998486 (rs116649730, LD 215 

r2= 0.32) is associated with reduced expression of its nearest gene, THUMPD2 (Z-score = -216 

4.85, p = 1.25 × 10-6), according to eQTLGen Consortium data. 217 

 218 
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Replication using UK Biobank and FinnGen 219 

We sought replication of previously unreported loci using UK Biobank, a prospective cohort 220 

of ~500 K individuals aged between 40 to 69 24. Given the high heterogeneity in phenotype 221 

definitions in UK Biobank compared to GERA, we tested for replication with the same 222 

phenotype and related traits (Supplementary Table 4). Compared to GERA, some of the 223 

conditions may not be ascertained or have an age at onset later than the average age at 224 

ascertainment in UK Biobank (56.52 years 32) which could affect the replication success. 225 

Despite these limitations, we tested the novel variants using the corresponding inheritance 226 

model, and replicated 4 new loci with the same phenotype (Table 2).  227 

We further sought replication of the association within the CACNB4 gene with cardiovascular 228 

disease in FinnGen, a cohort of ~218 K Finnish individuals with an average age of 63, as it 229 

includes individuals with a higher average age (63 vs 56 in UK Biobank) and the risk of 230 

developing a cardiovascular disease is well-known to increase with age 33. In addition, 231 

FinnGen has a precise and richer classification of this particular phenotype than UK 232 

Biobank. In brief, we tested rs201654520 for association with 47 cardiovascular endpoints. 233 

Of all the conditions tested, four (hypertensive heart disease, hypertensive heart and/or 234 

renal disease, heart failure, and right bundle-branch block) were nominally associated (p < 235 

0.05). All the associations had a direction of effect consistent with the effect observed in the 236 

GERA cohort (Supplementary Figure 23a). Although there is a high heterogeneity in the 237 

phenotype definitions between cohorts, we meta-analyzed the results from these endpoints 238 

from FinnGen with the result from “cardiovascular disease” phenotype from GERA, but none 239 

of them reach the genome-wide significance (see Methods) (Supplementary Figure 23). We 240 

did not include UK Biobank in this meta-analysis as the equivalent phenotypes were not 241 

available or had less than 350 cases in UK Biobank, therefore, underpowered for a 242 

recessive analysis. Notably, when analyzing the association of rs201654520 with related 243 

quantitative traits we found that those who were homozygous for the high-risk allele had 244 

lower systolic blood pressure (p = 4.1 × 10-3, beta = -0.23) (Supplementary Table 4). While 245 

lower systolic blood pressure has been associated with increased risk of myocardial 246 

infarction in particular circumstances, this is not the typical direction of association, and 247 

therefore merits additional study 34.  248 

We also sought replication of the recessive association of rs557998486 near THUMPD2 249 

gene with macular degeneration in FinnGen. While rs557998486 was associated with 250 

increased risk of macular degeneration in UK Biobank under the recessive model (OR [CI 251 

95%] = 7.6 [1.5-37.3], p = 4.1 × 10-2), it was not significantly associated in the FinnGen 252 

biobank although it showed the same direction of effect. However, the meta-analysis did not 253 
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reach the genome-wide significance (rs557998486 p = 9.6 × 10-6) and had a high 254 

heterogeneity (heterogeneity I2 = 87.1, heterogeneity p = 4.3 × 10-4). 255 

 256 

Detection ranges of the different inheritance models  257 

Our findings provide an empirical overview of the detection range of five different inheritance 258 

models, and show how each of them captures a fraction of the genetic variants associated 259 

with complex traits. As indicative of the power of current genetic studies that usually only 260 

consider additive allelic effects, we found three different scenarios. Among all the 94 261 

associated loci identified, 12 showed genome-wide significance only under the additive 262 

model, 62 under both additive and non-additive models, and 20 showed genome-wide 263 

significance only when non-additive tests were applied (Figure 2a). To further classify these 264 

variants, we tested whether any of the 62 variants associated with both additive and non-265 

additive models deviate from additivity through a dominance deviation test 9. Eleven of these 266 

62 variants (17.7%) showed significant deviation from additivity (dominance deviation test p 267 

< 0.05). Altogether, the dominance deviation test over the 93 autosomal loci identified 62 268 

additive (66%) and 24 non-additive associations (25.5%) and 8 undetermined. Based on the 269 

smallest GWAS p-value, we further classified non-additive associations into 9 recessive, 13 270 

dominant, 8 heterodominat and 7 genotypic (Supplementary Table 2).    271 

We also found that each of the available models for association testing has a different range 272 

of detection. To identify the 94 genome-wide associated loci, the additive test, as expected, 273 

was the most sensitive model (74 loci), followed by the genotypic (59 loci), the dominant (56 274 

loci), the recessive (43 loci) and the heterodominant (32 loci). When considering known loci, 275 

48 of the 68 previously reported loci were identified by more than one model in our analysis, 276 

and almost half of these (22 loci) with all five models. In contrast, of the 26 newly discovered 277 

variants, only 8 were identified with multiple models, whereas the majority of them (18 loci), 278 

were detected only with the additive (6 loci), the genotypic (4 loci), the recessive (4 loci) and 279 

the dominant (3 loci) model. Of note, 13 out of 26 (50%) novel loci were only identified by 280 

non-additive models.  281 

To further investigate to what extent the additive model captures non-additive signals, and 282 

how much this depends on sample size, we carried out power calculations on loci that were 283 

detected here only under a non-additive model, such as rs201654520 within CACNB4 gene 284 

and rs77704739 near the PELO gene. These power calculations showed that the additive 285 

test would require a population sample size of at least 370,646 individuals to detect the 286 

recessive association of rs201654520 in CACNB4 (Figure 2b), and at least 188,637 287 

individuals to capture the recessive signal of rs77704739 near the PELO gene (Figure 2c), 288 
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while the population sample size required for the recessive model was only 21,021 and 289 

67,611, respectively. In this study, we were able to identify both associations with a modest 290 

sample size by using the most well-suited disease model. 291 

 292 

The GUIDANCE framework 293 

We developed an integrated framework including our methodology used to analyze the 294 

GERA cohort, called GUIDANCE. GUIDANCE allows the analysis of genome-wide 295 

genotyped data in a single execution in distributed computing infrastructures without the 296 

need for extensive computational expertise or constant user intervention. The GUIDANCE 297 

workflow requires quality-controlled genotyped data as an input and provides association 298 

results, graphical outputs and statistical summaries. Integrating state-of-the-art tools with in-299 

house code written in Java, bash and R 35, GUIDANCE efficiently performs large-scale 300 

GWAS, including 1) the pre-phasing of haplotypes, 2) the imputation of genotypes using 301 

multiple reference panels, 3) the association testing for different inheritance models and 302 

integrating results from different panels, 4) a cross-phenotype analysis when more than one 303 

phenotype is available in the cohort (Supplementary Table 7), and finally, 5) the generation 304 

of summary statistics tables and graphic representations of the results (Supplementary 305 

Figure 24), for both the autosomes and the X chromosome. While GUIDANCE can be 306 

executed as a standalone compact program it can also be used in modules (Supplementary 307 

Figure 25), which makes GUIDANCE adaptable to existing frameworks and provides an 308 

even higher level of control to users. 309 

GUIDANCE runs in distributed computing platforms, including the cloud, without requiring a 310 

broad background in distributed environments. This is feasible since GUIDANCE was 311 

implemented on top of the COMP Superscalar Programming Framework (COMPSs) 36. With 312 

COMPSs, the GUIDANCE workflow was implemented as a sequential Java program 313 

containing the calls to the GWAS tools, encapsulated in Java methods, and selected as 314 

tasks, while COMPSs controls the execution of those tasks on the underlying distributed 315 

infrastructure. The source code, the pre-compiled binaries and documentation to use 316 

GUIDANCE are available at http://cg.bsc.es/guidance.  317 

 318 

Discussion  319 

The increasingly large sample sizes in GWAS improve the statistical power to identify 320 

genetic variants associated with complex diseases. At the same time, the emergence of 321 

larger and denser reference panels allows genotype imputation at lower ranges of allele 322 
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frequencies previously unexplored. In this study, we demonstrate the value of applying a 323 

comprehensive GWAS including denser imputation strategies, the X chromosome and non-324 

additive association tests to an existing large-scale genetic resource, the GERA cohort. We 325 

show that by applying more powerful imputation protocols we increased the number and the 326 

type of variants tested for association, including low-frequency and rare SNPs as well as 327 

alternative forms of variation, such as indels. Our analysis in the GERA cohort shows that 328 

between 13 and 20 of the genome-wide significant associations (14-21%) would not have 329 

been identified when using a single reference panel. Likewise, our analysis in the GERA 330 

cohort demonstrates that 21% of the associations would be missed by only testing the 331 

additive model. Overall, 27.6% of associations would not have been identified by applying 332 

the commonly used HRC and additive model association testing.  333 

We here show the potential of identifying very large effect recessive associations by 334 

maximizing the use of current reference panels and testing different inheritance models, as 335 

exemplified by the associations with type 2 diabetes, cardiovascular disease and macular 336 

degeneration with variants near PELO, CACNB4, and THUMPD2, respectively. This strategy 337 

opens new avenues for future analyses in large scale biobanks, as demonstrated with our 338 

power calculations, which show that even the largest available GWAS meta-analyses or 339 

biobanks would not have enough power to identify these associations using only the additive 340 

model. For example, the CACNB4 gene, associated with cardiovascular disease, would 341 

require a sample size equivalent to 370,000 individuals when using the additive test, 17 342 

times larger than the required sample size under a recessive analysis. After considering all 343 

the supporting evidence illustrated with many examples in this study, the results suggest that 344 

this new associations deserve future validations and follow-up analysis, and demonstrate the 345 

importance of a comprehensive analysis including non-additive models when performing 346 

GWAS. 347 

The inclusion of non-additive associations can also have an impact on the construction of 348 

polygenic risk scores. Current polygenic scores (PRS) are calculated summing risk alleles 349 

weighted by effect sizes from GWAS results, which have typically tested only the additive 350 

model in the association test. Hence, large-scale genome-wide association data accounting 351 

for different models of inheritance and including both SNPs and alternative forms of 352 

variation, such as indels, will also be essential to develop more accurate genome-wide PRS, 353 

which would weight each of the genotype carriers appropriately, rather than weighting the 354 

heterozygous half-way between the homozygous of the effect and alternate alleles. 355 

To easily apply this strategy to genetic studies we present GUIDANCE, a standalone and 356 

easy-to-use application that allows an efficient and comprehensive GWAS analysis in 357 

different computing platforms, such as cloud and high-performance computing architectures. 358 
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In a moment where the community is facing computational and methodological challenges 359 

due to the growing complexity and size of genetic datasets, the availability of robust and 360 

complete analysis platforms can improve the efficiency of genetic studies, standardizing 361 

analysis strategies among large meta-analysis cohorts to ensure consistency.  362 

Finally, to share our results with the community and to promote the analysis of non-additive 363 

inheritance models in GWAS, a public searchable database including additive and non-364 

additive summary statistics for 16 M of variants and 22 phenotypes is available at the Type 2 365 

Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org and full summary 366 

statistics at http://cg.bsc.es/guidance). 367 

 368 

Online Methods  369 

 370 

GUIDANCE Workflow Description 371 

By combining and integrating state-of-the-art GWAS analysis tools into the COMP 372 

Superscalar programming Framework (COMPSs), we developed GUIDANCE, a standalone 373 

application that performs haplotype phasing, genome-wide imputation, association testing 374 

and PheWAS analysis of large GWAS datasets (Supplementary Figure 24).  375 

As shown in Supplementary Figure 24, GUIDANCE’s workflow starts with quality-controlled 376 

genotype data and ends with providing association results, graphical outputs and statistical 377 

summaries.  378 

Once everything is settled in the GUIDANCE configuration file, GUIDANCE performs an 379 

efficent two-stage imputation procedure, by pre-phasing the genotypes into whole 380 

haplotypes followed by genotype imputation itself 21. SHAPEIT2 37 or EAGLE2 38 and 381 

IMPUTE2 39 or MINIMAC4 40 can be used for pre-phasing and genotype imputation, 382 

respectively. In addition, GUIDANCE  accepts one or multiple reference panels, allowing the 383 

integration of the results obtained from all panels by selecting for each variant the genotypes 384 

from the reference panel that provides the highest imputation accuracy according to the 385 

IMPUTE2 info score or MINIMAC2 r2 (Supplementary Figure 26). GUIDANCE also performs 386 

a post-imputation quality control to eliminate low-quality imputed variants under the basis of 387 

the IMPUTE2 info score or MINIMAC2 r2 and the MAF.  388 

After genotype imputation and post-imputation quality control, GUIDANCE applies 389 

SNPTEST for association testing, where additive, dominant, recessive, heterodominant and 390 

genotype models can be analyzed. Here, the user can decide to include several covariates 391 
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for the association test, such as principal components to adjust for population stratification, 392 

or any other confounders. GUIDANCE also allows testing for multiple phenotypes or for a 393 

single phenotype with different covariates in the same execution. After association testing, 394 

variants are filtered by the deviation from Hardy-Weinberg equilibrium (HWE) p-value. 395 

Finally, GUIDANCE generates summary reports for each trait with all the inheritance models 396 

tested in the association and the corresponding graphical representation, i.e., Manhattan 397 

and Quantile-Quantile (Q-Q) plots (Supplementary Figure 1-22), also providing a matrix 398 

identifying cross-phenotype associations (Supplementary Table 7).  399 

GUIDANCE can be executed as a a standalone compact program or as independent 400 

modules (see Supplementary Figure 25 for a list of independent modules) to facilitate the 401 

use of GUIDANCE into existing frameworks. 402 

Further details can be found in the configuration file from the GUIDANCE execution at 403 

http://cg.bsc.es/guidance. Specific documentation to use this framework is available at 404 

http://cg.bsc.es/guidance, as well as the source code and the pre-compiled binaries that are 405 

available in the “download” section. 406 

 407 

The Analysis of GERA cohort 408 

GERA cohort Description 409 

GERA cohort data was obtained through dbGaP under accession phs000674.v1.p1. For 410 

further information about the specific phenotypes (ICD-9-CM codes) included in GERA, 411 

please visit its website on dbGaP (https://www.ncbi.nlm.nih.gov/gap/). The Resource for 412 

Genetic Epidemiology Research on Aging (GERA) Cohort was created by a RC2 "Grand 413 

Opportunity" grant that was awarded to the Kaiser Permanente Research Program on 414 

Genes, Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics 415 

(AG036607; Schaefer/Risch, PIs). The RC2 project enabled genome-wide SNP genotyping 416 

(GWAS) to be conducted on a cohort of over 100 K adults who were members of the Kaiser 417 

Permanente Medical Care Plan, Northern California Region (KPNC), and participating in its 418 

RPGEH. The resulting GERA cohort is composed of 42% of males, 58% of females, and 419 

ranges in age from 18 to over 100 years old with an average age of 63 years at the time of 420 

the RPGEH survey (2007). 19% of the individuals are from non-European ancestry, while 421 

81% are described as white non-Hispanic participants. After an explicit requirement of 422 

consent by email, data from 78,486 participants was deposited in dbGaP, with similar 423 

demographic characteristics to those of the initial genotyped cohort. 424 

 425 
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Quality Control  426 

A subset of 62,281 subjects of European ancestry underwent quality control analyses. A 3-427 

step quality control protocol was applied using PLINK 41, 42, and included 2 stages of SNP 428 

removal and an intermediate stage of sample exclusion.  429 

The exclusion criteria for genetic markers consisted of: proportion of missingness ≥ 0.05, 430 

HWE p ≤ 1 x 10-20 for all the cohort, and MAF < 0.001. This protocol for genetic markers was 431 

performed twice, before and after sample exclusion.  432 

For the individuals, we considered the following exclusion criteria: gender discordance, 433 

subject relatedness (pairs with PI-HAT ≥ 0.125 from which we removed the individual with 434 

the highest proportion of missingness), sample call rates ≥ 0.02 and population structure 435 

showing more than 4 standard deviations within the distribution of the study population 436 

according to the first seven principal components (Supplementary Figure 27). After QC, 437 

56,637 subjects remained for the analysis (Supplementary Table 1). 438 

 439 

Analyzing GERA cohort using GUIDANCE 440 

GUIDANCE pre-phased the genotypes to whole haplotypes with SHAPEIT2, and then 441 

performed genotype imputation with IMPUTE2 using 1000G phase 3, UK10K, GoNL, and 442 

HRC as reference panels. After filtering variants with an info score < 0.7 and a MAF < 0.001, 443 

we tested for association with additive, dominant, recessive, heterodominant and genotypic 444 

logistic regression using SNPTEST, and including seven derived principal components, sex 445 

and age as covariates. To maximize power and accuracy, we combined the association 446 

results from the four reference panels by choosing for each variant, the genotypes from the 447 

reference panel that provided the best IMPUTE2 info score. For chromosome X we 448 

restricted the analysis to non-pseudoautosomal (non-PAR) regions and stratified the 449 

association analysis by sex to account for hemizygosity for males, while for females, we 450 

followed an autosomal model. Finally, we excluded variants with HWE controls p < 1 × 10−6 in 451 

the final results.  452 

 453 

Identification of known and new associated loci 454 

After the association test, GUIDANCE provided a list of variants that passed the p-value 455 

threshold specified in the configuration file (i.e., p ≤ 5.0 × 10-8). Using the “IRanges” R 456 

package 43, all the genome-wide significant variants were collapsed into ranges (500 kb) that 457 

define each associated locus.  458 
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To distinguish between known or new associated regions, for each top variant we looked for 459 

any proxy variant with an LD r2 > 0.35 in the GWAS catalog (accession 5 September 2019) 460 

associated with the same phenotype or a related one (for example, bone mineral density, 461 

cholesterol levels or diastolic/systolic blood pressure phenotypes for osteoporosis, 462 

dyslipidemia or hypertension, respectively). HLA regions at chromosome 6 were excluded 463 

since the particularities of these regions required further detailed studies on their LD pattern. 464 

Proxies were selected using LDlink (https://ldlink.nci.nih.gov/) 44.  465 

We defined an experiment-wide significant p-value cutoff of p < 2.0 × 10-8 by applying the 466 

Bonferroni correction for 2.5 effective test (5.0 × 10-8 / 2.5 effective test). This factor of 2.5 467 

was obtained from a simulation study when four genetic models (additive, dominant, 468 

recessive and genotypic) are used 45 since the genetic models are not independent. 469 

However, a new simulation study including the heterodominant model should be done for a 470 

more accurate effective number of tests. 471 

 472 

Replication with UK Biobank 473 

Phenotype Curation 474 

UK Biobank participants agreed to provide detailed information about their lifestyle, 475 

environment and medical history, to donate biological samples (for genotyping and for 476 

biochemical assays), to undergo measures and to have their health followed 477 

(http://www.ukbiobank.ac.uk/). 478 

When collecting and analyzing a wide range of phenotypes from the UK Biobank, a central 479 

challenge was the curation and harmonization of the vast array of categorizations, variable 480 

scalings, and follow-up responses. Fortunately, to this end, the PHEnome Scan ANalysis 481 

Tool (or PHESANT: https://github.com/MRCIEU/PHESANT) 46 performs much of the 482 

transformations and recodings required to generate meaningful, interpretable phenotypes.  483 

We have made further adjustments based on user feedback, owing to the value of 484 

transparency in generating our phenotype guidelines. Applying these changes to the 485 

PHESANT source code, phenotypes were parsed using our modified version 486 

(github.com/astheeggeggs/PHESANT) on a virtual machine on the Google Cloud Platform. 487 

We first restricted to the subset of European individuals, before passing the resultant 488 

phenotypic data to PHESANT. The ‘variable list’ file and ‘data-coding’ file, whose formats are 489 

defined in the original version of PHESANT were updated as new phenotypes were added in 490 

the latest UK Biobank release. Re-codings of variables, and inherent orderings of categorical 491 
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variables, are defined in the ‘data-coding’ file. The ‘Excluded’ column of the ‘variable list’ file 492 

defines the collection of variables that we do not wish to interrogate. 493 

A high level overview of the PHESANT pipeline, our defaults, and the associated short flags 494 

for the phenomescan.r code are displayed in Supplementary Figure 28. In addition to the 495 

inverse-rank normalization applied to the collection of continuous phenotypes, we also 496 

consider the raw version of the continuous phenotype, with no transformation applied to the 497 

data. 498 

Curation of the ICD10 codes was carried out separately for computational efficiency. For the 499 

ICD10 phenotype, individuals are assigned a vector of ICD10 diagnoses. We truncated 500 

these codes to two digits, and assigned each individual to either case or control status for 501 

that ICD10 code in turn by checking if their vector contains that code. Throughout, we 502 

assumed the data contained no missingness, so the sum of cases and controls throughout 503 

was the number of individuals in our ‘European’ subset of the UK Biobank data. As in the 504 

PHESANT categorical (multiple) phenotypes, ICD10 code case/control phenotypes were 505 

removed if less than 50 individuals had the diagnosis. 506 

 507 

Association testing and meta-analysis for UK Biobank phenotypes 508 

We performed the association testing for the curated phenotypes as implemented in 509 

SNPTEST for additive, dominant, recessive, heterodominant and genotypic inheritance 510 

models, as it has been described in the “Analyzing GERA cohort using GUIDANCE” section. 511 

For all genotypic variants identified in the discovery stage, we assigned the recessive model 512 

after we identified it as the underlying model.  513 

After the association testing, we filtered and ordered all the phenotypes based on the p-514 

value for the best model of inheritance obtained from the GERA cohort analysis, with special 515 

consideration to equivalent phenotypes or related traits.   516 

With the association testing results of both GERA cohort and UK Biobank, we meta-517 

analyzed the results using METAL 47. We use the inverse variance-weighted fixed effect 518 

model for all the variants except for the rs557998486 variant associated with macular 519 

degeneration, since its beta, calculated with the “em” method from SNPTEST, was inflated. 520 

Therefore, we performed a sample size based meta-analysis, which converts the direction of 521 

the effect and the p-value into a z-score. 522 

For biomarkers, only the results from the first visit were taken into account since less than 523 

10% of the cases where present in the second visit.  524 

 525 
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Association testing and meta-analysis with FinnGen 526 

We used SAIGE 48 for recessive association testing using sex, age, PC1-10 and batch as 527 

covariates. We analyzed FinnGen release 5 that contains 218,792 individuals with a median 528 

age 62.6 and a mean age 59.8.  529 

For the cardiovascular disease endpoints, we meta-analyzed the results using “rmeta” R 530 

package 49. For macular degeneration, we meta-analyzed the results using METAL as 531 

described in the previous section. 532 

 533 

Dominance deviation test 534 

To detect genuine differences between additive and non-additive signals, we performed a 535 

dominance deviation test for all 93 autosomal genome-wide significant loci.  536 

Dominance deviation was tested by a logistic regression analysis using PLINK (v1.90b6.9, 537 

www.cog-genomics.org/plink/1.9/). Sex, age and the first 7 PCs were included as covariates.  538 

 539 

Definition of 99% credible set of PELO locus 540 

For the PELO locus, the fraction of aggregated variants that have a 99% probability of 541 

containing the causal one was identified. The 99% credible set of variants for the region was 542 

defined with a Bayesian refinement approach 50, considering variants with an r2>  0.1 with 543 

the leading one. 544 

For each variant within the PELO locus, the credible set provides a posterior probability of 545 

being the causal one 50. The approximate Bayes factor (ABF) for each variant was estimated 546 

as 547 

𝐴𝐵𝐹 = 1 − 𝑟 𝑒(!!!/!)  , 

where 548 

𝑟 =  
0.04

(𝑆𝐸! + 0.04)
 , 

𝑧 =
β
𝑆𝐸

 . 

The β and the SE result from a logistic regression model testing for association. The 549 

posterior probability for each variant was calculated as 550 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦! =
𝐴𝐵𝐹!
𝑇

 , 
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where ABFi corresponds to the approximate Bayes’ factor for the marker i, and T represents 551 

the sum of all the ABF values enclosed in the interval. As commonly employed by 552 

SNPTEST, this calculation assumes that the prior of the β is a Gaussian with mean 0 and 553 

variance 0.04.  554 

Finally, the cumulative posterior probability was calculated after ranking the variants 555 

according to the ABF in decreasing order. Variants were included in the 99% credible set of 556 

the region until the cumulative posterior probability of association got over 0.99. 557 

 558 

Gene expression and functional characterization 559 

The eQTLGen Consortium (https://www.eqtlgen.org/cis-eqtls.html, last access on July 2019) 560 

and GTEx portal (https://gtexportal.org/, last access on July 2019) were used to find 561 

associations between our novel genetic associations and gene expression. When the variant 562 

was not available in the resources, a proxy SNP was used instead.  563 

To determine whether any identified overlap between GERA GWAS loci and eQTLGen or 564 

GTEx eQTLs was due to a true shared association signal, we performed a colocalization 565 

analysis. Colocalization was assessed by a Bayesian test using summary statistics from 566 

both studies 51; summary statistics from the cis eQTLGen and GTEx were downloaded from 567 

the eQTLGen website and GTEx portal, respectively. The test was performed using the R 568 

package coloc v3.2-1 51, 52, 53 . The test provided a posterior probability for the GWAS locus 569 

and the eQTL to share the same causal variant(s).  570 

We integrated available epigenomic datasets to examine the role of human pancreatic islet 571 

transcriptional regulation underlying rs77704739 association with type 2 diabetes. We used 572 

the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/, last access 573 

on July 2019) and previously published RNA-seq, ATAC-seq and ChIP-seq assays of 574 

H3K4me3, H3K27ac, Mediator, CTCF and islet transcription factors (FOXA2, MAFB, 575 

NKX2.2, NKX6.1 and PDX1) in human pancreatic islets 27, 28 and islet regulome annotations 576 
28. 577 

 578 

Data Availability  579 

The complete summary statistics are deposited at the Type 2 Diabetes Knowledge portal 580 

(www.type2diabetesgenetics.org/) and can be also accessed from http://cg.bsc.es/guidance. 581 

GUIDANCE is also available at http://cg.bsc.es/guidance. 582 
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Figure legends. 

Figure 1. Graphical representation illustrating the benefits of combining the results from 

different reference panels. a Comparison of the number of variants after the imputation with 

four reference panels (info score ≥ 0.7), and combining them, colored according to MAF and 

varianat type (SNP vs alternative forms of variation, such as indels). As shown in the bar plot, 

combining the results from the four reference panels increased the final set of variants for 

association testing when compared with the results for each of the panels alone (GoNL, UK10K, 

1000G Phase 3 or HRC), especially in the low and rare frequency spectrum. For example, we 

covered up to 5.5 M rare variants (0.01 > MAF > 0.001) by combining panels, while only 2,3 M, 

2,9 M, 3,2 M and 3,8 M of rare variants were imputed independently with GoNL, UK10K, 1000G 

phase 3 and HRC, respectively. b Comparison of the contribution of each reference panel in the 

combined results. Each bar represents the number of variants that had the best imputation 

accuracy for a given reference panel. As shown in the figure, although the HRC panel showed 

overall higher imputation scores, as it provided around 10 of the final 16 M variants, the 

contribution of the other reference panels, primarily with non-SNP variants, was substantial. 

Indels seen in the bar plot for HRC correspond to genotyped indels. All variants with info score 

< 0.7, MAF < 0.001 and HWE for controls p < 1.0 × 10-6 were filtered. c Venn Diagram 

illustrating the loci that identified by each reference panel. New loci are depicted in bold. As 

shown in this figure, only 67 of the 94 GWAS significant loci were identified by all four reference 

panels, while 27 of them (28.7%) were only identified by one, two or three of the four panels.   

 

Figure 2. Results from the analysis of additive and non-additive inheritance models. a 

The Venn Diagram shows the number of loci that were identified when analyzing multiple 

inheritance models. As seen in the Venn Diagram, the strongest association for 37 of the 94 

associated loci was non-additive. Moreover, the analysis of non-additive models was crucial for 

the identification of 14 novel (in bold) associated loci. b Power calculation of the rs201654520 

indel in CACNB4 associated with cardiovascular disease. The results show that the additive-

based test would require a population sample size of 370,646 individuals to find this recessive 

association, while the population sample size needed for the recessive model was 21,021. c 

Power calculation of the rs77704739 variant near the PELO gene associated with type 2 

diabetes. The results show that the additive-based test would require a population sample size 

of 188,637 individuals to find this recessive association, while the population sample size 

needed for the recessive model is 67,611. d Power calculation of the rs557998486 indel near 
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the THUMPD2 gene associated with age-related macular degeneration. The results show that 

the additive-based test would require a population sample size of 6,493,419 individuals to find 

this recessive association, while the population sample size for the recessive model is 157,450. 

 

Figure 3. Functional characterization of the rs77704739 recessive association near the 

PELO gene. a Signal plot for chromosome 5 region surrounding rs77704739. Each point 

represents a variant, with its p-value from the discovery stage on a −log10 scale in the y axis. 

The x axis represents the genomic position (hg19). Three credible set variants are located in 

open chromatin sites in human pancreatic islets, one of them classified as an active promoter 

and one highly bounded by pancreatic islet specific transcription factors, such as PDX1, 

NKX2.2, NKX6.1 and FOXA2. b Colocalization plots from LocusCompare for the rs77704739 

variant in adipose subcutaneous tissue. As seen in the plots, the signals from both eQTL data 

and the recessive T2D association results colocalize. c Violin plot from GTEx showing that the 

recessive rs77704739 variant significantly modifies the expression of PELO gene in 

subcutaneous and visceral adipose tissue, skeletal muscle and pancreas. GTEx V7 was used 

for colocalization analyses, whereas GTEx V8 was used to generate the violin plots. 
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Table 1. New associations from the GERA cohort analysis 
 

        Additive Model Lowest P-value Model Dominance 
Deviation 

Phenotype 
(Cases/Controls) CHR Nearest Gene Position rsID Alleles MAF Lowest P-value 

Model OR (CI 95%) P-value OR (CI 95%) P-value P-value 

Allergic Rhinitis 
(13,936/42,701) 

3 LINC02044 112,911,615 rs2399472 C/T 0.073 Additive 1.17 (1.10-1.23) 1.55 × 10-8 1.17 (1.10-1.23) 1.55 × 10-8 6.66 × 10-1 
8 DLC1 13,164,746 rs10112506 A/G 0.390 Dominant 0.94 (0.91-0.97) 8.61 × 10-6 0.89 (0.86-0.93) 1.54 × 10-8 2.86 × 10-4 

Asthma 
(9,209/47,428) 

5 ETF1 137,858,067 rs154073 C/T 0.429 Recessive 1.09 (1.06-1.13) 6.06 × 10-8 1.18 (1.12-1.25) 4.23 × 10-9 9.28 × 10-3 
9 PTCH1 98,344,866 rs67053006 C/G 0.139 Additive 0.87 (0.83-0.91) 4.14 × 10-8 0.87 (0.83-0.91) 4.14 × 10-8 8.10 × 10-1 

Cancer 
(17,131/39,506) 

13 TEX29 112,115,591 rs138646839 C/T 0.005 Genotypic 1.68 (1.39-2.03) 1.45 × 10-7 1.60 (1.32-1.96) / > 10 (1.01->10)* 3.54 × 10-8 - 
18 DSC3 28,442,343 rs2014497 A/G 0.008 Additive 1.50 (1.30-1.72) 2.44 × 10-8 1.50 (1.30-1.72) 2.44 × 10-8 6.00 × 10-1 

Cardiovascular 
(15,009/41,628) 

1 DCLRE1B 114,448,752 rs10858023 C/T 0.350 Dominant 1.09 (1.06-1.12) 3.26 × 10-8 1.14 (1.09-1.19) 2.11 × 10-9 1.94 × 10-2 
2 CACNB4 152,912,244 rs201654520 CT/C 0.017 Recessive 1.10 (0.98-1.22) 1.10 × 10-1 19.02 (5.50-65.84) 4.32 × 10-8 4.36 × 10-6 

Major Depression 
Disorder 

(7,264/49,373) 
12 CRAT8 128,551,715 rs1455286248 GT/G 0.281 Heterodominant 0.94 (0.90-0.98) 3.00 × 10-3 1.18 (1.12-1.25) 3.15 × 10-9 1.10 × 10-6 

Type 2 Diabetes 
(6,967/49,670) 5 PELO 52,080,909 rs77704739 T/C 0.036 Recessive 1.15 (1.05-1.26) 2.80 × 10-3 4.32 (2.70-6.92) 1.75 × 10-8 1.92 × 10-7 

Hemorrhoids 
(9,129/47,508) 13 LMO7 76,281,808 rs186102686 C/T 0.004 Heterodominant 1.98 (1.58-2.48) 2.18 × 10-8 1.99 (1.59-2.49) 2.03 × 10-8 - 

Hernia 
Abdominopelvic 
(6,291/50,346) 

1 LOC102723886 219,762,581 rs2494196 C/A 0.274 Additive 1.13 (1.08-1.18) 2.03 × 10-8 1.13 (1.08-1.18) 2.03 × 10-8 6.87 × 10-1 

4 STIM2 27,019,359 rs113180595 T/C 0.004 Heterodominant 2.17 (1.69-2.78) 1.59 × 10-8 2.18 (1.70-2.8) 1.27 × 10-8 - 

Hypertension 
Disease 

(28,391/28,246) 

2 LNPK 176,532,019 rs1446802 A/G 0.500 Recessive 1.07 (1.04-1.09) 1.66 × 10-6 1.13 (1.08-1.17) 4.42 × 10-8 6.85 × 10-3 
15 LINC00928 90,081,905 rs28792763 G/A 0.462 Dominant 0.94 (0.91-0.96) 4.14 × 10-6 0.88 (0.84-0.92) 4.42 × 10-8 4.80 × 10-3 
17 HIC1 1,959,826 rs112963849 C/A 0.082 Additive 1.15 (1.10-1.21) 1.71 × 10-8 1.15 (1.10-1.21) 1.71 × 10-8 8.01 × 10-1 

Iron Deficiency 
Anemia 

(2,439/54,198) 
7 LOC102723427 67,292,424 rs79798837 C/T 0.118 Dominant 0.77 (0.70-0.85) 1.69 × 10-7 0.74 (0.66-0.83) 3.80 × 10-8 8.92 × 10-2 

Macular 
Degeneration 
(3,685/52,952) 

2 THUMPD2 40,010,523 rs557998486 T/TG 0.009 Recessive 1.07 (0.81-1.41) 6.28 × 10-1 10.5** 2.75 × 10-8 - 

Osteoporosis 
(5,399/51,238) 22 LOC100507657 27,772,054 rs139959245 C/T 0.007 Additive 1.91 (1.53-2.37) 4.79 × 10-8 1.91 (1.53-2.37) 4.79 × 10-8 - 

Psychiatric 
(8,624/48,013) 2 PRKCE 46,278,720 rs12712961 T/A 0.452 Additive 1.10 (1.06-1.14) 1.66 × 10-8 1.10 (1.06-1.14) 1.66 × 10-8 2.57 × 10-1 

Peripheral Vascular 
Disease 

(4,301/52,336) 

11 HIPK3 33,391,655 rs80274406 A/G 0.091 Genotypic 1.06 (0.98-1.15) 1.76 × 10-1 1.17 (1.07-1.27) / 0.26 (0.13-0.53)* 4.26 × 10-8 6.32 × 10-6 

19 SNAR-A12 48,403,215 rs2932761 A/G 0.289 Genotypic 0.97 (0.93-1.02) 3.04 × 10-1 1.11 (1.03-1.18 / 0.76 (0.66-0.87)* 3.55 × 10-8 1.35 × 10-8 

Acute reaction to 
Stress 

(4,314/52,323) 
2 NUP35 184,407,101 rs577242570 T/G 0.004 Additive 2.33 (1.77-3.08) 4.56 × 10-8 2.33 (1.77-3.08) 4.56 × 10-8 - 

Varicose Veins 
(2,483/54,154) 

3 DYNC1LI1 32,652,184 rs62250779 G/A 0.073 Genotypic 1.17 (1.05-1.3) 5.60 × 10-3 1.29 (1.16-1.45) / 0.13 (0.03-0.60)* 2.13 × 10-8 9.58 × 10-4 
8 RDH10-AS1 74,284,818 rs2383896 A/G 0.479 Additive 1.17 (1.11-1.24) 5.00 × 10-8 1.17 (1.11-1.24) 5.00 × 10-8 9.88 × 10-1 

13 SLITRK5 88,346,617 rs117798068 T/C 0.011 Heterodominant 2.03 (1.63-2.53) 1.59 × 10-8 2.07 (1.66-2.59) 8.41 × 10-9 - 

 
CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF=Minor Allele Frequency, OR= Odds Ratio, CI= Confidence Interval  

* Odds Ratio and confidence interval for heterozygous / Odds Ratio and confidence interval for effect allele homozygous calculated using the method het+hom from SNPTEST 

** Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT) 53 
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Table 2. Replication of new associations with UK Biobank 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF= Minor Allele Frequency, OR= Odds Ratio 

* Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT)  

** Obtained through a mega-analysis with UK Biobank using the “expected” method from SNPTEST 

*** Obtained using METAL method “SAMPLESIZE” to combine the p-values taking into account the sample size and direction of effect. 

 

   Stage 1. Discovery Stage 2. Replication Stage 1 + Stage 2. Meta-analysis 

   Phenotype 
(Cases/Controls) 

Additive Best Model Field 
(Cases/Controls or 

Sample Size) 

Additive Lowest p-value model Additive Lowest p- value model 

CHR rsID (Alleles) 
(MAF) 

Best 
Model OR (CI 95%) P-value OR (CI 95%) P-value OR (CI 95%) P-value OR (CI 95%) P-value OR (CI 95%) P-value OR (CI 95%) P-value 

18 rs2014497 
(A/G) (0.008) Additive Cancer 

(17,131/39,506) 1.50 (1.30-1.72) 2.44×10-8 1.50 (1.30-1.72) 2.44×10-8 

Self-reported: 
chronic lymphocytic 

(237/360,904) 
2.13 (1.14-3.97) 3.50×10-2 2.13 (1.14-3.97) 3.50×10-2 1.52 (1.33-1.74) 1.60×10-9 1.52 (1.33-1.74) 1.60×10-9 

Self-reported: 
kidney/renal cell 

cancer 
(473/360,668) 

1.75 (1.07-2.86) 4.25×10-2 1.75 (1.07-2.86) 4.25×10-2 1.51 (1.32-1.73) 1.49×10-9 1.51 (1.32-1.73) 1.49×10-9 

C69 Malignant 
neoplasm of eye and 

adnexa  
(146/361,048) 

2.51 (1.19-5.3) 3.56×10-2 2.51 (1.19-5.3) 3.56×10-2 1.52 (1.33-1.75) 1.95×10-9 1.52 (1.33-1.75) 1.95×10-9 

1 rs2494196 
(C/A) (0.274) Additive 

Hernia 
Abdominopelvic 
(6,291/50,346) 

1.13 (1.08-1.18) 2.03×10-8 1.13 (1.08-1.18) 2.03×10-8 

Self-reported: 
umbilical hernia 
(328/360,813) 

1.42 (1.21-1.67) 2.31×10-5 1.42 (1.21-1.67) 2.31×10-5 1.15 (1.10-1.19) 5.35×10-11 1.15 (1.10-1.19) 5.35×10-11 

K40 Inguinal hernia 
(13,365/347,829) 1.09 (1.06-1.12) 3.95×10-10 1.09 (1.06-1.12) 3.95×10-10 1.10 (1.08-1.12) 7.78×10-17 1.10 (1.08-1.12) 7.78×10-17 

K41 Femoral hernia 
(475/360,719) 1.44 (1.26-1.64) 1.24×10-7 1.44 (1.26-1.64) 1.24×10-7 1.16 (1.11-1.21) 2.26×10-12 1.16 (1.11-1.21) 2.26×10-12 

K42 Umbilical hernia 
(2,623/358,571) 1.29 (1.22-1.37) 1.14×10-17 1.29 (1.22-1.37) 1.14×10-17 1.19 (1.15-1.22) 2.94×10-22 1.19 (1.15-1.22) 2.94×10-22 

K43 Ventral hernia  
(2,470/358,724) 1.18 (1.11-1.25) 1.77×10-7 1.18 (1.11-1.25) 1.77×10-7 1.15 (1.11-1.19) 1.99×10-14 1.15 (1.11-1.19) 1.99×10-14 

2 rs557998486 
(T/TG) (0.009) Recessive 

Macular 
Degeneration  
(3,685/52,952) 

1.07 (0.81-1.41) 6.28×10-1 10.5* 2.75×10-8 

Eye 
problems/disorders: 

Macular 
degeneration 

(2,726/115,164) 

0.98 (0.72-1.32) 8.81×10-1 7.58 (1.54-37.32) 4.1×10-2 1.01(0.82-1.24)** 7.91×10-1*** 26.51(7.57-92.85)** 3.29×10-8*** 

5 rs77704739 
(T/C) (0.036) Recessive Type 2 Diabetes 

(6,967/49,670) 1.15 (1.05-1.26) 2.80×10-3 4.32 (2.70-6.92) 1.75×10-8 
Self-reported: 

diabetes 
(14,114/347,027) 

1.03 (0.97-1.09) 3.87×10-1 1.88 (1.35-2.6) 4.95×10-4 1.06 (1.01-1.12) 1.78×10-2 2.46 (1.88-3.21) 4.68×10-11 
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