

1 **The impact of non-additive genetic associations on age-related complex diseases.**

2

3 Marta Guindo-Martínez^{1,*}, Ramon Amela^{1,*}, Silvia Bonàs-Guarch^{1,2,3}, Montserrat Puiggròs¹,
4 Cecilia Salvoro¹, Irene Miguel-Escalada^{1,2,3}, Caitlin E Carey^{4,5}, Joanne B. Cole^{6,7,8,9}, Sina
5 Rüeger¹⁰, Elizabeth Atkinson^{4,5,11}, Aaron Leong^{8,12}, Friman Sanchez¹, Cristian Ramon-
6 Cortes¹, Jorge Ejarque¹, Duncan S Palmer^{4,5,13}, Mitja Kurki¹⁰, FinnGen Consortium¹⁴, Krishna
7 Aragam^{11,15,16}, Jose C Florez^{6,7,17}, Rosa M. Badia¹, Josep M. Mercader^{6,7,1,#}, David
8 Torrents^{1,18,#}.

9

10 1 - Barcelona Supercomputing Center (BSC), Barcelona, Spain

11 2 - Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of
12 Science and Technology, Barcelona, Spain

13 3 - CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain

14 4 - Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA,
15 USA

16 5 - Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General
17 Hospital, Boston, MA, USA

18 6 - Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and
19 Harvard, Cambridge, MA, USA

20 7 - Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,
21 USA

22 8 - Harvard Medical School, Boston, Massachusetts, USA

23 9 - Division of Endocrinology and Center for Basic and Translational Obesity, Research, Boston
24 Children's Hospital, Boston, MA, USA

25 10 - Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland

26 11 - Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge,
27 Massachusetts, USA

28 12 - Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA

29 13 - Current address: GENOMICS plc, Oxford, UK

30 14 - Members of the consortium are provided in Appendix S1

31 15 - Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA

32 16 - Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA

33 17 - Department of Medicine, Harvard Medical School, Boston, MA, USA

34 18 - Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

35

36 * - Both authors contributed equally to this work.

37 # - These authors jointly directed this work.

38

39 Corresponding authors:

40

41 Josep M Mercader

42 Programs in Metabolism and Medical and Population Genetics

43 Broad Institute of Harvard and MIT

44 75 Ames St

45 02142, Cambridge, MA

46 United States of America

47 E-mail: mercader@broadinstitute.org

48

49 and

50 David Torrents

51 Life Science Department

52 Barcelona Supercomputing Center (BSC)
53 Institució Catalana de Recerca i Estudis Avançats (ICREA)
54 C/Jordi Girona 29, Edifici Nexus II
55 08003 Barcelona, Catalunya, Spain
56 Phone: 3493 413 40 74
57 E-mail: david.torrents@bsc.es
58

59 Keywords

60 Genotype Imputation, genome-wide association studies (GWAS), inheritance models,
61 recessive analysis, reference panels, phenome-wide association studies (PheWAS),
62 complex diseases, age-related diseases.

63

64 **Abstract**

65 Genome-wide association studies (GWAS) are not fully comprehensive as current strategies
66 typically test only the additive model, exclude the X chromosome, and use only one
67 reference panel for genotype imputation. We implemented an extensive GWAS strategy,
68 GUIDANCE, which improves genotype imputation by using multiple reference panels,
69 includes the analysis of the X chromosome and non-additive models to test for association.
70 We applied this methodology to 62,281 subjects across 22 age-related diseases and
71 identified 94 genome-wide associated loci, including 26 previously unreported. We observed
72 that 27.6% of the 94 loci would be missed if we only used standard imputation strategies and
73 only tested the additive model. Among the new findings, we identified three novel low-
74 frequency recessive variants with odds ratios larger than 4, which would need at least a
75 three-fold larger sample size to be detected under the additive model. This study highlights
76 the benefits of applying innovative strategies to better uncover the genetic architecture of
77 complex diseases.

78

79 **Introduction**

80 Genome-wide association studies (GWAS) have been successful in identifying thousands of
81 associations between genetic variation and human complex diseases and traits ¹.
82 Nevertheless, for most complex diseases, only a small fraction of their genetic architecture is
83 known and a small amount of the estimated heritability is explained ². Variants that
84 individually have small contributions to the risk of disease, and/or are rare in the population,
85 are often missed by the majority of GWAS even though their role in the pathophysiology of
86 complex diseases can be crucial. Some of the current limitations of GWAS could be
87 overcome by increasing sample sizes and, as recently demonstrated, by applying more
88 comprehensive analytical methods with improved imputation strategies ³. Though the
89 increase of sample size might allow the detection of more genetic signals, it also imposes
90 major methodological and computational requirements. These can require scientists to
91 restrict and simplify the analysis by limiting it to autosomal chromosomes, a single reference
92 panel for imputation, and a single (additive) inheritance model for association testing, leaving
93 a relevant fraction of the genetic architecture of the disease unexplored ⁴.

94 The genetic variants that modify the risk to develop a particular complex disease may
95 contribute to the final phenotype through different functional mechanism defined by a
96 particular model of inheritance, which is further reflected in a characteristic distribution of
97 affected alleles across patients and healthy individuals in GWAS. For example, the additive
98 inheritance model, which is often the only genetic model tested, assumes that the risk of the
99 disease is proportional to the number of risk alleles in an individual, i. e., that the effect of the
100 heterozygous genotype is halfway between the two possible homozygous genotypes.
101 However, some variants follow non-additive inheritance models, which include dominant,
102 recessive and heterodominant. The additive model is expected to capture a large fraction of
103 the genetic risk for disease ⁵ and can identify some variants that follow non-additive
104 inheritance patterns. However, the additive model is not sufficient to provide a
105 comprehensive overview of the genetic architecture of diseases. In particular, most GWAS
106 may have insufficient power to identify low-frequency variants that show recessive effects ⁶,
107 ⁷. The importance of evaluating non-additive inheritance models is well reported in the
108 context of Mendelian diseases ⁸ and occasionally for complex traits as well, such as the
109 recessive effects of the *FTO* locus in obesity ⁹, the *ITGA1* ¹⁰, *TBC1D4* ¹¹ and *CDKAL1* ^{9, 12}
110 genes in type 2 diabetes, as well as the known non-additive effects of HLA haplotypes in
111 autoimmune diseases ¹³ and ulcerative colitis ¹⁴. The increasing ability to capture low-
112 frequency variants using modern imputation reference panels and the need to uncover the
113 still missing heritability estimated for most complex diseases, call for comprehensive

114 association strategies that should include, among other improvements, the analysis of non-
115 additive inheritance models.

116 To fill this gap and to determine the prevalence and contribution of the different inheritance
117 patterns involved in the genetic architecture of complex diseases, we have designed and
118 implemented a comprehensive strategy for genetic association analysis that combines
119 dense imputation from multiple reference panels with association testing under five different
120 inheritance models across multiple phenotypes. We have applied this strategy to the Kaiser
121 Permanente Research Program on Genes, Environment and Health: A Genetic
122 Epidemiology Research on Adult Health and Aging (GERA) cohort ¹⁵, which includes 62,281
123 subjects from European ancestry and 22 diseases.

124 Finally, we release here both the summary statistics for all the models of inheritance as well
125 as the complete methodology, provided to the community as an easy-to-use and standalone
126 pipeline. This pipeline allows for analysis of existing and newly generated GWAS data with
127 better efficiency and more comprehensive testing, improving the chances of variant
128 discovery.

129

130 **Results**

131 In order to assess the potential benefits of applying more in-depth GWAS methodologies to
132 available genetic datasets, and to investigate the relative contribution of different inheritance
133 models to the risk to develop complex diseases, we have applied a global analysis strategy
134 to the GERA cohort, an age-related disease-based cohort with an average age of 63, well
135 powered to study a broad range of clinically defined age-related conditions. By using this
136 particular cohort, we expect to minimize a possible loss of power due to the misclassification
137 of controls, as often happens in datasets with younger individuals that can include cases at
138 pre-disease stages classified as controls.

139

140 **Genotype Imputation and association testing using multiple reference panels**

141 After applying strict genetic quality control to the GERA cohort (see Methods), we retained
142 56,637 individuals with European ancestry for further downstream analysis (Supplementary
143 Table 1). To cover the maximum number and type of genetic variants, we next applied an
144 extensive imputation strategy with four reference panels: the Genome of the Netherlands
145 (GoNL) ^{16, 17}, the UK10K Project ¹⁸, the 1000 Genomes Project (1000G) phase 3 ¹⁹ and
146 Haplotype Reference Consortium (HRC) ²⁰, and imputed 11.2 M, 11.4 M, 13.1 M, and 11.7
147 M high quality imputed variants (IMPUTE2 ²¹ info score ≥ 0.7 and minor allele frequency

148 [MAF] ≥ 0.001) with each panel, respectively. After combining the results of the four
149 reference panels by choosing, for each variant, the panel that provided the highest
150 imputation accuracy, we retained a total of 16,059,686 variants covering all the autosomes
151 and the X chromosome (Figure 1a). This strategy was particularly powerful to impute 2.6 M
152 and 5.5 M high quality, low-frequency ($0.05 > \text{MAF} > 0.01$) and rare variants ($0.01 > \text{MAF} >$
153 0.001), respectively, as well as 1.6 M indels. Note that as many as 684,393 common
154 variants ($\text{MAF} \geq 0.05$), 255,106 low-frequency, 1.7 M rare, and all indels (1.6 M) would be
155 missed if only the HRC reference panel was used. This highlights the benefit of combining
156 different reference panels for comprehensive association testing (Figure 1b).

157 We next tested all the 16 M variants for association with the 22 conditions available in the
158 GERA cohort considering the entire genome and five different inheritance models
159 (Supplementary Figure 1-22). This analysis identified 94 independent loci associated with 17
160 phenotypes at a genome-wide significance level ($p < 5.0 \times 10^{-8}$) of which 63 for 14
161 phenotypes were also experiment-wide significant ($p < 2.0 \times 10^{-8}$) after considering
162 correction for the different models of inheritance (see methods) (Supplementary Table 2).
163 According to the GWAS catalog, 68 of the 94 genome-wide significant loci had been
164 previously reported to be associated with the same disease (Supplementary Table 3),
165 whereas 26 of them correspond to previously unreported loci with associations across 16
166 phenotypes (Table 1). Of these new loci, 16 correspond to common, 3 to low-frequency, and
167 7 to rare variants. Interestingly, only a fraction of the 26 new loci would have been genome-
168 wide significant by using individual imputation panels (Figure 1c), namely 20/26 using HRC,
169 14/26 using 1000G Phase 3, 14/26 using UK10K or 15/26 using GoNL. In addition, the lead
170 marker for three of the novel signals is an indel, further confirming the benefits of combining
171 multiple panels with our approach.

172

173 **Identification of recessive variants with large effects**

174 The implementation of refined GWAS strategies not only increases the number of
175 associated variants, but also allows the identification of loci with large impact on the disease.
176 Among the variants that were not detected under the additive model, and hence are
177 expected to be missed by the majority of current GWAS, we highlight three variants with
178 remarkably large recessive effects. First, an intronic indel in the *CACNB4* gene,
179 rs201654520, associated with a nearly twenty-fold increase in risk for cardiovascular
180 disease ($\text{MAF} = 0.017$, $\text{OR} [\text{CI } 95\%] = 19.0 [5.5 - 65.8]$, $p = 4.3 \times 10^{-8}$). *CACNB4* encodes the
181 $\beta 4$ subunit of the voltage-dependent calcium channel. This subunit contributes to the flux of
182 calcium ions into the cell by increasing peak calcium current and triggering muscle

183 contraction. Interestingly, an intronic single nucleotide polymorphism (SNP) within *CACNB4*,
184 rs150793926, was associated with idiopathic dilated cardiomyopathy in African Americans
185 ²², but this variant is not in linkage disequilibrium (LD) with rs201654520 (LD r^2 ²³ = 0.0016).
186 A second recessive variant with large effect, rs77704739, near the *PELO* gene, is
187 associated with a four-fold risk for type 2 diabetes (MAF= 0.036, OR [CI 95%] = 4.3 [2.7 -
188 6.9], $p = 1.75 \times 10^{-8}$). We also found this variant associated with type 2 diabetes (OR-
189 recessive [95% CI] = 1.9 [1.4 - 2.6], $p = 4.95 \times 10^{-4}$) and metformin use (OR-recessive [95%
190 CI] = 2.3 [1.6 - 3.4], $p = 3.8 \times 10^{-5}$) in the UK Biobank ²⁴ (Supplementary Table 4), also only
191 under the recessive model. An independent signal that is about 112 K base pairs away
192 (rs870992, LD r^2 = 0.0009) was previously associated with type 2 diabetes in the
193 Greenlandic population, also with a recessive effect ¹⁰. To provide insights into the
194 underlying molecular mechanisms in disease, we interrogated comprehensive catalogues of
195 genetic effects on gene expression; eQTLGen Consortium ²⁵ and GTEx ²⁶. The rs77704739
196 variant was significantly associated with gene expression of *PELO* in multiple tissues,
197 including diabetes-relevant tissues such as adipose tissue, skeletal muscle, and pancreas.
198 Colocalization analyses showed a probability higher than 0.8 in several tissues, including
199 subcutaneous adipose tissue and skeletal muscle, suggesting this gene as the effector
200 transcript (Figure 3a, 3b, and Supplementary Table 5). In addition, we found that the lead
201 variants in the *PELO* locus overlap with active promoter annotations in human pancreatic
202 islets and open chromatin sites highly-bounded by islet specific transcription factors ^{27, 28}
203 (Figure 3c).
204 Third, a rare indel, rs557998486, located near the *THUMPD2* gene, is associated with age-
205 related macular degeneration (MAF= 0.009, OR = 10.5, $p = 2.75 \times 10^{-8}$). Also under the
206 recessive model in UK Biobank, this indel was associated with age-related macular
207 degeneration (OR [CI 95%] = 7.6 [1.5-37.3], $p = 4.1 \times 10^{-2}$), eye surgery (beta [CI 95%] = 1.6
208 [0.6-2.6], $p = 1.17 \times 10^{-3}$) (Supplementary Table 4), and C-reactive protein, a known
209 biomarker for macular degeneration ²⁹ (beta [CI 95%] = 1.1 [0.7 - 1.5], $p = 1.15 \times 10^{-4}$)
210 (Supplementary Table 6). Interestingly, the fact that we found no SNPs in LD with this lead
211 indel further confirms the benefits of multiple reference panel imputation strategies that
212 include alternative forms of variation. The lead indel rs557998486 overlaps DNase I
213 hypersensitivity sites in retinal and iris cell lines ³⁰, highlighting a candidate open chromatin
214 region that is also predicted to be an enhancer assigned to the *THUMPD2* gene according to
215 GeneHancer ³¹. One of the variants with the highest LD with rs557998486 (rs116649730, LD
216 r^2 = 0.32) is associated with reduced expression of its nearest gene, *THUMPD2* (Z-score = -
217 4.85, $p = 1.25 \times 10^{-6}$), according to eQTLGen Consortium data.

218

219 **Replication using UK Biobank and FinnGen**

220 We sought replication of previously unreported loci using UK Biobank, a prospective cohort
221 of ~500 K individuals aged between 40 to 69 ²⁴. Given the high heterogeneity in phenotype
222 definitions in UK Biobank compared to GERA, we tested for replication with the same
223 phenotype and related traits (Supplementary Table 4). Compared to GERA, some of the
224 conditions may not be ascertained or have an age at onset later than the average age at
225 ascertainment in UK Biobank (56.52 years ³²) which could affect the replication success.
226 Despite these limitations, we tested the novel variants using the corresponding inheritance
227 model, and replicated 4 new loci with the same phenotype (Table 2).

228 We further sought replication of the association within the *CACNB4* gene with cardiovascular
229 disease in FinnGen, a cohort of ~218 K Finnish individuals with an average age of 63, as it
230 includes individuals with a higher average age (63 vs 56 in UK Biobank) and the risk of
231 developing a cardiovascular disease is well-known to increase with age ³³. In addition,
232 FinnGen has a precise and richer classification of this particular phenotype than UK
233 Biobank. In brief, we tested rs201654520 for association with 47 cardiovascular endpoints.
234 Of all the conditions tested, four (hypertensive heart disease, hypertensive heart and/or
235 renal disease, heart failure, and right bundle-branch block) were nominally associated ($p <$
236 0.05). All the associations had a direction of effect consistent with the effect observed in the
237 GERA cohort (Supplementary Figure 23a). Although there is a high heterogeneity in the
238 phenotype definitions between cohorts, we meta-analyzed the results from these endpoints
239 from FinnGen with the result from “cardiovascular disease” phenotype from GERA, but none
240 of them reach the genome-wide significance (see Methods) (Supplementary Figure 23). We
241 did not include UK Biobank in this meta-analysis as the equivalent phenotypes were not
242 available or had less than 350 cases in UK Biobank, therefore, underpowered for a
243 recessive analysis. Notably, when analyzing the association of rs201654520 with related
244 quantitative traits we found that those who were homozygous for the high-risk allele had
245 lower systolic blood pressure ($p = 4.1 \times 10^{-3}$, beta = -0.23) (Supplementary Table 4). While
246 lower systolic blood pressure has been associated with increased risk of myocardial
247 infarction in particular circumstances, this is not the typical direction of association, and
248 therefore merits additional study ³⁴.

249 We also sought replication of the recessive association of rs557998486 near *THUMPD2*
250 gene with macular degeneration in FinnGen. While rs557998486 was associated with
251 increased risk of macular degeneration in UK Biobank under the recessive model (OR [CI
252 95%] = 7.6 [1.5-37.3], $p = 4.1 \times 10^{-2}$), it was not significantly associated in the FinnGen
253 biobank although it showed the same direction of effect. However, the meta-analysis did not

254 reach the genome-wide significance (rs557998486 $p = 9.6 \times 10^{-6}$) and had a high
255 heterogeneity (heterogeneity $I^2 = 87.1$, heterogeneity $p = 4.3 \times 10^{-4}$).

256

257 **Detection ranges of the different inheritance models**

258 Our findings provide an empirical overview of the detection range of five different inheritance
259 models, and show how each of them captures a fraction of the genetic variants associated
260 with complex traits. As indicative of the power of current genetic studies that usually only
261 consider additive allelic effects, we found three different scenarios. Among all the 94
262 associated loci identified, 12 showed genome-wide significance only under the additive
263 model, 62 under both additive and non-additive models, and 20 showed genome-wide
264 significance only when non-additive tests were applied (Figure 2a). To further classify these
265 variants, we tested whether any of the 62 variants associated with both additive and non-
266 additive models deviate from additivity through a dominance deviation test⁹. Eleven of these
267 62 variants (17.7%) showed significant deviation from additivity (dominance deviation test p
268 < 0.05). Altogether, the dominance deviation test over the 93 autosomal loci identified 62
269 additive (66%) and 24 non-additive associations (25.5%) and 8 undetermined. Based on the
270 smallest GWAS p -value, we further classified non-additive associations into 9 recessive, 13
271 dominant, 8 heterodominant and 7 genotypic (Supplementary Table 2).

272 We also found that each of the available models for association testing has a different range
273 of detection. To identify the 94 genome-wide associated loci, the additive test, as expected,
274 was the most sensitive model (74 loci), followed by the genotypic (59 loci), the dominant (56
275 loci), the recessive (43 loci) and the heterodominant (32 loci). When considering known loci,
276 48 of the 68 previously reported loci were identified by more than one model in our analysis,
277 and almost half of these (22 loci) with all five models. In contrast, of the 26 newly discovered
278 variants, only 8 were identified with multiple models, whereas the majority of them (18 loci),
279 were detected only with the additive (6 loci), the genotypic (4 loci), the recessive (4 loci) and
280 the dominant (3 loci) model. Of note, 13 out of 26 (50%) novel loci were only identified by
281 non-additive models.

282 To further investigate to what extent the additive model captures non-additive signals, and
283 how much this depends on sample size, we carried out power calculations on loci that were
284 detected here only under a non-additive model, such as rs201654520 within *CACNB4* gene
285 and rs77704739 near the *PELO* gene. These power calculations showed that the additive
286 test would require a population sample size of at least 370,646 individuals to detect the
287 recessive association of rs201654520 in *CACNB4* (Figure 2b), and at least 188,637
288 individuals to capture the recessive signal of rs77704739 near the *PELO* gene (Figure 2c),

289 while the population sample size required for the recessive model was only 21,021 and
290 67,611, respectively. In this study, we were able to identify both associations with a modest
291 sample size by using the most well-suited disease model.

292

293 **The GUIDANCE framework**

294 We developed an integrated framework including our methodology used to analyze the
295 GERA cohort, called GUIDANCE. GUIDANCE allows the analysis of genome-wide
296 genotyped data in a single execution in distributed computing infrastructures without the
297 need for extensive computational expertise or constant user intervention. The GUIDANCE
298 workflow requires quality-controlled genotyped data as an input and provides association
299 results, graphical outputs and statistical summaries. Integrating state-of-the-art tools with in-
300 house code written in Java, bash and R ³⁵, GUIDANCE efficiently performs large-scale
301 GWAS, including 1) the pre-phasing of haplotypes, 2) the imputation of genotypes using
302 multiple reference panels, 3) the association testing for different inheritance models and
303 integrating results from different panels, 4) a cross-phenotype analysis when more than one
304 phenotype is available in the cohort (Supplementary Table 7), and finally, 5) the generation
305 of summary statistics tables and graphic representations of the results (Supplementary
306 Figure 24), for both the autosomes and the X chromosome. While GUIDANCE can be
307 executed as a standalone compact program it can also be used in modules (Supplementary
308 Figure 25), which makes GUIDANCE adaptable to existing frameworks and provides an
309 even higher level of control to users.

310 GUIDANCE runs in distributed computing platforms, including the cloud, without requiring a
311 broad background in distributed environments. This is feasible since GUIDANCE was
312 implemented on top of the COMP Superscalar Programming Framework (COMPSs) ³⁶. With
313 COMPSs, the GUIDANCE workflow was implemented as a sequential Java program
314 containing the calls to the GWAS tools, encapsulated in Java methods, and selected as
315 tasks, while COMPSs controls the execution of those tasks on the underlying distributed
316 infrastructure. The source code, the pre-compiled binaries and documentation to use
317 GUIDANCE are available at <http://cg.bsc.es/guidance>.

318

319 **Discussion**

320 The increasingly large sample sizes in GWAS improve the statistical power to identify
321 genetic variants associated with complex diseases. At the same time, the emergence of
322 larger and denser reference panels allows genotype imputation at lower ranges of allele

323 frequencies previously unexplored. In this study, we demonstrate the value of applying a
324 comprehensive GWAS including denser imputation strategies, the X chromosome and non-
325 additive association tests to an existing large-scale genetic resource, the GERA cohort. We
326 show that by applying more powerful imputation protocols we increased the number and the
327 type of variants tested for association, including low-frequency and rare SNPs as well as
328 alternative forms of variation, such as indels. Our analysis in the GERA cohort shows that
329 between 13 and 20 of the genome-wide significant associations (14-21%) would not have
330 been identified when using a single reference panel. Likewise, our analysis in the GERA
331 cohort demonstrates that 21% of the associations would be missed by only testing the
332 additive model. Overall, 27.6% of associations would not have been identified by applying
333 the commonly used HRC and additive model association testing.

334 We here show the potential of identifying very large effect recessive associations by
335 maximizing the use of current reference panels and testing different inheritance models, as
336 exemplified by the associations with type 2 diabetes, cardiovascular disease and macular
337 degeneration with variants near *PELO*, *CACNB4*, and *THUMPD2*, respectively. This strategy
338 opens new avenues for future analyses in large scale biobanks, as demonstrated with our
339 power calculations, which show that even the largest available GWAS meta-analyses or
340 biobanks would not have enough power to identify these associations using only the additive
341 model. For example, the *CACNB4* gene, associated with cardiovascular disease, would
342 require a sample size equivalent to 370,000 individuals when using the additive test, 17
343 times larger than the required sample size under a recessive analysis. After considering all
344 the supporting evidence illustrated with many examples in this study, the results suggest that
345 this new associations deserve future validations and follow-up analysis, and demonstrate the
346 importance of a comprehensive analysis including non-additive models when performing
347 GWAS.

348 The inclusion of non-additive associations can also have an impact on the construction of
349 polygenic risk scores. Current polygenic scores (PRS) are calculated summing risk alleles
350 weighted by effect sizes from GWAS results, which have typically tested only the additive
351 model in the association test. Hence, large-scale genome-wide association data accounting
352 for different models of inheritance and including both SNPs and alternative forms of
353 variation, such as indels, will also be essential to develop more accurate genome-wide PRS,
354 which would weight each of the genotype carriers appropriately, rather than weighting the
355 heterozygous half-way between the homozygous of the effect and alternate alleles.

356 To easily apply this strategy to genetic studies we present GUIDANCE, a standalone and
357 easy-to-use application that allows an efficient and comprehensive GWAS analysis in
358 different computing platforms, such as cloud and high-performance computing architectures.

359 In a moment where the community is facing computational and methodological challenges
360 due to the growing complexity and size of genetic datasets, the availability of robust and
361 complete analysis platforms can improve the efficiency of genetic studies, standardizing
362 analysis strategies among large meta-analysis cohorts to ensure consistency.

363 Finally, to share our results with the community and to promote the analysis of non-additive
364 inheritance models in GWAS, a public searchable database including additive and non-
365 additive summary statistics for 16 M of variants and 22 phenotypes is available at the Type 2
366 Diabetes Knowledge Portal (<http://www.type2diabetesgenetics.org> and full summary
367 statistics at <http://cg.bsc.es/guidance>).

368

369 **Online Methods**

370

371 **GUIDANCE Workflow Description**

372 By combining and integrating state-of-the-art GWAS analysis tools into the COMP
373 Superscalar programming Framework (COMPSS), we developed GUIDANCE, a standalone
374 application that performs haplotype phasing, genome-wide imputation, association testing
375 and PheWAS analysis of large GWAS datasets (Supplementary Figure 24).

376 As shown in Supplementary Figure 24, GUIDANCE's workflow starts with quality-controlled
377 genotype data and ends with providing association results, graphical outputs and statistical
378 summaries.

379 Once everything is settled in the GUIDANCE configuration file, GUIDANCE performs an
380 efficient two-stage imputation procedure, by pre-phasing the genotypes into whole
381 haplotypes followed by genotype imputation itself²¹. SHAPEIT2³⁷ or EAGLE2³⁸ and
382 IMPUTE2³⁹ or MINIMAC4⁴⁰ can be used for pre-phasing and genotype imputation,
383 respectively. In addition, GUIDANCE accepts one or multiple reference panels, allowing the
384 integration of the results obtained from all panels by selecting for each variant the genotypes
385 from the reference panel that provides the highest imputation accuracy according to the
386 IMPUTE2 info score or MINIMAC2 r^2 (Supplementary Figure 26). GUIDANCE also performs
387 a post-imputation quality control to eliminate low-quality imputed variants under the basis of
388 the IMPUTE2 info score or MINIMAC2 r^2 and the MAF.

389 After genotype imputation and post-imputation quality control, GUIDANCE applies
390 SNPTEST for association testing, where additive, dominant, recessive, heterodominant and
391 genotype models can be analyzed. Here, the user can decide to include several covariates

392 for the association test, such as principal components to adjust for population stratification,
393 or any other confounders. GUIDANCE also allows testing for multiple phenotypes or for a
394 single phenotype with different covariates in the same execution. After association testing,
395 variants are filtered by the deviation from Hardy-Weinberg equilibrium (HWE) *p*-value.
396 Finally, GUIDANCE generates summary reports for each trait with all the inheritance models
397 tested in the association and the corresponding graphical representation, i.e., Manhattan
398 and Quantile-Quantile (Q-Q) plots (Supplementary Figure 1-22), also providing a matrix
399 identifying cross-phenotype associations (Supplementary Table 7).

400 GUIDANCE can be executed as a a standalone compact program or as independent
401 modules (see Supplementary Figure 25 for a list of independent modules) to facilitate the
402 use of GUIDANCE into existing frameworks.

403 Further details can be found in the configuration file from the GUIDANCE execution at
404 <http://cg.bsc.es/guidance>. Specific documentation to use this framework is available at
405 <http://cg.bsc.es/guidance>, as well as the source code and the pre-compiled binaries that are
406 available in the “download” section.

407

408 **The Analysis of GERA cohort**

409 **GERA cohort Description**

410 GERA cohort data was obtained through dbGaP under accession phs000674.v1.p1. For
411 further information about the specific phenotypes (ICD-9-CM codes) included in GERA,
412 please visit its website on dbGaP (<https://www.ncbi.nlm.nih.gov/gap/>). The Resource for
413 Genetic Epidemiology Research on Aging (GERA) Cohort was created by a RC2 "Grand
414 Opportunity" grant that was awarded to the Kaiser Permanente Research Program on
415 Genes, Environment, and Health (RPGEH) and the UCSF Institute for Human Genetics
416 (AG036607; Schaefer/Risch, PIs). The RC2 project enabled genome-wide SNP genotyping
417 (GWAS) to be conducted on a cohort of over 100 K adults who were members of the Kaiser
418 Permanente Medical Care Plan, Northern California Region (KPNC), and participating in its
419 RPGEH. The resulting GERA cohort is composed of 42% of males, 58% of females, and
420 ranges in age from 18 to over 100 years old with an average age of 63 years at the time of
421 the RPGEH survey (2007). 19% of the individuals are from non-European ancestry, while
422 81% are described as white non-Hispanic participants. After an explicit requirement of
423 consent by email, data from 78,486 participants was deposited in dbGaP, with similar
424 demographic characteristics to those of the initial genotyped cohort.

425

426 **Quality Control**

427 A subset of 62,281 subjects of European ancestry underwent quality control analyses. A 3-
428 step quality control protocol was applied using PLINK ^{41, 42}, and included 2 stages of SNP
429 removal and an intermediate stage of sample exclusion.

430 The exclusion criteria for genetic markers consisted of: proportion of missingness ≥ 0.05 ,
431 HWE $p \leq 1 \times 10^{-20}$ for all the cohort, and MAF < 0.001 . This protocol for genetic markers was
432 performed twice, before and after sample exclusion.

433 For the individuals, we considered the following exclusion criteria: gender discordance,
434 subject relatedness (pairs with PI-HAT ≥ 0.125 from which we removed the individual with
435 the highest proportion of missingness), sample call rates ≥ 0.02 and population structure
436 showing more than 4 standard deviations within the distribution of the study population
437 according to the first seven principal components (Supplementary Figure 27). After QC,
438 56,637 subjects remained for the analysis (Supplementary Table 1).

439

440 **Analyzing GERA cohort using GUIDANCE**

441 GUIDANCE pre-phased the genotypes to whole haplotypes with SHAPEIT2, and then
442 performed genotype imputation with IMPUTE2 using 1000G phase 3, UK10K, GoNL, and
443 HRC as reference panels. After filtering variants with an info score < 0.7 and a MAF < 0.001 ,
444 we tested for association with additive, dominant, recessive, heterodominant and genotypic
445 logistic regression using SNPTTEST, and including seven derived principal components, sex
446 and age as covariates. To maximize power and accuracy, we combined the association
447 results from the four reference panels by choosing for each variant, the genotypes from the
448 reference panel that provided the best IMPUTE2 info score. For chromosome X we
449 restricted the analysis to non-pseudoautosomal (non-PAR) regions and stratified the
450 association analysis by sex to account for hemizygosity for males, while for females, we
451 followed an autosomal model. Finally, we excluded variants with HWE controls $p < 1 \times 10^{-6}$ in
452 the final results.

453

454 **Identification of known and new associated loci**

455 After the association test, GUIDANCE provided a list of variants that passed the p -value
456 threshold specified in the configuration file (i.e., $p \leq 5.0 \times 10^{-8}$). Using the “IRanges” R
457 package ⁴³, all the genome-wide significant variants were collapsed into ranges (500 kb) that
458 define each associated locus.

459 To distinguish between known or new associated regions, for each top variant we looked for
460 any proxy variant with an LD $r^2 > 0.35$ in the GWAS catalog (accession 5 September 2019)
461 associated with the same phenotype or a related one (for example, bone mineral density,
462 cholesterol levels or diastolic/systolic blood pressure phenotypes for osteoporosis,
463 dyslipidemia or hypertension, respectively). HLA regions at chromosome 6 were excluded
464 since the particularities of these regions required further detailed studies on their LD pattern.
465 Proxies were selected using LDlink (<https://ldlink.nci.nih.gov/>)⁴⁴.

466 We defined an experiment-wide significant *p*-value cutoff of $p < 2.0 \times 10^{-8}$ by applying the
467 Bonferroni correction for 2.5 effective test ($5.0 \times 10^{-8} / 2.5$ effective test). This factor of 2.5
468 was obtained from a simulation study when four genetic models (additive, dominant,
469 recessive and genotypic) are used⁴⁵ since the genetic models are not independent.
470 However, a new simulation study including the heterodominant model should be done for a
471 more accurate effective number of tests.

472

473 **Replication with UK Biobank**

474 **Phenotype Curation**

475 UK Biobank participants agreed to provide detailed information about their lifestyle,
476 environment and medical history, to donate biological samples (for genotyping and for
477 biochemical assays), to undergo measures and to have their health followed
478 (<http://www.ukbiobank.ac.uk/>).

479 When collecting and analyzing a wide range of phenotypes from the UK Biobank, a central
480 challenge was the curation and harmonization of the vast array of categorizations, variable
481 scalings, and follow-up responses. Fortunately, to this end, the PHEnome Scan ANalysis
482 Tool (or PHEANT: <https://github.com/MRCIEU/PHEANT>)⁴⁶ performs much of the
483 transformations and recodings required to generate meaningful, interpretable phenotypes.

484 We have made further adjustments based on user feedback, owing to the value of
485 transparency in generating our phenotype guidelines. Applying these changes to the
486 PHEANT source code, phenotypes were parsed using our modified version
487 (github.com/astheeggeggs/PHEANT) on a virtual machine on the Google Cloud Platform.

488 We first restricted to the subset of European individuals, before passing the resultant
489 phenotypic data to PHEANT. The 'variable list' file and 'data-coding' file, whose formats are
490 defined in the original version of PHEANT were updated as new phenotypes were added in
491 the latest UK Biobank release. Re-codings of variables, and inherent orderings of categorical

492 variables, are defined in the ‘data-coding’ file. The ‘Excluded’ column of the ‘variable list’ file
493 defines the collection of variables that we do not wish to interrogate.

494 A high level overview of the PHEANT pipeline, our defaults, and the associated short flags
495 for the phenomescan.r code are displayed in Supplementary Figure 28. In addition to the
496 inverse-rank normalization applied to the collection of continuous phenotypes, we also
497 consider the raw version of the continuous phenotype, with no transformation applied to the
498 data.

499 Curation of the ICD10 codes was carried out separately for computational efficiency. For the
500 ICD10 phenotype, individuals are assigned a vector of ICD10 diagnoses. We truncated
501 these codes to two digits, and assigned each individual to either case or control status for
502 that ICD10 code in turn by checking if their vector contains that code. Throughout, we
503 assumed the data contained no missingness, so the sum of cases and controls throughout
504 was the number of individuals in our ‘European’ subset of the UK Biobank data. As in the
505 PHEANT categorical (multiple) phenotypes, ICD10 code case/control phenotypes were
506 removed if less than 50 individuals had the diagnosis.

507

508 **Association testing and meta-analysis for UK Biobank phenotypes**

509 We performed the association testing for the curated phenotypes as implemented in
510 SNPTEST for additive, dominant, recessive, heterodominant and genotypic inheritance
511 models, as it has been described in the “Analyzing GERA cohort using GUIDANCE” section.
512 For all genotypic variants identified in the discovery stage, we assigned the recessive model
513 after we identified it as the underlying model.

514 After the association testing, we filtered and ordered all the phenotypes based on the *p*-
515 value for the best model of inheritance obtained from the GERA cohort analysis, with special
516 consideration to equivalent phenotypes or related traits.

517 With the association testing results of both GERA cohort and UK Biobank, we meta-
518 analyzed the results using METAL ⁴⁷. We use the inverse variance-weighted fixed effect
519 model for all the variants except for the rs557998486 variant associated with macular
520 degeneration, since its *beta*, calculated with the “em” method from SNPTEST, was inflated.
521 Therefore, we performed a sample size based meta-analysis, which converts the direction of
522 the effect and the *p*-value into a z-score.

523 For biomarkers, only the results from the first visit were taken into account since less than
524 10% of the cases were present in the second visit.

525

526 **Association testing and meta-analysis with FinnGen**

527 We used SAIGE ⁴⁸ for recessive association testing using sex, age, PC1-10 and batch as
528 covariates. We analyzed FinnGen release 5 that contains 218,792 individuals with a median
529 age 62.6 and a mean age 59.8.

530 For the cardiovascular disease endpoints, we meta-analyzed the results using “rmeta” R
531 package ⁴⁹. For macular degeneration, we meta-analyzed the results using METAL as
532 described in the previous section.

533

534 **Dominance deviation test**

535 To detect genuine differences between additive and non-additive signals, we performed a
536 dominance deviation test for all 93 autosomal genome-wide significant loci.

537 Dominance deviation was tested by a logistic regression analysis using PLINK (v1.90b6.9,
538 www.cog-genomics.org/plink/1.9/). Sex, age and the first 7 PCs were included as covariates.

539

540 **Definition of 99% credible set of *PELO* locus**

541 For the *PELO* locus, the fraction of aggregated variants that have a 99% probability of
542 containing the causal one was identified. The 99% credible set of variants for the region was
543 defined with a Bayesian refinement approach ⁵⁰, considering variants with an $r^2 > 0.1$ with
544 the leading one.

545 For each variant within the *PELO* locus, the credible set provides a posterior probability of
546 being the causal one ⁵⁰. The approximate Bayes factor (ABF) for each variant was estimated
547 as

$$ABF = \sqrt{1-r} e^{(rz^2/2)},$$

548 where

$$r = \frac{0.04}{(SE^2 + 0.04)},$$

$$z = \frac{\beta}{SE}.$$

549 The β and the SE result from a logistic regression model testing for association. The
550 posterior probability for each variant was calculated as

$$Posterior\ Probability_i = \frac{ABF_i}{T},$$

551 where ABF_i corresponds to the approximate Bayes' factor for the marker i , and T represents
552 the sum of all the ABF values enclosed in the interval. As commonly employed by
553 SNPTEST, this calculation assumes that the prior of the β is a Gaussian with mean 0 and
554 variance 0.04.

555 Finally, the cumulative posterior probability was calculated after ranking the variants
556 according to the ABF in decreasing order. Variants were included in the 99% credible set of
557 the region until the cumulative posterior probability of association got over 0.99.

558

559 **Gene expression and functional characterization**

560 The eQTLGen Consortium (<https://www.eqtldgen.org/cis-eqtls.html>, last access on July 2019)
561 and GTEx portal (<https://gtexportal.org/>, last access on July 2019) were used to find
562 associations between our novel genetic associations and gene expression. When the variant
563 was not available in the resources, a proxy SNP was used instead.

564 To determine whether any identified overlap between GERA GWAS loci and eQTLGen or
565 GTEx eQTLs was due to a true shared association signal, we performed a colocalization
566 analysis. Colocalization was assessed by a Bayesian test using summary statistics from
567 both studies⁵¹; summary statistics from the *cis* eQTLGen and GTEx were downloaded from
568 the eQTLGen website and GTEx portal, respectively. The test was performed using the R
569 package coloc v3.2-1^{51, 52, 53}. The test provided a posterior probability for the GWAS locus
570 and the eQTL to share the same causal variant(s).

571 We integrated available epigenomic datasets to examine the role of human pancreatic islet
572 transcriptional regulation underlying rs77704739 association with type 2 diabetes. We used
573 the WashU EpiGenome Browser (<http://epigenomegateway.wustl.edu/browser/>, last access
574 on July 2019) and previously published RNA-seq, ATAC-seq and ChIP-seq assays of
575 H3K4me3, H3K27ac, Mediator, CTCF and islet transcription factors (FOXA2, MAFB,
576 NKX2.2, NKX6.1 and PDX1) in human pancreatic islets^{27, 28} and islet regulome annotations
577²⁸.

578

579 **Data Availability**

580 The complete summary statistics are deposited at the Type 2 Diabetes Knowledge portal
581 (www.type2diabetesgenetics.org/) and can be also accessed from <http://cg.bsc.es/guidance>.
582 GUIDANCE is also available at <http://cg.bsc.es/guidance>.

583

584 **Acknowledgments**

585 This work has been sponsored by the grant SEV-2011-00067 and SEV2015-0493 of Severo
586 Ochoa Program, awarded by the Spanish Government, by the grant TIN2015-65316-P,
587 awarded by the Spanish Ministry of Science and Innovation, and by the Generalitat de
588 Catalunya (contract 2014-SGR-1051). This work was supported by an EFSD/Lilly research
589 fellowship. Josep M. Mercader was supported by Sara Borrell Fellowship from the Instituto
590 Carlos III. Sílvia Bonàs was FI-DGR Fellowship from FI-DGR 2013 from Agència de Gestió
591 d'Ajuts Universitaris i de Recerca (AGAUR, Generalitat de Catalunya), and the American
592 Diabetes Association Innovative and Clinical Translational Award 1-19-ICTS-068. Cecilia
593 Salvoro received funding from the European Union's Horizon 2020 research and innovation
594 programme under the Marie Skłodowska-Curie grant agreement H2020-MSCA-COFUND-
595 2016-754433. Cristian Ramon-Cortes pre-doctoral contract is financed by the Spanish
596 Ministry of Science, Innovation, and Universities under contract BES-2016-076791.
597 Elizabeth G. Atkinson was supported by the National Institutes of Mental Health (grants
598 K01MH121659 and T32MH017119). Jose Florez was supported by NIH/NIDDK award K24
599 DK110550. This study made use of data generated by the UK10K Consortium, derived from
600 samples from UK10K COHORT IMPUTATION (EGAS00001000713). A full list of the
601 investigators who contributed to the generation of the data is available in www.UK10K.org.
602 Funding for UK10K was provided by the Wellcome Trust under award WT091310. This
603 study made use of data generated by the 'Genome of the Netherlands' project, which is
604 funded by the Netherlands Organization for Scientific Research (grant no. 184021007). The
605 data were made available as a Rainbow Project of BBMRI-NL. Samples were contributed by
606 LifeLines (<http://lifelines.nl/lifelines-research/general>), the Leiden Longevity Study
607 (<http://www.healthy-ageing.nl>; <http://www.langleven.net>), the Netherlands Twin Registry
608 (NTR: <http://www.tweelingenregister.org>), the Rotterdam studies (<http://www.erasmus-epidemiology.nl/rotterdamstudy>) and the Genetic Research in Isolated Populations
609 programme (<http://www.epib.nl/research/geneticepi/research.html#gip>). The sequencing was
610 carried out in collaboration with the Beijing Institute for Genomics (BGI). This study also
611 made use of data generated by The Haplotype Reference Consortium (HRC) accessed
612 through The European Genome-phenome Archive at the European Bioinformatics Institute
613 with the accession numbers EGAD00001002729, after a form agreed by the Barcelona
614 Supercomputing Center (BSC) with WTSI. This research has been conducted using also the
615 UK Biobank Resource (application number 31063 and 27892). The Genotype-Tissue
616 Expression (GTEx) Project was supported by the Common Fund of the Office of the Director
617 of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.
618

619 The data used for the analyses described in this manuscript were obtained from the GTEx
620 Portal on 07/16/2019. We acknowledge PRACE for awarding us access
621 to both MareNostrum supercomputer from the Barcelona Supercomputing Center, based in
622 Spain at Barcelona, and the SuperMUC supercomputer of the Leibniz Supercomputing
623 Centre (LRZ), based in Garching at Germany (proposals numbers 2016143358 and
624 2016163985). The technical support group from the Barcelona Supercomputing Center is
625 gratefully acknowledged. Finally, we thank all the Computational Genomics group at the
626 BSC for their helpful discussions and valuable comments on the manuscript. We also
627 acknowledge Elias Rodriguez Fos for designing the GUIDANCE logo.

628

629 **Authors Contributions**

630 M.G-M., R.A., J.M.M., and D.T. conceived, planned, and performed the main analyses. M.G-
631 M., J.M.M., and D.T. wrote the manuscript. M.G-M., R.A., M.P., C.R-C., F.S., J.E., C.D.,
632 E.T., and R.M.B. developed GUIDANCE. S.B-G. designed and performed the quality control.
633 S.B-G and I. M-E. performed the functional characterization. C.S performed the dominance
634 deviation test and the gene expression analysis. J.M.M., C.E.C., J.B.C, E.A., A.L., K.A.,
635 D.P., and J.C.F. contributed with UK Biobank data and analysis. S.R. and M.K. contributed
636 with FinnGen data and analysis. J.M.M. and D.T. designed and supervised the study. All
637 authors reviewed and approved the final manuscript.

638

639 **References**

- 640 1. Welter D, *et al.* The NHGRI GWAS Catalog, a curated resource of SNP-trait
641 associations. *Nucleic Acids Res* **42**, D1001-1006 (2014).
- 642 2. Manolio TA, *et al.* Finding the missing heritability of complex diseases. *Nature* **461**,
643 747-753 (2009).
- 644 3. Bonas-Guarch S, *et al.* Re-analysis of public genetic data reveals a rare X-
645 chromosomal variant associated with type 2 diabetes. *Nat Commun* **9**, 321 (2018).
- 646 4. Tam V, Patel N, Turcotte M, Bosse Y, Pare G, Meyre D. Benefits and limitations of
647 genome-wide association studies. *Nat Rev Genet*, (2019).
- 648 5. Zhu Z, *et al.* Dominance genetic variation contributes little to the missing heritability
649 for human complex traits. *Am J Hum Genet* **96**, 377-385 (2015).
- 650 6. Salanti G, *et al.* Underlying genetic models of inheritance in established type 2
651 diabetes associations. *Am J Epidemiol* **170**, 537-545 (2009).

652

653

654

655

656

657

658 7. Lettre G, Lange C, Hirschhorn JN. Genetic model testing and statistical power in
659 population-based association studies of quantitative traits. *Genet Epidemiol* **31**, 358-
660 362 (2007).

661 8. Antonarakis SE, Beckmann JS. Mendelian disorders deserve more attention. *Nat Rev Genet* **7**, 277-282 (2006).

664 9. Wood AR, *et al.* Variants in the FTO and CDKAL1 loci have recessive effects on risk
665 of obesity and type 2 diabetes, respectively. *Diabetologia* **59**, 1214-1221 (2016).

667 10. Grarup N, *et al.* Identification of novel high-impact recessively inherited type 2
668 diabetes risk variants in the Greenlandic population. *Diabetologia* **61**, 2005-2015
670 (2018).

671 11. Moltke I, *et al.* A common Greenlandic TBC1D4 variant confers muscle insulin
672 resistance and type 2 diabetes. *Nature* **512**, 190-193 (2014).

674 12. Steinthorsdottir V, *et al.* A variant in CDKAL1 influences insulin response and risk of
675 type 2 diabetes. *Nat Genet* **39**, 770-775 (2007).

677 13. Lenz TL, *et al.* Widespread non-additive and interaction effects within HLA loci
678 modulate the risk of autoimmune diseases. *Nat Genet* **47**, 1085-1090 (2015).

680 14. Goyette P, *et al.* High-density mapping of the MHC identifies a shared role for HLA-
681 DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in
682 ulcerative colitis. *Nat Genet* **47**, 172-179 (2015).

684 15. Hoffmann TJ, *et al.* Imputation of the rare HOXB13 G84E mutation and cancer risk in
685 a large population-based cohort. *PLoS Genet* **11**, e1004930 (2015).

687 16. Boomsma DI, *et al.* The Genome of the Netherlands: design, and project goals. *Eur J
688 Hum Genet* **22**, 221-227 (2014).

690 17. Genome of the Netherlands Consortium. Whole-genome sequence variation,
691 population structure and demographic history of the Dutch population. *Nat Genet* **46**,
693 818-825 (2014).

694 18. UK10K Consortium, *et al.* The UK10K project identifies rare variants in health and
695 disease. *Nature* **526**, 82-90 (2015).

697 19. 1000 Genomes Project Consortium, *et al.* An integrated map of genetic variation
698 from 1,092 human genomes. *Nature* **491**, 56-65 (2012).

700 20. McCarthy S, *et al.* A reference panel of 64,976 haplotypes for genotype imputation.
701 *Nat Genet* **48**, 1279-1283 (2016).

703 21. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate
704 genotype imputation in genome-wide association studies through pre-phasing. *Nat Genet* **44**,
705 955-959 (2012).

707 22. Xu H, *et al.* A Genome-Wide Association Study of Idiopathic Dilated Cardiomyopathy
708 in African Americans. *J Pers Med* **8**, (2018).

710 23. Hill WG, Robertson A. Linkage disequilibrium in finite populations. *Theor Appl Genet*
712 **38**, 226-231 (1968).

713
714 24. Bycroft C, *et al.* The UK Biobank resource with deep phenotyping and genomic data.
715 *Nature* **562**, 203-209 (2018).
716
717 25. Võsa U, *et al.* Unraveling the polygenic architecture of complex traits using blood
718 eQTL metaanalysis. *bioRxiv*, 447367 (2018).
719
720 26. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. *Nat Genet* **45**,
721 580-585 (2013).
722
723 27. Pasquali L, *et al.* Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-
724 associated variants. *Nat Genet* **46**, 136-143 (2014).
725
726 28. Miguel-Escalada I, *et al.* Human pancreatic islet three-dimensional chromatin
727 architecture provides insights into the genetics of type 2 diabetes. *Nat Genet* **51**,
728 1137-1148 (2019).
729
730 29. Molins B, Romero-Vazquez S, Fuentes-Prior P, Adan A, Dick AD. C-Reactive Protein
731 as a Therapeutic Target in Age-Related Macular Degeneration. *Front Immunol* **9**, 808
732 (2018).
733
734 30. Consortium EP. The ENCODE (ENCylopedia Of DNA Elements) Project. *Science*
735 **306**, 636-640 (2004).
736
737 31. Fishilevich S, *et al.* GeneHancer: genome-wide integration of enhancers and target
738 genes in GeneCards. *Database (Oxford)* **2017**, (2017).
739
740 32. Hewitt J, Walters M, Padmanabhan S, Dawson J. Cohort profile of the UK Biobank:
741 diagnosis and characteristics of cerebrovascular disease. *BMJ Open* **6**, e009161
742 (2016).
743
744 33. Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly:
745 morbidity, mortality, and costs. *Clin Geriatr Med* **25**, 563-577, vii (2009).
746
747 34. Vidal-Petiot E, *et al.* Cardiovascular event rates and mortality according to achieved
748 systolic and diastolic blood pressure in patients with stable coronary artery disease:
749 an international cohort study. *Lancet* **388**, 2142-2152 (2016).
750
751 35. R Foundation for Statistical Computing. R: A Language and Environment for
752 Statistical Computing.) (2019).
753
754 36. Lordan F, *et al.* ServiceSs: an interoperable programming framework for the Cloud.
755 *Journal of Grid Computing* **12**, 67-91 (2014).
756
757 37. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for
758 disease and population genetic studies. *Nat Methods* **10**, 5-6 (2013).
759
760 38. Loh PR, *et al.* Reference-based phasing using the Haplotype Reference Consortium
761 panel. *Nat Genet* **48**, 1443-1448 (2016).
762
763 39. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation
764 method for the next generation of genome-wide association studies. *PLoS Genet* **5**,
765 e1000529 (2009).
766

767 40. Das S, *et al.* Next-generation genotype imputation service and methods. *Nat Genet*
768 **48**, 1284-1287 (2016).

769

770 41. Purcell S, *et al.* PLINK: a tool set for whole-genome association and population-
771 based linkage analyses. *Am J Hum Genet* **81**, 559-575 (2007).

772

773 42. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation
774 PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7 (2015).

775

776 43. Lawrence M, *et al.* Software for computing and annotating genomic ranges. *PLoS*
777 *Comput Biol* **9**, e1003118 (2013).

778

779 44. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-
780 specific haplotype structure and linking correlated alleles of possible functional
781 variants. *Bioinformatics* **31**, 3555-3557 (2015).

782

783 45. Mercader JM, *et al.* Altered brain-derived neurotrophic factor blood levels and gene
784 variability are associated with anorexia and bulimia. *Genes Brain Behav* **6**, 706-716
785 (2007).

786

787 46. Millard LAC, Davies NM, Gaunt TR, Davey Smith G, Tilling K. Software Application
788 Profile: PHESANT: a tool for performing automated genome scans in UK Biobank.
789 *Int J Epidemiol* **47**, 29-35 (2018).

790

791 47. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of
792 genomewide association scans. *Bioinformatics* **26**, 2190-2191 (2010).

793

794 48. Zhou W, *et al.* Efficiently controlling for case-control imbalance and sample
795 relatedness in large-scale genetic association studies. *Nat Genet* **50**, 1335-1341
796 (2018).

797

798 49. Lumley T. rmeta: Meta-Analysis.). R package version 3.0 edn (2018).

799

800 50. Wellcome Trust Case Control C, *et al.* Bayesian refinement of association signals for
801 14 loci in 3 common diseases. *Nat Genet* **44**, 1294-1301 (2012).

802

803 51. Giambartolomei C, *et al.* A Bayesian framework for multiple trait colocalization from
804 summary association statistics. *Bioinformatics* **34**, 2538-2545 (2018).

805

806 52. Wallace C. Statistical testing of shared genetic control for potentially related traits.
807 *Genet Epidemiol* **37**, 802-813 (2013).

808

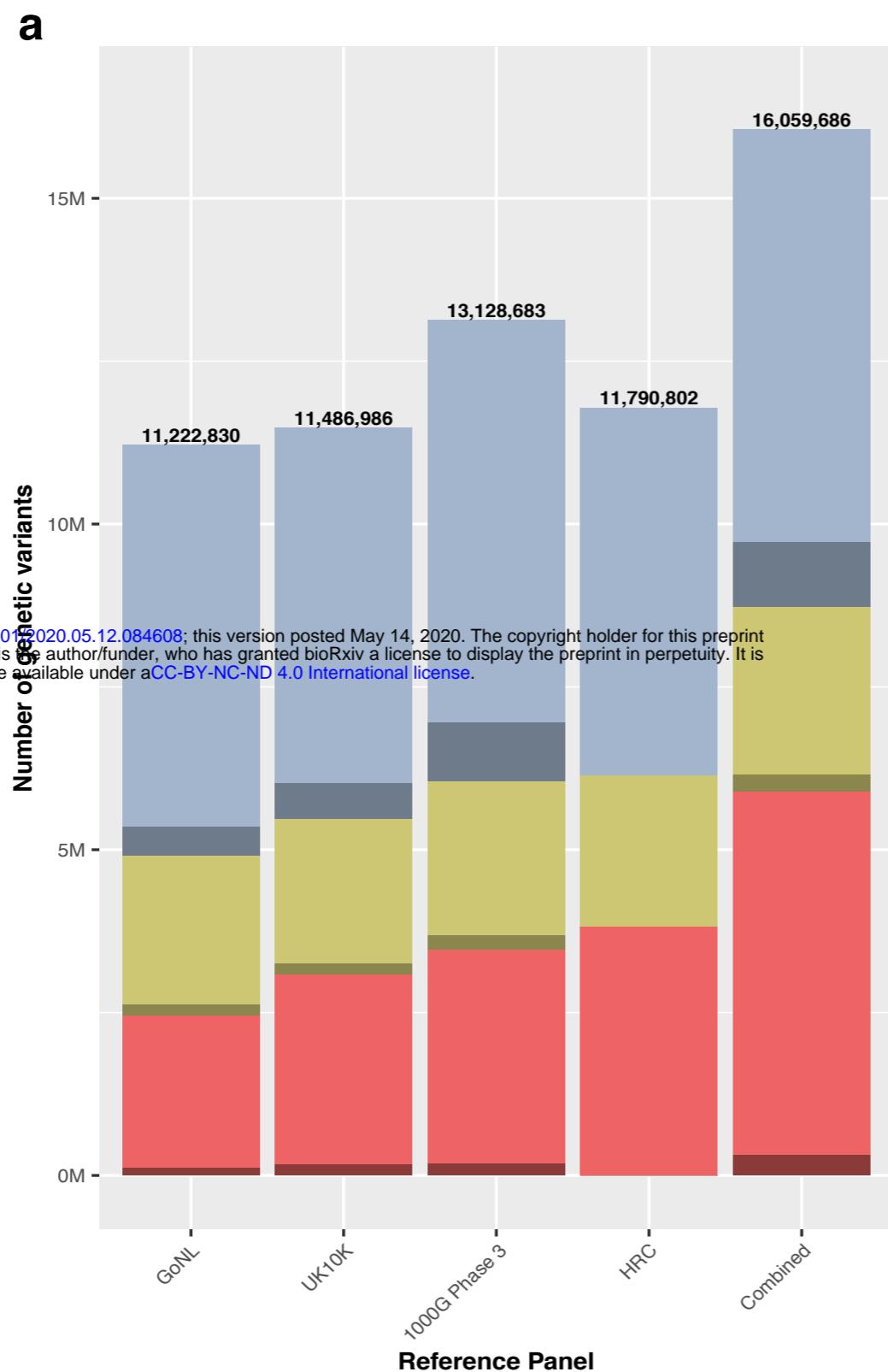
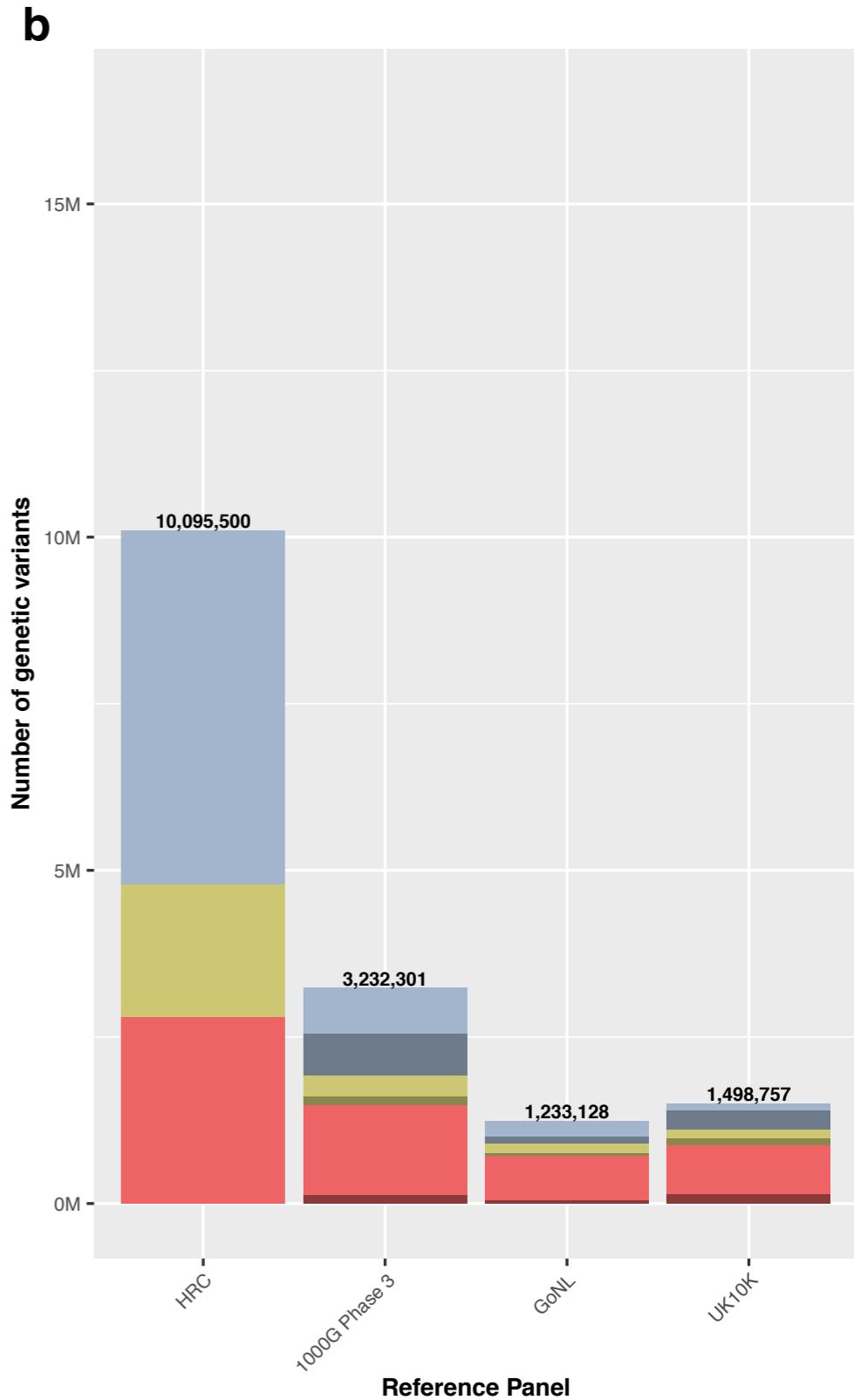
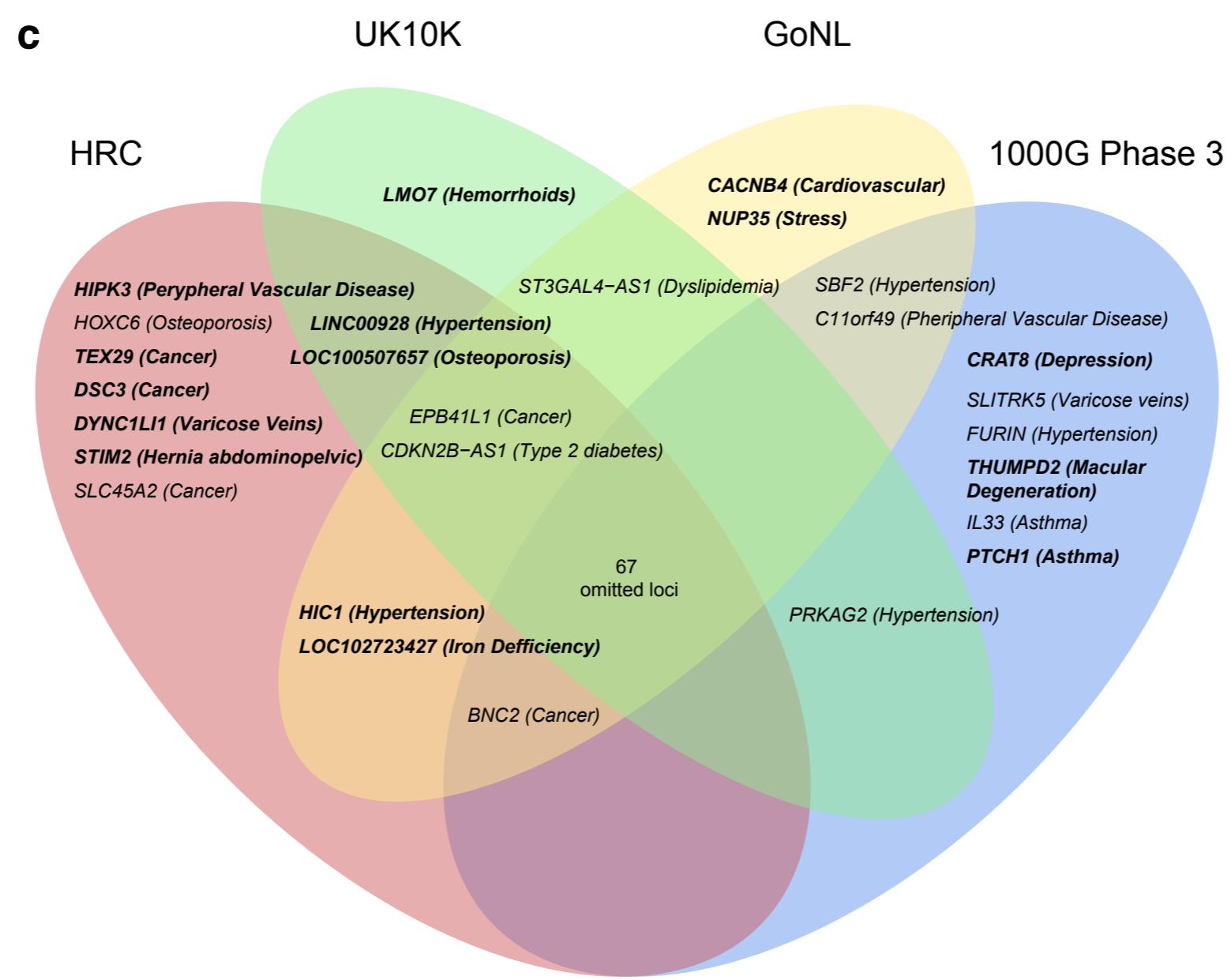
809 53. Wallace C, *et al.* Statistical colocalization of monocyte gene expression and genetic
810 risk variants for type 1 diabetes. *Hum Mol Genet* **21**, 2815-2824 (2012).

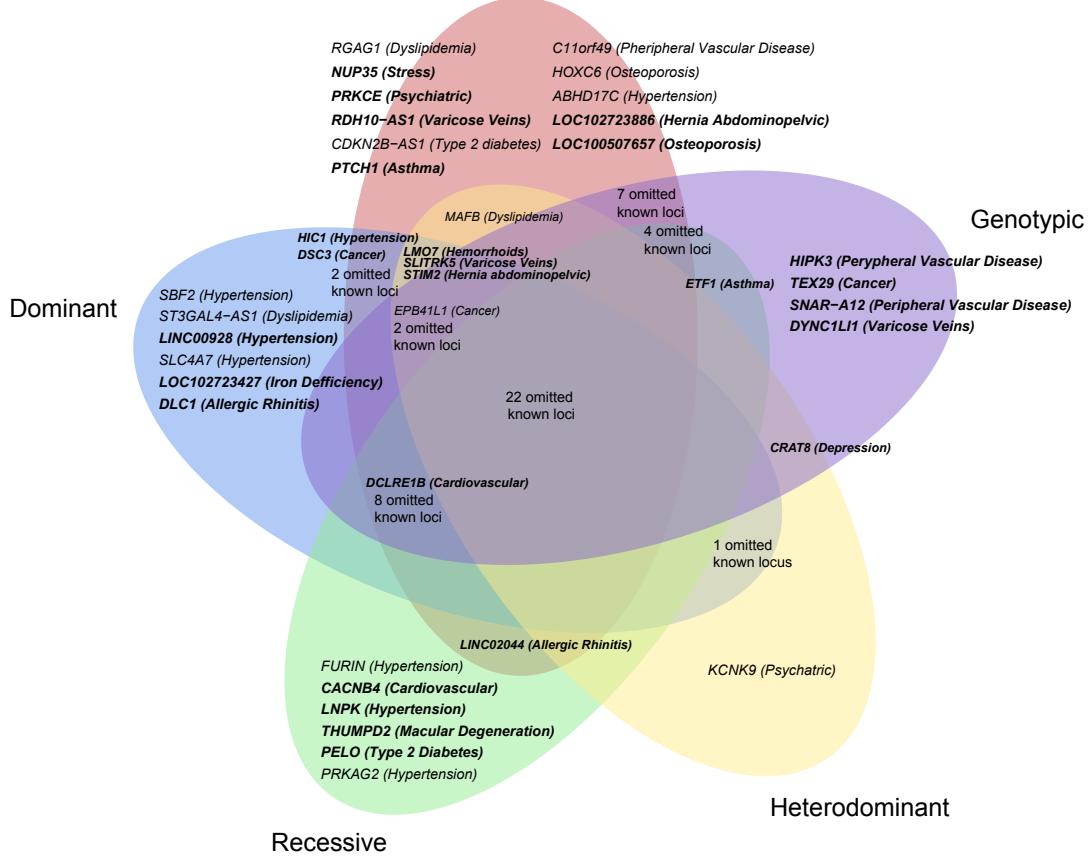
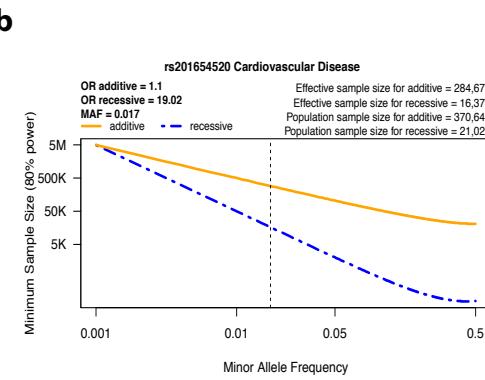
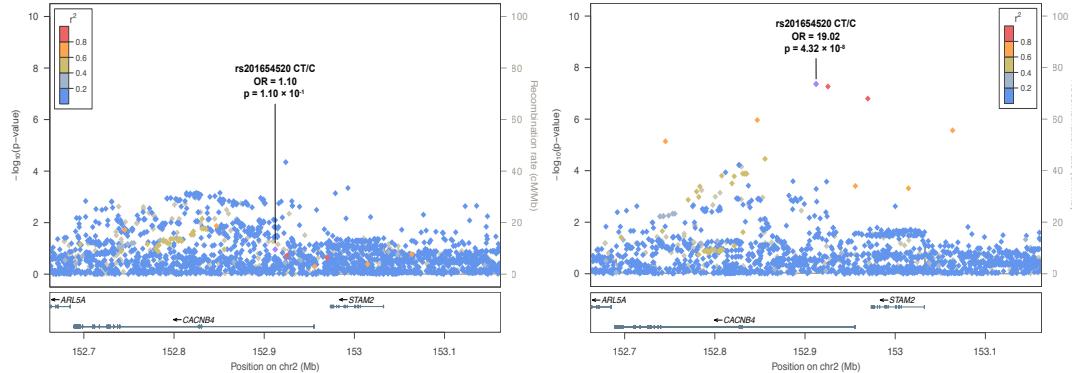
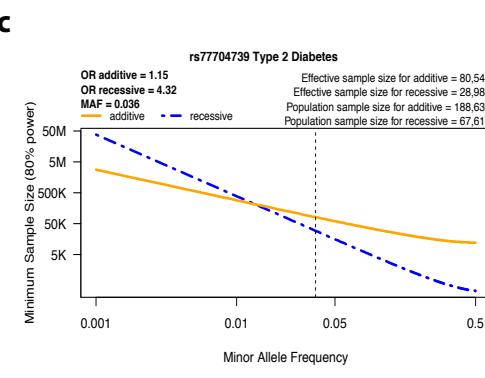
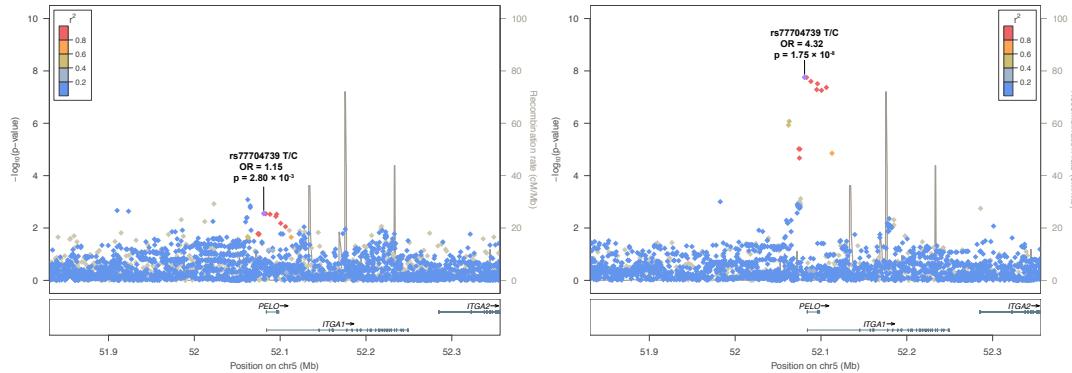
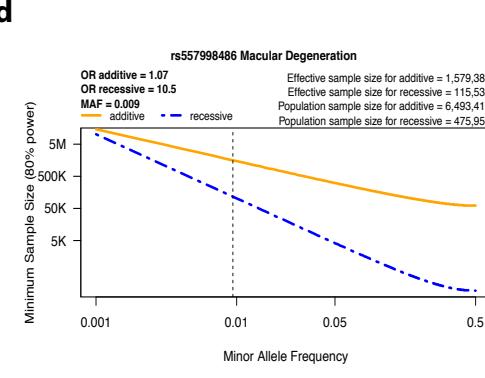
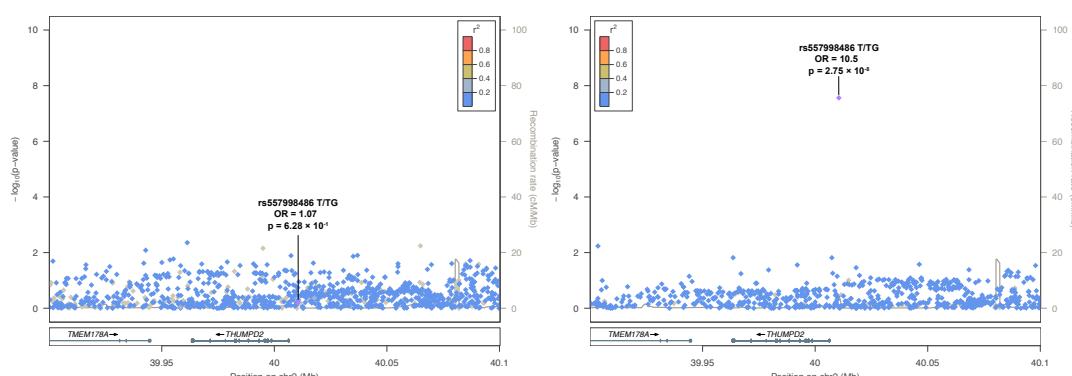
811

812 54. Lim ET, *et al.* A novel test for recessive contributions to complex diseases implicates
813 Bardet-Biedl syndrome gene BBS10 in idiopathic type 2 diabetes and obesity. *Am J*
814 *Hum Genet* **95**, 509-520 (2014).

815

816





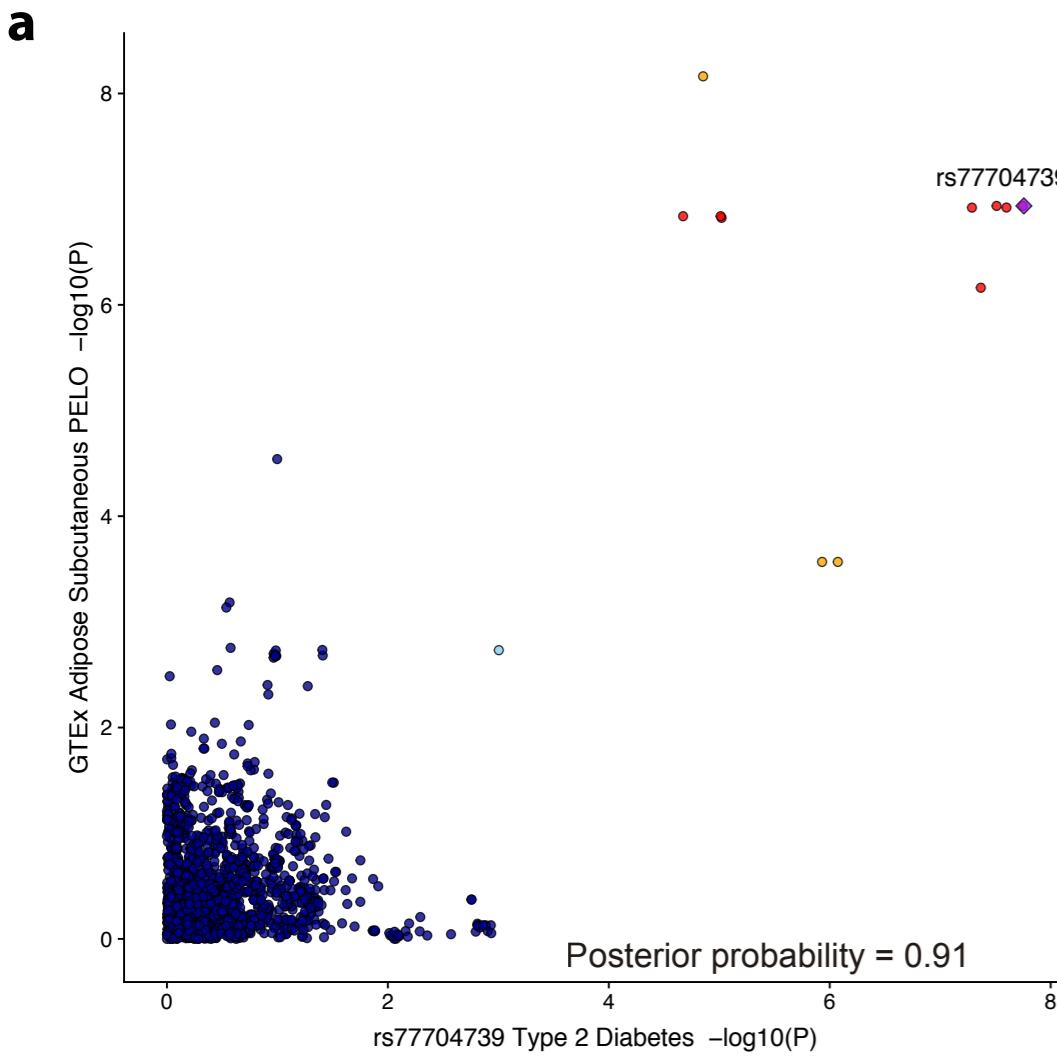
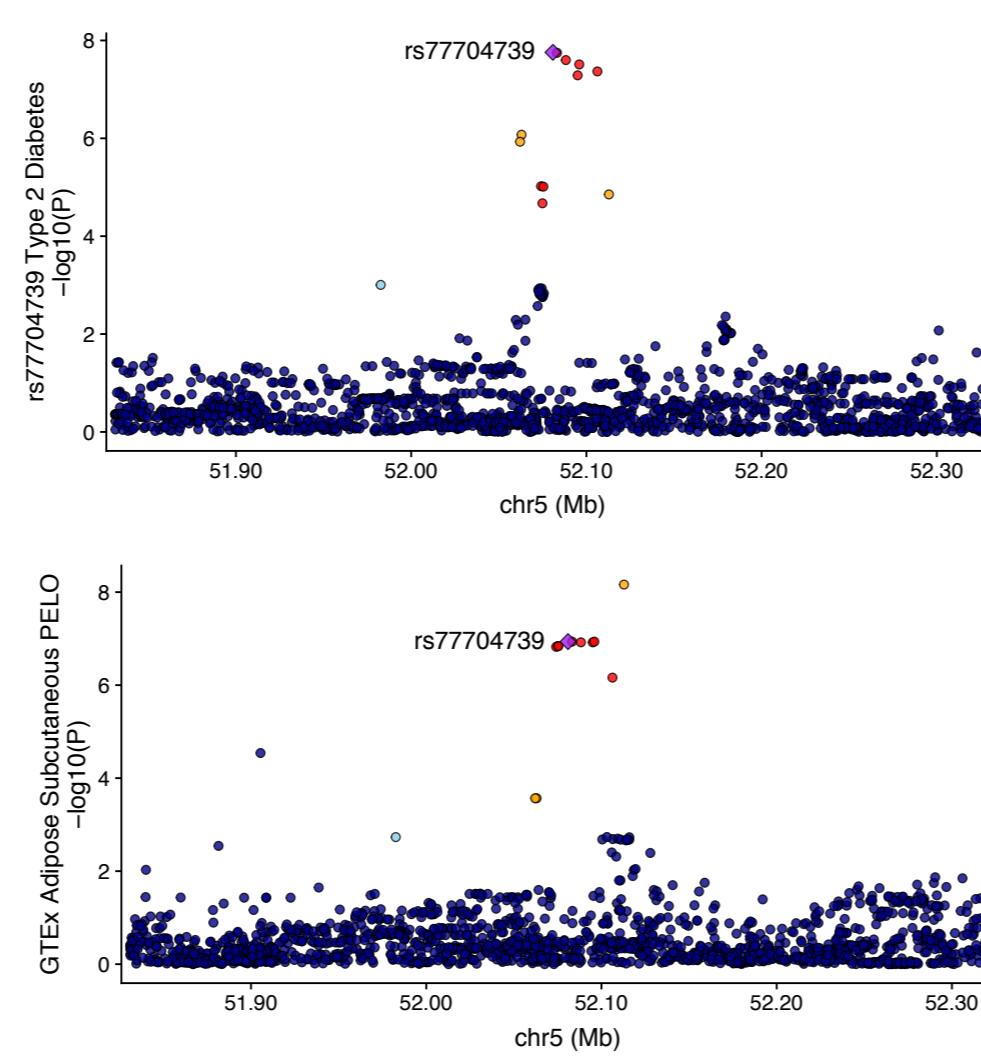
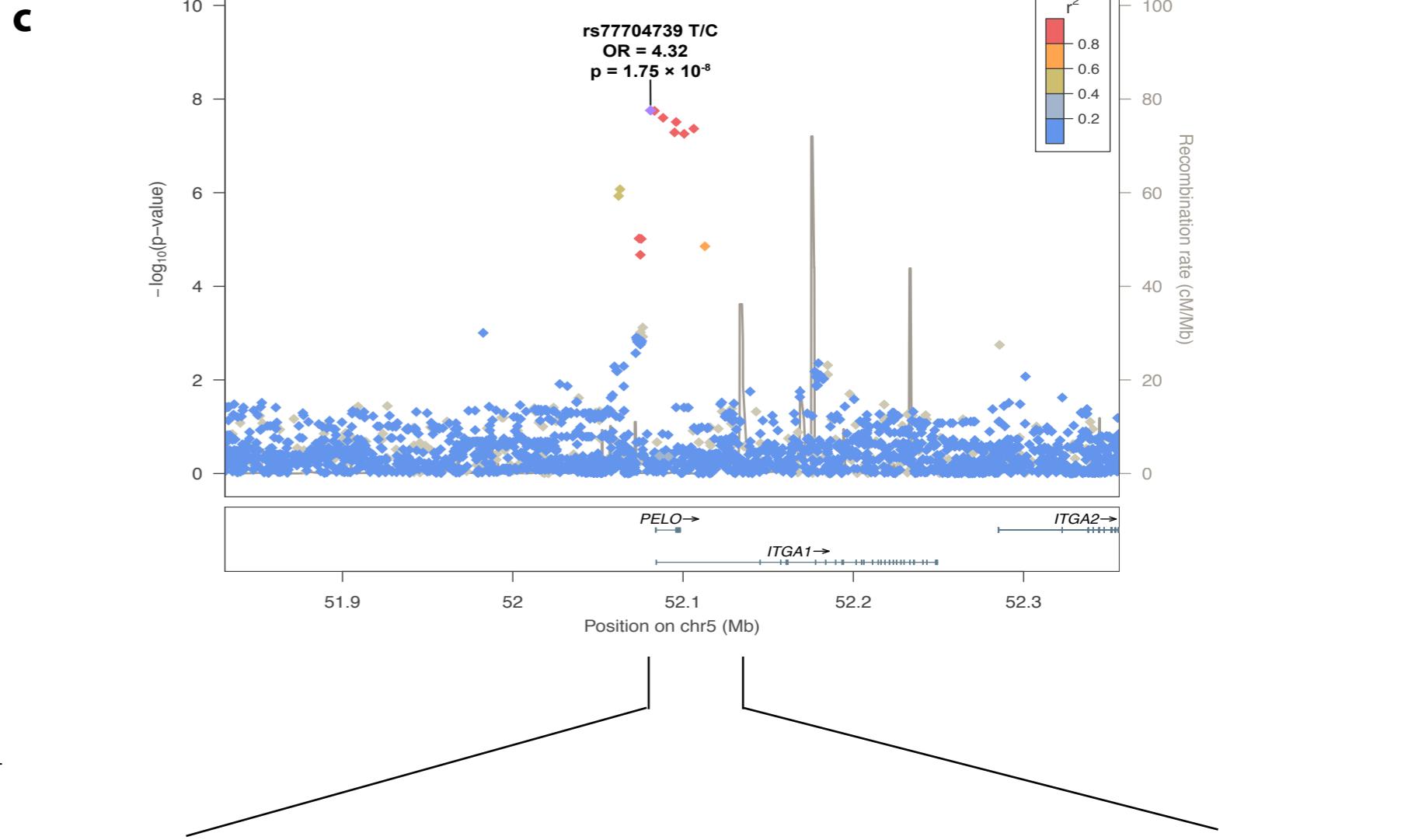
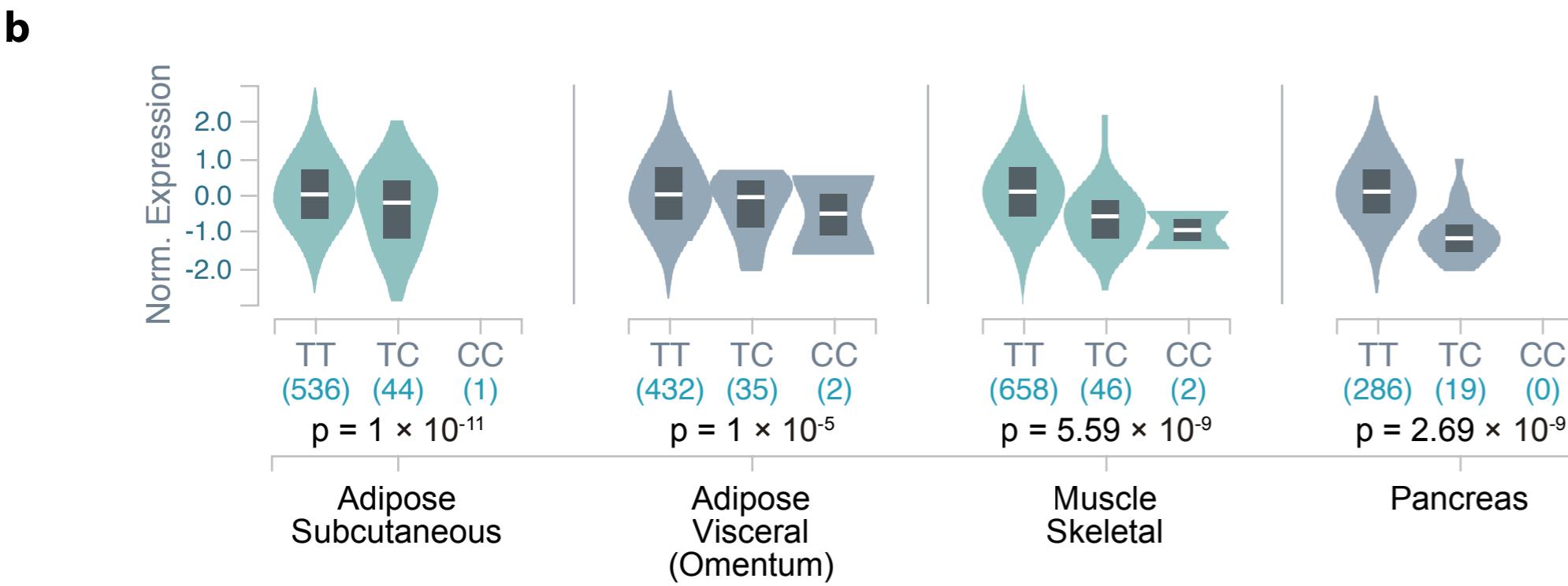
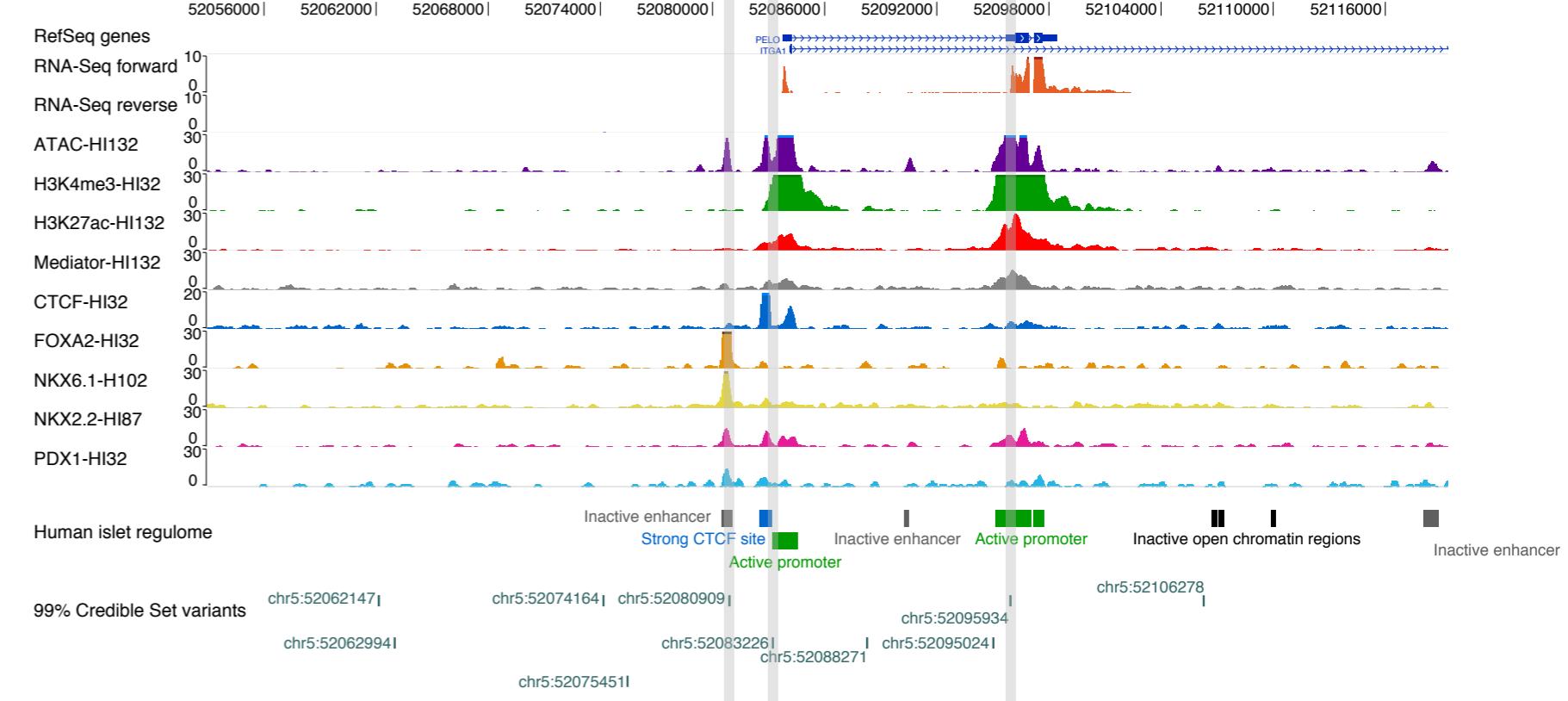


Figure legends.

Figure 1. Graphical representation illustrating the benefits of combining the results from different reference panels. **a** Comparison of the number of variants after the imputation with four reference panels (info score ≥ 0.7), and combining them, colored according to MAF and variant type (SNP vs alternative forms of variation, such as indels). As shown in the bar plot, combining the results from the four reference panels increased the final set of variants for association testing when compared with the results for each of the panels alone (GoNL, UK10K, 1000G Phase 3 or HRC), especially in the low and rare frequency spectrum. For example, we covered up to 5.5 M rare variants ($0.01 > \text{MAF} > 0.001$) by combining panels, while only 2.3 M, 2.9 M, 3.2 M and 3.8 M of rare variants were imputed independently with GoNL, UK10K, 1000G phase 3 and HRC, respectively. **b** Comparison of the contribution of each reference panel in the combined results. Each bar represents the number of variants that had the best imputation accuracy for a given reference panel. As shown in the figure, although the HRC panel showed overall higher imputation scores, as it provided around 10 of the final 16 M variants, the contribution of the other reference panels, primarily with non-SNP variants, was substantial. Indels seen in the bar plot for HRC correspond to genotyped indels. All variants with info score < 0.7 , $\text{MAF} < 0.001$ and HWE for controls $p < 1.0 \times 10^{-6}$ were filtered. **c** Venn Diagram illustrating the loci that identified by each reference panel. New loci are depicted in bold. As shown in this figure, only 67 of the 94 GWAS significant loci were identified by all four reference panels, while 27 of them (28.7%) were only identified by one, two or three of the four panels.

Figure 2. Results from the analysis of additive and non-additive inheritance models. **a** The Venn Diagram shows the number of loci that were identified when analyzing multiple inheritance models. As seen in the Venn Diagram, the strongest association for 37 of the 94 associated loci was non-additive. Moreover, the analysis of non-additive models was crucial for the identification of 14 novel (in bold) associated loci. **b** Power calculation of the rs201654520 indel in *CACNB4* associated with cardiovascular disease. The results show that the additive-based test would require a population sample size of 370,646 individuals to find this recessive association, while the population sample size needed for the recessive model was 21,021. **c** Power calculation of the rs77704739 variant near the *PELO* gene associated with type 2 diabetes. The results show that the additive-based test would require a population sample size of 188,637 individuals to find this recessive association, while the population sample size needed for the recessive model is 67,611. **d** Power calculation of the rs557998486 indel near

the *THUMPD2* gene associated with age-related macular degeneration. The results show that the additive-based test would require a population sample size of 6,493,419 individuals to find this recessive association, while the population sample size for the recessive model is 157,450.

Figure 3. Functional characterization of the rs77704739 recessive association near the *PELO* gene. **a** Signal plot for chromosome 5 region surrounding rs77704739. Each point represents a variant, with its *p*-value from the discovery stage on a $-\log_{10}$ scale in the y axis. The x axis represents the genomic position (hg19). Three credible set variants are located in open chromatin sites in human pancreatic islets, one of them classified as an active promoter and one highly bounded by pancreatic islet specific transcription factors, such as PDX1, NKX2.2, NKX6.1 and FOXA2. **b** Colocalization plots from LocusCompare for the rs77704739 variant in adipose subcutaneous tissue. As seen in the plots, the signals from both eQTL data and the recessive T2D association results colocalize. **c** Violin plot from GTEx showing that the recessive rs77704739 variant significantly modifies the expression of *PELO* gene in subcutaneous and visceral adipose tissue, skeletal muscle and pancreas. GTEx V7 was used for colocalization analyses, whereas GTEx V8 was used to generate the violin plots.

Table 1. New associations from the GERA cohort analysis

Phenotype (Cases/Controls)	CHR	Nearest Gene	Position	rsID	Alleles	MAF	Lowest P-value Model	Additive Model		Lowest P-value Model		Dominance Deviation
								OR (CI 95%)	P-value	OR (CI 95%)	P-value	
Allergic Rhinitis (13,936/42,701)	3	<i>LINC02044</i>	112,911,615	rs2399472	C/T	0.073	Additive	1.17 (1.10-1.23)	1.55×10^{-8}	1.17 (1.10-1.23)	1.55×10^{-8}	6.66×10^{-1}
	8	<i>DLC1</i>	13,164,746	rs10112506	A/G	0.390	Dominant	0.94 (0.91-0.97)	8.61×10^{-9}	0.89 (0.86-0.93)	1.54×10^{-9}	2.86×10^{-4}
Asthma (9,209/47,428)	5	<i>ETF1</i>	137,858,067	rs154073	C/T	0.429	Recessive	1.09 (1.06-1.13)	6.06×10^{-8}	1.18 (1.12-1.25)	4.23×10^{-9}	9.28×10^{-3}
	9	<i>PTCH1</i>	98,344,866	rs67053006	C/G	0.139	Additive	0.87 (0.83-0.91)	4.14×10^{-8}	0.87 (0.83-0.91)	4.14×10^{-8}	8.10×10^{-1}
Cancer (17,131/39,506)	13	<i>TEX29</i>	112,115,591	rs1386468339	C/T	0.005	Genotypic	1.68 (1.39-2.03)	1.45×10^{-7}	1.60 (1.32-1.96) / $10 (1.01-10)^*$	3.54×10^{-9}	-
	18	<i>DSC3</i>	28,442,343	rs2014497	A/G	0.008	Additive	1.50 (1.30-1.72)	2.44×10^{-8}	1.50 (1.30-1.72)	2.44×10^{-8}	6.00×10^{-1}
Cardiovascular (15,009/41,628)	1	<i>DCLRE1B</i>	114,448,752	rs10858023	C/T	0.350	Dominant	1.09 (1.06-1.12)	3.26×10^{-8}	1.14 (1.09-1.19)	2.11×10^{-9}	1.94×10^{-2}
	2	<i>CACNB4</i>	152,912,244	rs201654520	CT/C	0.017	Recessive	1.10 (0.98-1.22)	1.10×10^{-1}	19.02 (5.50-65.84)	4.32×10^{-8}	4.36×10^{-6}
Major Depression Disorder (7,264/49,373)	12	<i>CRAT8</i>	128,551,715	rs1455286248	GT/G	0.281	Heterodominant	0.94 (0.90-0.98)	3.00×10^{-3}	1.18 (1.12-1.25)	3.15×10^{-9}	1.10×10^{-6}
Type 2 Diabetes (6,967/49,670)	5	<i>PELO</i>	52,080,909	rs77704739	T/C	0.036	Recessive	1.15 (1.05-1.26)	2.80×10^{-3}	4.32 (2.70-6.92)	1.75×10^{-8}	1.92×10^{-7}
Hemorrhoids (9,129/47,508)	13	<i>LMO7</i>	76,281,808	rs186102686	C/T	0.004	Heterodominant	1.98 (1.58-2.48)	2.18×10^{-8}	1.99 (1.59-2.49)	2.03×10^{-8}	-
Hernia Abdominopelvic (6,291/50,346)	1	<i>LOC102723886</i>	219,762,581	rs2494196	C/A	0.274	Additive	1.13 (1.08-1.18)	2.03×10^{-8}	1.13 (1.08-1.18)	2.03×10^{-8}	6.87×10^{-1}
	4	<i>STIM2</i>	27,019,359	rs113180595	T/C	0.004	Heterodominant	2.17 (1.69-2.78)	1.59×10^{-8}	2.18 (1.70-2.8)	1.27×10^{-8}	-
Hypertension Disease (28,391/28,246)	2	<i>LNPK</i>	176,532,019	rs1446802	A/G	0.500	Recessive	1.07 (1.04-1.09)	1.66×10^{-6}	1.13 (1.08-1.17)	4.42×10^{-8}	6.85×10^{-3}
	15	<i>LINC00928</i>	90,081,905	rs28792763	G/A	0.462	Dominant	0.94 (0.91-0.96)	4.14×10^{-8}	0.88 (0.84-0.92)	4.42×10^{-8}	4.80×10^{-3}
	17	<i>HIC1</i>	1,959,826	rs112963849	C/A	0.082	Additive	1.15 (1.10-1.21)	1.71×10^{-8}	1.15 (1.10-1.21)	1.71×10^{-8}	8.01×10^{-1}
Iron Deficiency Anemia (2,439/54,198)	7	<i>LOC102723427</i>	67,292,424	rs79798837	C/T	0.118	Dominant	0.77 (0.70-0.85)	1.69×10^{-7}	0.74 (0.66-0.83)	3.80×10^{-8}	8.92×10^{-2}
Macular Degeneration (3,685/52,952)	2	<i>THUMPD2</i>	40,010,523	rs557998486	T/TG	0.009	Recessive	1.07 (0.81-1.41)	6.28×10^{-1}	10.5**	2.75×10^{-8}	-
Osteoporosis (5,399/51,238)	22	<i>LOC100507657</i>	27,772,054	rs139959245	C/T	0.007	Additive	1.91 (1.53-2.37)	4.79×10^{-8}	1.91 (1.53-2.37)	4.79×10^{-8}	-
Psychiatric (8,624/48,013)	2	<i>PRKCE</i>	46,278,720	rs12712961	T/A	0.452	Additive	1.10 (1.06-1.14)	1.66×10^{-8}	1.10 (1.06-1.14)	1.66×10^{-8}	2.57×10^{-1}
Peripheral Vascular Disease (4,301/52,336)	11	<i>HIPK3</i>	33,391,655	rs80274406	A/G	0.091	Genotypic	1.06 (0.98-1.15)	1.76×10^{-1}	1.17 (1.07-1.27) / $0.26 (0.13-0.53)^*$	4.26×10^{-8}	6.32×10^{-6}
	19	<i>SNAR-A12</i>	48,403,215	rs2932761	A/G	0.289	Genotypic	0.97 (0.93-1.02)	3.04×10^{-1}	1.11 (1.03-1.18) / $0.76 (0.66-0.87)^*$	3.55×10^{-8}	1.35×10^{-8}
Acute reaction to Stress (4,314/52,323)	2	<i>NUP35</i>	184,407,101	rs577242570	T/G	0.004	Additive	2.33 (1.77-3.08)	4.56×10^{-8}	2.33 (1.77-3.08)	4.56×10^{-8}	-
Varicose Veins (2,483/54,154)	3	<i>DYNC1LI1</i>	32,652,184	rs62250779	G/A	0.073	Genotypic	1.17 (1.05-1.3)	5.60×10^{-3}	1.29 (1.16-1.45) / $0.13 (0.03-0.60)^*$	2.13×10^{-8}	9.58×10^{-4}
	8	<i>RDH10-AS1</i>	74,284,818	rs2383896	A/G	0.479	Additive	1.17 (1.11-1.24)	5.00×10^{-8}	1.17 (1.11-1.24)	5.00×10^{-8}	9.88×10^{-1}
	13	<i>SLTRK5</i>	88,346,617	rs117798068	T/C	0.011	Heterodominant	2.03 (1.63-2.53)	1.59×10^{-8}	2.07 (1.66-2.59)	8.41×10^{-9}	-

CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF=Minor Allele Frequency, OR= Odds Ratio, CI= Confidence Interval

* Odds Ratio and confidence interval for heterozygous / Odds Ratio and confidence interval for effect allele homozygous calculated using the method het+hom from SNPTEST

** Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT)⁵³

Table 2. Replication of new associations with UK Biobank

CHR	rsID (Alleles) (MAF)	Best Model	Phenotype (Cases/Controls)	Stage 1. Discovery				Stage 2. Replication				Stage 1 + Stage 2. Meta-analysis				
				Additive		Best Model		Field (Cases/Controls or Sample Size)	Additive		Lowest p-value model		Additive		Lowest p-value model	
				OR (CI 95%)	P-value	OR (CI 95%)	P-value		OR (CI 95%)	P-value	OR (CI 95%)	P-value	OR (CI 95%)	P-value	OR (CI 95%)	P-value
18	rs2014497 (A/G) (0.008)	Additive	Cancer (17,131/39,506)	1.50 (1.30-1.72)	2.44×10 ⁻⁸	1.50 (1.30-1.72)	2.44×10 ⁻⁸	Self-reported: chronic lymphocytic (237/360,904)	2.13 (1.14-3.97)	3.50×10 ⁻²	2.13 (1.14-3.97)	3.50×10 ⁻²	1.52 (1.33-1.74)	1.60×10 ⁻⁹	1.52 (1.33-1.74)	1.60×10 ⁻⁹
								Self-reported: kidney/renal cell cancer (473/360,668)	1.75 (1.07-2.86)	4.25×10 ⁻²	1.75 (1.07-2.86)	4.25×10 ⁻²	1.51 (1.32-1.73)	1.49×10 ⁻⁹	1.51 (1.32-1.73)	1.49×10 ⁻⁹
								C69 Malignant neoplasm of eye and adnexa (146/361,048)	2.51 (1.19-5.3)	3.56×10 ⁻²	2.51 (1.19-5.3)	3.56×10 ⁻²	1.52 (1.33-1.75)	1.95×10 ⁻⁹	1.52 (1.33-1.75)	1.95×10 ⁻⁹
1	rs2494196 (C/A) (0.274)	Additive	Hernia Abdominopelvic (6,291/50,346)	1.13 (1.08-1.18)	2.03×10 ⁻⁸	1.13 (1.08-1.18)	2.03×10 ⁻⁸	Self-reported: umbilical hernia (328/360,813)	1.42 (1.21-1.67)	2.31×10 ⁻⁵	1.42 (1.21-1.67)	2.31×10 ⁻⁵	1.15 (1.10-1.19)	5.35×10 ⁻¹¹	1.15 (1.10-1.19)	5.35×10 ⁻¹¹
								K40 Inguinal hernia (13,365/347,829)	1.09 (1.06-1.12)	3.95×10 ⁻¹⁰	1.09 (1.06-1.12)	3.95×10 ⁻¹⁰	1.10 (1.08-1.12)	7.78×10 ⁻¹⁷	1.10 (1.08-1.12)	7.78×10 ⁻¹⁷
								K41 Femoral hernia (475/360,719)	1.44 (1.26-1.64)	1.24×10 ⁻⁷	1.44 (1.26-1.64)	1.24×10 ⁻⁷	1.16 (1.11-1.21)	2.26×10 ⁻¹²	1.16 (1.11-1.21)	2.26×10 ⁻¹²
								K42 Umbilical hernia (2,623/358,571)	1.29 (1.22-1.37)	1.14×10 ⁻¹⁷	1.29 (1.22-1.37)	1.14×10 ⁻¹⁷	1.19 (1.15-1.22)	2.94×10 ⁻²²	1.19 (1.15-1.22)	2.94×10 ⁻²²
								K43 Ventral hernia (2,470/358,724)	1.18 (1.11-1.25)	1.77×10 ⁻⁷	1.18 (1.11-1.25)	1.77×10 ⁻⁷	1.15 (1.11-1.19)	1.99×10 ⁻¹⁴	1.15 (1.11-1.19)	1.99×10 ⁻¹⁴
								Eye problems/disorders: Macular degeneration (2,726/115,164)	0.98 (0.72-1.32)	8.81×10 ⁻¹	7.58 (1.54-37.32)	4.1×10 ⁻²	1.01 (0.82-1.24)**	7.91×10 ^{-1***}	26.51 (7.57-92.85)**	3.29×10 ^{-8***}
2	rs557998486 (T/TG) (0.009)	Recessive	Macular Degeneration (3,685/52,952)	1.07 (0.81-1.41)	6.28×10 ⁻¹	10.5*	2.75×10 ⁻⁸	Self-reported: diabetes (14,114/347,027)	1.03 (0.97-1.09)	3.87×10 ⁻¹	1.88 (1.35-2.6)	4.95×10 ⁻⁴	1.06 (1.01-1.12)	1.78×10 ⁻²	2.46 (1.88-3.21)	4.68×10 ⁻¹¹
5	rs77704739 (T/C) (0.036)	Recessive	Type 2 Diabetes (6,967/49,670)	1.15 (1.05-1.26)	2.80×10 ⁻³	4.32 (2.70-6.92)	1.75×10 ⁻⁸									

CHR = Chromosome, Position = Position hg19, Alleles = Non-effect Allele / Effect Allele, MAF= Minor Allele Frequency, OR= Odds Ratio

* Odds Ratio calculated using the Recessive Allele Frequency-Based Test (RAFT)

** Obtained through a mega-analysis with UK Biobank using the "expected" method from SNPTEST

*** Obtained using METAL method "SAMPLESIZE" to combine the p-values taking into account the sample size and direction of effect.