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Abstract

Genome-wide association studies (GWAS) are not fully comprehensive as current strategies
typically test only the additive model, exclude the X chromosome, and use only one
reference panel for genotype imputation. We implemented an extensive GWAS strategy,
GUIDANCE, which improves genotype imputation by using multiple reference panels,
includes the analysis of the X chromosome and non-additive models to test for association.
We applied this methodology to 62,281 subjects across 22 age-related diseases and
identified 94 genome-wide associated loci, including 26 previously unreported. We observed
that 27.6% of the 94 loci would be missed if we only used standard imputation strategies and
only tested the additive model. Among the new findings, we identified three novel low-
frequency recessive variants with odds ratios larger than 4, which would need at least a
three-fold larger sample size to be detected under the additive model. This study highlights
the benefits of applying innovative strategies to better uncover the genetic architecture of

complex diseases.
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79 Introduction

80  Genome-wide association studies (GWAS) have been successful in identifying thousands of
81 associations between genetic variation and human complex diseases and traits .
82  Nevertheless, for most complex diseases, only a small fraction of their genetic architecture is
83 known and a small amount of the estimated heritability is explained 2. Variants that
84  individually have small contributions to the risk of disease, and/or are rare in the population,
85  are often missed by the majority of GWAS even though their role in the pathophysiology of
86 complex diseases can be crucial. Some of the current limitations of GWAS could be
87 overcome by increasing sample sizes and, as recently demonstrated, by applying more
88  comprehensive analytical methods with improved imputation strategies °. Though the
89 increase of sample size might allow the detection of more genetic signals, it also imposes
90 major methodological and computational requirements. These can require scientists to
91 restrict and simplify the analysis by limiting it to autosomal chromosomes, a single reference
92  panel for imputation, and a single (additive) inheritance model for association testing, leaving

93  arelevant fraction of the genetic architecture of the disease unexplored *.

94  The genetic variants that modify the risk to develop a particular complex disease may
95 contribute to the final phenotype through different functional mechanism defined by a
96 particular model of inheritance, which is further reflected in a characteristic distribution of
97  affected alleles across patients and healthy individuals in GWAS. For example, the additive
98 inheritance model, which is often the only genetic model tested, assumes that the risk of the
99 disease is proportional to the number of risk alleles in an individual, i. e., that the effect of the
100 heterozygous genotype is halfway between the two possible homozygous genotypes.
101 However, some variants follow non-additive inheritance models, which include dominant,
102  recessive and heterodominant. The additive model is expected to capture a large fraction of

103  the genetic risk for disease °

and can identify some variants that follow non-additive
104 inheritance patterns. However, the additive model is not sufficient to provide a
105 comprehensive overview of the genetic architecture of diseases. In particular, most GWAS
106  may have insufficient power to identify low-frequency variants that show recessive effects ®
107 ’. The importance of evaluating non-additive inheritance models is well reported in the
108  context of Mendelian diseases ® and occasionally for complex traits as well, such as the
109 recessive effects of the FTO locus in obesity °, the ITGA1 '°, TBC1D4 "' and CDKAL1 ® **
110  genes in type 2 diabetes, as well as the known non-additive effects of HLA haplotypes in

3 and ulcerative colitis '*. The increasing ability to capture low-

111 autoimmune diseases
112  frequency variants using modern imputation reference panels and the need to uncover the

113  still missing heritability estimated for most complex diseases, call for comprehensive
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114  association strategies that should include, among other improvements, the analysis of non-

115 additive inheritance models.

116  To fill this gap and to determine the prevalence and contribution of the different inheritance
117  patterns involved in the genetic architecture of complex diseases, we have designed and
118 implemented a comprehensive strategy for genetic association analysis that combines
119  dense imputation from multiple reference panels with association testing under five different
120 inheritance models across multiple phenotypes. We have applied this strategy to the Kaiser
121 Permanente Research Program on Genes, Environment and Health: A Genetic
122  Epidemiology Research on Adult Health and Aging (GERA) cohort °, which includes 62,281

123  subjects from European ancestry and 22 diseases.

124  Finally, we release here both the summary statistics for all the models of inheritance as well
125 as the complete methodology, provided to the community as an easy-to-use and standalone
126  pipeline. This pipeline allows for analysis of existing and newly generated GWAS data with
127  better efficiency and more comprehensive testing, improving the chances of variant

128  discovery.
129
130 Results

131 In order to assess the potential benefits of applying more in-depth GWAS methodologies to
132 available genetic datasets, and to investigate the relative contribution of different inheritance
133  models to the risk to develop complex diseases, we have applied a global analysis strategy
134 to the GERA cohort, an age-related disease-based cohort with an average age of 63, well
135 powered to study a broad range of clinically defined age-related conditions. By using this
136  particular cohort, we expect to minimize a possible loss of power due to the misclassification
137  of controls, as often happens in datasets with younger individuals that can include cases at

138 pre-disease stages classified as controls.
139
140 Genotype Imputation and association testing using multiple reference panels

141  After applying strict genetic quality control to the GERA cohort (see Methods), we retained
142 56,637 individuals with European ancestry for further downstream analysis (Supplementary
143  Table 1). To cover the maximum number and type of genetic variants, we next applied an
144  extensive imputation strategy with four reference panels: the Genome of the Netherlands
145  (GoNL) " " the UK10K Project '®, the 1000 Genomes Project (1000G) phase 3 '° and
146  Haplotype Reference Consortium (HRC) ?°, and imputed 11.2 M, 11.4 M, 13.1 M, and 11.7
147 M high quality imputed variants (IMPUTE2 #' info score = 0.7 and minor allele frequency
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148 [MAF] = 0.001) with each panel, respectively. After combining the results of the four
149 reference panels by choosing, for each variant, the panel that provided the highest
150 imputation accuracy, we retained a total of 16,059,686 variants covering all the autosomes
151 and the X chromosome (Figure 1a). This strategy was particularly powerful to impute 2.6 M
152  and 5.5 M high quality, low-frequency (0.05 > MAF > 0.01) and rare variants (0.01 > MAF >
153  0.001), respectively, as well as 1.6 M indels. Note that as many as 684,393 common
154  variants (MAF = 0.05), 255,106 low-frequency, 1.7 M rare, and all indels (1.6 M) would be
155  missed if only the HRC reference panel was used. This highlights the benefit of combining

156  different reference panels for comprehensive association testing (Figure 1b).

157  We next tested all the 16 M variants for association with the 22 conditions available in the
158 GERA cohort considering the entire genome and five different inheritance models
159  (Supplementary Figure 1-22). This analysis identified 94 independent loci associated with 17
160 phenotypes at a genome-wide significance level (p < 5.0 x 10®) of which 63 for 14
161 phenotypes were also experiment-wide significant (p < 2.0 x 10%) after considering
162  correction for the different models of inheritance (see methods) (Supplementary Table 2).
163  According to the GWAS catalog, 68 of the 94 genome-wide significant loci had been
164  previously reported to be associated with the same disease (Supplementary Table 3),
165 whereas 26 of them correspond to previously unreported loci with associations across 16
166  phenotypes (Table 1). Of these new loci, 16 correspond to common, 3 to low-frequency, and
167 7 to rare variants. Interestingly, only a fraction of the 26 new loci would have been genome-
168  wide significant by using individual imputation panels (Figure 1c), namely 20/26 using HRC,
169  14/26 using 1000G Phase 3, 14/26 using UK10K or 15/26 using GoNL. In addition, the lead
170  marker for three of the novel signals is an indel, further confirming the benefits of combining

171 multiple panels with our approach.
172
173  Identification of recessive variants with large effects

174  The implementation of refined GWAS strategies not only increases the number of
175  associated variants, but also allows the identification of loci with large impact on the disease.
176  Among the variants that were not detected under the additive model, and hence are
177  expected to be missed by the majority of current GWAS, we highlight three variants with
178 remarkably large recessive effects. First, an intronic indel in the CACNB4 gene,
179  rs201654520, associated with a nearly twenty-fold increase in risk for cardiovascular
180  disease (MAF=0.017, OR [Cl 95%] = 19.0 [5.5 - 65.8], p = 4.3 x 10"°). CACNB4 encodes the
181 B4 subunit of the voltage-dependent calcium channel. This subunit contributes to the flux of

182  calcium ions into the cell by increasing peak calcium current and triggering muscle
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183  contraction. Interestingly, an intronic single nucleotide polimorphism (SNP) within CACNB4,
184  rs150793926, was associated with idiopathic dilated cardiomyopathy in African Americans
185 %, but this variant is not in linkage disequilibrium (LD) with rs201654520 (LD r** = 0.0016).

186 A second recessive variant with large effect, rs77704739, near the PELO gene, is
187  associated with a four-fold risk for type 2 diabetes (MAF= 0.036, OR [Cl 95%] = 4.3 [2.7 -
188 6.9], p = 1.75 x 10®). We also found this variant associated with type 2 diabetes (OR-
189  recessive [95% Cl] = 1.9 [1.4 - 2.6], p = 4.95 x 10™*) and metformin use (OR-recessive [95%
190 CI]=2.3[1.6-3.4], p=3.8 x 10°) in the UK Biobank ?* (Supplementary Table 4), also only
191 under the recessive model. An independent signal that is about 112 K base pairs away
192  (rs870992, LD r* = 0.0009) was previously associated with type 2 diabetes in the

193  Greenlandic population, also with a recessive effect '°

. To provide insights into the
194  underlying molecular mechanisms in disease, we interrogated comprehensive catalogues of
195  genetic effects on gene expression; eQTLGen Consortium ?° and GTEx . The rs77704739
196  variant was significantly associated with gene expression of PELO in multiple tissues,
197  including diabetes-relevant tissues such as adipose tissue, skeletal muscle, and pancreas.
198  Colocalization analyses showed a probability higher than 0.8 in several tissues, including
199 subcutaneous adipose tissue and skeletal muscle, suggesting this gene as the effector
200 transcript (Figure 3a, 3b, and Supplementary Table 5). In addition, we found that the lead
201 variants in the PELO locus overlap with active promoter annotations in human pancreatic
27, 28

202 islets and open chromatin sites highly-bounded by islet specific transcription factors
203  (Figure 3c).

204  Third, a rare indel, rs557998486, located near the THUMPD?2 gene, is associated with age-
205 related macular degeneration (MAF= 0.009, OR = 10.5, p = 2.75 x 10®). Also under the
206 recessive model in UK Biobank, this indel was associated with age-related macular
207  degeneration (OR [Cl 95%] = 7.6 [1.5-37.3], p = 4.1 x 107%), eye surgery (beta [Cl| 95%] = 1.6
208 [0.6-2.6], p = 1.17 x 10°) (Supplementary Table 4), and C-reactive protein, a known
209  biomarker for macular degeneration ?° (beta [Cl 95%] =1.1 [0.7 - 1.5], p = 1.15 x 10
210  (Supplementary Table 6). Interestingly, the fact that we found no SNPs in LD with this lead
211 indel further confirms the benefits of multiple reference panel imputation strategies that
212  include alternative forms of variation. The lead indel rs557998486 overlaps DNAse |
213 hypersensitivity sites in retinal and iris cell lines *°, highlighting a candidate open chromatin
214  region that is also predicted to be an enhancer assigned to the THUMPDZ2 gene according to
215  GeneHancer *'. One of the variants with the highest LD with rs557998486 (rs116649730, LD
216  r’= 0.32) is associated with reduced expression of its nearest gene, THUMPD2 (Z-score = -
217 4.85, p=1.25x 10'6), according to eQTLGen Consortium data.

218
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219  Replication using UK Biobank and FinnGen

220  We sought replication of previously unreported loci using UK Biobank, a prospective cohort
221 of ~500 K individuals aged between 40 to 69 ?*. Given the high heterogeneity in phenotype
222 definitions in UK Biobank compared to GERA, we tested for replication with the same
223  phenotype and related traits (Supplementary Table 4). Compared to GERA, some of the
224  conditions may not be ascertained or have an age at onset later than the average age at
225 ascertainment in UK Biobank (56.52 years *?) which could affect the replication success.
226  Despite these limitations, we tested the novel variants using the corresponding inheritance

227  model, and replicated 4 new loci with the same phenotype (Table 2).

228  We further sought replication of the association within the CACNB4 gene with cardiovascular
229 disease in FinnGen, a cohort of ~218 K Finnish individuals with an average age of 63, as it
230 includes individuals with a higher average age (63 vs 56 in UK Biobank) and the risk of

3 In addition,

231 developing a cardiovascular disease is well-known to increase with age
232 FinnGen has a precise and richer classification of this particular phenotype than UK
233 Biobank. In brief, we tested rs201654520 for association with 47 cardiovascular endpoints.
234  Of all the conditions tested, four (hypertensive heart disease, hypertensive heart and/or
235 renal disease, heart failure, and right bundle-branch block) were nominally associated (p <
236  0.05). All the associations had a direction of effect consistent with the effect observed in the
237  GERA cohort (Supplementary Figure 23a). Although there is a high heterogeneity in the
238 phenotype definitions between cohorts, we meta-analyzed the results from these endpoints
239  from FinnGen with the result from “cardiovascular disease” phenotype from GERA, but none
240  of them reach the genome-wide significance (see Methods) (Supplementary Figure 23). We
241 did not include UK Biobank in this meta-analysis as the equivalent phenotypes were not
242  available or had less than 350 cases in UK Biobank, therefore, underpowered for a
243  recessive analysis. Notably, when analyzing the association of rs201654520 with related
244  quantitative traits we found that those who were homozygous for the high-risk allele had
245  lower systolic blood pressure (p = 4.1 x 10, beta = -0.23) (Supplementary Table 4). While
246  lower systolic blood pressure has been associated with increased risk of myocardial
247  infarction in particular circumstances, this is not the typical direction of association, and

248  therefore merits additional study .

249  We also sought replication of the recessive association of rs557998486 near THUMPD?2
250 gene with macular degeneration in FinnGen. While rs557998486 was associated with
251 increased risk of macular degeneration in UK Biobank under the recessive model (OR [CI
252 95%] = 7.6 [1.5-37.3], p = 4.1 x 107%), it was not significantly associated in the FinnGen

253 biobank although it showed the same direction of effect. However, the meta-analysis did not
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254 reach the genome-wide significance (rs557998486 p = 9.6 x 10°) and had a high
255  heterogeneity (heterogeneity I = 87.1, heterogeneity p = 4.3 x 10).

256
257  Detection ranges of the different inheritance models

258  Our findings provide an empirical overview of the detection range of five different inheritance
259  models, and show how each of them captures a fraction of the genetic variants associated
260  with complex traits. As indicative of the power of current genetic studies that usually only
261 consider additive allelic effects, we found three different scenarios. Among all the 94
262  associated loci identified, 12 showed genome-wide significance only under the additive
263 model, 62 under both additive and non-additive models, and 20 showed genome-wide
264  significance only when non-additive tests were applied (Figure 2a). To further classify these
265  variants, we tested whether any of the 62 variants associated with both additive and non-
266  additive models deviate from additivity through a dominance deviation test °. Eleven of these
267 62 variants (17.7%) showed significant deviation from additivity (dominance deviation test p
268 < 0.05). Altogether, the dominance deviation test over the 93 autosomal loci identified 62
269 additive (66%) and 24 non-additive associations (25.5%) and 8 undetermined. Based on the
270  smallest GWAS p-value, we further classified non-additive associations into 9 recessive, 13

271 dominant, 8 heterodominat and 7 genotypic (Supplementary Table 2).

272  We also found that each of the available models for association testing has a different range
273  of detection. To identify the 94 genome-wide associated loci, the additive test, as expected,
274  was the most sensitive model (74 loci), followed by the genotypic (59 loci), the dominant (56
275 loci), the recessive (43 loci) and the heterodominant (32 loci). When considering known loci,
276 48 of the 68 previously reported loci were identified by more than one model in our analysis,
277  and almost half of these (22 loci) with all five models. In contrast, of the 26 newly discovered
278  variants, only 8 were identified with multiple models, whereas the majority of them (18 loci),
279  were detected only with the additive (6 loci), the genotypic (4 loci), the recessive (4 loci) and
280 the dominant (3 loci) model. Of note, 13 out of 26 (50%) novel loci were only identified by

281 non-additive models.

282  To further investigate to what extent the additive model captures non-additive signals, and
283  how much this depends on sample size, we carried out power calculations on loci that were
284  detected here only under a non-additive model, such as rs201654520 within CACNB4 gene
285 and rs77704739 near the PELO gene. These power calculations showed that the additive
286  test would require a population sample size of at least 370,646 individuals to detect the
287  recessive association of rs201654520 in CACNB4 (Figure 2b), and at least 188,637
288 individuals to capture the recessive signal of rs77704739 near the PELO gene (Figure 2c),
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289  while the population sample size required for the recessive model was only 21,021 and
290 67,611, respectively. In this study, we were able to identify both associations with a modest

291 sample size by using the most well-suited disease model.
292
293 The GUIDANCE framework

294  We developed an integrated framework including our methodology used to analyze the
295 GERA cohort, called GUIDANCE. GUIDANCE allows the analysis of genome-wide
296 genotyped data in a single execution in distributed computing infrastructures without the
297 need for extensive computational expertise or constant user intervention. The GUIDANCE
298  workflow requires quality-controlled genotyped data as an input and provides association
299  results, graphical outputs and statistical summaries. Integrating state-of-the-art tools with in-
300 house code written in Java, bash and R *, GUIDANCE efficiently performs large-scale
301 GWAS, including 1) the pre-phasing of haplotypes, 2) the imputation of genotypes using
302 multiple reference panels, 3) the association testing for different inheritance models and
303 integrating results from different panels, 4) a cross-phenotype analysis when more than one
304  phenotype is available in the cohort (Supplementary Table 7), and finally, 5) the generation
305 of summary statistics tables and graphic representations of the results (Supplementary
306  Figure 24), for both the autosomes and the X chromosome. While GUIDANCE can be
307 executed as a standalone compact program it can also be used in modules (Supplementary
308 Figure 25), which makes GUIDANCE adaptable to existing frameworks and provides an

309 even higher level of control to users.

310  GUIDANCE runs in distributed computing platforms, including the cloud, without requiring a
311 broad background in distributed environments. This is feasible since GUIDANCE was
312  implemented on top of the COMP Superscalar Programming Framework (COMPSs) *. With
313 COMPSs, the GUIDANCE workflow was implemented as a sequential Java program
314 containing the calls to the GWAS tools, encapsulated in Java methods, and selected as
315  tasks, while COMPSs controls the execution of those tasks on the underlying distributed
316  infrastructure. The source code, the pre-compiled binaries and documentation to use
317  GUIDANCE are available at http://cg.bsc.es/guidance.

318
319 Discussion

320 The increasingly large sample sizes in GWAS improve the statistical power to identify
321  genetic variants associated with complex diseases. At the same time, the emergence of

322 larger and denser reference panels allows genotype imputation at lower ranges of allele

10
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323  frequencies previously unexplored. In this study, we demonstrate the value of applying a
324  comprehensive GWAS including denser imputation strategies, the X chromosome and non-
325  additive association tests to an existing large-scale genetic resource, the GERA cohort. We
326  show that by applying more powerful imputation protocols we increased the number and the
327  type of variants tested for association, including low-frequency and rare SNPs as well as
328 alternative forms of variation, such as indels. Our analysis in the GERA cohort shows that
329 between 13 and 20 of the genome-wide significant associations (14-21%) would not have
330 been identified when using a single reference panel. Likewise, our analysis in the GERA
331  cohort demonstrates that 21% of the associations would be missed by only testing the
332  additive model. Overall, 27.6% of associations would not have been identified by applying

333  the commonly used HRC and additive model association testing.

334 We here show the potential of identifying very large effect recessive associations by
335 maximizing the use of current reference panels and testing different inheritance models, as
336  exemplified by the associations with type 2 diabetes, cardiovascular disease and macular
337  degeneration with variants near PELO, CACNB4, and THUMPD?2, respectively. This strategy
338 opens new avenues for future analyses in large scale biobanks, as demonstrated with our
339 power calculations, which show that even the largest available GWAS meta-analyses or
340  biobanks would not have enough power to identify these associations using only the additive
341 model. For example, the CACNB4 gene, associated with cardiovascular disease, would
342  require a sample size equivalent to 370,000 individuals when using the additive test, 17
343  times larger than the required sample size under a recessive analysis. After considering all
344  the supporting evidence illustrated with many examples in this study, the results suggest that
345  this new associations deserve future validations and follow-up analysis, and demonstrate the
346  importance of a comprehensive analysis including non-additive models when performing
347 GWAS.

348  The inclusion of non-additive associations can also have an impact on the construction of
349  polygenic risk scores. Current polygenic scores (PRS) are calculated summing risk alleles
350 weighted by effect sizes from GWAS results, which have typically tested only the additive
351 model in the association test. Hence, large-scale genome-wide association data accounting
352  for different models of inheritance and including both SNPs and alternative forms of
353 variation, such as indels, will also be essential to develop more accurate genome-wide PRS,
354  which would weight each of the genotype carriers appropriately, rather than weighting the

355  heterozygous half-way between the homozygous of the effect and alternate alleles.

356  To easily apply this strategy to genetic studies we present GUIDANCE, a standalone and
357  easy-to-use application that allows an efficient and comprehensive GWAS analysis in

358  different computing platforms, such as cloud and high-performance computing architectures.
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359 In a moment where the community is facing computational and methodological challenges
360 due to the growing complexity and size of genetic datasets, the availability of robust and
361 complete analysis platforms can improve the efficiency of genetic studies, standardizing

362  analysis strategies among large meta-analysis cohorts to ensure consistency.

363  Finally, to share our results with the community and to promote the analysis of non-additive
364 inheritance models in GWAS, a public searchable database including additive and non-
365  additive summary statistics for 16 M of variants and 22 phenotypes is available at the Type 2
366 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org and full summary
367  statistics at http://cg.bsc.es/guidance).

368

369  Online Methods
370
371 GUIDANCE Workflow Description

372 By combining and integrating state-of-the-art GWAS analysis tools into the COMP
373  Superscalar programming Framework (COMPSs), we developed GUIDANCE, a standalone
374  application that performs haplotype phasing, genome-wide imputation, association testing
375 and PheWAS analysis of large GWAS datasets (Supplementary Figure 24).

376  As shown in Supplementary Figure 24, GUIDANCE'’s workflow starts with quality-controlled
377  genotype data and ends with providing association results, graphical outputs and statistical

378 summaries.

379  Once everything is settled in the GUIDANCE configuration file, GUIDANCE performs an
380 efficent two-stage imputation procedure, by pre-phasing the genotypes into whole
381 haplotypes followed by genotype imputation itself ?'. SHAPEIT2 * or EAGLE2 * and
382 IMPUTE2 * or MINIMAC4 *° can be used for pre-phasing and genotype imputation,
383  respectively. In addition, GUIDANCE accepts one or multiple reference panels, allowing the
384  integration of the results obtained from all panels by selecting for each variant the genotypes
385 from the reference panel that provides the highest imputation accuracy according to the
386 IMPUTE2 info score or MINIMAC2 r? (Supplementary Figure 26). GUIDANCE also performs
387  a post-imputation quality control to eliminate low-quality imputed variants under the basis of
388 the IMPUTE2 info score or MINIMAC2 r? and the MAF.

389  After genotype imputation and post-imputation quality control, GUIDANCE applies
390 SNPTEST for association testing, where additive, dominant, recessive, heterodominant and

391  genotype models can be analyzed. Here, the user can decide to include several covariates
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392  for the association test, such as principal components to adjust for population stratification,
393  or any other confounders. GUIDANCE also allows testing for multiple phenotypes or for a
394  single phenotype with different covariates in the same execution. After association testing,
395 variants are filtered by the deviation from Hardy-Weinberg equilibrium (HWE) p-value.
396 Finally, GUIDANCE generates summary reports for each trait with all the inheritance models
397 tested in the association and the corresponding graphical representation, i.e., Manhattan
398 and Quantile-Quantile (Q-Q) plots (Supplementary Figure 1-22), also providing a matrix
399 identifying cross-phenotype associations (Supplementary Table 7).

400 GUIDANCE can be executed as a a standalone compact program or as independent
401 modules (see Supplementary Figure 25 for a list of independent modules) to facilitate the
402  use of GUIDANCE into existing frameworks.

403  Further details can be found in the configuration file from the GUIDANCE execution at
404  http://cg.bsc.es/guidance. Specific documentation to use this framework is available at
405 http://cg.bsc.es/guidance, as well as the source code and the pre-compiled binaries that are

406 available in the “download” section.

407

408 The Analysis of GERA cohort
409 GERA cohort Description

410 GERA cohort data was obtained through dbGaP under accession phs000674.v1.p1. For
411 further information about the specific phenotypes (ICD-9-CM codes) included in GERA,
412  please visit its website on dbGaP (https://www.ncbi.nim.nih.gov/gap/). The Resource for
413  Genetic Epidemiology Research on Aging (GERA) Cohort was created by a RC2 "Grand
414  Opportunity” grant that was awarded to the Kaiser Permanente Research Program on
415  Genes, Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics
416  (AG036607; Schaefer/Risch, Pls). The RC2 project enabled genome-wide SNP genotyping
417  (GWAS) to be conducted on a cohort of over 100 K adults who were members of the Kaiser
418 Permanente Medical Care Plan, Northern California Region (KPNC), and participating in its
419 RPGEH. The resulting GERA cohort is composed of 42% of males, 58% of females, and
420 ranges in age from 18 to over 100 years old with an average age of 63 years at the time of
421  the RPGEH survey (2007). 19% of the individuals are from non-European ancestry, while
422 81% are described as white non-Hispanic participants. After an explicit requirement of
423 consent by email, data from 78,486 participants was deposited in dbGaP, with similar

424  demographic characteristics to those of the initial genotyped cohort.

425
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426  Quality Control

427 A subset of 62,281 subjects of European ancestry underwent quality control analyses. A 3-
428  step quality control protocol was applied using PLINK * *? and included 2 stages of SNP

429 removal and an intermediate stage of sample exclusion.

430 The exclusion criteria for genetic markers consisted of: proportion of missingness = 0.05,
431 HWE p < 1 x 10% for all the cohort, and MAF < 0.001. This protocol for genetic markers was

432  performed twice, before and after sample exclusion.

433  For the individuals, we considered the following exclusion criteria: gender discordance,
434  subject relatedness (pairs with PI-HAT = 0.125 from which we removed the individual with
435 the highest proportion of missingness), sample call rates = 0.02 and population structure
436  showing more than 4 standard deviations within the distribution of the study population
437 according to the first seven principal components (Supplementary Figure 27). After QC,

438 56,637 subjects remained for the analysis (Supplementary Table 1).
439
440 Analyzing GERA cohort using GUIDANCE

441 GUIDANCE pre-phased the genotypes to whole haplotypes with SHAPEIT2, and then
442  performed genotype imputation with IMPUTEZ2 using 1000G phase 3, UK10K, GoNL, and
443 HRC as reference panels. After filtering variants with an info score < 0.7 and a MAF <0.001,
444  we tested for association with additive, dominant, recessive, heterodominant and genotypic
445  |ogistic regression using SNPTEST, and including seven derived principal components, sex
446 and age as covariates. To maximize power and accuracy, we combined the association
447  results from the four reference panels by choosing for each variant, the genotypes from the
448  reference panel that provided the best IMPUTE2 info score. For chromosome X we
449 restricted the analysis to non-pseudoautosomal (non-PAR) regions and stratified the
450 association analysis by sex to account for hemizygosity for males, while for females, we
451 followed an autosomal model. Finally, we excluded variants with HWE controls p<1 x 107 in
452  the final results.

453
454 Identification of known and new associated loci

455  After the association test, GUIDANCE provided a list of variants that passed the p-value
456  threshold specified in the configuration file (i.e., p < 5.0x 10®). Using the “IRanges” R
457  package *, all the genome-wide significant variants were collapsed into ranges (500 kb) that

458 define each associated locus.
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459  To distinguish between known or new associated regions, for each top variant we looked for
460  any proxy variant with an LD # > 0.35 in the GWAS catalog (accession 5 September 2019)
461 associated with the same phenotype or a related one (for example, bone mineral density,
462 cholesterol levels or diastolic/systolic blood pressure phenotypes for osteoporosis,
463  dyslipidemia or hypertension, respectively). HLA regions at chromosome 6 were excluded
464  since the particularities of these regions required further detailed studies on their LD pattern.

) 44-

465  Proxies were selected using LDIink (https://Idlink.nci.nih.gov/

466  We defined an experiment-wide significant p-value cutoff of p < 2.0 x 10® by applying the
467  Bonferroni correction for 2.5 effective test (5.0 x 10® / 2.5 effective test). This factor of 2.5
468 was obtained from a simulation study when four genetic models (additive, dominant,
469 recessive and genotypic) are used *° since the genetic models are not independent.
470  However, a new simulation study including the heterodominant model should be done for a

471 more accurate effective number of tests.

472

473 Replication with UK Biobank
474  Phenotype Curation

475 UK Biobank participants agreed to provide detailed information about their lifestyle,
476  environment and medical history, to donate biological samples (for genotyping and for
477  biochemical assays), to undergo measures and to have their health followed
478  (http://www.ukbiobank.ac.uk/).

479  When collecting and analyzing a wide range of phenotypes from the UK Biobank, a central
480 challenge was the curation and harmonization of the vast array of categorizations, variable
481 scalings, and follow-up responses. Fortunately, to this end, the PHEnome Scan ANalysis
482  Tool (or PHESANT: https://github.com/MRCIEU/PHESANT) “ performs much of the

483 transformations and recodings required to generate meaningful, interpretable phenotypes.

484 We have made further adjustments based on user feedback, owing to the value of
485 transparency in generating our phenotype guidelines. Applying these changes to the
486 PHESANT source code, phenotypes were parsed using our modified version

487  (github.com/astheeggeggs/PHESANT) on a virtual machine on the Google Cloud Platform.

488 We first restricted to the subset of European individuals, before passing the resultant
489  phenotypic data to PHESANT. The ‘variable list’ file and ‘data-coding’ file, whose formats are
490 defined in the original version of PHESANT were updated as new phenotypes were added in

491 the latest UK Biobank release. Re-codings of variables, and inherent orderings of categorical
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492 variables, are defined in the ‘data-coding’ file. The ‘Excluded’ column of the ‘variable list’ file

493  defines the collection of variables that we do not wish to interrogate.

494 A high level overview of the PHESANT pipeline, our defaults, and the associated short flags
495 for the phenomescan.r code are displayed in Supplementary Figure 28. In addition to the
496 inverse-rank normalization applied to the collection of continuous phenotypes, we also
497  consider the raw version of the continuous phenotype, with no transformation applied to the
498  data.

499  Curation of the ICD10 codes was carried out separately for computational efficiency. For the
500 ICD10 phenotype, individuals are assigned a vector of ICD10 diagnoses. We truncated
501 these codes to two digits, and assigned each individual to either case or control status for
502 that ICD10 code in turn by checking if their vector contains that code. Throughout, we
503 assumed the data contained no missingness, so the sum of cases and controls throughout
504  was the number of individuals in our ‘European’ subset of the UK Biobank data. As in the
505 PHESANT categorical (multiple) phenotypes, ICD10 code case/control phenotypes were

506 removed if less than 50 individuals had the diagnosis.
507
508 Association testing and meta-analysis for UK Biobank phenotypes

509 We performed the association testing for the curated phenotypes as implemented in
510 SNPTEST for additive, dominant, recessive, heterodominant and genotypic inheritance
511 models, as it has been described in the “Analyzing GERA cohort using GUIDANCE” section.
512  For all genotypic variants identified in the discovery stage, we assigned the recessive model

513  after we identified it as the underlying model.

514  After the association testing, we filtered and ordered all the phenotypes based on the p-
515  value for the best model of inheritance obtained from the GERA cohort analysis, with special

516  consideration to equivalent phenotypes or related traits.

517  With the association testing results of both GERA cohort and UK Biobank, we meta-
518  analyzed the results using METAL *'. We use the inverse variance-weighted fixed effect
519 model for all the variants except for the rs557998486 variant associated with macular
520 degeneration, since its beta, calculated with the “em” method from SNPTEST, was inflated.
521 Therefore, we performed a sample size based meta-analysis, which converts the direction of

522  the effect and the p-value into a z-score.

523  For biomarkers, only the results from the first visit were taken into account since less than

524 10% of the cases where present in the second visit.

525
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526  Association testing and meta-analysis with FinnGen

527 We used SAIGE *® for recessive association testing using sex, age, PC1-10 and batch as
528 covariates. We analyzed FinnGen release 5 that contains 218,792 individuals with a median
529 age 62.6 and a mean age 59.8.

530 For the cardiovascular disease endpoints, we meta-analyzed the results using “rmeta” R
49

531 package *. For macular degeneration, we meta-analyzed the results using METAL as

532  described in the previous section.
533
534 Dominance deviation test

535 To detect genuine differences between additive and non-additive signals, we performed a

536  dominance deviation test for all 93 autosomal genome-wide significant loci.

537 Dominance deviation was tested by a logistic regression analysis using PLINK (v1.90b6.9,

538 www.cog-genomics.org/plink/1.9/). Sex, age and the first 7 PCs were included as covariates.
539
540 Definition of 99% credible set of PELO locus

541 For the PELO locus, the fraction of aggregated variants that have a 99% probability of
542  containing the causal one was identified. The 99% credible set of variants for the region was
543  defined with a Bayesian refinement approach *°, considering variants with an r*> 0.1 with

544  the leading one.

545  For each variant within the PELO locus, the credible set provides a posterior probability of
546  being the causal one *°. The approximate Bayes factor (ABF) for each variant was estimated
547 as

ABF =1 — 1 e(?7?/2)

548  where
_ 0.04
" SEZ+004)
_ B
7z =—.
SE

549 The B and the SE result from a logistic regression model testing for association. The

550 posterior probability for each variant was calculated as

. - ABF;
Posterior Probability; = T
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551 where ABFi corresponds to the approximate Bayes’ factor for the marker i, and T represents
552 the sum of all the ABF values enclosed in the interval. As commonly employed by
553 SNPTEST, this calculation assumes that the prior of the B is a Gaussian with mean 0 and
554  variance 0.04.

555  Finally, the cumulative posterior probability was calculated after ranking the variants
556  according to the ABF in decreasing order. Variants were included in the 99% credible set of

557  the region until the cumulative posterior probability of association got over 0.99.
558
559 Gene expression and functional characterization

560 The eQTLGen Consortium (https://www.eqtlgen.org/cis-eqtls.html, last access on July 2019)
561 and GTEx portal (https://gtexportal.org/, last access on July 2019) were used to find
562  associations between our novel genetic associations and gene expression. When the variant

563 was not available in the resources, a proxy SNP was used instead.

564 To determine whether any identified overlap between GERA GWAS loci and eQTLGen or
565 GTEx eQTLs was due to a true shared association signal, we performed a colocalization
566  analysis. Colocalization was assessed by a Bayesian test using summary statistics from
567  both studies °'; summary statistics from the cis eQTLGen and GTEx were downloaded from
568 the eQTLGen website and GTEx portal, respectively. The test was performed using the R
569 package coloc v3.2-1 "2 %% The test provided a posterior probability for the GWAS locus

570 and the eQTL to share the same causal variant(s).

571 We integrated available epigenomic datasets to examine the role of human pancreatic islet
572  transcriptional regulation underlying rs77704739 association with type 2 diabetes. We used
573 the WashU EpiGenome Browser (http://epigenomegateway.wustl.edu/browser/, last access
574  on July 2019) and previously published RNA-seq, ATAC-seq and ChlP-seq assays of
575 H3K4me3, H3K27ac, Mediator, CTCF and islet transcription factors (FOXA2, MAFB,
576  NKX2.2, NKX6.1 and PDX1) in human pancreatic islets ? ?® and islet regulome annotations
577 %

578

579  Data Availability

580 The complete summary statistics are deposited at the Type 2 Diabetes Knowledge portal
581 (www.type2diabetesgenetics.org/) and can be also accessed from http://cg.bsc.es/guidance.
582  GUIDANCE is also available at http://cg.bsc.es/guidance.
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Figure legends.

Figure 1. Graphical representation illustrating the benefits of combining the results from
different reference panels. a Comparison of the number of variants after the imputation with
four reference panels (info score = 0.7), and combining them, colored according to MAF and
varianat type (SNP vs alternative forms of variation, such as indels). As shown in the bar plot,
combining the results from the four reference panels increased the final set of variants for
association testing when compared with the results for each of the panels alone (GoNL, UK10K,
1000G Phase 3 or HRC), especially in the low and rare frequency spectrum. For example, we
covered up to 5.5 M rare variants (0.01 > MAF > 0.001) by combining panels, while only 2,3 M,
2,9 M, 3,2 M and 3,8 M of rare variants were imputed independently with GoNL, UK10K, 1000G
phase 3 and HRC, respectively. b Comparison of the contribution of each reference panel in the
combined results. Each bar represents the number of variants that had the best imputation
accuracy for a given reference panel. As shown in the figure, although the HRC panel showed
overall higher imputation scores, as it provided around 10 of the final 16 M variants, the
contribution of the other reference panels, primarily with non-SNP variants, was substantial.
Indels seen in the bar plot for HRC correspond to genotyped indels. All variants with info score
< 0.7, MAF < 0.001 and HWE for controls p < 1.0 x 10® were filtered. ¢ Venn Diagram
illustrating the loci that identified by each reference panel. New loci are depicted in bold. As
shown in this figure, only 67 of the 94 GWAS significant loci were identified by all four reference

panels, while 27 of them (28.7%) were only identified by one, two or three of the four panels.

Figure 2. Results from the analysis of additive and non-additive inheritance models. a
The Venn Diagram shows the number of loci that were identified when analyzing multiple
inheritance models. As seen in the Venn Diagram, the strongest association for 37 of the 94
associated loci was non-additive. Moreover, the analysis of non-additive models was crucial for
the identification of 14 novel (in bold) associated loci. b Power calculation of the rs201654520
indel in CACNB4 associated with cardiovascular disease. The results show that the additive-
based test would require a population sample size of 370,646 individuals to find this recessive
association, while the population sample size needed for the recessive model was 21,021. ¢
Power calculation of the rs77704739 variant near the PELO gene associated with type 2
diabetes. The results show that the additive-based test would require a population sample size
of 188,637 individuals to find this recessive association, while the population sample size

needed for the recessive model is 67,611. d Power calculation of the rs557998486 indel near
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the THUMPD?2 gene associated with age-related macular degeneration. The results show that
the additive-based test would require a population sample size of 6,493,419 individuals to find

this recessive association, while the population sample size for the recessive model is 157,450.

Figure 3. Functional characterization of the rs77704739 recessive association near the
PELO gene. a Signal plot for chromosome 5 region surrounding rs77704739. Each point
represents a variant, with its p-value from the discovery stage on a —log10 scale in the y axis.
The x axis represents the genomic position (hg19). Three credible set variants are located in
open chromatin sites in human pancreatic islets, one of them classified as an active promoter
and one highly bounded by pancreatic islet specific transcription factors, such as PDX1,
NKX2.2, NKX6.1 and FOXA2. b Colocalization plots from LocusCompare for the rs77704739
variant in adipose subcutaneous tissue. As seen in the plots, the signals from both eQTL data
and the recessive T2D association results colocalize. ¢ Violin plot from GTEx showing that the
recessive rs77704739 variant significantly modifies the expression of PELO gene in
subcutaneous and visceral adipose tissue, skeletal muscle and pancreas. GTEx V7 was used

for colocalization analyses, whereas GTEx V8 was used to generate the violin plots.
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Table 1. New associations from the GERA cohort analysis

Additive Model Lowest P-value Model Domi'na'nce
Deviation
(Ca§2§/"c°$‘.’1':’§,|s) CHR |Nearest Gene| Position rsID |Alleless MAF | LoWestPvalue | op (clo5%) | P.value OR (CI 95%) P-value P-value
‘Allergic Rhinits |_ 3| LINC02044_| 112,911,615 | rs2399472 | C/IT | 0.073 Additive 1.17 (1.10-1.23) | 1.55 x 10° 1.17 (1.10-1.23) 1.55x10° | 6.66 x 10"
(13,936/42,701) [ 8 DLCT 13,164,746 | rs10112506 | A/G | 0.390 Dominant | 0.94 (0.91-0.97) | 8.61 x 107 0.89 (0.86-0.93) 154 %107 | 2.86 % 10"
Asthma 5 ETF1 137,858,067 | rs154073 | C/T | 0.429 Recessive | 1.09 (1.06-1.13) | 6.06 x 10° 1.18 (1.12-1.25) 4.23x10° | 9.28 x 10"
(9,209/47,428) 9 PTCHT 98,344,866_| rs67053006 | C/G | 0.139 Additive 0.87 (0.83-0.91) | 4.14 x 107 0.87 (0.83-0.91) 4.14x10° | 840 x 10
Cancer 13 TEX29 112,115,591 |rs138646839| C/T | 0.005 Genotypic | 1.68 (1.39-2.03) | 1.45 x 107 | 1.60 (1.32-1.96)/ > 10 (1.01>10)* | 3.54 x 10° -
(17,131/39,506) | 18 DSC3 28,442,343 | rs2014497 | A/G | 0.008 Additive 1.50 (1.30-1.72) | 2.44 x 10° 1.50 (1.30-1.72) 244 x10° | 6.00x 10"
Cardiovascular |_1 DCLRETB_| 114,448,752 | rs10858023 | C/T | 0.350 Dominant | 1.09 (1.06-1.12) | 3.26 x 107 1.14 (1.09-1.19) 211x10° | 1.94x10°
(15,009/41,628) [ 2 CACNB4_| 152,912,244 |rs201654520| CT/C | 0.017 Recessive | 1.10 (0.98-1.22) | 1.10 x 10" 19.02 (5.50-65.84) 432x10° | 4.36x10°
Major Depression
Disorder 12 CRATS 128,551,715 |rs1455286248 GT/G | 0.281 | Heterodominant | 0.94 (0.90-0.98) | 3.00 x 10 1.18 (1.12-1.25) 3.15x10° | 1.10x 10°
(7,264/49,373)
T()épge%/[zgg?/toe)s 5 PELO 52,080,909 | rs77704739 | T/IC | 0.036 Recessive | 1.15 (1.05-1.26) | 2.80 x 10 4.32 (2.70-6.92) 1.75x10° | 1.92x 107
(QH?%)/Z%SZ) 13 LMO7 76,281,808 |rs186102686| C/T | 0.004 | Heterodominant | 1.98 (1.58-2.48) | 2.18 x 10 1.99 (1.59-2.49) 2,03 x 10° -
Hernia 1 |LOC102723886] 219,762,581 | rs2494196 | C/A | 0.274 Additive 1.13 (1.08-1.18) | 2.03 x 10° 1.13 (1.08-1.18) 2.03x10° | 6.87x10"
’;‘gi‘g‘;}gg%ﬂ‘g;’ 4 STIM2 27,019,359 [rs113180595| T/C | 0.004 | Heterodominant | 2.17 (1.69-2.78) | 1.59 x 10 2.18 (1.70-2.8) 1.27 x 10°® -
Hypertension 2 LNPK 176,532,019 | rs1446802 | AIG | 0.500 Recessive | 1.07 (1.04-1.09) | 1.66 x 10° 113 (1.08-1.17) 442x10° | 6.85x10°
Disease 15 | LINC00928 | 90,081,905 | rs28792763 | GIA | 0.462 Dominant _| 0.94 (0.91-0.96) | 4.14 x 107 0.88 (0.84-0.92) 4.42x10° | 4.80x10°
(28,391/28,246) [ 17 HIC1 1,959,826 |rs112963849] C/A | 0.082 Additive 115 (1.10-1.21) | 1.71 x 10° 1.15 (1.10-1.21) 1.71x10° | 8.01x10"
Iron Deficiency
Anemia 7 |LOC102723427] 67,292,424 | rs79798837 | C/T | 0.118 Dominant | 0.77 (0.70-0.85) | 1.69 x 107 0.74 (0.66-0.83) 3.80x10% | 8.92x 107
(2,439/54,198)
Macular
Degeneration 2 THUMPD2 | 40,010,523 |rs557998486| T/TG | 0.009 Recessive | 1.07 (0.81-1.41) | 6.28 x 10 10.5 2.75 x 10° -
(3,685/52,952)
Osteoporosis 22 |LOC100507657] 27,772,054 |rs13995924 7 Additi 1.91(1.53-2.37) | 4.7 8 8
(5.300/51 238) 772, rs 9245| C/T | 0.00 itive 91 (1.53-2.37) | 4.79 x 10 1.91 (1.53-2.37) 4.79 x 10 -
(8252{32'?3;’3) 2 PRKCE 46,278,720 | rs12712961 | T/A | 0.452 Additive 1.10 (1.06-1.14) | 1.66 x 10°® 1.10 (1.06-1.14) 166 x 10° | 2,57 x 10"
Peripheral Vascular|__11 HIPK3 33,391,655 | rs80274406 | A/G | 0.091 Genotypic | 1.06 (0.98-1.15) | 1.76 x 10" | 1.17 (1.07-1.27)/ 0.26 (0.13-0.53)" | 4.26 x 10° | 6.32 x 10°
Disease 19 | SNARA12 | 48,403,215 | rs2932761 | A/IG | 0.289 Genotypic | 0.97 (0.93-1.02) | 3.04 x 10" | 1.11(1.03-1.18/0.76 (0.66-0.87)* | 3.55x10° | 1.35x 10°®
(4,301/52,336)
Acute reaction to
Stress 2 NUP35 184,407,101 |rs577242570| T/G | 0.004 Additive 2.33 (1.77-3.08) | 4.56 x 10 2.33 (1.77-3.08) 456 x 10° -
(4,314/52,323)
Varicose Veins | 3| DYNCILIT | 32,652,184 | 1562250779 | GIA | 0.073 Genotypic 117 (1.05-1.3) | 5.60 x 10° | 1.29 (1.16-1.45) / 0.13 (0.03-0.60)* | 2.13x 10° | 9.568 x 10~
(2453754, 154) 8 | RDH10-AST | 74,284,318 | rs2383896 | A/G | 0.479 Additive 117 (1.11-1.24) | 5.00 x 10° 147 (1.11-1.24) 5.00x 10° | 9.88 x 10"
: ' 13 SLITRK5 | 88,346,617 |rs117798068] T/C | 0.011 | Heterodominant | 2.03 (1.63-2.53) | 1.59 x 10° 2.07 (1.66-2.59) 8.41x 107 B

CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF=Minor Allele Frequency, OR= Odds Ratio, Cl= Confidence Interval
* Odds Ratio and confidence interval for heterozygous / Odds Ratio and confidence interval for effect allele homozygous calculated using the method het+hom from SNPTEST

** Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT) 5
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Table 2. Replication of new associations with UK Biobank

Stage 1. Discovery

Stage 2. Replication

Stage 1 + Stage 2. Meta-analysis

CH

Pl

rsID (Alleles)
(MAF)

Best
Model

Additive

Best Model

Phenotype
(Cases/Controls)

OR (CI 95%)

P-value

OR (CI 95%)

P-value

Field
(Cases/Controls or
Sample Size)

Additive

Lowest p-value model

Additive

Lowest p- value model

OR (CI 95%)

P-value

OR (CI 95%)

P-value

OR (CI 95%)

P-value

OR (CI 95%)

P-value

rs2014497
(A/G) (0.008)

Additive

Cancer
(17,131/39,506)

1.50 (1.30-1.72)

2.44x10°

1.50 (1.30-1.72)

2.44x10°

Self-reported:
chronic lymphocytic
(237/360,904)

2.13 (1.14-3.97)

3.50x107

2.13 (1.14-3.97)

3.50x107

1,52 (1.33-1.74)

1.60x10°

1.52 (1.33-1.74)

1.60x10°

Self-reported:
kidney/renal cell
cancer
(473/360,668)

1.75 (1.07-2.86)

4.25x10”

1.75 (1.07-2.86)

4.25x10°

1.51 (1.32-1.73)

1.49x10°

1.51 (1.32-1.73)

1.49x10°

C69 Malignant
neoplasm of eye and|
adnexa
(146/361,048)

2.51(1.19-5.3)

3.56x107

2.51(1.19-5.3)

3.56x107

1.52 (1.33-1.75)

1.95x10°

1.52 (1.33-1.75)

1.95x10°

rs2494196
(C/A) (0.274)

Additive

Hernia
Abdominopelvic
(6,291/50,346)

1.13 (1.08-1.18)

2.03x10°

1.13 (1.08-1.18)

2.03x10°

Self-reported:
umbilical hernia
(328/360,813)

1.42 (1.21-1.67)

2.31x10°

1.42 (1.21-1.67)

2.31x10°

1.15(1.10-1.19)

5.35x10™"

1.15 (1.10-1.19)

5.35x10™"

K40 Inguinal hernia
(13,365/347,829)

1.09 (1.06-1.12)

3.95x10™"

1.09 (1.06-1.12)

3.95x10™"

1.10 (1.08-1.12)

7.78x107""

1.10 (1.08-1.12)

7.78x107""

K41 Femoral hernia
(475/360,719)

1.44 (1.26-1.64)

1.24x107

1.44 (1.26-1.64)

1.24x107

1.16 (1.11-1.21)

2.26x10™?

1.16 (1.11-1.21)

2.26x10"?

K42 Umbilical hernia
(2,623/358,571)

1.29 (1.22-1.37)

1.14x10™"7

1.29 (1.22-1.37)

1.14x10™"7

1.19 (1.15-1.22)

2.94x10%

1.19 (1.15-1.22)

2.94x10%

K43 Ventral hernia
(2,470/358,724)

1.18 (1.11-1.25)

1.77x107

1.18 (1.11-1.25)

1.77x107

1.15(1.11-1.19)

1.99x10™

1.15 (1.11-1.19)

1.99x10™*

rs557998486
(T/TG) (0.009)

Recessivel

Macular
Degeneration
(3,685/52,952)

1.07 (0.81-1.41)

6.28x10"

10.5*

2.75x10°

Eye
problems/disorders:
Macular
degeneration
(2,726/115,164)

0.98 (0.72-1.32)

8.81x10"

7.58 (1.54-37.32)

4.1x10?

1.01(0.82-1.24)*

7.91x107**

26.51(7.57-92.85)™*

3.29x107 8%+

rs77704739
(T/C) (0.036)

Recessivel

Type 2 Diabetes
(6,967/49,670)

1.15 (1.05-1.26)

2.80x10°

4.32 (2.70-6.92)

1.75x10°

Self-reported:
diabetes

(14,114/347,027)

1.03 (0.97-1.09)

3.87x10"

1.88 (1.35-2.6)

4.95x10™

1.06 (1.01-1.12)

1.78x107

2.46 (1.88-3.21)

4.68x10™"

CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF= Minor Allele Frequency, OR= Odds Ratio
* Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT)

** Obtained through a mega-analysis with UK Biobank using the “expected” method from SNPTEST

*** Obtained using METAL method “SAMPLESIZE” to combine the p-values taking into account the sample size and direction of effect.
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