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Abstract

Soil fungi can help improve ecosystem restoration, yet our understanding of how fungi reassemble
in degraded land is limited. Here, we studied fungal community structure using DNA
metabarcoding in reforested sites following agricultural abandonment and overgrazing. We used a
natural experiment in which reforestation with different numbers of tree species and deer exclusion
have been applied for multiple decades. We found that local fungal richness (alpha diversity) was
1.9 to 2.9 times greater in reforested stands than in natural forests and total fungal richness (gamma
diversity) was 1.3 to 1.9 times greater. These results were regardless of the number of tree species
planted in the reforested stands. Conversely, reforested stands had a homogenized community
structure with relatively lower degrees of compositional dissimilarity among sites within each
stand (beta diversity). These findings were attributable to lower environmental heterogeneity,
stronger dispersal limitation, and a comparatively shorter time since the onset of community
assembly in reforested stands. Deer exclosures had no detectable effect on fungal community
structure. Overall, the agricultural legacy in fungal community structure appears to have persisted
for decades, even under proactive restoration of aboveground vegetation. Direct human
intervention belowground may therefore be necessary for the recovery of soil biota once

homogenized, which may facilitate ecosystem restoration.
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Introduction

Given the extent of the human-induced damage to the biosphere, ecosystem restoration has become
increasingly relevant in today’s world (Hobbs and Harris, 2001). While restoration ecology has
typically focused on aboveground vegetation (Brudvig 2011; Perring et al., 2015; Young 2000),
less attention has been paid to belowground biota (Kardol and Wardle 2010). The diversity and
composition of soil organisms, particularly fungi, can be largely altered in degraded land due to
the decreased availability of organic substrates and their symbionts (Kardol and Wardle, 2010).
Understanding how soil fungi respond to restoration is of ecosystem-level significance, because
they can regulate key belowground functions and create feedbacks that support the aboveground
recovery (Young et al. 2005).

Recently, there are increasing social concerns on reforestation using mixed-species
plantations over monocultures (Verheyen et al., 2016; Tatsumi 2020). Plant diversity has often
shown to have positive effects on soil fungal diversity in grassland experiments (Milcu et al., 2013;
Scherber et al., 2010). In forests, however, experimental tests on the relationships between tree and
fungal diversity remain scarce (Weillbecker et al., 2018). Particularly, compared with local fungal
richness (alpha diversity), we still know little about the spatial variation in fungal composition
(beta diversity), as influenced by tree-species mixing. Assessing both alpha and beta diversity can
inform ecosystem recovery at local scales and larger scales that are relevant to land management
and policy making (e.g., forest stands, landscapes).

Human-induced increases in herbivore density can drive ecosystem degradation and
hamper vegetative recovery (Opperman and Merenlender, 2000). The changes in vegetation caused
by herbivory are known to subsequently impact soil organisms, including fungi (Kardol et al.,
2014). Thus far, such indirect effects have typically been tested by sole manipulations of herbivores
(Bardgett and Wardle, 2003; Kardol et al., 2014). It is also possible, however, for the impacts of
herbivores to be mediated by plant diversity. Specifically, the rates of herbivory can be reduced in
plant mixtures compared to monocultures because of associational protection among neighbouring
species (Cook-Patton et al., 2014). There has yet been little experiment on whether herbivores and
plant diversity have individual or interactive effects on soil fungi.

In this study, we quantified the effects of aboveground forest restoration on soil fungal
communities. As a study system, we selected a restoration site in northern Japan. We used a natural

experiment in which the following treatments were applied in a fully-crossed design: ‘tree planting
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with different numbers of species’ and ‘deer exclusion’ (Fujii et al., 2017; Mori et al., 2016). Our
specific objectives were to test (1) whether the community structure of soil fungi — namely, their
alpha and beta diversity — differ among monocultures and mixtures as well as nearby grasslands
and natural forests, and (i1) whether tree diversity and deer herbivory have individual or interactive
effects on soil fungi. Addressing these questions provides a step towards ecosystem restoration

grounded on above- and belowground linkages.

Methods

Study site

We conducted a natural experiment in lowland coastal areas of the Shiretoko National Park,
northern Japan (44°08'-11' N, 145°03'-08' E, elevation 140—220 m). The area has been designated
a World Heritage Site by the United Nations Educational, Scientific and Cultural Organization
(UNESCO) on account of it being home to one of the most species rich, northern temperate
ecosystems in the world (http://whc.unesco.org/en/list/1193). The mean monthly temperature
ranges from —6.1°C in February to 20.8°C in August. The mean annual precipitation is 1149 mm.
According to the soil classification system of Japan (Obara et al., 2011) and the Japan soil
inventory (https://soil-inventory.dc.affrc.go.jp/), the soil type in our study sites are low-humic
allophanic Andosols, which corresponds to Typic Hapludands and Hydric Hapludands in the
USDA soil taxonomy (Soil Survey Staff, 2010) (Supplementary Fig. S1).

Approximately 90% of the park’s terrestrial area is covered by pristine natural vegetation,
most of which is composed of mixed conifer—broadleaf forests. Parts of the remaining area had
been used for agriculture from the early twentieth century until the Government of Japan ordered
the settlers to abandon the land, a process that was completed by the late 1960s. Since then, a
number of reforestation initiatives has been conducted in the area to restore the arable land to
mixed conifer—broadleaf forests (>861 ha; the Shiretoko National Trust Movement Area). Such
activities included reforestation with different numbers of tree species and the establishment of
fences to prevent overgrazing and browsing by sika deer (Cervus nippon yesoensis). Deer density
has increased rapidly from the late 1980s to the late 1990s in the park, with a current density of
6.1-13.6 individuals km 2. Currently, the landscape is composed of mosaics of multiple vegetation

types, including monoculture and mixture stands, grasslands, and natural forests.
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83  Study design and sampling
84  The design and sampling methods are explained in detail in Mori et al. (2016) and Fujii et al.
85  (2017). Although we used the same study setting and a partly overlapping dataset with Mori et al.
86  (2016) and Fujii et al. (2017), this study completely differs from them. Specifically, while the
87  previous studies investigated the effects of fungal richness on ecosystem functioning, we instead
88  focused on the fungal community structure under different restoration treatments.
89 We used a natural experiment with a 4 x 2 factorial design — namely, four habitat types
90 and the inside/outside of deer exclosures. The four habitat types were (i) monoculture stands
91  reforested with Larix kaempferi, (i) mixture stands reforested with Abies sachalinensis, Picea
92  glehnii, and Betula ermanii, (ii1) grasslands dominated by a dwarf bamboo species (Sasa cernua)
93  as a negative control group (i.e., the initial state of restoration), and (iv) mixed conifer—broadleaf
94  natural forests dominated by 4. sachalinensis, Quercus crispula, and Kalopanax septemlobus as a
95  positive control group (i.e., the reference state of restoration).
96 The deer-exclusion and control sites were established adjacent to each other (i.e., inside
97 and outside of deer fences) in each habitat type. Each site was ~1 ha in size. All the sites were
98  distributed within an area of 2 km x 5 km (Supplementary Fig. S1). Given the restricted number
99  of reforested stands and deer fences in the region, our experiment consisted of eight sites with one
100  replication for each factorial combination. Reforested stands and deer fences were respectively
101  established >30 years and ca. 10 years prior to our field sample collection (Fujii et al., 2017). The
102  present vegetation inside and outside deer exclosures show significant structural differences (Fujii
103  etal., 2017; Nishizawa et al., 2016) (Supplementary Fig. S2).
104 The collection of soil samples and chemical analyses were conducted as previously
105  described (Fujii et al., 2017; Mori et al., 2016). Briefly, in May 2013 we established three 10 m x
106 10 m plots in each of the eight factorial combinations. In each plot, we randomly selected three
107  points and collected topsoil from a 0—5 cm depth at each point (i.e., totalling 72 soil samples). Soil
108  samples were transported from the field on ice and kept at —20°C until further analysis. Soil water
109  content, pH, total carbon (C) and nitrogen (N) content, and inorganic N (ammonium and nitrate)
110  content were measured to characterize soil properties. Total C and N content were measured using
111  an organic elemental analyzer (Macro Coder JM1000CN, J-Science Lab Co., Ltd., Kyoto, Japan).
112 Ammonium and nitrate were extracted from soil using a 2-M KCL solution and then measured

113 with an auto-analyzer (AACS-4, BL-TEC Co., Ltd., Osaka, Japan).
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114 Molecular analyses and bioinformatics

115  Molecular analysis and bioinformatics were conducted as previously described (Fujii et al., 2017;
116  Mori et al., 2016) and are explained in detail in Matsuoka et al. (2016b). Briefly, total DNA was
117 extracted from each of the 72 soil samples (0.25 g sample ') using the Soil DNA Isolation kit
118  (Norgen Biotek Corp., Thorold, ON, Canada). A semi-nested polymerase chain reaction (PCR)
119  was then performed to amplify the nuclear internal transcribed spacer 1 region. The pooled
120  amplicons were sequenced with a GS Junior sequencer (454 Life Sciences, Branford, CT, USA).
121 The reads were clustered with a cut-off sequence similarity of 97% (Osono, 2014) using
122 the Minimus genome assembler (Sommer et al., 2007). Consensus sequences were used as
123 molecular operational taxonomic units (OTUs). A total of 389 OTUs were obtained. For each OTU,
124  taxonomic identification was conducted using the QCauto method implemented in Claident
125  (Tanabe and Toju, 2013). Hereafter, we refer to ‘OTUs’ as ‘species’ for simplicity, bearing in mind
126  that OTUs defined by a fixed sequence similarity do not necessarily represent species in a
127  biological sense. The functional group of each species was determined based on the FUNGuild
128  database (Nguyen et al., 2016) and an intensive literature review. See Supplementary Materials for
129  details of molecular analyses and bioinformatics. Raw sequence data files are available at the DNA
130  Data Bank of Japan (DRA003024).

131

132 Community structure analyses

133  We defined fungal alpha diversity as the number of species within a community (i.e., a soil sample)
134  and beta diversity as the extent of community dissimilarity within a treatment combination. We
135  tested the effects of habitat types, deer fences, and their interactions on fungal alpha diversity using
136  two-way analysis of variance (ANOVA) and Tukey’s HSD test with ‘plot’ as a random effect.
137  Variation among samples in sequencing depths (i.e., read counts), which can bias alpha diversity
138  estimations, was standardized by rarefying read numbers. We used two rarefaction methods,
139  namely sample size-based and coverage-based rarefactions (Chao and Jost, 2012), to confirm the
140  robustness of results. In addition to habitat types, deer fences, and their interactions, we also
141 included soil properties (pH, total C, total N, C:N ratio, inorganic N, and water content) as
142 explanatory variables in separate ANOVA and linear regression analyses to account for the
143 potential confounding effects these variables could have on alpha diversity. The effects of habitat

144  types, deer fences, and their interactions on soil properties were tested by two-way ANOVA and
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145  Tukey’s HSD tests.

146 To detect the types of rank-frequency distribution of the species in each treatment
147  combination, four models — preemption, log-normal, Zipf, and null models (Wilson, 1991) —
148  were fitted to the distribution of occurrence by species rank (i.e., the number samples in which
149  species occurred vs. species rank). The best model was selected based on the Akaike information
150  criterion (AIC).

151 The effects of habitat types, deer fences, and their interactions on fungal community
152 composition were tested using two-way permutational multivariate analysis of variance
153 (PERMANOVA). The compositional dissimilarity between each treatment pair was tested using
154  pairwise PERMANOVA where P-values were adjusted using the Bonferroni correction method.
155  We compared beta diversity among the treatment combinations using the homogeneity of
156  multivariate dispersions test (Anderson, 2006). The communities were ordinated using nonmetric
157  multidimensional scaling (NMDS). The effects of soil properties on fungal community
158  composition were tested by fitting their vectors onto the NMDS ordination. For all the above
159  community dissimilarity analyses, we used two dissimilarity measurements — the Jaccard
160  (Jaccard, 1912) and Raup—Crick indices (Raup and Crick, 1979) — to confirm the robustness of
161  results. We used the indices based on presence/absence information in order to minimize the
162  possible influence of read-count biases resulting from interspecific variation in the number of
163  ribosomal DNA tandem repeats and from PCR processes (Toju, 2015). The habitat preferences of
164  each fungal species and functional group were tested based on the association between their
165  occurrence patterns and treatment combinations (De Caceres et al., 2010). All statistical analyses
166  were implemented in R 3.5.1 (R Core Team, 2018). The R packages used are listed in
167  Supplementary Table S1.

168

169  Results

170  Fungal alpha diversity was 1.9 to 2.9 times greater in grasslands, monocultures, and mixtures than
171  in natural forests (Fig. 1). It was confirmed that the sample size- and coverage-based rarefactions,
172 as well as the case without rarefaction, yielded qualitatively consistent results; therefore, the
173 results of the last two are provided in Supplementary Fig. S3. The effect of deer exclosures on
174  fungal alpha diversity was not significant (Figs. 1, S3). The interactions between habitat types and
175  deer exclosures also had no detectable effect on alpha diversity (Figs. 1, S3). Soil properties (i.e.,
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177 Figure 1. Effects of habitat type and deer fence on rarefied fungal operational taxonomic
178 unit (OTU) richness (i.e., alpha diversity). Results from two-way ANOVA is shown in
179 the upper right; *** P < 0.001; n.s. P > 0.05. Different letters indicate significant
180 differences (P < 0.05) among treatments (Tukey’s test). Error bars indicate standard
181 errors.

182  pH, total C, total N, C:N ratio, inorganic N, and water content) varied among the treatment
183  combinations (Fig. S4). Habitat type was the most significant predictor of fungal alpha diversity
184  even when we included the soil properties as explanatory variables in ANOVA (Table S2).
185  Regression analyses which controlled for the effect of soil pH (which was found to be a significant
186  variable in ANOVA) also showed that alpha diversity was lower in natural forests than in
187  grasslands (Table S3; Fig. S5).

188 The frequency of occurrence against species rank decreased less steeply in grasslands,
189  monocultures, and mixtures than in natural forests (Fig. 2). Based on AIC, the preemption model
190  was selected as the best model for habitats other than natural forests. The Zipf model was selected
191  for natural forests. Gamma diversity (i.e., the total number of species present in each treatment
192  combination) was 1.3 to 1.9 times greater in grasslands, monocultures, and mixtures (>130 species)
193  than in natural forests (<100 species) (Fig. 2).

194 Fungal community composition differed significantly among the habitat types (Fig. 3a,
195  b). We confirmed that the Jaccard and Raup—Crick indices qualitatively yielded the same results;
196  therefore, results from the Raup—Crick index are provided in Supplementary Fig. S6. The effect

197  of deer exclosures on community composition was not significant (Figs. 3a, S6a). The interaction
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199 Figure 2. Relationships between occurrence frequencies of fungal operational taxonomic
200 units (OTUs) and their rank. The y axes indicate the number of times each OTU occurred
201 out of the nine replications in each treatment. The OTUs are arranged in decreasing order
202 of occurrence frequency. Note that the maximum number of rank (on the x axis) in each
203 panel equals the total number of OTUs observed in each treatment (i.e., gamma diversity).
204 The numbers next to the model names indicate the Akaike information criterion (AIC).
205 Curves show the selected model (shown in boldface), based on AIC, which was fitted to
206 the distribution.
207  between reforestation types and deer exclosures also had no significant effect on community
208  composition. The soil properties were significantly correlated to community composition (Figs.
209  3a, S6a). Increases in inorganic N and water content were mainly associated with shifts in fungal
210  composition among habitat types (i.e., arrows roughly paralleled shift direction), whereas soil pH
211 and C:N ratio were associated with community dissimilarity within each habitat type (Figs. 3a,
212 S6a). Fungal beta diversity was significantly higher in natural forests compared to the other three
213  habitat types (Figs. 3c, S6c¢).
214 Most fungal species and functional groups occurred more frequently in certain habitat
215  types (Fig. 4). For example, ectomycorrhizal fungi, ericoid mycorrhizal fungi, and other symbionts
216  that coexist with Ericaceae species occurred more frequently in monocultures and mixtures than
217  in the other two habitat types. Conversely, the majority of fungal species and functional groups
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219 Figure 3. Dissimilarity of fungal communities within and among treatments. (a)
220 Ordination of communities based on nonmetric multidimensional scaling (NMDS) and
221 the effects of treatments (habitat type and deer fence) on community composition tested
222 by two-way permutational multivariate analysis of variance (PERMANOVA).
223 Community dissimilarity was measured using the Jaccard index. Arrows show the
224 associations of soil properties with community composition. (b) Community
225 dissimilarity between pairs of vegetation types. (c) Among-vegetation differences in the
226 size of within-vegetation community dissimilarity (i.e., beta diversity) tested by the
227 permutation test of homogeneity of multivariate dispersion (PERMDISP).

228  occurred at approximately the same frequency both inside and outside deer fences (Fig. 4).
229  Exceptions were Mortierella sp. 1 and coprophilous fungi that more often occurred outside than
230 inside fenced exclosures.

231

232 Discussion

233 Effects of tree diversity and herbivores on soil fungi

234  Tree planting and herbivore exclusion are among the globally conducted approaches in terrestrial
235 restoration (Kardol and Wardle, 2010; Verheyen et al., 2016). In this study, we tested the effects of
236  these restoration practices on soil fungal communities using a natural experiment. Most notably,
237 we found that local fungal richness (alpha diversity) was 1.9 to 2.9 times greater in grasslands and
238  monoculture and mixture stands than in natural forests (Fig. 1). This result was contrary to the

239  often reported, positive association between aboveground and belowground diversity (Peay et al.,
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241 Figure 4. Differences in occurrence frequency of fungal operational taxonomic units
242 (OTUs) and functional groups among restoration treatments. OTUs and functional
243 groups with adequate sample sizes (OUTs occurring at >25 sampling points out of 72
244 points and functional groups having >3 OTUs) are presented. The transverse lines in
245 boxes indicate treatments in which a given species or a functional group occurred
246 significantly more often than in other treatments.

247 2013; Prober et al., 2015). We also found that fungal beta diversity and rank-frequency distribution
248  in reforested stands were more similar to those of grasslands compared to natural forests,
249  regardless of the number of tree species planted (Figs. 2, 3). The total fungal richness (gamma
250  diversity) was 1.3 to 1.9 time greater in grasslands and reforested stands than in natural forests
251  (Fig. 2). The reforested stands shared more indicator species and functional groups with grasslands

252 than with natural forests (Fig. 4). These results stand in contrast with the fact that aboveground
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253  vegetation in our restoration sites is steadily recovering (Nishizawa et al. 2016, Fujii et al. 2017;
254  Fig. S2). Previous studies on naturally regenerating forests showed that historical effects of past
255 land-use activity (e.g., farming, logging) on soil fungal communities can last for decades (Bachelot
256  etal., 2016; Hartmann et al., 2012). Our results further suggest that, even after decades of proactive
257  aboveground restoration, the way soil fungi assemble in reforested stands still differs from how
258  communities are structured in natural forests.

259 Deer exclusion had no detectable effect on soil fungal communities at the species level
260  (Figs. 1, 2, 3a). Nevertheless, at the level of functional groups, coprophilous fungi occurred more
261  frequently outside fenced exclosures than inside (Fig. 4), which is attributable to the input of deer
262  faeces. Coprophilous fungi were also found most often in grasslands (Fig. 4), coinciding with the
263  habitat preference of sika deer for grasslands over forests (Yabe, 1995). Such deer-induced changes
264  in the functional composition of fungi may, in turn, affect ecosystem nutrient cycling (Kardol et
265 al., 2014). In fact, a faeces decomposition experiment conducted at our study area (Yabe, 1995)
266  revealed more rapid faeces decomposition (and thus nutrient release) in grasslands than forests.
267  This indicates that, in our grassland sites, a positive feedback exists between faeces production,
268  fungal activity, and the growth of plants on which deer feed (van der Wal et al., 2004). Conversely,
269  we found no evidence to support the interactive effects of deer and tree diversity on soil fungi
270  (Figs. 1, 3a). A previous study (Cook-Patton et al., 2014) found a diversity-derived reduction in
271 seedling herbivory by white-tailed deer (Odocoileus virginianus) owing to the associational
272 protection of palatable species by unpalatable species. We did not observe such associational
273  effects presumably because sika deer unselectively feed on a wide variety of plants including
274  unpalatable species when its population density is high (Takahashi and Kaji, 2001). Overall, the
275  results indicate that aboveground plant—herbivore interactions in our experimental site have limited
276  impact on the species diversity of soil fungi, yet have potential to affect their functional
277  composition and ecosystem functioning.

278

279  Fungal community assembly

280  Understanding the ecological processes underlying diversity patterns can provide a critical step
281  towards the development of theory-driven restoration (Mori et al., 2017). Here, based on a
282  conceptual synthesis in community ecology (Vellend, 2010), we discuss three potential assembly

283  processes by which the lower fungal alpha diversity and higher beta diversity in natural forests
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284  than reforested stands (Figs. 1, 3a, 3¢) can arise — that is, ecological selection across space and
285  time, and dispersal limitation.

286 The first possibility is the selection under different degrees of spatial environmental
287  heterogeneity. Increasing environmental heterogeneity can increase beta diversity (i.e., the
288  dissimilarity among local communities within each treatment combination) through the selection
289  of different species at different sites (Mouquet and Loreau, 2003). The high fungal beta diversity
290  we found in natural forests (Fig. 3a, c) is attributable to the fact that natural forests often have
291  higher habitat heterogeneity compared to grasslands and plantations (Mori, 2011). The greater
292  variation in water content and inorganic N of natural forests compared to grassland and reforested
293  stands (Fig. 3a) also coincides with previous findings that soil properties are often homogenized
294  in ex-arable land (Bachelot et al., 2016; Fraterrigo et al., 2005). Moreover, it is often expected that
295  environmental heterogeneity increases alpha diversity (i.e., local species richness) via source-sink
296  effects (Pulliam, 1988). Nonetheless, a theory by Kadmon and Allouche (2007) suggests that
297  environmental heterogeneity can reduce the available habitat size of each species and, thus, could
298  conversely decrease overall species richness. According to this theory, the low alpha diversity in
299  natural forests (Fig. 1) could have derived from the high environmental heterogeneity that brought
300 some species to such low abundances that they go locally extinct.

301 The second possibility is the time dependency in community response to environmental
302  conditions. Constrained rates of mortality and reproduction prevent species from going extinct
303 immediately, even when their population growth rates are negative. The higher alpha and lower
304  beta diversity in reforested stands compared to natural forests (Figs. 1, 3a, 3c) can be interpreted
305  simply that the process of local species selection has not yet been completed in reforested stands,
306 regardless of environmental variation per se. Moreover, the long duration of time in natural forests
307  could have allowed the effect of species’ arrival order to be amplified and thereby the communities
308 to diverge (i.e., priority effects; Fukami, 2015). In fact, a multi-year monitoring study of fungal
309 communities (Matsuoka et al. 2016a) found that compositional similarities among communities
310  were largely explained by the closeness in the time of survey. This suggests that the elapsed time
311  after the onset of community assembly can have a major control on fungal diversity patterns
312  observed in the field. Furthermore, species occurrence patterns in grasslands and reforested stands
313  exhibited the preemption (geometric) distribution (Fig. 2). This type of distribution is often found

314  in the early stage of succession for various taxa, including fungi (Visser, 1995), plants (Whittaker,
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315  1965), and soil invertebrates (Caruso and Migliorini, 2006). We note that caution is needed in
316  comparing our study to previous studies because we used rank-frequency distributions instead of
317  rank-abundance distributions due to the methodological concerns in high-throughput DNA data
318 analyses (Toju, 2015). Nonetheless, we do offer a potential interpretation that fungal species in our
319 reforested sites are still in the course of ecological selection even after decades of tree planting.
320 The third possibility is dispersal limitation. Despite the small size and immense number
321  of propagules, dispersal limitation is now acknowledged as a crucial determinant of fungal
322  community structure (Peay et al., 2010). Fungal diversity patterns in our experiment (Figs. 1, 3a,
323  3c) can be explained by dispersal limitation at two conceptual scales: external dispersal from
324  outside the set of local communities (as assumed in the mainland-island model) and internal
325 dispersal among the local communities (as described in the metacommunity model) (Fukami,
326  2015). In the former scenario, the low beta diversity of grasslands and reforested stands (Fig. 3a,
327  3c) can be explained by limitations in the external dispersal of habitat specialists, which may have
328 led the communities to become composed of a same suite of generalists, irrespective of local
329  habitat conditions (Vellend et al., 2007). Indeed, a study that compared fungal community structure
330 in primary forests and artificial pastures (Mueller et al., 2016) reported an increase in dominance
331  of generalist fungi in pastures. Under the latter metacommunity scenario, maximal alpha and beta
332  diversity is predicted to occur at intermediate and low levels of internal dispersal, respectively
333  (Mouquet and Loreau 2003). This indicates that the low alpha and high beta diversity of natural
334  forests (Figs. 1, 3a, 3c) resulted from limited within-treatment dispersal. This view is further
335 supported by the presence of competition-dispersal tradeoffs among fungal species (Peay et al.,
336  2007; Smith et al., 2018); that is, only species with high competitive but low dispersal abilities
337  were able to subsist in natural forests.

338

339  Future challenges

340 We found clear differences in fungal community structure among restoration treatments, but
341  uncertainty still persists regarding causal relationships among some variables. Specially, given the
342  lack of site-level replication for each treatment in our experiment, we cannot explicitly separate
343  the effects of human activities (i.e., restoration treatments and past agricultural practices) from the
344  among-site environmental variation that might have existed from before (e.g., soil types). For

345  example, we found that the C:N ratio was relatively low in the natural forests (Fig. S3), similarly
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346  to what was found for fungal richness (Fig. 1); this similarity, however, can be due to either human
347  activities or the original environment of the sites. Future studies with multiple site replications are
348  thus required in order to draw conclusions about causalities among the variables (e.g., potential
349  reductions in species richness caused by increased N availability; Cline et al., 2018).

350 Nevertheless, some of our results did, in fact, indicate that the fungal community structure
351  was driven by the human activities in the study sites. Most notably, adding the measured soil
352  properties as explanatory variables to the statistical models did not alter our result that fungal
353  richness differs among habitat types (Table S2). Additional analyses showed that natural forests
354  had the lowest fungal richness even when we controlled for the soil pH which negatively affected
355  therichness (Table S3; Fig. S5). The fact that all the study sites have the same soil type (low-humic
356 allophanic Andosols; Fig. S1) further supports the possibility that the soil environment was
357 homogeneous across the sites prior to the treatments and land-use changes. Moving forward,
358 accumulations of additional field data will allow us to explicitly disentangle the relationships
359  among site conditions, human activities, and fungal diversity.

360

361  Implications for restoration

362 In this study, we investigated soil fungal communities in a restoration landscape and found that
363 aboveground-oriented restoration treatments (i.e., tree planting and herbivore exclusion) do not
364 necessarily translate into the recovery of fungal diversity. Our results suggest that in order to
365 enhance the recovery of soil fungi, direct intervention to the soil, in conjunction with the
366  application of vegetative treatments, may be necessary. For example, supplying organic substrates
367  (e.g., deadwoods) to the soil surface can help create additional habitats for soil fungi (Makipaa et
368 al., 2017). Especially in restored sites with homogenized community structure like ours (Fig. 3a,
369  3c), creating mosaics of habitat patches by supplemental substrates could increase environmental
370  heterogeneity and thus beta diversity. Another commonly applied approach in soil restoration is
371  fungal inoculation, although caution is needed because fungal inoculation can occasionally cause
372  negative impacts on the ecosystem (Janouskova et al., 2013). In fact, in our study site, natural
373  forests had the lowest fungal alpha diversity (Fig. 1), indicating that simply adding multiple species
374  todegraded land may not necessarily shift the community structure to that of natural forests. Rather,
375 it might be effective to selectively inoculate a small number of species that could otherwise not

376  reach the sites, considering the limited colonization of habitat specialists in our restored sites (as
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377  indicated by low beta diversity; Fig. 3a, 3c). Furthermore, inoculating fungal species in different
378  order at different locations can increase beta diversity via priority effect. We believe that such
379  direct treatments to the soil and belowground biota will allow us to better enhance the recovery of
380  degraded ecosystems.
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