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1 Abstract

2 Resting-state functional magnetic resonance imaging (RS-FMRI) is widely used in
3 connectomics for studying the functional relationships between regions of the human
4 brain. RS-FMRI connectomics, however, has inherent analytical challenges, such as
5 accounting for negative correlations. In addition, functional relationships between brain
6 regions do not necessarily correspond to their anatomical distance, making the intrinsic
7 geometry of the functional connectome less well understood. Recent techniques in natural
8 language processing and machine learning, such as word2vec, have used embedding
9 methods to map high-dimensional data into meaningful vector spaces. Inspired by
10 this approach, we have developed a graph embedding pipeline, rest2vec, for studying
11 the intrinsic geometry of functional connectomes. We demonstrate how rest2vec uses
12 the phase angle spatial embedding (PHASE) method with dimensionality reduction
13 techniques to embed the functional connectome into lower dimensions. Rest2vec can
14 also be linked to the maximum mean discrepancy (MMD) metric to assign functional
15 modules of the connectome in a continuous manner, improving upon traditional binary
16 classification methods. Together, this allows for studying the functional connectome
17 such that the full range of correlative information is preserved and gives a more informed
18 understanding of the functional organization of the brain.
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» 1 Introduction

2 Neuroimaging data acquired from magnetic resonance imaging (MRI) tend to be vast and
21 high-dimensional. In particular, resting-state functional MRI (RS-FMRI) produces temporal
2> snapshots of the brain’s default activity in the absence of tasks, offering a window into the
23 functional macroscale organization of the brain. As computational tools have become more
2 widely available over the past two decades, researchers have applied graph theory-based
s models to neuroimaging data to study the network properties of the brain, which has grown
26 into the field of connectomics [1|. In connectomics analyses, the brain can be represented as
2z an N X N matrix, where the rows and columns are the N brain regions of interest (ROI),
2s and the elements of the matrix represent some measure of connection between them (e.g.,
20 number of fibers, Pearson correlation of blood oxygenation level-dependent (BOLD) time
30 series). Given this volume of high-dimensional data, however, one quickly runs into the
a1 “curse of dimensionality.” Originally coined by Richard Bellman [2], the term refers to the
32 challenge of visualizing and analyzing high-dimensional data. Because the number of points
33 in a Cartesian space grows exponentially with increasing dimensions, high-dimensional spaces
s become extremely sparse, an effect known as the “empty space phenomenon.” Consequently,
35 this makes understanding the properties of these data more difficult, as metric comparisons
3s  become less effective with increasing dimensionality [3].

37 There are a variety of dimensionality reduction techniques that address this problem.
;s These methods work by embedding a high-dimensional manifold, represented by the discrete
30 points of the data, into a lower dimension (e.g., two or three dimensions), which can then be
20 visualized. This process becomes complicated, however, if the manifold of the underlying
s data is nonlinear, as is thought to be the case with neuroimaging data [4, 5, 6, 7]. The most
a2 well-known example case of a nonlinear manifold is the 3D Swiss roll. Nonlinear dimensionality
a3 reduction techniques, such as isometric mapping (isomap), solve the characteristic Swiss roll
s problem by preserving the intrinsic geometry of nonlinear manifolds (i.e., unrolling the Swiss
ss ro0ll) in lower-dimensional spaces [8, 4].

a6 Negative correlations also remain a challenging factor in RS-FMRI connectomics, as they
a7 are more difficult to interpret using network models. Simpler models generally either threshold
as out or apply other transformations to negative correlations, such as taking the absolute value;
a0 this process, however, likely removes substantive dynamics of brain connectivity [9]. Although
so some analyses account for negative correlations, these often introduce additional parameters
s1 that must be set to determine their relative contribution [9].

52 Previously, we introduced probability-associated community estimation (PACE) [10] and

53 phase angle spatial embedding (PHASE) [11] to address these challenges. These methods
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s« take inspiration from the Ising model from statistical mechanics, where magnetic ions are
ss designated with in-phase or out-of-phase spin state configurations [12]. We adapted this
ss model to describe the phase relationship between regions of the brain. Here we propose a
52 novel graph embedding pipeline, rest2vec, that uses this phase angle representation with the
ss nonlinear dimensionality reduction method isomap to embed the functional connectome in
5o a lower-dimensional embedding based on its functional relationships. Doing so revealed a
6o spatial mapping of the functional organization of the brain based on its intrinsic geometry
61 when it is not constrained by neuroanatomy.

62 Additionally, we show this vectorized approach has implications for detecting functional
63 communities by linking rest2vec to the maximum mean discrepancy (MMD) metric. This
s« was originally developed by Gretton et al. [13] as a metric describing the distance between
es probability distributions. Here, we treated the MMD as a modularity index, similar to Q-
s based maximization methods [14], such that, when maximized, it detects the sets of brain
ez regions with the most dissimilar functional connectivity. By reformulating this connectome
es modularity problem in a probabilistic sense, we are able to generate community assignment
eo values for each region, as opposed to a binary classification. Together, rest2vec uses nonlinear
70 dimensionality reduction and manifold learning techniques to represent the functional connec-
7 tome in its intrinsic geometry independent of neuroanatomy to improve our understanding of

72 the macroscale organization of the brain.

s 2  Methods

» 2.1 Dataset description

75 'Two independent and publicly available RS-FMRI connectome datasets composed of healthy
76 subjects were used: one from the Functional 1000 (F1000) Connectomes Project [15] with
77 177 regions of interest (ROI) available through the usc Multimodal Connectivity Database
7s (http://umcd.humanconnectomeproject.org/umcd/default/index), and one by Diez et
7o al. [16] with 2514 ROI available through the Neurolmaging Tools & Resources Collaboratory
so (NITRC) (https://www.nitrc.org/projects/biocr_hcatlas/). These are referred to as
a1 the “F1000” and “Diez” datasets hereafter. The average difference in age between male
g2 (N =426, M +SD = 28.7 + 12.7) and female (N = 560, M £+ SD = 27.9 + 12.7) subjects
s in the F1000 dataset was 0.83 years and was not statistically significant (£(984) = 1.025,
sa p = 0.306). The Diez dataset has 12 subjects (6 male) with a mean age of 33.5 & 8.7 years;
s no individual subject ages were reported. The reader can consult the references for details

ss regarding image acquisition parameters and preprocessing. For computational and network
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sz analyses, Python version 3.7.3 scientific computing libraries from the Anaconda distribution

s were used [17, 18, 19, 20, 21, 22, 23].

0 2.2 Trest2vec

o0 The pipeline for rest2vec is shown in Figure 1. Rest2vec aims to create a graph embedding
o1 of RS-FMRI connectomes by transforming positive and negative edges into N-dimensional
o2 phase angle vectors that can then be represented in a low-dimensional embedding using
o3 nonlinear dimensionality reduction. In brief, we first computed the probability of observing a
os negative edge between all pairs of regions across all subjects to form the probability matrix
os P~. This probability is then used to determine the phase angle ©;; between regions to
o6 create the phase angle spatial embedding (PHASE) matrix ®. This process embeds the phase
oz relationship between all regions in the connectome in an N-dimensional Euclidean space and
e transforms the values between 0 (fully co-activating) and /2 (fully anti-activating). The
9o intrinsic functional embedding of the connectome was then visualized in two dimensions using
wo the nonlinear dimensionality reduction method isomap [8]. Finally, we use kernel functions
w1 to link rest2vec to the maximum mean discpreancy MMD metric [13] to demonstrate how
102 rest2vec can be used to study functional connectome modularity. The representative matrices

103 for each step are displayed in Figure 2.
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Figure 1: rest2vec processing pipeline. (Top) The frequency of observing a negative edge between regions
i and j across all subjects in the NV x N x S array W of RS-FMRI connectomes is computed to form the
probability of negative correlation matrix P~. (Middle) The phase angle transformation is applied to
compute the phase angle spatial embedding (PHASE) matrix ©. (Bottom) Dimensionality reduction and MMD
modularity are used to analyze the properties of the new embedding space, where the functional connectome
is represented by its intrinsic geometry.
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Figure 2: Representative matrices for processing steps of rest2vec pipeline for each dataset. Pearson
correlation matrix W, negative probability matrix P~, phase angle spatial embedding (PHASE) matrix ©,
and kernel similarity matrix K are displayed.

ws 2.2.1 Phase angle spatial embedding (PHASE)

s A functional connectome derived from RS-FMRI is defined as an undirected graph G(V, E),
ws composed of a set of vertices V), i.e., brain regions of interest (ROI), and signed, weighted
107 edges F describing the measure of connectivity between them based on their BOLD response
w08 time series. Typically, some measure of correlation, e.g., Pearson correlation, between BOLD
100 time series is used to describe the functional connectivity between ROI.

110 Previously, we introduced probability associated community estimation (PACE) [10], and
w1 phase angle spatial embedding (PHASE) [11] for encoding resting-state fMRI connectomes
12 based on the phase relationship between brain regions [11] to account for negative correlations
us in functional connectomes. We begin by briefly summarizing these procedures in the context
ua of rest2vec.

115 Let W be an N x N x S array (i.e., a tensor) composed of N x N weighted, signed
us functional connectomes for N regions and S subjects. Given some weight of functional
u7  coupling between regions i and j (e.g., Pearson correlation), we define the probability of
us negative correlation matrix P~ where each element P is the probability of observing a

110 negative edge between ¢ and j defined as

S
B 1
Pi7j = S Z (Wijs <0], (1)

120 where W, ;s is the edge between regions 7 and j for the sth subject, and the Iverson
121 bracket expression [W; ;. < 0] equals 1 if W ; <0, and 0 otherwise. Because P;; € [0, 1], it

122 also follows naturally that
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P+ PL=1 (2)

123 One advantage of this procedure is that the probability measure defined in Equation 1
124 can be defined by the user for their specific context. By taking advantage of this relationship,
125 we then define the phase angle spatial embedding (PHASE) matrix ©, where the phase angle

126 O, ; between regions ¢ and j is defined as

P
©;,,; = arctan Pt (3)
Z?]
127 Thus ©,; € [0,7/2], where 0 represents a fully in-phase (co-activating) relationship

s and 7/2 represents a fully out-of-phase (anti-activating) relationship. Each column of ©
120 is a vector embedding each region in an N-dimensional Euclidean space such that ©.; =
130 [@iyl 61'72 s @LN]T S [O,W/Q]N

131 2.2.2 Relation of PhASE to the maximum mean discrepancy

122 Here we describe how PHASE can be linked to the maximum mean discrepancy (MMD)
13 developed by Gretton et al. [13] to address the connectome modularity problem. Following
134 the formulation defined in [13], consider the random variables « and y defined on a metric
s space X equipped with the metric d, with the corresponding Borel probabilities p and ¢ (i.e.,
s =~ pandy~ q). Given observations X := {z;,...,2,,} and Y := {y1,...,y,} drawn from
137 the probability distributions p and ¢, p = ¢ if and only if E,[f(z)] = E,[f(y)] Vf € C(X),
s where C'(X) is the space of bounded continuous functions on X. Next, given a class of
1o functions F such that f: X — R, the maximum mean discrepancy (MMD) between p and ¢
1o with respect to F is defined as

MMD[F, p, q] := sup (Eo[f(2)] = Ey[f(»)])- (4)
€
141 This can be empirically estimated given X and Y as
MMD|F, X, Y] —sup< Zf (x; ——Zf(yﬁ), (5)
ferF =1
142 where m is equal to the number of observations in X and n is equal to the number of
143 Observations in Y.
144 To apply these definitions in the context of connectomics, we use the same definitions of

ws T, Y, p,q, X,and Y defined above to assign each region to one of the two distributions p or q.


https://doi.org/10.1101/2020.05.10.085332
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.10.085332; this version posted May 12, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

s Under the working assumption that the distributions of functional modules in the connectome
w7 are far apart (i.e., their within-module connections are greater than their between-module
us connections [24]), we thus seek to discover the arrangement of regions such that the MMD
120 between them is maximized.

150 Using a reproducible kernel Hilbert space (RKHS), the squared form of Equation 5 can be

151 evaluated using kernel functions as

m m n n

1 1
2
MMD*[F, X, Y] := ——— k(zi,z;) + —— k(yi, ;)
i 1) 8 20y 2 2 e
2 m n
- %ZZk(xi,yj). (6)
i=1 j=1
152 From Equation 6, kernel functions can be used, in our case, to compute the kernel matrix

153 K where the similarity K ; between regions ¢ and j, in the case of the radial basis function

1« (RBF) kernel kg, is given by

N
K;; = kRBF(®i,:7 @j,:) = €Xp <—0' Z’@z,e - @j,£|2> ) (7)
=1

155 for phase angle © between regions ¢ and 7 in reference to all other regions indexed by ¢,
1ss for N regions, using the scaling factor o.
157 Similarly, we let the cosine kernel k., evaluating the similarity between regions ¢ and j

158 be defined as

N
1
Kij=kes(©::,0;.) = N Z cos (0,0 — O;4) (8)
=1
150 using the same variable definitions as RBF kernel. Because the RBF kernel has an additional

160 parameter, and the cosine kernel has a geometric relation to angles, the cosine kernel is used

161 here; the Taylor expansion of both these kernels can be shown to have similar leading terms.

162 2.2.3 Using maximum mean discrepancy to address the connectome modularity

163 problem

16« Following the kernel definitions above, and the equation as described by [13] (with a modified
15 notation for our purposes), let the maximum mean discrepancy (MMD) between two modules

16 V4 and Vg be defined as
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1 m 9 m,n 1 n
MMD(VA,VB)2 = W Z Ki,j — % Z Ki,j + ﬁ Z Ki’j, (9)
1,jEVA Z"G‘V/'A ,jEVB
JE€EVB

167 where |Va| =m, [V|=mn, [V|=m+n=N, V4UVp =V, V4NV =0, and i is allowed
168 to equal j.

160 We seek to find a partition between V4 and Vg such that Equation 9 is maximized. First,
170 we can rewrite MMD(V4, Vp)? = y'Ky for y € RV and K € RY*V | where

= ifieVy
—1 ifieVp

171 Thus we define the optimal partition Modularity(V') into modules V4 and Vg as

Modularity (V) = argmax MMD(V4, V)2, (11)
VA7VB
ValVp=V
VanVp=0
172 This maximization problem can be approximated in a simplified way by relaxing FEqua-

173 tion 11 to a Rayleigh quotient maximization problem. Letting y be defined as above, where

Iyll = (ﬁ)m, 12)

mn
174 we perform change of variables to the unit length vector v, where
mn\ /2
= (— , 13
v= (%) Ty (13)
175 and ||[v)|* =1, vI1 =0, where 1 = [1---1]", 1 € R¥*!. Then we can rewrite Equation 11

176 in terms of v to define the partition that maximizes MMD(Vy4, Vp)? as

N
Modularity (V) = argmax —v'Kv. (14)
[vl|=1 ™mn
vT1=0
177 To compute MMD(V4, Vg)? in Equation 14 requires a priori knowledge of m and n.

s Assuming that N is large and that the two communities V4 and Vg are approximately the
179 same size such that |m —n| € o(N), the normalization factor in Equation 14 can be simplified

180 tO
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4
Modularity(V) & — argmax v' Kv. (15)
[Ivll=1
vT1=0
181 Finally we relax the constraints of v from v; € { JJf‘\/‘il’ —\/ A‘,‘@;'} taking only two

12 values to taking any real values such that v* € RY. These relaxed constraints allow us to
183 conveniently reframe Equation 14 as a Rayleigh quotient maximization problem. We account
i8¢ for arbitrary origin for the Rayleigh quotient maximization by centering the kernel similarity
s matrix K to K = CyKCy, where the centering matrix Cy = Iy — ]lVJN, Cy € RNXN,
1ss Iy € RVN is the identity matrix, and Jy € R¥*¥ is the ones matrix (i.e., 117).

187 Rather than finding MMD(Vy, Vg)? as a function of the partition, we approximate the
188 optimal partition Modularity(V) by finding the vector v* that maximizes the Rayliegh

180 quotient such that

4 viTKv*
Modularity(V) = — argmax ———. 16
(V) & g argmax ¥ (16)
V*ERN
100 We can then compute the mapping vector v* that maximizes the Rayleigh quotient by

101 computing the eigenvector q of K corresponding to the largest eigenvalue A, of K. Similar
12 to the Fiedler vector in spectral clustering methods [25], the elements of q assign both
103 community affiliation based on its sign (+ or —) as well as magnitude. Further, q can be

104 binarized to determine discrete community labels for each region as

i€V ifg>0
v — A RE=T 123, N (17)
ieVy ifg <0

105 2.2.4 Nonlinear dimensionality reduction

106 Isomap [8] was used to reduce the PHASE matrix @ € RY*Y to a d-dimensional embedding
107 Y € RV*? where d < N. Isomap is advantageous for this procedure as it is a nonlinear
s technique, using methods such as Dijkstra’s algorithm [26] to compute the geodesic distances
100 between vertices in high-dimensional space. By doing so, isomap addresses the Swiss roll
200 problem faced by traditional linear methods such as PCA and MDS [8]. In our case, we used
20k =12 and k = 50 nearest neighbors, for the F1000 and Diez datasets, respectively, to reduce
202 to three dimensions using the Isomap implementation in the Scikit-learn version 0.21.3 library
203 [22]. Because the isomap procedure centers data about the origin, and by Equation 3 the
204 phase angle between perfectly in-phase regions is zero, we analyzed each region’s Euclidean

205 distance to the origin in this space to observe how the phase relationship between regions

10
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206 18 preserved with respect to its low-dimensional embedding. After generating the isomap
207 embedding, the distance D; to the origin of the isomap space [0---0] € R4 for the ith

208 region was calculated using the Euclidean distance

Dl:‘|}/ly||:\/)/;,2l+)/z,22+}/z,23++)/172d7 VZZ]., 27 377N7 (18)

200 where N is equal to the number of regions. Because of its natural representation for
210 distance to the origin, the first two dimensions were transformed to polar coordinates of

a1 radius r and angle 6 using the polar transformation

r =22+ y? (19)

0 = atan2(y, ) (20)

212 to visualize the functional embedding space.

a3 2.3 Analyses
214 2.3.1 k-means clustering

215 k-means clustering was used to formally classify clusters for regions (such as the precuneus)
216 that had heterogeneous mappings in the isomap embedding. The k-means clustering algorithm
217 was performed using the Scikit-learn implementation [22] for k£ = 2 clusters in the isomap
218 embedding. The same seed value was used to ensure reproducible results.

219 To determine how affiliated other (non-precuneus) regions were to either of the two
220 clusters, regions were first assigned to the precuneus cluster they were closest to in the
a1 isomap embedding. A diverging cluster affiliation scale was computed based on the Euclidean
22 distance of each region to its precuneus cluster’s centroid in the isomap embedding, which
223 we termed “intrinsic functional distance,” such that regions with more positive or negative
24 values were closer to the centroid of their respective precuneus cluster. The cluster affiliation

225 a; was defined as

max (dco) — dCoyi ifi € Cy

dcl,i — Imax (dC1) ifi e Cl 7

226 where d is the intrinsic functional distance from region i to the centroid of cluster C'.

11
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»7 2.3.2 Statistics

228 The StatsModels library version 0.10.1 for Python [27] was used for statistical analyses.
220 Student’s independent t-test was used to test if there were any differences in age between
23 male and female subjects for the F1000 dataset. The ordinary least squares (OLS) method
231 was used to fit the parameters for the linear regression between isomap distance to origin

232 and phase angle.

23 2.3.3 Visualization

23 Graphics were drawn using the Matplotlib version 3.1.1 [20] and Seaborn version 0.9.0 [21]
235 libraries using Python version 3.7.3 from the Anaconda distribution [17]. Glass brain figures
236 were visualized using the plot_connectome function from the Nilearn version 0.6.2 library
237 [28]. Inkscape version 0.92 was used for final arrangement of some figures [29].

238 Brain surface plots were created by representing the N x 4 array, consisting of the MNI
230 (x,, z)-coordinates for all IV regions, and the N x 1 vector containing the data value associated
2e0 With each region, as a 3D volume. For brain distance maps, the intrinsic functional distance
2a1 vector was made by computing the Euclidean distance between the mean (x,y)-coordinates
22 of the anatomical region in the isomap embedding and all other regions. For regions that
23 had heterogeneous mapping (i.e., multiple clusters) in the isomap space, k-means clustering
242 was performed to calculate cluster affiliations for each region as described in §2.3.1.

245 The 3D volume containing the original data was then interpolated using a linear grid
26 interpolation and registered to the MNI template volume with 12 degrees of freedom using
27 the FLIRT tool in the FSL [30] interface from the Nipype version 1.3.0-rcl library [31].
28 The interpolated 3D volume was mapped to the Freesurfer pial surface template using the
220 vol_to_surf function from the Nilearn library. The surface data was then visualized using

250 the plot_surf_stat_map function from the Nilearn library.

w1 2.3.4 Code

2 All code used to produce the results and figures is available online via GitHub (https:

253 //github.com/zmorrissey) and our laboratory website (http://brain.uic.edu/).

12
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= 3 Results

»s 3.1 Distance in the lower-dimensional embedding preserves phase

256 angle relationships

57 After applying the rest2vec pipeline to the F1000 and Diez datasets, we sought to assess
258 how a region’s lower-dimensional isomap embedding related to its PHASE vector. From
20 [quation 3, lower values of ©; ; indicate a more in-phase relationship between regions. Thus we
260 hypothesized that more in-phase regions would be embedded closer to the origin of the isomap
261 space, whereas more out-of-phase regions would be embedded further from the origin. The 2-
22 norm of each N-dimensional vector of the PHASE matrix ||©; .|| was used as a summary measure
263 of each region’s overall phase value. For each dataset, there was a statistically significant
264 positive correlation between each region’s ||®; .|| and its distance from the origin of the 3D
265 isomap embedding (F1000 dataset: F'(1,175) = 200.7, R* = 0.534, r = 0.731, p < 0.0001;
6 Diez dataset: F/(1,2512) =533.4, R? = 0.175, r = 0.418, p < 0.0001) (Figure 3, left). This
267 pattern can be seen when the rows and columns of the PHASE matrix are sorted by ascending
28 ||©;.|| values, in particular for the coarser parcellation from the F1000 dataset (Figure 3,
20 right). Together this suggests that regions mapped closer to the origin were more in-phase

270 with other regions, whereas more out-of-phase regions were mapped further from the origin.
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Figure 3: Relationship between phase angle and isomap embedding distance. (Left) Correlation between the
2-norm of each region’s phase angle vector ||©; .|| and its distance to the origin of the 3D isomap embedding.
Dashed orange line represents the best fit of the linear model. Shaded region around line represents the 95%
confidence interval of the model. F1000 dataset: r = 0.731; Diez dataset: r = 0.418. (Right) The PHASE
matrix © with its rows and columns sorted in ascending order by ||@®; .|| (i.e., lowest values correspond to
upper left, highest values to lower right).

To examine this relationship further, we faceted the anatomical and functional embeddings
by anatomical lobe affiliation ranked by ascending distance to the origin (Figure 4). Notably,
the brainstem displayed the most centrally-embedded regions (median distance = 6.9), followed
by (in ascending order): sub-lobar, limbic lobe, temporal lobe, frontal lobe, cerebellum, parietal
lobe, and occipital lobe regions. At the other extreme, the occipital lobe displayed the most
distant and densely clustered representation in the embedding space (median distance = 24).
Examination of the phase angle vectors for occipital lobe regions revealed highly in-phase
relationships within the occipital lobe, while regions outside the occipital lobe were mostly
out-of-phase (SI Figure 15). Since the occipital lobe and large portions of the parietal lobe
(e.g., motor cortices), and cerebellum are mapped further in the periphery, this suggests
that regions involved in primary sensory processing are mapped further in the periphery,
while regions such as the brainstem, thalamus, and heteromodal areas have more in-phase

relationships and are mapped closer to the origin.
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Figure 4: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation
and ranked by ascending distance to origin. (Top) Merged representations of all 2514 regions in the anatomical
embedding (columns 1-3), functional embedding (column 4) and kernel density estimate of distance to origin
for all regions within each lobe (column 5). (Bottom) Facet of data for each anatomical lobe. Rows are
arranged from top to bottom in ascending order of median distance from the origin from top to bottom.
Color indicates lobe affiliation. Higher saturation indicates increasing distance from the origin. Dashed gray
lines in kernel density estimate plots indicate the median distance.
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» 3.2 Intrinsic functional distance can detect biologically-relevant

285 connectivity gradients

286 Given that the distance to the origin of the isomap embedding preserved phase coupling
287 characteristics across anatomical regions, we next asked if the intrinsic functional distance
238 between regions in this space could reveal biologically-relevant connectivity patterns. When
280 the intrinsic functional distance to the occipital lobe is mapped as a color gradient on the
200 brain surface, the dorsal and ventral visual streams [32, 33, 34| become apparent (Figure 5),
201 consistent with the hypothesis that distance in this embedding space preserves functionally
202 relevant information. In contrast, the hippocampus also has a relatively homogeneous cluster
203 in the isomap embedding, but has a much more distributed surface map gradient to regions
20a  Of the default mode network (DMN), such as the precuneus, prefrontal cortex, thalamus, and
205 inferior parietal lobule (Figure 6).

296 While certain anatomical regions showed a relatively homogeneous clustering in the isomap
207 embedding, such as the occipital lobe, others showed heterogeneous clustering patterns. Thus
208 we hypothesized that rest2vec could be used to identify functional subnetworks within
200 individual regions based on their clustering within the isomap embedding. As a test case, we
300 examined the isomap embedding pattern for the precuneus, which is known to participate
o0 in different networks across its dorsal-anterior /ventral-posterior axes [35, 36]. The bivariate
;02 Kkernel density estimate plot of the precuneus ROI in the Diez dataset appeared to indicate
503 two predominant clusters, which were formally assigned using k-means clustering (Figure 7,
s¢ top). A larger cluster was made that included all other regions in the Diez dataset by
s05 assigning regions to the precuneus cluster they were closer to. We then measured the
306 intrinsic functional distance between each region to its precuneus cluster centroid to assign
sz an affiliation value to each region (Figure 7, top right). The brain surface map projection
308 of these data demarcated these two cluster centroids into the dorsal-anterior precuneus
300 and the ventral-posterior precuneus (Figure 7, bottom). The dorsal-anterior cluster of the
310 precuneus was most strongly affiliated with the occipital and superior parietal regions, as well
s as the paracentral lobule, middle and superior temporal cortices, and thalamus (Figure 7,
si2 middle). The ventral-posterior cluster of the precuneus was most strongly affiliated with
s13 the hippocampus, cuneus, cerebellum, parahippocampal cortex, posterior cingulate cortex,
314 calcarine cortex, amygdala, and superior occipital cortices. These results suggest that rest2vec

a5 can identify distinct functional networks within individual regions.
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Figure 5: Occipital lobe intrinsic functional distance mapping. (Top left) Kernel density estimate plot of the
occipital lobe regions in the isomap embedding. (Top right) Intrinsic functional distance to the occipital lobe
for all regions. Darker color indicates the region is closer to the mean occipital lobe coordinate. (Bottom)
Intrinsic functional distance to the occipital lobe projected onto the Freesurfer pial surface template. Arrows
indicate the dorsal and ventral visual streams. A: anterior. P: posterior.
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Figure 6: Hippocampus intrinsic functional distance mapping. (Top left) Kernel density estimate plot of the
hippocampus regions in the isomap embedding. (Top right) Intrinsic functional distance to the hippocampus
for all regions. Darker color indicates the region is closer to the mean hippocampus coordinate. (Bottom)
Intrinsic functional distance to the hippocampus projected onto the Freesurfer pial surface template. A:
anterior. P: posterior.
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Figure 7: Identifying subnetwork clusters within the precuneus using rest2vec. (Top, left) Kernel density
estimate of the precuneus in the isomap embedding. (Top, middle) k-means clustering results are indicated
in blue and orange. (Top, right) Cluster affiliations for all other regions based on their minimum intrinsic
functional distance to their precuneus cluster centroids. Darker color indicates that region is closer to the
centroid of its cluster. (Middle) Strip plot of the ten regions with the greatest mean affiliation for each cluster.
Points represent individual ROI. Vertical bars indicate the mean. (Bottom) Brain surface map of cluster
affiliations for the precuneus. The precuneus is outlined by a dashed line in the medial view. A: anterior. P:
posterior. 19
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a6 3.3 Maximizing maximum mean discrepancy partitions the connec-

317 tome into putative task-positive and task-negative networks.

sis Since rest2vec could identify functionally relevant connectivity gradients within anatomical
310 lobes, we next asked if rest2vec could be used to partition RS-FMRI connectomes into functional
320 modules. To address this, we used the maximum mean discrepancy (MMD) metric developed
:21 by [13] to partition the set of connectome regions V' into two distributions of regions V4 and
322 Vp such that the MMD between them was maximized. A cosine kernel (Equation 8) was
23 used to compute the centered kernel similarity matrix K between all pairwise regions of ©
224 (cf. Figure 2). Similar to spectral clustering methods, we approximated the maximum MMD
25 by reformulating the MMD to a Rayleigh quotient maximization problem (§2.2.3), where the
16 eigenvector q corresponding to the maximum eigenvalue was extracted to yield the community
227 assignment vector. (Ranking of the eigenvectors of K showed the first three eigenvalues
22 account for most of the variance of the data, with the first being most dominant (Figure 8).)
320 To set the partition, the index of regions corresponding to ¢; > 0 were assigned to V4, and
330 the index of regions corresponding to ¢; < 0 were assigned to V. This approach was validated
s by iteratively evaluating the MMD across 50 threshold values of q (Figure 9). The results
32 suggest that the MMD is maximized when the partition yields communities of approximately
333 equal size, which occurs for both datasets when the partition threshold for ¢; ~ 0. Together
;3¢ this suggests that the Rayleigh quotient maximization approximation is able to achieve an

335 accurate approximation of the global maximum MMD.
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Figure 8: Eigenvalues of K for each dataset. Insets depict the first ten eigenvalues.
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Figure 9: Evaluation of the maximum mean discrepancy (MMD) across a range of threshold values of q
for each dataset. (Top) Histogram of the eigenvector q corresponding to the maximum eigenvalue of the
centered kernel matrix K. (Middle) Size of each partition as a function of threshold value. (Bottom) MMD as
a function of threshold value.

336 Similar to the previous analysis in Figure 4, we visualized the anatomical and functional
337 embedding by community affiliation to see how each lobe participates in the two communities
;38 predicted by maximizing the MMD. We observed a symmetrical partition between the two
339 communities when viewed in the functional embedding space (Figure 10). Additionally, when
a0 the magnitude and sign of ¢; are mapped to a diverging colormap in the isomap space, it
a1 was observed that regions closer to the vertical axis appeared more neutral, whereas regions
sz further from the vertical axis were polarized into either community, suggesting these regions
;a3 are more strongly mapped into that community. When further examining the regions that
sas are affiliated with each community, we observed that the partition demarcated into the
us  putative task-positive network (TPN) and task-negative network (TNN, also called default
ss  mode network (DMN)). This relationship can be seen when the MMD eigenvector gradient
sa7 1S used to sort the ® matrix for each datasets, where the resulting grid communities show
us out-of-phase relationships with the other community (Figure 11). This can also be observed

u9 anatomically when the eigenvector gradient is mapped to the brain surface (Figure 12).
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350 When the brain is faceted by lobe affiliation, several notable patterns emerge. The frontal
31 lobe is demarcated into the prefrontal cortex (PFC) and pre-motor areas and dorsolateral
32 PFC anatomically, which are respectively situated in opposite quadrants of the functional
53 embedding. In addition, the parietal lobe is split largely into default mode network (DMN)
154 regions — including regions of the inferior parietal lobule and precuneus — and primary and
35 secondary unimodal areas, including somatosensory cortices and areas involved in visual
356 processing. Consistent with this observation, the occipital lobe has the largest proportion of
;7 regions belonging to the putative TPN at 83.42%. Taken together, these data suggest that
358 maximizing the MMD in the context of vectorized connectomes is able to recover biologically-
30 relevant network characteristics, while also accounting for the presence of negative edges,

0 thereby removing heuristic steps that may bias downstream analyses as a result.
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Figure 10: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation
with predicted community partitions. (Top) Merged representations of all 2514 regions in anatomical
embedding (columns 1-3), functional embedding (column 4), and the percentage of regions within each
community for each lobe (column 5). (Bottom) Facet of data for each anatomical lobe. Rows are arranged
from top to bottom in ascending order of median distance from the origin. Color indicates community
affiliation. Vertical gray reference line for each stacked barplot indicates 50%.
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Figure 11: Community partition gradient given by the top eigenvector q of the kernel similarity matrix K.
The PHASE matrix © for the F1000 and Diez datasets are shown with rows and columns sorted (in ascending
order) by the elements of q. Grid lines indicate the community partition (upper left and lower right).
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Figure 12: Brain surface map of the MMD partition gradient for the Diez dataset projected onto the
Freesurfer pial surface template. Color indicates the interpolated value of ¢;. A: anterior. P: posterior.
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.« 4 Discussion

362 In this study we presented a novel graph embedding approach for RS-FMRI connectivity using
363 rest2vec. Rest2vec improves upon current methods by using the full range of correlative
364 information and representing the functional relationships of the brain in a low-dimensional
ss  embedding. Whereas many processing strategies involve arbitrary thresholds, rest2vec does
6 Not involve removing any data from the functional connectome. Previous studies have
367 suggested that these negative correlations may have important — but still not fully understood
ss — biological roles [37]. While there exist variations of methods that account for negative edges,
30 such as the Louvain algorithm [14] and the Q*-maximization method [9], the issue of deciding
a0 the appropriate weight of contribution to assign to these edges still remains.

371 Previous work from our group demonstrated that using a probability-based divisive
sz approach with permutation testing could recover the hierarchical community structure of
373 RS-FMRI connectomes while preserving negative edges, which we called probability-associated
sa  community estimation (PACE) [10]. In addition, our previous study [4] demonstrated how
375 nonlinear dimensionality reduction and manifold learning techniques could be used to in-
a6 vestigate the intrinsic geometry of structural connectomes derived from diffusion imaging.
s77 Inspired by these approaches, we sought to develop a method by which RS-FMRI functional
sre connectomes could be represented in their intrinsic geometry while also preserving negative
39 edge relationships.

380 Dimensionality reduction techniques have been previously applied to neuroimaging
s datasets, e.g., clustering in lower dimensions to demarcate subjects belonging to different
32 clinical populations, such as healthy controls and patients. Here, rest2vec applies dimension-
;g3 ality reduction at the level of brain regions. Furthermore, we chose to use the isomap method
s« because it uses a geodesic distance metric for generating the lower-dimensional embedding [8].
35 By doing so, distance in the lower-dimensional embedding conveys meaningful information,
s as opposed to other methods, such as ¢-SNE [38], that are stochastic and primarily meant for
;g7 clustering purposes.

388 In the context of functional connectivity, converting the coordinate system to a polar
380 representation was an intuitive visualization decision, as it centers the data around the
so0 origin where regions with lower ©; ; values are mapped closer to the origin and regions with
so1 higher ©; ; values are mapped in the periphery. Interestingly, regions with a greater number
302 of high ©,; values (i.e., more out-of-phase relationships) tended to be unimodal and also
33 have low within-cluster ©; ; values, as seen most clearly in the occipital lobe (SI Figure 15).
304 In contrast, more centrally-embedded regions tended to be located in brainstem regions

55 (known to facilitate various sensory relay roles) and associative regions. This is reminiscent
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306 Of Mesulam’s synaptic hierarchy model [39], where primary unimodal regions are embedded
307 at the periphery, most proximal to sensory input, with downstream synaptic connectivity
308 progressing inward towards the center to heteromodal and associative areas.

399 By using lower-dimensional embedding distance metrics, we were able to recover function-
a0 ally relevant relationships. In the case of the occipital lobe, mapping the intrinsic functional
sr  distance to its cluster centroid in the isomap embedding generated a gradient map in the
a2 anatomical space of the dorsal and ventral visual streams [33, 34]. On the dorsal surface, the
a3 gradient proximal to the occipital lobe can be seen going to the posterior parietal regions,
a4 whereas on the ventral surface the proximal gradient extends from the occipital lobe to
a5 the inferior temporal lobe (Figure 5). In another example, the precuneus had two primary
a6 clusters in the isomap embedding. When projected onto the brain surface, these two clusters
a7 demarcated the dorsal-anterior and ventral-posterior portions of the precuneus (Figure 7).
aws The dorsal-anterior gradient appeared to primarily consist of the superior parietal, somato-
a0 motor, and occipital cortices. The ventral-posterior gradient appeared to be composed of the
a0 posterior cingulate, parahippocampal, and superior occipital cortices and the hippocampus.
a1 There is evidence for the dorsal-anterior and ventral-posterior portions of the precuneus
a2 being involved in different functions. A RS-FMRI study by [36] identified the dorsal and
a1z anterior portions of precuneus having stronger connectivity with areas including the occipital,
a2 somatomotor, and posterior parietal cortices and the superior temporal gyri. In addition, they
a5 identified the ventral precuneus as being more strongly associated with the middle frontal
a6 gyrus, posterior cingulate cortex, cuneus, and calcarine sulcus. This demarcation is thought
a7 to be due to the diverse roles of the precuneus. In particular, the dorsal-anterior portion
as  of the precuneus, which has strong connectivity with the occipital and superior parietal
a9 cortices, is involved in processing polymodal imagery and visuospatial information, whereas
a20 the ventral-posterior precuneus is thought to be more involved in episodic memory retrieval
a1 [35]. While the study by [36] further subdivided the precuneus into eight clusters in their
a2 study, our results were largely consistent with their observations, suggesting that rest2vec
423 can detect heterogeneous connectivity patterns within individual regions.

on In addition to representing the intrinsic geometry of functional connectomes, we proposed
a5 using the maximum mean discrepancy (MMD) method by [13] to partition the connectome
426 into maximally functionally distinct modules. The MMD was originally implemented to
a2z detect how different two probability distributions were to test if they were from the same
a2s population [13]. For our use case, we maximized the MMD as an objective function to find two
420 populations of brain regions such that their distributions are as distant as possible to identify
a0 functional communities. One advantage is this is a vectorized approach and does not rely on

a1 iterative methods. In addition, this method offers flexibility in the choice of probability and
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a2 kernel similarity measures used as input, and so are not limited to only Pearson correlation
433 Ineasures.

434 When the functional connectome is represented in its intrinsic embedding using nonlinear
435 dimensionality reduction, the MMD partition elicited a strikingly symmetric representation.
a3 Upon closer observation, these two communities were split approximately between the
a7 canonical task-positive network (TPN) and the default mode network (DMN), consisting of
a3 the precuneus, inferior parietal lobule (IPL), posterior cingulate cortex, hippocampus, and
a0 areas of the prefrontal cortex (PFC), among others [40]. This initial bifurcation is consistent
a0 with previous modularity studies [10], and is a validation that this embedding procedure is
s capturing functionally-relevant characteristics. In addition, we showed lobe-specific affiliations
a2 for the two communities. These results were consistent with the putative DMN/TPN split.
a3 Notably, the IPL and precuneus are shown in contrast to the postcentral regions within the
aas  parietal lobe; similarly, the PFC and pre-motor areas show clear boundaries. Together, these
a5 results demonstrated that using this MMD approach to solve the connectome modularity
a6 problem yielded reproducible and biologically-meaningful connectome partitions, and that

a7 the properties of these communities can be represented using dimensionality reduction.

xs  Limitations and future directions. In this paper, we used RS-FMRI connectomes from
a9 a group of subjects in order to compute the probability of there being a negative correlation
a0 between each pairwise edge between regions. While this approach led to consistent results
a1 across two independent datasets, we did not assess how robust this procedure was to inter-
w2 subject variability or the size of groups. In addition, while average RS-FMRI connectomes
sz yield a wealth of functional connectivity information, they are a static representation of a
asa dynamic process. Furthermore, there has been increasing emphasis on individual connectome
a5 analysis with aims towards personalized medicine [41, 42]. To that end, future improvements
a6 on these methods will need to incorporate dynamic as well as subject-specific analyses of
7 functional connectivity. Recent works by [43, 44] have suggested the concept of hierarchical
ass  or multi-scale networks, which could lead to natural extensions of this work via subject
a0 embedding spaces which are in turn composed of network embedding spaces.

460 Another limitation is we only examined the MMD partition at the first bifurcation into
w61 two communities. While this proved effective as a proof-of-concept, further work will need
a2 to be done to develop a hierarchical way to detect N communities with this approach. In
a3 addition, more robust methods could be used for maximizing the MMD objective function to

s6s avoid the possibility of local maxima to achieve better accuracy.
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s6s Conclusion. Rest2vec incorporates both positive and negative edge connectivity using a
a6 model inspired by statistical mechanics to transform functional connectome data into phase
w67 angle relationships. This representation of the connectome can be combined with nonlinear
s6s dimensionality reduction techniques to represent the intrinsic geometry of the functional
a0 connectome in a lower-dimensional embedding. Together, these methods allow for a vectorized
a0 approach to investigate the functional relationships of RS-FMRI brain connectivity data. In
ann addition, we connected rest2vec to the maximum mean discrepancy metric to demonstrate
a2 how rest2vec can be used to address the modularity problem as a kernel two-sample test.
a3 In summary, we presented a RS-FMRI connectome graph embedding technique that uses
a2 nonlinear dimensionality reduction and statistical learning methods to create a low-dimensional

as representation of the intrinsic geometry of the functional connectome.
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Figure 13: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation.
Color indicates the partition predicted by the eigenvector of K corresponding to the second-highest eigenvalue.
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Figure 14: Anatomical and functional embedding of the Diez dataset faceted by anatomical lobe affiliation.
Color indicates the partition predicted by the eigenvector of K corresponding to the third-highest eigenvalue.
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Figure 15: © for the Diez dataset with rows and columns arranged in a diagonal grid into non-occipital
lobe regions (top left block) and occipital lobe regions (bottom right). Boundary between blocks is indicated

by the orange line.
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Figure 16: Pairwise functional distance for the Diez dataset.
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