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Abstract1

Resting-state functional magnetic resonance imaging (rs-fmri) is widely used in2

connectomics for studying the functional relationships between regions of the human3

brain. rs-fmri connectomics, however, has inherent analytical challenges, such as4

accounting for negative correlations. In addition, functional relationships between brain5

regions do not necessarily correspond to their anatomical distance, making the intrinsic6

geometry of the functional connectome less well understood. Recent techniques in natural7

language processing and machine learning, such as word2vec, have used embedding8

methods to map high-dimensional data into meaningful vector spaces. Inspired by9

this approach, we have developed a graph embedding pipeline, rest2vec, for studying10

the intrinsic geometry of functional connectomes. We demonstrate how rest2vec uses11

the phase angle spatial embedding (phase) method with dimensionality reduction12

techniques to embed the functional connectome into lower dimensions. Rest2vec can13

also be linked to the maximum mean discrepancy (mmd) metric to assign functional14

modules of the connectome in a continuous manner, improving upon traditional binary15

classification methods. Together, this allows for studying the functional connectome16

such that the full range of correlative information is preserved and gives a more informed17

understanding of the functional organization of the brain.18
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1 Introduction19

Neuroimaging data acquired from magnetic resonance imaging (mri) tend to be vast and20

high-dimensional. In particular, resting-state functional mri (rs-fmri) produces temporal21

snapshots of the brain’s default activity in the absence of tasks, offering a window into the22

functional macroscale organization of the brain. As computational tools have become more23

widely available over the past two decades, researchers have applied graph theory-based24

models to neuroimaging data to study the network properties of the brain, which has grown25

into the field of connectomics [1]. In connectomics analyses, the brain can be represented as26

an N × N matrix, where the rows and columns are the N brain regions of interest (roi),27

and the elements of the matrix represent some measure of connection between them (e.g.,28

number of fibers, Pearson correlation of blood oxygenation level-dependent (bold) time29

series). Given this volume of high-dimensional data, however, one quickly runs into the30

“curse of dimensionality.” Originally coined by Richard Bellman [2], the term refers to the31

challenge of visualizing and analyzing high-dimensional data. Because the number of points32

in a Cartesian space grows exponentially with increasing dimensions, high-dimensional spaces33

become extremely sparse, an effect known as the “empty space phenomenon.” Consequently,34

this makes understanding the properties of these data more difficult, as metric comparisons35

become less effective with increasing dimensionality [3].36

There are a variety of dimensionality reduction techniques that address this problem.37

These methods work by embedding a high-dimensional manifold, represented by the discrete38

points of the data, into a lower dimension (e.g., two or three dimensions), which can then be39

visualized. This process becomes complicated, however, if the manifold of the underlying40

data is nonlinear, as is thought to be the case with neuroimaging data [4, 5, 6, 7]. The most41

well-known example case of a nonlinear manifold is the 3d Swiss roll. Nonlinear dimensionality42

reduction techniques, such as isometric mapping (isomap), solve the characteristic Swiss roll43

problem by preserving the intrinsic geometry of nonlinear manifolds (i.e., unrolling the Swiss44

roll) in lower-dimensional spaces [8, 4].45

Negative correlations also remain a challenging factor in rs-fmri connectomics, as they46

are more difficult to interpret using network models. Simpler models generally either threshold47

out or apply other transformations to negative correlations, such as taking the absolute value;48

this process, however, likely removes substantive dynamics of brain connectivity [9]. Although49

some analyses account for negative correlations, these often introduce additional parameters50

that must be set to determine their relative contribution [9].51

Previously, we introduced probability-associated community estimation (pace) [10] and52

phase angle spatial embedding (phase) [11] to address these challenges. These methods53
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take inspiration from the Ising model from statistical mechanics, where magnetic ions are54

designated with in-phase or out-of-phase spin state configurations [12]. We adapted this55

model to describe the phase relationship between regions of the brain. Here we propose a56

novel graph embedding pipeline, rest2vec, that uses this phase angle representation with the57

nonlinear dimensionality reduction method isomap to embed the functional connectome in58

a lower-dimensional embedding based on its functional relationships. Doing so revealed a59

spatial mapping of the functional organization of the brain based on its intrinsic geometry60

when it is not constrained by neuroanatomy.61

Additionally, we show this vectorized approach has implications for detecting functional62

communities by linking rest2vec to the maximum mean discrepancy (mmd) metric. This63

was originally developed by Gretton et al. [13] as a metric describing the distance between64

probability distributions. Here, we treated the mmd as a modularity index, similar to Q-65

based maximization methods [14], such that, when maximized, it detects the sets of brain66

regions with the most dissimilar functional connectivity. By reformulating this connectome67

modularity problem in a probabilistic sense, we are able to generate community assignment68

values for each region, as opposed to a binary classification. Together, rest2vec uses nonlinear69

dimensionality reduction and manifold learning techniques to represent the functional connec-70

tome in its intrinsic geometry independent of neuroanatomy to improve our understanding of71

the macroscale organization of the brain.72

2 Methods73

2.1 Dataset description74

Two independent and publicly available rs-fmri connectome datasets composed of healthy75

subjects were used: one from the Functional 1000 (F1000) Connectomes Project [15] with76

177 regions of interest (roi) available through the usc Multimodal Connectivity Database77

(http://umcd.humanconnectomeproject.org/umcd/default/index), and one by Diez et78

al. [16] with 2514 roi available through the NeuroImaging Tools & Resources Collaboratory79

(nitrc) (https://www.nitrc.org/projects/biocr_hcatlas/). These are referred to as80

the “F1000” and “Diez” datasets hereafter. The average difference in age between male81

(N = 426, M ± SD = 28.7 ± 12.7) and female (N = 560, M ± SD = 27.9 ± 12.7) subjects82

in the F1000 dataset was 0.83 years and was not statistically significant (t(984) = 1.025,83

p = 0.306). The Diez dataset has 12 subjects (6 male) with a mean age of 33.5± 8.7 years;84

no individual subject ages were reported. The reader can consult the references for details85

regarding image acquisition parameters and preprocessing. For computational and network86
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analyses, Python version 3.7.3 scientific computing libraries from the Anaconda distribution87

were used [17, 18, 19, 20, 21, 22, 23].88

2.2 rest2vec89

The pipeline for rest2vec is shown in Figure 1. Rest2vec aims to create a graph embedding90

of rs-fmri connectomes by transforming positive and negative edges into N -dimensional91

phase angle vectors that can then be represented in a low-dimensional embedding using92

nonlinear dimensionality reduction. In brief, we first computed the probability of observing a93

negative edge between all pairs of regions across all subjects to form the probability matrix94

P−. This probability is then used to determine the phase angle Θi,j between regions to95

create the phase angle spatial embedding (phase) matrix Θ. This process embeds the phase96

relationship between all regions in the connectome in an N -dimensional Euclidean space and97

transforms the values between 0 (fully co-activating) and π/2 (fully anti-activating). The98

intrinsic functional embedding of the connectome was then visualized in two dimensions using99

the nonlinear dimensionality reduction method isomap [8]. Finally, we use kernel functions100

to link rest2vec to the maximum mean discpreancy mmd metric [13] to demonstrate how101

rest2vec can be used to study functional connectome modularity. The representative matrices102

for each step are displayed in Figure 2.103

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.10.085332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.085332
http://creativecommons.org/licenses/by/4.0/


Compute phase angle between regionsProbability of negative
correlation matrix

PHASE matrix

Probability of negative 
correlation matrix

Compute probability of negative correlationIndividual subject connectomes

MMD modularityPHASE matrix

VA VB

Dimensionality reduction

Anatomy Embedding

Figure 1: rest2vec processing pipeline. (Top) The frequency of observing a negative edge between regions
i and j across all subjects in the N × N × S array W of rs-fmri connectomes is computed to form the
probability of negative correlation matrix P−. (Middle) The phase angle transformation is applied to
compute the phase angle spatial embedding (phase) matrix Θ. (Bottom) Dimensionality reduction and mmd
modularity are used to analyze the properties of the new embedding space, where the functional connectome
is represented by its intrinsic geometry.
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Figure 2: Representative matrices for processing steps of rest2vec pipeline for each dataset. Pearson
correlation matrix W, negative probability matrix P−, phase angle spatial embedding (phase) matrix Θ,
and kernel similarity matrix K are displayed.

2.2.1 Phase angle spatial embedding (phase)104

A functional connectome derived from rs-fmri is defined as an undirected graph G(V,E),105

composed of a set of vertices V , i.e., brain regions of interest (roi), and signed, weighted106

edges E describing the measure of connectivity between them based on their bold response107

time series. Typically, some measure of correlation, e.g., Pearson correlation, between bold108

time series is used to describe the functional connectivity between roi.109

Previously, we introduced probability associated community estimation (pace) [10], and110

phase angle spatial embedding (phase) [11] for encoding resting-state fMRI connectomes111

based on the phase relationship between brain regions [11] to account for negative correlations112

in functional connectomes. We begin by briefly summarizing these procedures in the context113

of rest2vec.114

Let W be an N × N × S array (i.e., a tensor) composed of N × N weighted, signed115

functional connectomes for N regions and S subjects. Given some weight of functional116

coupling between regions i and j (e.g., Pearson correlation), we define the probability of117

negative correlation matrix P− where each element P−i,j is the probability of observing a118

negative edge between i and j defined as119

P−i,j =
1

S

S∑
s

[Wi,j,s < 0] , (1)

where Wi,j,s is the edge between regions i and j for the sth subject, and the Iverson120

bracket expression [Wi,j,s < 0] equals 1 if Wi,j,s < 0, and 0 otherwise. Because P−i,j ∈ [0, 1], it121

also follows naturally that122
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P−i,j + P+
i,j = 1. (2)

One advantage of this procedure is that the probability measure defined in Equation 1123

can be defined by the user for their specific context. By taking advantage of this relationship,124

we then define the phase angle spatial embedding (phase) matrix Θ, where the phase angle125

Θi,j between regions i and j is defined as126

Θi,j = arctan

√
P−i,j
P+
i,j

. (3)

Thus Θi,j ∈ [0, π/2], where 0 represents a fully in-phase (co-activating) relationship127

and π/2 represents a fully out-of-phase (anti-activating) relationship. Each column of Θ128

is a vector embedding each region in an N -dimensional Euclidean space such that Θ:,i =129

[Θi,1 Θi,2 · · · Θi,N ]
ᵀ ∈ [0, π/2]N .130

2.2.2 Relation of PhASE to the maximum mean discrepancy131

Here we describe how phase can be linked to the maximum mean discrepancy (mmd)132

developed by Gretton et al. [13] to address the connectome modularity problem. Following133

the formulation defined in [13], consider the random variables x and y defined on a metric134

space X equipped with the metric d, with the corresponding Borel probabilities p and q (i.e.,135

x ∼ p and y ∼ q). Given observations X := {x1, . . . , xm} and Y := {y1, . . . , yn} drawn from136

the probability distributions p and q, p = q if and only if Ex[f(x)] = Ey[f(y)] ∀f ∈ C(X ),137

where C(X ) is the space of bounded continuous functions on X . Next, given a class of138

functions F such that f : X → R, the maximum mean discrepancy (mmd) between p and q139

with respect to F is defined as140

mmd[F , p, q] := sup
f∈F

(Ex[f(x)]− Ey[f(y)]) . (4)

This can be empirically estimated given X and Y as141

mmd[F , X, Y ] := sup
f∈F

(
1

m

m∑
i=1

f(xi)−
1

n

n∑
i=1

f(yi)

)
, (5)

where m is equal to the number of observations in X and n is equal to the number of142

observations in Y .143

To apply these definitions in the context of connectomics, we use the same definitions of144

x, y, p, q, X, and Y defined above to assign each region to one of the two distributions p or q.145

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.10.085332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.085332
http://creativecommons.org/licenses/by/4.0/


Under the working assumption that the distributions of functional modules in the connectome146

are far apart (i.e., their within-module connections are greater than their between-module147

connections [24]), we thus seek to discover the arrangement of regions such that the mmd148

between them is maximized.149

Using a reproducible kernel Hilbert space (rkhs), the squared form of Equation 5 can be150

evaluated using kernel functions as151

mmd2[F , X, Y ] :=
1

m(m− 1)

m∑
i=1

m∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j 6=i

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj). (6)

From Equation 6, kernel functions can be used, in our case, to compute the kernel matrix152

K where the similarity Ki,j between regions i and j, in the case of the radial basis function153

(rbf) kernel krbf, is given by154

Ki,j = krbf(Θi,:,Θj,:) = exp

(
−σ

N∑
`=1

|Θi,` −Θj,`|2
)
, (7)

for phase angle Θ between regions i and j in reference to all other regions indexed by `,155

for N regions, using the scaling factor σ.156

Similarly, we let the cosine kernel kcos evaluating the similarity between regions i and j157

be defined as158

Ki,j = kcos(Θi,:,Θj,:) =
1

N

N∑
`=1

cos (Θi,` −Θj,`) , (8)

using the same variable definitions as rbf kernel. Because the rbf kernel has an additional159

parameter, and the cosine kernel has a geometric relation to angles, the cosine kernel is used160

here; the Taylor expansion of both these kernels can be shown to have similar leading terms.161

2.2.3 Using maximum mean discrepancy to address the connectome modularity162

problem163

Following the kernel definitions above, and the equation as described by [13] (with a modified164

notation for our purposes), let the maximum mean discrepancy (mmd) between two modules165

VA and VB be defined as166
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mmd(VA, VB)2 =
1

m2

m∑
i,j∈VA

Ki,j −
2

mn

m,n∑
i∈VA
j∈VB

Ki,j +
1

n2

n∑
i,j∈VB

Ki,j, (9)

where |VA| = m, |VB| = n, |V | = m+n = N, VA∪VB = V, VA∩VB = ∅, and i is allowed167

to equal j.168

We seek to find a partition between VA and VB such that Equation 9 is maximized. First,169

we can rewrite mmd(VA, VB)2 = yᵀKy for y ∈ RN×1 and K ∈ RN×N , where170

yi =


1
m

if i ∈ VA

− 1
n

if i ∈ VB
. (10)

Thus we define the optimal partition Modularity(V ) into modules VA and VB as171

Modularity(V ) = argmax
VA,VB

VA∪VB=V
VA∩VB=∅

mmd(VA, VB)2. (11)

This maximization problem can be approximated in a simplified way by relaxing Equa-172

tion 11 to a Rayleigh quotient maximization problem. Letting y be defined as above, where173

‖y‖ =

(
N

mn

)1/2

, (12)

we perform change of variables to the unit length vector v, where174

v =
(mn
N

)1/2
y, (13)

and ‖v‖2 = 1, vᵀ1 = 0, where 1 = [1 · · · 1]ᵀ, 1 ∈ RN×1. Then we can rewrite Equation 11175

in terms of v to define the partition that maximizes mmd(VA, VB)2 as176

Modularity(V ) = argmax
‖v‖=1
vᵀ1=0

N

mn
v
ᵀ
Kv. (14)

To compute mmd(VA, VB)2 in Equation 14 requires a priori knowledge of m and n.177

Assuming that N is large and that the two communities VA and VB are approximately the178

same size such that |m−n| ∈ o(N), the normalization factor in Equation 14 can be simplified179

to180

9

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.10.085332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.085332
http://creativecommons.org/licenses/by/4.0/


Modularity(V ) u
4

N
argmax
‖v‖=1
vᵀ1=0

v
ᵀ
Kv. (15)

Finally we relax the constraints of v from vi ∈
{√

|VB |
N |VA| ,−

√
|VA|
N |VB |

}
taking only two181

values to taking any real values such that v∗ ∈ RN . These relaxed constraints allow us to182

conveniently reframe Equation 14 as a Rayleigh quotient maximization problem. We account183

for arbitrary origin for the Rayleigh quotient maximization by centering the kernel similarity184

matrix K to K̃ = CNKCN , where the centering matrix CN = IN − 1
N

JN , CN ∈ RN×N ,185

IN ∈ RN×N is the identity matrix, and JN ∈ RN×N is the ones matrix (i.e., 11ᵀ).186

Rather than finding mmd(VA, VB)2 as a function of the partition, we approximate the187

optimal partition Modularity(V ) by finding the vector v∗ that maximizes the Rayliegh188

quotient such that189

Modularity(V ) u
4

N
argmax

v∗ 6=0
v∗∈RN

v∗ᵀK̃v∗

v∗ᵀv
. (16)

We can then compute the mapping vector v∗ that maximizes the Rayleigh quotient by190

computing the eigenvector q of K̃ corresponding to the largest eigenvalue λmax of K̃. Similar191

to the Fiedler vector in spectral clustering methods [25], the elements of q assign both192

community affiliation based on its sign (+ or −) as well as magnitude. Further, q can be193

binarized to determine discrete community labels for each region as194

v∗ =

i ∈ VA if qi ≥ 0

i ∈ VB if qi < 0
, ∀ i = 1, 2, 3, . . . N. (17)

2.2.4 Nonlinear dimensionality reduction195

Isomap [8] was used to reduce the phase matrix Θ ∈ RN×N to a d-dimensional embedding196

Y ∈ RN×d, where d < N . Isomap is advantageous for this procedure as it is a nonlinear197

technique, using methods such as Dijkstra’s algorithm [26] to compute the geodesic distances198

between vertices in high-dimensional space. By doing so, isomap addresses the Swiss roll199

problem faced by traditional linear methods such as pca and mds [8]. In our case, we used200

k = 12 and k = 50 nearest neighbors, for the F1000 and Diez datasets, respectively, to reduce201

to three dimensions using the Isomap implementation in the Scikit-learn version 0.21.3 library202

[22]. Because the isomap procedure centers data about the origin, and by Equation 3 the203

phase angle between perfectly in-phase regions is zero, we analyzed each region’s Euclidean204

distance to the origin in this space to observe how the phase relationship between regions205
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is preserved with respect to its low-dimensional embedding. After generating the isomap206

embedding, the distance Di to the origin of the isomap space [0 · · · 0] ∈ R1×d for the ith207

region was calculated using the Euclidean distance208

Di = ‖Yi,:‖ =
√
Y 2
i,1 + Y 2

i,2 + Y 2
i,3 + · · ·+ Y 2

i,d, ∀ i = 1, 2, 3, . . . , N, (18)

where N is equal to the number of regions. Because of its natural representation for209

distance to the origin, the first two dimensions were transformed to polar coordinates of210

radius r and angle θ using the polar transformation211

r =
√
x2 + y2 (19)

θ = atan2(y, x) (20)

to visualize the functional embedding space.212

2.3 Analyses213

2.3.1 k-means clustering214

k-means clustering was used to formally classify clusters for regions (such as the precuneus)215

that had heterogeneous mappings in the isomap embedding. The k-means clustering algorithm216

was performed using the Scikit-learn implementation [22] for k = 2 clusters in the isomap217

embedding. The same seed value was used to ensure reproducible results.218

To determine how affiliated other (non-precuneus) regions were to either of the two219

clusters, regions were first assigned to the precuneus cluster they were closest to in the220

isomap embedding. A diverging cluster affiliation scale was computed based on the Euclidean221

distance of each region to its precuneus cluster’s centroid in the isomap embedding, which222

we termed “intrinsic functional distance,” such that regions with more positive or negative223

values were closer to the centroid of their respective precuneus cluster. The cluster affiliation224

ai was defined as225

ai =

max (dC0)− dC0,i if i ∈ C0

dC1,i −max (dC1) if i ∈ C1

, (21)

where d is the intrinsic functional distance from region i to the centroid of cluster C.226
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2.3.2 Statistics227

The StatsModels library version 0.10.1 for Python [27] was used for statistical analyses.228

Student’s independent t-test was used to test if there were any differences in age between229

male and female subjects for the F1000 dataset. The ordinary least squares (ols) method230

was used to fit the parameters for the linear regression between isomap distance to origin231

and phase angle.232

2.3.3 Visualization233

Graphics were drawn using the Matplotlib version 3.1.1 [20] and Seaborn version 0.9.0 [21]234

libraries using Python version 3.7.3 from the Anaconda distribution [17]. Glass brain figures235

were visualized using the plot_connectome function from the Nilearn version 0.6.2 library236

[28]. Inkscape version 0.92 was used for final arrangement of some figures [29].237

Brain surface plots were created by representing the N × 4 array, consisting of the mni238

(x, y, z)-coordinates for all N regions, and the N×1 vector containing the data value associated239

with each region, as a 3d volume. For brain distance maps, the intrinsic functional distance240

vector was made by computing the Euclidean distance between the mean (x, y)-coordinates241

of the anatomical region in the isomap embedding and all other regions. For regions that242

had heterogeneous mapping (i.e., multiple clusters) in the isomap space, k-means clustering243

was performed to calculate cluster affiliations for each region as described in §2.3.1.244

The 3d volume containing the original data was then interpolated using a linear grid245

interpolation and registered to the mni template volume with 12 degrees of freedom using246

the FLIRT tool in the fsl [30] interface from the Nipype version 1.3.0-rc1 library [31].247

The interpolated 3d volume was mapped to the Freesurfer pial surface template using the248

vol_to_surf function from the Nilearn library. The surface data was then visualized using249

the plot_surf_stat_map function from the Nilearn library.250

2.3.4 Code251

All code used to produce the results and figures is available online via GitHub (https:252

//github.com/zmorrissey) and our laboratory website (http://brain.uic.edu/).253
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3 Results254

3.1 Distance in the lower-dimensional embedding preserves phase255

angle relationships256

After applying the rest2vec pipeline to the F1000 and Diez datasets, we sought to assess257

how a region’s lower-dimensional isomap embedding related to its phase vector. From258

Equation 3, lower values of Θi,j indicate a more in-phase relationship between regions. Thus we259

hypothesized that more in-phase regions would be embedded closer to the origin of the isomap260

space, whereas more out-of-phase regions would be embedded further from the origin. The 2-261

norm of eachN -dimensional vector of the phase matrix ‖Θi,:‖ was used as a summary measure262

of each region’s overall phase value. For each dataset, there was a statistically significant263

positive correlation between each region’s ‖Θi,:‖ and its distance from the origin of the 3d264

isomap embedding (F1000 dataset: F (1, 175) = 200.7, R2 = 0.534, r = 0.731, p < 0.0001;265

Diez dataset: F (1, 2512) = 533.4, R2 = 0.175, r = 0.418, p < 0.0001) (Figure 3, left). This266

pattern can be seen when the rows and columns of the phase matrix are sorted by ascending267

‖Θi,:‖ values, in particular for the coarser parcellation from the F1000 dataset (Figure 3,268

right). Together this suggests that regions mapped closer to the origin were more in-phase269

with other regions, whereas more out-of-phase regions were mapped further from the origin.270
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Figure 3: Relationship between phase angle and isomap embedding distance. (Left) Correlation between the
2-norm of each region’s phase angle vector ||Θi,:|| and its distance to the origin of the 3d isomap embedding.
Dashed orange line represents the best fit of the linear model. Shaded region around line represents the 95%
confidence interval of the model. F1000 dataset: r = 0.731; Diez dataset: r = 0.418. (Right) The phase
matrix Θ with its rows and columns sorted in ascending order by ||Θi,:|| (i.e., lowest values correspond to
upper left, highest values to lower right).

To examine this relationship further, we faceted the anatomical and functional embeddings271

by anatomical lobe affiliation ranked by ascending distance to the origin (Figure 4). Notably,272

the brainstem displayed the most centrally-embedded regions (median distance = 6.9), followed273

by (in ascending order): sub-lobar, limbic lobe, temporal lobe, frontal lobe, cerebellum, parietal274

lobe, and occipital lobe regions. At the other extreme, the occipital lobe displayed the most275

distant and densely clustered representation in the embedding space (median distance = 24).276

Examination of the phase angle vectors for occipital lobe regions revealed highly in-phase277

relationships within the occipital lobe, while regions outside the occipital lobe were mostly278

out-of-phase (SI Figure 15). Since the occipital lobe and large portions of the parietal lobe279

(e.g., motor cortices), and cerebellum are mapped further in the periphery, this suggests280

that regions involved in primary sensory processing are mapped further in the periphery,281

while regions such as the brainstem, thalamus, and heteromodal areas have more in-phase282

relationships and are mapped closer to the origin.283
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Figure 4: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation
and ranked by ascending distance to origin. (Top) Merged representations of all 2514 regions in the anatomical
embedding (columns 1-3), functional embedding (column 4) and kernel density estimate of distance to origin
for all regions within each lobe (column 5). (Bottom) Facet of data for each anatomical lobe. Rows are
arranged from top to bottom in ascending order of median distance from the origin from top to bottom.
Color indicates lobe affiliation. Higher saturation indicates increasing distance from the origin. Dashed gray
lines in kernel density estimate plots indicate the median distance.
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3.2 Intrinsic functional distance can detect biologically-relevant284

connectivity gradients285

Given that the distance to the origin of the isomap embedding preserved phase coupling286

characteristics across anatomical regions, we next asked if the intrinsic functional distance287

between regions in this space could reveal biologically-relevant connectivity patterns. When288

the intrinsic functional distance to the occipital lobe is mapped as a color gradient on the289

brain surface, the dorsal and ventral visual streams [32, 33, 34] become apparent (Figure 5),290

consistent with the hypothesis that distance in this embedding space preserves functionally291

relevant information. In contrast, the hippocampus also has a relatively homogeneous cluster292

in the isomap embedding, but has a much more distributed surface map gradient to regions293

of the default mode network (dmn), such as the precuneus, prefrontal cortex, thalamus, and294

inferior parietal lobule (Figure 6).295

While certain anatomical regions showed a relatively homogeneous clustering in the isomap296

embedding, such as the occipital lobe, others showed heterogeneous clustering patterns. Thus297

we hypothesized that rest2vec could be used to identify functional subnetworks within298

individual regions based on their clustering within the isomap embedding. As a test case, we299

examined the isomap embedding pattern for the precuneus, which is known to participate300

in different networks across its dorsal-anterior/ventral-posterior axes [35, 36]. The bivariate301

kernel density estimate plot of the precuneus roi in the Diez dataset appeared to indicate302

two predominant clusters, which were formally assigned using k-means clustering (Figure 7,303

top). A larger cluster was made that included all other regions in the Diez dataset by304

assigning regions to the precuneus cluster they were closer to. We then measured the305

intrinsic functional distance between each region to its precuneus cluster centroid to assign306

an affiliation value to each region (Figure 7, top right). The brain surface map projection307

of these data demarcated these two cluster centroids into the dorsal-anterior precuneus308

and the ventral-posterior precuneus (Figure 7, bottom). The dorsal-anterior cluster of the309

precuneus was most strongly affiliated with the occipital and superior parietal regions, as well310

as the paracentral lobule, middle and superior temporal cortices, and thalamus (Figure 7,311

middle). The ventral-posterior cluster of the precuneus was most strongly affiliated with312

the hippocampus, cuneus, cerebellum, parahippocampal cortex, posterior cingulate cortex,313

calcarine cortex, amygdala, and superior occipital cortices. These results suggest that rest2vec314

can identify distinct functional networks within individual regions.315
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Figure 5: Occipital lobe intrinsic functional distance mapping. (Top left) Kernel density estimate plot of the
occipital lobe regions in the isomap embedding. (Top right) Intrinsic functional distance to the occipital lobe
for all regions. Darker color indicates the region is closer to the mean occipital lobe coordinate. (Bottom)
Intrinsic functional distance to the occipital lobe projected onto the Freesurfer pial surface template. Arrows
indicate the dorsal and ventral visual streams. A: anterior. P: posterior.
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Figure 6: Hippocampus intrinsic functional distance mapping. (Top left) Kernel density estimate plot of the
hippocampus regions in the isomap embedding. (Top right) Intrinsic functional distance to the hippocampus
for all regions. Darker color indicates the region is closer to the mean hippocampus coordinate. (Bottom)
Intrinsic functional distance to the hippocampus projected onto the Freesurfer pial surface template. A:
anterior. P: posterior.
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Figure 7: Identifying subnetwork clusters within the precuneus using rest2vec. (Top, left) Kernel density
estimate of the precuneus in the isomap embedding. (Top, middle) k-means clustering results are indicated
in blue and orange. (Top, right) Cluster affiliations for all other regions based on their minimum intrinsic
functional distance to their precuneus cluster centroids. Darker color indicates that region is closer to the
centroid of its cluster. (Middle) Strip plot of the ten regions with the greatest mean affiliation for each cluster.
Points represent individual roi. Vertical bars indicate the mean. (Bottom) Brain surface map of cluster
affiliations for the precuneus. The precuneus is outlined by a dashed line in the medial view. A: anterior. P:
posterior.
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3.3 Maximizing maximum mean discrepancy partitions the connec-316

tome into putative task-positive and task-negative networks.317

Since rest2vec could identify functionally relevant connectivity gradients within anatomical318

lobes, we next asked if rest2vec could be used to partition rs-fmri connectomes into functional319

modules. To address this, we used the maximum mean discrepancy (mmd) metric developed320

by [13] to partition the set of connectome regions V into two distributions of regions VA and321

VB such that the mmd between them was maximized. A cosine kernel (Equation 8) was322

used to compute the centered kernel similarity matrix K̃ between all pairwise regions of Θ323

(cf. Figure 2). Similar to spectral clustering methods, we approximated the maximum mmd324

by reformulating the mmd to a Rayleigh quotient maximization problem (§2.2.3), where the325

eigenvector q corresponding to the maximum eigenvalue was extracted to yield the community326

assignment vector. (Ranking of the eigenvectors of K̃ showed the first three eigenvalues327

account for most of the variance of the data, with the first being most dominant (Figure 8).)328

To set the partition, the index of regions corresponding to qi ≥ 0 were assigned to VA, and329

the index of regions corresponding to qi < 0 were assigned to VB. This approach was validated330

by iteratively evaluating the mmd across 50 threshold values of q (Figure 9). The results331

suggest that the mmd is maximized when the partition yields communities of approximately332

equal size, which occurs for both datasets when the partition threshold for qi ≈ 0. Together333

this suggests that the Rayleigh quotient maximization approximation is able to achieve an334

accurate approximation of the global maximum mmd.335
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Figure 8: Eigenvalues of K̃ for each dataset. Insets depict the first ten eigenvalues.
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Figure 9: Evaluation of the maximum mean discrepancy (mmd) across a range of threshold values of q
for each dataset. (Top) Histogram of the eigenvector q corresponding to the maximum eigenvalue of the
centered kernel matrix K̃. (Middle) Size of each partition as a function of threshold value. (Bottom) mmd as
a function of threshold value.

Similar to the previous analysis in Figure 4, we visualized the anatomical and functional336

embedding by community affiliation to see how each lobe participates in the two communities337

predicted by maximizing the mmd. We observed a symmetrical partition between the two338

communities when viewed in the functional embedding space (Figure 10). Additionally, when339

the magnitude and sign of qi are mapped to a diverging colormap in the isomap space, it340

was observed that regions closer to the vertical axis appeared more neutral, whereas regions341

further from the vertical axis were polarized into either community, suggesting these regions342

are more strongly mapped into that community. When further examining the regions that343

are affiliated with each community, we observed that the partition demarcated into the344

putative task-positive network (tpn) and task-negative network (tnn, also called default345

mode network (dmn)). This relationship can be seen when the mmd eigenvector gradient346

is used to sort the Θ matrix for each datasets, where the resulting grid communities show347

out-of-phase relationships with the other community (Figure 11). This can also be observed348

anatomically when the eigenvector gradient is mapped to the brain surface (Figure 12).349
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When the brain is faceted by lobe affiliation, several notable patterns emerge. The frontal350

lobe is demarcated into the prefrontal cortex (pfc) and pre-motor areas and dorsolateral351

pfc anatomically, which are respectively situated in opposite quadrants of the functional352

embedding. In addition, the parietal lobe is split largely into default mode network (dmn)353

regions – including regions of the inferior parietal lobule and precuneus – and primary and354

secondary unimodal areas, including somatosensory cortices and areas involved in visual355

processing. Consistent with this observation, the occipital lobe has the largest proportion of356

regions belonging to the putative tpn at 83.42%. Taken together, these data suggest that357

maximizing the mmd in the context of vectorized connectomes is able to recover biologically-358

relevant network characteristics, while also accounting for the presence of negative edges,359

thereby removing heuristic steps that may bias downstream analyses as a result.360

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.10.085332doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.085332
http://creativecommons.org/licenses/by/4.0/


Figure 10: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation
with predicted community partitions. (Top) Merged representations of all 2514 regions in anatomical
embedding (columns 1-3), functional embedding (column 4), and the percentage of regions within each
community for each lobe (column 5). (Bottom) Facet of data for each anatomical lobe. Rows are arranged
from top to bottom in ascending order of median distance from the origin. Color indicates community
affiliation. Vertical gray reference line for each stacked barplot indicates 50%.
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Figure 11: Community partition gradient given by the top eigenvector q of the kernel similarity matrix K̃.
The phase matrix Θ for the F1000 and Diez datasets are shown with rows and columns sorted (in ascending
order) by the elements of q. Grid lines indicate the community partition (upper left and lower right).
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Figure 12: Brain surface map of the MMD partition gradient for the Diez dataset projected onto the
Freesurfer pial surface template. Color indicates the interpolated value of qi. A: anterior. P: posterior.
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4 Discussion361

In this study we presented a novel graph embedding approach for rs-fmri connectivity using362

rest2vec. Rest2vec improves upon current methods by using the full range of correlative363

information and representing the functional relationships of the brain in a low-dimensional364

embedding. Whereas many processing strategies involve arbitrary thresholds, rest2vec does365

not involve removing any data from the functional connectome. Previous studies have366

suggested that these negative correlations may have important – but still not fully understood367

– biological roles [37]. While there exist variations of methods that account for negative edges,368

such as the Louvain algorithm [14] and the Q∗-maximization method [9], the issue of deciding369

the appropriate weight of contribution to assign to these edges still remains.370

Previous work from our group demonstrated that using a probability-based divisive371

approach with permutation testing could recover the hierarchical community structure of372

rs-fmri connectomes while preserving negative edges, which we called probability-associated373

community estimation (pace) [10]. In addition, our previous study [4] demonstrated how374

nonlinear dimensionality reduction and manifold learning techniques could be used to in-375

vestigate the intrinsic geometry of structural connectomes derived from diffusion imaging.376

Inspired by these approaches, we sought to develop a method by which rs-fmri functional377

connectomes could be represented in their intrinsic geometry while also preserving negative378

edge relationships.379

Dimensionality reduction techniques have been previously applied to neuroimaging380

datasets, e.g., clustering in lower dimensions to demarcate subjects belonging to different381

clinical populations, such as healthy controls and patients. Here, rest2vec applies dimension-382

ality reduction at the level of brain regions. Furthermore, we chose to use the isomap method383

because it uses a geodesic distance metric for generating the lower-dimensional embedding [8].384

By doing so, distance in the lower-dimensional embedding conveys meaningful information,385

as opposed to other methods, such as t-sne [38], that are stochastic and primarily meant for386

clustering purposes.387

In the context of functional connectivity, converting the coordinate system to a polar388

representation was an intuitive visualization decision, as it centers the data around the389

origin where regions with lower Θi,j values are mapped closer to the origin and regions with390

higher Θi,j values are mapped in the periphery. Interestingly, regions with a greater number391

of high Θi,j values (i.e., more out-of-phase relationships) tended to be unimodal and also392

have low within-cluster Θi,j values, as seen most clearly in the occipital lobe (SI Figure 15).393

In contrast, more centrally-embedded regions tended to be located in brainstem regions394

(known to facilitate various sensory relay roles) and associative regions. This is reminiscent395
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of Mesulam’s synaptic hierarchy model [39], where primary unimodal regions are embedded396

at the periphery, most proximal to sensory input, with downstream synaptic connectivity397

progressing inward towards the center to heteromodal and associative areas.398

By using lower-dimensional embedding distance metrics, we were able to recover function-399

ally relevant relationships. In the case of the occipital lobe, mapping the intrinsic functional400

distance to its cluster centroid in the isomap embedding generated a gradient map in the401

anatomical space of the dorsal and ventral visual streams [33, 34]. On the dorsal surface, the402

gradient proximal to the occipital lobe can be seen going to the posterior parietal regions,403

whereas on the ventral surface the proximal gradient extends from the occipital lobe to404

the inferior temporal lobe (Figure 5). In another example, the precuneus had two primary405

clusters in the isomap embedding. When projected onto the brain surface, these two clusters406

demarcated the dorsal-anterior and ventral-posterior portions of the precuneus (Figure 7).407

The dorsal-anterior gradient appeared to primarily consist of the superior parietal, somato-408

motor, and occipital cortices. The ventral-posterior gradient appeared to be composed of the409

posterior cingulate, parahippocampal, and superior occipital cortices and the hippocampus.410

There is evidence for the dorsal-anterior and ventral-posterior portions of the precuneus411

being involved in different functions. A rs-fmri study by [36] identified the dorsal and412

anterior portions of precuneus having stronger connectivity with areas including the occipital,413

somatomotor, and posterior parietal cortices and the superior temporal gyri. In addition, they414

identified the ventral precuneus as being more strongly associated with the middle frontal415

gyrus, posterior cingulate cortex, cuneus, and calcarine sulcus. This demarcation is thought416

to be due to the diverse roles of the precuneus. In particular, the dorsal-anterior portion417

of the precuneus, which has strong connectivity with the occipital and superior parietal418

cortices, is involved in processing polymodal imagery and visuospatial information, whereas419

the ventral-posterior precuneus is thought to be more involved in episodic memory retrieval420

[35]. While the study by [36] further subdivided the precuneus into eight clusters in their421

study, our results were largely consistent with their observations, suggesting that rest2vec422

can detect heterogeneous connectivity patterns within individual regions.423

In addition to representing the intrinsic geometry of functional connectomes, we proposed424

using the maximum mean discrepancy (mmd) method by [13] to partition the connectome425

into maximally functionally distinct modules. The mmd was originally implemented to426

detect how different two probability distributions were to test if they were from the same427

population [13]. For our use case, we maximized the mmd as an objective function to find two428

populations of brain regions such that their distributions are as distant as possible to identify429

functional communities. One advantage is this is a vectorized approach and does not rely on430

iterative methods. In addition, this method offers flexibility in the choice of probability and431
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kernel similarity measures used as input, and so are not limited to only Pearson correlation432

measures.433

When the functional connectome is represented in its intrinsic embedding using nonlinear434

dimensionality reduction, the mmd partition elicited a strikingly symmetric representation.435

Upon closer observation, these two communities were split approximately between the436

canonical task-positive network (tpn) and the default mode network (dmn), consisting of437

the precuneus, inferior parietal lobule (ipl), posterior cingulate cortex, hippocampus, and438

areas of the prefrontal cortex (pfc), among others [40]. This initial bifurcation is consistent439

with previous modularity studies [10], and is a validation that this embedding procedure is440

capturing functionally-relevant characteristics. In addition, we showed lobe-specific affiliations441

for the two communities. These results were consistent with the putative dmn/tpn split.442

Notably, the ipl and precuneus are shown in contrast to the postcentral regions within the443

parietal lobe; similarly, the pfc and pre-motor areas show clear boundaries. Together, these444

results demonstrated that using this mmd approach to solve the connectome modularity445

problem yielded reproducible and biologically-meaningful connectome partitions, and that446

the properties of these communities can be represented using dimensionality reduction.447

Limitations and future directions. In this paper, we used rs-fmri connectomes from448

a group of subjects in order to compute the probability of there being a negative correlation449

between each pairwise edge between regions. While this approach led to consistent results450

across two independent datasets, we did not assess how robust this procedure was to inter-451

subject variability or the size of groups. In addition, while average rs-fmri connectomes452

yield a wealth of functional connectivity information, they are a static representation of a453

dynamic process. Furthermore, there has been increasing emphasis on individual connectome454

analysis with aims towards personalized medicine [41, 42]. To that end, future improvements455

on these methods will need to incorporate dynamic as well as subject-specific analyses of456

functional connectivity. Recent works by [43, 44] have suggested the concept of hierarchical457

or multi-scale networks, which could lead to natural extensions of this work via subject458

embedding spaces which are in turn composed of network embedding spaces.459

Another limitation is we only examined the mmd partition at the first bifurcation into460

two communities. While this proved effective as a proof-of-concept, further work will need461

to be done to develop a hierarchical way to detect N communities with this approach. In462

addition, more robust methods could be used for maximizing the mmd objective function to463

avoid the possibility of local maxima to achieve better accuracy.464
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Conclusion. Rest2vec incorporates both positive and negative edge connectivity using a465

model inspired by statistical mechanics to transform functional connectome data into phase466

angle relationships. This representation of the connectome can be combined with nonlinear467

dimensionality reduction techniques to represent the intrinsic geometry of the functional468

connectome in a lower-dimensional embedding. Together, these methods allow for a vectorized469

approach to investigate the functional relationships of rs-fmri brain connectivity data. In470

addition, we connected rest2vec to the maximum mean discrepancy metric to demonstrate471

how rest2vec can be used to address the modularity problem as a kernel two-sample test.472

In summary, we presented a rs-fmri connectome graph embedding technique that uses473

nonlinear dimensionality reduction and statistical learning methods to create a low-dimensional474

representation of the intrinsic geometry of the functional connectome.475
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5 Appendix: Supplemental information478

Figure 13: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation.
Color indicates the partition predicted by the eigenvector of K̃ corresponding to the second-highest eigenvalue.
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Figure 14: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation.
Color indicates the partition predicted by the eigenvector of K̃ corresponding to the third-highest eigenvalue.
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Figure 15: Θ for the Diez dataset with rows and columns arranged in a diagonal grid into non-occipital
lobe regions (top left block) and occipital lobe regions (bottom right). Boundary between blocks is indicated
by the orange line.
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Figure 16: Pairwise functional distance for the Diez dataset.
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