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Abstract 
The characterization of human genetic variation in coding regions is fundamental to our 
understanding of protein function, structure, and evolution. Amino-acid (AA) substitution matrices 
such as BLOSUM (BLOcks SUbstitution Matrix) and PAM (Point Accepted Mutations) encapsulate 
the stochastic nature of such proteomic variation and are used in studying protein families and 
evolutionary processes. However, these matrices were constructed from protein sequences 
spanning long evolutionary distances and are not designed to reflect polymorphism within species. 
To accurately represent proteomic variation within the human population, we constructed a set of 
human-centric substitution matrices derived from genetic variations by analyzing the frequencies 
of >4.8M single nucleotide variants (SNVs). These human-specific matrices expose short-term 
evolutionary trends at both codon and AA resolution and therefore present an evolutionary 
perspective that differs from that implicated in the traditional matrices. Specifically, our matrices 
consider the directionality of variants, and uncover a set of AA pairs that exhibit a strong tendency 
to substitute in a specific direction. We further demonstrate that the substitution rates of nucleotides 
only partially determine AA substitution rates. Finally, we investigate AA substitutions in post-
translational modification (PTM) and ion-binding sites. We confirm a strong propensity towards 
conservation of the identity of the AA that participates in such functions. The empirically-derived 
human-specific substitution matrices expose purifying selection over a range of residue-based 
protein properties. The new substitution matrices provide a robust baseline for the analysis of 
protein variations in health and disease. The underlying methodology is available as an open-
access to the biomedical community. 

 
 
Introduction 
The study of population genetic variation is imperative to the understanding of human evolution. 
Such understanding opens the door to countless scientific and medical applications. Examples 
include tracing ancient migration patterns, estimating the pathogenicity of genetic variants, 
identifying functional elements in the genome, and assessing the adaptivity and conservation of 
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genes and other genomic regions. Gaining such insights is predicated on an accurate background 
model for the dynamics of human genetic variation.  

The majority of genetic variants result from replication errors, cytosine de-aminations, and gene 
conversion (1, 2). Once a new variant is introduced into a population, its spread among individuals 
is governed by genetic drift and natural selection, which is affected by the evolutionary utility of the 
variant (3). At any point in time, in a given population, a variant’s abundance is measured by its 
allele frequency (AF). In the present human population, the vast majority of the observed variants 
are rare and population-specific (4).  

Various approaches model the dynamics of genetic variation from different angles using these 
principles. One approach uses comparative genomics between human genomes and other related 
species (5, 6). However, parameters such as demographic history (e.g., migration, admixture, 
ancestral population-structure, parental age, generation time) differ among mammals, and thus 
reduce the accuracy of such phylogenetic estimates (6). A different method directly calculates 
human-specific mutation rates by counting de-novo mutations within parent-child samples. The 
short timescale of such analyses (up to a few generations) yields a good model for the introduction 
of new variants, but mostly ignores the effects of natural selection (4).  

Genetic-variation models that concern coding regions and proteomic variation are of particular 
interest, as they aim to reflect the forces of selection that act on protein structure and function. 
Traditionally, studies of protein evolution make use of amino-acid (AA) substitution matrices such 
as PAM and BLOSUM (7-9) as models of genetic variation. These matrices score AA substitutions 
by their likelihood, as derived from empirical observations. Specifically, the construction of these 
matrices relied on multiple sequence alignments of evolutionarily related protein sequences across 
species, such as whole protein homologs (10, 11) or highly conserved protein regions (7). BLOSUM 
and PAM provide sets of related scoring matrices, which aim to capture a range of evolutionary 
distances. BLOSUM62, named for its use of protein blocks with 62% identity or less, is the most 
prominent AA scoring matrix. It serves as the default choice for BLAST, as well as other commonly 
used bioinformatics tools (12, 13).  

Despite their widespread use, existing AA substitution matrices were not designed to handle 
proteomic variation within species, and specifically within humans (14, 15). An additional limitation 
of cross-species AA substitution matrices is the lack of directionality of substitutions (i.e., not 
distinguishing between substitution of a first AA to a second AA from a substitution of the second 
to the first). Furthermore, the BLOSUM matrices do not aim to estimate the probabilities of AA 
substitutions explicitly. Instead, they assign scores. Finally, both BLOSUM and PAM model 
substitutions at the AA resolution, whereas codon resolution may be more useful for portraying 
short evolutionary distances such as within the modern human population (16, 17).  
In this study, we provide a probabilistic model of codon substitutions and AA substitutions derived 
from genetic variation observed in the human population. To this end, we exploit a rich collection 
of ~7M polymorphic sites in the exomes of over 60,000 unrelated, healthy individuals extracted 
from the Exome Aggregation Consortium (ExAC) (18). From this comprehensive dataset, we 
constructed a set of human-specific substitution matrices, which offers a baseline for studying 
genetic and proteomic variation and drawing evolutionary and functional insights. We examine the 
information contained in our novel matrices and compare them to the currently used matrices. We 
further used this methodology to expose protein functional constraints, as reflected by post-
translational modification (PTM) sites and the residues that coordinate ion-binding in proteins. We 
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provide the community with a generic framework that utilizes aggregated genetic data to produce 
substitution matrices for a broad range of taxonomic and evolutionary contexts. 
 
 
Results 
 

Constructing human-specific coding substitution matrices  
To construct an amino-acid (AA) substitution matrix that is specific to the human population (Fig.1), 
we merged data from two complementary sources: (i) the ExAC population database, which reports 
>7M high-quality single nucleotide variations (SNVs) from exome sequences of 60,706 non-related 
humans (18); (ii) genomic annotation for all human coding genes. By projecting the ~7M SNVs on 
top of the gene annotations, we inferred 4.8M observed codon substitutions, found in 37% of all 
codons in the human exome. Overall, 33% of the substitutions are synonymous, 2% are stop-gain, 
and 65% are missense.  
 
 

 
 
 
Figure 1. General outline of pipeline and it’s outputs. (A) We combined 4.8M SNVs (from the ExAC 
database) with 18K gene annotations (from GENCODE) to construct a human-specific codon 
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substitution matrix, denoted HC1, where each entry represents a codon substitution probability. To 
also represent codon substitutions that differ by more than a single nucleotide, we extended the 
sparse HC1 into a complete HC3 matrix through a Markovian process. We further consider the two 
matrices at amino-acid rather than codon resolution, deriving HA1 and HA3, in which each entry 
represents the probability of an AA substitution. (B) The values of HC3. (C) The values of HA3 
(numbers are in log10 scale). 
 

 
 
 
 
Figure 2. The properties of human-specific amino-acid substitutions (A) The values of HN1, the 
human-specific nucleotide substitution matrix (B) Expected-to-observed ratios of HA1entries. The 
4x4 frequencies of single-nucleotide substitutions determine the expected background model. A 
ratio close to 1 signifies a substitution whose frequency is mostly determined by the nucleotide 
content of the codons. Ratios lower than 1 (colored in pink) represent substitutions that are 
positively selected to be more common than would be expected by their nucleotide compositions. 
Likewise, ratios higher than 1 (colored green) represent negative selection. 
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From these codon substitutions and their allele frequencies (AFs), we constructed a 61x61 codon 
substitution matrix, denoted HC1 (standing for Human Codon substitutions). Rows and columns in 
the matrix represent all coding codons (i.e., excluding the three stop codons), with rows 
representing the source codons and columns representing the target codons. Rows are normalized 
so that each entry represents the conditional probability of the codon substitution. 
To provide substitution probabilities at the AA resolution, we transformed HC1 into a 20x20 amino-
acid (AA) substitution matrix, denoted HA1 (i.e., Human Amino-acid substitutions) (19). However, 
most codon substitutions cannot occur by substituting a single nucleotide. For example, substituting 
glycine (coded by GGN) to proline (coded by CCN) would require the mutation of at least two 
nucleotides. Therefore, HC1 is a sparse matrix, in which 84% of all codon pairs have zero 
probabilities. Likewise, HA1 contains non-zero values in only 42.5% of all AA pairs. To model all 
substitutions, we considered three consecutive transitions of HC1, thereby deriving a complete 
codon substitution matrix HC3 (Fig. 1B). We also transformed HC3 into an amino-acid substitution 
matrix, HA3 (Fig. 1C). The numeric values of the four matrices, HC1, HA1, HC3, and HA3, are 
provided in Supplementary Dataset S1. 
 
 
Characteristics of amino-acid substitutions in the human population  
We questioned whether the observed 20x20 AA substitution frequencies are exclusively 
determined by the signal reflected by the 4x4 single-nucleotide substitutions. To this end, we 
constructed a 4x4 single-nucleotide mutation matrix, denoted HN1, developed from all the reported 
SNP variants (Fig. 2A, Supplementary Dataset S2). This matrix accounts for all 16 single-nucleotide 
mutation frequencies observed in coding regions across the human population. From HN1, we 
derived a 20x20 AA substitution matrix, denoted HAN1 (i.e., Human Amino-acid Nucleotide 
substitutions), which aim to represent the expected AA substitution probabilities under the 
background model of single-nucleotide substitution propensities (Supplementary Dataset S2). We 
then compared the expected values of HAN1 to the empirically observed values of HA1 through an 
element-wise division of the two matrices (Fig. 2B). Substitutions of tryptophan (W) to cysteine (C) 
or serine (S) are roughly 8-fold lower than expected by this naive nucleotide-based background 
model. Similarly, a substitution from isoleucine (I) to lysine (K) is 16-fold lower than expected. 
Overall, we reveal that many of the expected-to-observed ratios are far from one (11% are >2 or 
<0.5, and 20% are >1.5 or <0.66), reflecting the prominence of natural selection even at the 
resolution of single amino-acids.  
An essential feature of a probabilistic substitution model is the notion of directionality. We consider 
directionality as the potential asymmetry between the substitution of the first AA to a second AA 
vs. the opposite substitution of the second to the first. The traditional taxonomy-based matrices 
(e.g., BLOSUM and PAM) are scoring matrices, which are symmetric by design, and thus lack such 
directionality. Our substitution models are transition matrices, derived from a single taxon. These 
properties allow the polarization of the variants using allele frequency information so that the 
opportunity to explore such asymmetry presents itself. The ratio between each AA substitution to 
its opposite can be used to measure such asymmetry (Fig. 3A). The strongest directionality is 
associated with tryptophan (W), which shows a much higher tendency to be substituted into than 
to be substituted by other AAs. Tryptophan (W) is a biochemically distinct amino acid. It is 
associated with minimal flexibility, maximal hydrophobicity, and bulkiness. It has the most 
considerable interface propensity and the lowest solvation potential (20). It has also been 
implicated in the pathogenicity (21). We highlight extreme signals of asymmetry, which we define 
as substitution ratios higher than 5 (Fig. 3B). This representation elucidates patterns of strongly 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.09.086009doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.09.086009
http://creativecommons.org/licenses/by-nc/4.0/


 

 

6 

 

directional substitutions. In addition to tryptophan (W), valine (V) and isoleucine (I) also stand out 
as hubs of asymmetry, albeit with reversed directionality. That is, whereas tryptophan emerges as 
a target hub, valine and isoleucine tend to be the source of substitutions. Several directional signals 
are driven by the substitution preferences of specific codons of the substituted AA. For instance, 
we observe that tyrosine (Y) is 6 times more likely to substitute valine (V), which is determined by 
the codon substitution frequency of GTT (V) and GTA (V) to TAT (Y). We observe a weaker 
opposite tendency for GTA (V), GTG (V), and GTC (V) to TAC (Y) (Supplementary Fig. S2). 

 

Figure 3. The deviation of HA3 from symmetry. (A) The symmetry of a substitution is measured by 
the log2 of the ratios between the probability of each substitution to the probability of its opposite 
substitution (resulted by swapping the source and target AAs). The probabilities are derived from 
a version of HA3 which does not include synonymous probabilities. Particularly, each row 
represents the conditional distribution which assigns a zero-probability to a synonymous 
substitution. (B) Network representation of AA substitutions that substantially deviate from 
symmetry (defined by ratios of at least 5, as defined in (A)). For example, serine (S) is 14 times 
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more likely to substitute into tryptophan (W) than the other way around. Wider arrows signify 
stronger asymmetry (i.e., higher ratios). 

 

Figure 4. Comparison to BLOSUM and PAM substitution matrices (A) Spearman’s correlation 
coefficients (ρ) between the rows of HA3 to the corresponding rows of different versions of the 
BLOSUM matrices. For example, the rightmost bar measures the consistency between the 
substitution probabilities of Glycine (G) according to HA3 and the corresponding substitution scores 
according to BLOSUM100. The average correlation coefficients (across all 20 AAs) are shown as 
dotted lines. (B) Average Spearman’s correlation coefficients between BLOSUM matrices and 
different powers of HA1. Increasing powers of HA represent an increasing number of consecutive 
substitutions, thereby longer evolutionary timescales. (C-D) Same as (A) and (B), for the PAM 
matrices. 

 

Human-specific and cross-taxa substitution matrices capture different signals   
To assess the novelty of the human-specific AA substitution matrix, we compared HA3 with the 
canonical cross-taxa substitution matrices BLOSUM and PAM (Fig. 4). We observe a moderate 
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correlation between HA3 and BLOSUM62 (average across all 20 AAs: ρ = 0.52; Fig. 4A). 
Interestingly, BLOSUM100, which aims to capture much shorter evolutionary distances, differs only 
slightly from BLOSUM62 in this respect. As expected, the average correlation for BLOSUM30, which 
was designed for longer evolutionary distances, is lower (ρ=0.45). Notably, the 20 AAs exhibit high 
variability in this comparison. Isoleucine (I) and tryptophan (W) exhibit a higher correlation to the 
scoring profiles of BLOSUM30 than to those of BLOSUM62 and BLOSUM100.   
HA3 represents the expected pairwise substitution probabilities between all AAs, having gone 
through three consecutive single-nucleotide substitutions. It is reasonable to inquire whether the 
specific choice of HA3 substantially affects the comparison of the human-specific and cross-taxa 
matrices. We, therefore, consider other numbers of consecutive single-nucleotide substitutions, 
which can describe increasing evolutionary distances (thereby, potentially better fitting the cross-
taxa matrices). We repeated the comparison between the BLOSUM matrices to HAk for different 
values of k (Fig. 4B). Indeed, the observed degree of conformity is steady for a wide range of 
evolutionary steps (from k=2 to k=210). For higher values of k, a drop in conformity is observed, 
when the Markovian process reaches its stationary state. We conclude that the choice of k=3 is not 
only the minimal number of nucleotide substitutions required to represent all possible AA 
substitutions but is also a robust and appropriate choice.  
A similar conformity analysis was performed for several PAM matrices (Fig. 4 C-D). For PAM, we 
observe somewhat higher correlations (average ρ of 0.61 to 0.68). The most substantial conformity 
of HA3 is noted for PAM10, which represents the shortest evolutionary distance (i.e., highly similar 
protein sequences) that was examined. A correlation analysis was also performed for the transition 
matrix of PAM1, yielding the highest conformity (ρ=0.69, see Supplementary Figure S4). Notably, 
tyrosine (Y) and cysteine (C) show consistently low conformity between the human-specific 
matrices to all cross-taxa matrices (both BLOSUM and PAM). 

The human-specific substitution model exposes protein functional site preservation   
It is natural to consider how AA substitution tendencies change in the context of protein functional 
sites, as these are likely to influence evolutionary pressures. To this end, we examined six 
prominent PTMs (acetylation, phosphorylation, N- and O- glycosylation, succinylation, and 
disulfide-bond) and three types of ion-binding sites (zinc, magnesium, and iron). Altogether, we 
examined 92,625 experimentally-validated protein site annotations (covering 12,746 unique 
proteins). We began by determining which AA substitutions and annotations show statistically 
significant changes in the context of the examined functional sites. We tested for such changes 
through (i) the number of variants, and (ii) their allele frequencies (AFs). All such significant 
substitutions are shown in Table 1 (see Supplementary Dataset S3 for non-significant results). For 
example, alanine (A) to threonine (T) substitutions are significantly depleted in acetylated sites with 
respect to both the number of observed variants (FDR q-value = 4.2E-10) and their allele 
frequencies (FDR q-value = 1.3E-02).  
The most significant association is the conservation of cysteine (C) residues involved in disulfide 
bonds (FDR q-value = 9.7E-32), as expected by the fundamental importance of these bonds in 
stabilizing the structural fold of the protein. Generally, functional residues are preserved in the 
majority of annotations, while nonsynonymous AA substitutions are generally depleted (Table 1). 
Collectively, these results expose negative selection associated with all major functional sites in 
the human population proteome.  
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Table 1. Statistically significant AA substitutions in PTM sites.  
 

PTM annotation 
From 

AA 
To AA 

# sub. w/ 
annotation 

# sub. w/o 
annotation 

# variants FDR q-
value 

AF FDR q-
value 

Trend* 

Acetylation 

A A 212 154569 1.94E-02  E 
A T 51 91640 4.15E-10 1.27E-02 D/D 
A V 122 84602 3.16E-02  D 
K K 398 48774 6.89E-03  E 
K N 128 22414 2.35E-02  D 
K Q 63 10543  4.75E-02 D 

Disulfide bond 

C C 2014 25117 9.70E-32  E 
C F 311 5700 6.68E-03  D 
C G 238 4429 8.13E-03 2.62E-02 D\D 
C R 648 11634 3.93E-04 6.99E-05 D\D 
C S 412 8104 2.56E-06 1.01E-02 D\D 
C W 175 3205 4.18E-02  D 
C Y 870 16183 6.68E-08 5.26E-05 D\D 

Hydroxylation K K 105 49091 7.65E-05  E 

Methylation 
K K 54 49140 2.36E-03  E 
R R 154 86468 3.05E-02  E 

N-linked 
Glycosylation 

N D 657 16080 1.79E-02  D 
N H 274 7345 6.70E-03  D 
N N 2441 51886  2.25E-02 E 

O-linked 
Glycosylation 

S S 82 148408  1.74E-02 E 
T T 105 142197  1.44E-02 E 

Phosphorylation 

S A 285 9066 4.08E-02 2.68E-03 D\D 
S F 1054 25354 4.47E-04  E 
S L 1176 30503  3.41E-02 D 
S G 706 21817 6.68E-03  D 
S S 5403 143087 1.96E-02  E 
S T 669 19274  3.39E-04 D 
T T 1471 140831  3.41E-02 D 
Y H 85 15654 1.38E-02  D 
Y Y 454 50960 3.06E-06  E 

Succinylation 
K E 66 28051  2.08E-02 D 
K K 106 49066  2.08E-02 D 
K R 86 35506  2.08E-02 E 

Ubiquitination 

K E 4091 24020  3.40E-10 D 
K I 324 2060  1.47E-03 D 
K K 7536 41630 1.67E-06 3.47E-07 E\D 
K M 422 2752 4.78E-02 5.41E-03 D\D 
K N 2980 19562 3.29E-10 7.44E-09 D\D 
K Q 1477 9129 4.78E-02  D 
K R 5420 30168 1.30E-03 2.47E-09 E\D 
K T 1589 9119  1.40E-07 D 
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*Whether the significant differences between annotated and unannotated residues with respect to 
the number of variants (left) and allele frequency (AF; right) are due to enrichment (E) or depletion 
(D). 
 
 
Table 2. Statistically significant AA substitutions in ion-binding sites.  
 

Ion-binding 
annotation 

From 
AA 

To 
AA 

# sub w/ 
annotation 

# sub. 
w/o annotation 

# variants 
FDR q-value Trend* 

Iron H H 70 45629 8.67E-04 E 
Magnesium D D 73 69334 1.72E-04 E 

Zinc 
H H 182 45517 2.25E-06 E 
H R 56 27688 1.29E-03 D 
C C 132 27001 2.25E-06 E 

 
*Whether the significant differences between annotated and unannotated residues with respect to 
the number of variants (left) and allele frequency (AF; right) are due to enrichment (E) or depletion 
(D). 

 
Having determined which AA substitutions show significant changes in functional sites, we applied 
our model to examine these differences in substitution propensities (Fig. 5, Supplementary Fig. 
S4). Specifically, we considered the entry-wise ratios of HA3 within annotated and unannotated 
sites by reconstructing the matrix for each of the two conditions. AA substitutions that appear 
particularly unfavored in specific functional contexts are acetylated lysine (K) to glutamine (Q), zinc-
binding histidine (H) to arginine (R), and hydroxylated alanine (A) to valine (V) or threonine (T). 
Lysine (K) plays an essential role under many PTMs, several of which exhibit strong negative 
selection under our model. The majority of succinyl-modified lysine residues overlap with 
acetylation (22). lysine modified by ubiquitin, acetyl, and succinyl presents a lower tendency to 
change to other AAs, compared to an unmodified lysine. We did not analyze additional types of 
lysine PTMs (sumoylation, methylation) due to a lack of experimental evidence. We conclude that 
a human-centric model of AA substitution propensities is a powerful and intuitive tool to study a 
variety of short-term evolutionary contexts, including PTMs and the amino acids that support and 
coordinate ion-binding sites. 
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Figure 5. Network representation of AA substitutions exhibiting significantly different tendencies in 
PTM and ion-binding sites. Each edge represents a substitution between a source to a target AA 
in the context of a specific annotation (indicated by edge color). The edges are annotated with the 
log2 ratio of the substitution probabilities between sites with and without the annotation. Arrow 
widths signify the magnitude of these ratios. AAs that allow annotations, and are therefore potential 
substitution sources, are marked as orange squares. 

 

 
Discussion  

 

In this study, we have presented a set of novel, data-driven codon and AA substitution matrices, 
which is based on the natural occurrence of genetic variations in the healthy human population. 
This modern-human centric approach implies an evolutionary timescale of up to tens of thousands 
of years, as opposed to the classic BLOSUM and PAM matrices, which are based on proteomic 
sequences from organisms whose common ancestor goes back hundreds of millions of years (23). 
Despite the different order of magnitude of evolutionary timescales, HA3 still shows a moderate-to-
high correlation with the BLOSUM and PAM matrices (Fig. 4). Moreover, the matrices that reflect 
shorter evolutionary distances (e.g., BLOSUM100 and PAM100) exhibit higher similarity to the 
human-centric matrix. On the other hand, we do observe that some amino-acids, most notably 
cysteine (C), tyrosine (Y) and tryptophan (W), seem to behave very differently in the human context. 
These amino acids specify unique biochemical features which are influential on protein structure 
properties (e.g., tyrosine has the lowest frequency for alpha-helix), function (24), and explicitly on 
protein interactions. Specifically, C, Y, W have strong interface propensity (25) and negative 
solvation potential (26). Interestingly, these amino-acids are implicated with the highest probability 
for causing disease in human de-novo rare mutations (27). 

We argue that a human-centric model that reflects short-term evolution is more appropriate for 
accurate assessment of the impact of human mutations in coding genes, which is essential for 
human genetic consulting and identifying causal mutations in rare diseases. For this task, many 
prediction tools and algorithms have been developed (e.g. SIFT, PolyPhen2, CADD, SNAP2, FIRM 
(28-32)). Many of these tools incorporate long-range evolutionary information from cross-species 
conservation into the underlying model (33, 34). We anticipate that the incorporation of short-term 
human baseline models such as HA3 could be beneficial to these efforts.  

Interestingly, even the very short-term view, explored in this study, exposes a clear and robust 
signal of negative natural selection at codon and amino-acid resolution (Fig. 3A). Unsurprisingly, 
synonymous substitutions (the diagonal values of the matrix) exhibit higher propensities than would 
be expected by the nucleotide compositions of the codons, while missense substitutions are 
suppressed. Our model further exposes notable differences between substitutions, with some 
showing an order-of-magnitude stronger selection than others. While most AAs tend to substitute 
into tryptophan (W) more than the other way around, the AA with the most extreme tendency is 
Serine (S), where the ratio of propensities is 14. Another extreme case is the substitution of 
isoleucine (I) to lysine (K), which is ~14 times less frequent than would be expected by the codons 
of these amino-acids. Examining the same substitution in codon resolution, we reveal that a single 
codon substitution primarily drives this signal from ATA (I) to AAA (K) (Supplementary Fig. S1, 
Supplementary Dataset S2).  
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Having observed a strong evolutionary signal in our model of amino-acid substitutions, we sought 
to consider its implication on protein function, specifically in the case of PTMs and ion-binding 
residues (Table 1 and Fig. 5). At a cellular level, key processes such as apoptosis, cell division, 
signal transduction, and cellular communication are governed by a network of PTMs (35). In 
humans, most proteins are subject to PTMs, and the combinatorics of PTMs greatly increase the 
proteome's functional repertoire (36, 37). While we discuss each of the PTMs separately (Fig. 5), 
it is known that different types of PTMs may occur on the same residue (38). For example, lysine 
(K) participates in many of the major PTM types, with over half of the acetylation and a third of 
ubiquitination co-occur at overlapping lysine (K) (39).  

Although ~200 types of PTMs have been detected by mass spectrometry (MS) (40-42), only a 
handful were broadly used and systematically studied (43, 44). Whether PTM sites are under 
neutral, negative, or positive selection in humans remained an unsolved question (3, 45, 46). In 
this study, we report a strong negative selection signal that is evident for many of the PTM types 
and ion-binding sites. Recall that PTMs are highly volatile and condition-specific, and their 
annotations are sensitive to experimental protocols (47, 48). Despite these notable sources of noise 
(40, 49), we detected several statistically significant substitutions that are enriched or depleted 
within specific PTMs. Particularly salient are functional contexts with clinical implications such as 
cysteine disulfide bonds (50), phosphotyrosine (relative to phosphoserine and phosphothreonine) 
(51) and ion-binding sites (52). Many rare monogenic diseases result from point mutations in 
codons of cysteine, which destroy essential disulfide bridges bonds (50). As many of the discussed 
PTMs are often positioned at protein tails (e.g., N'-acetylation), loops and disordered regions (e.g., 
phosphorylation, glycosylation, and ubiquitination), the negative selection of PTMs exposed in this 
work provides evidence for the functional importance of these protein regions. Regions of low 
sequence similarity across protein homologs are restricted to protein tails, loops, and interdomain 
linkers. Based on the low cross-species conservation of such regions, we anticipate that the 
functional PTM conservation signal that is exposed in this study has already faded in the context 
of a long-range cross-taxa evolution.  

A model with simple probabilistic interpretability was a key consideration in the design of the 
substitution matrices presented in this work. Each row in our matrices represents the estimated 
distribution of conditional substitution probabilities for a given amino-acid, and can, therefore, be 
observed and interpreted independently. In other words, each of our matrices represents a Markov 
chain, which is a natural way to model substitutions (e.g., the PAM matrices), since it holds a 
convenient property by which more distant substitutions involving multiple steps of the Markov 
chain can be easily derived from the baseline single-step matrix. In this manner, we extrapolate 
HC3 and HA3 from the data-driven matrices HC1 and HA1, respectively. We also considered higher 
numbers of consecutive substitutions (Fig. 4B, 4D) and observed that the described Markov chain 
is robust for a broad range of timescales. On the other hand, it would be difficult to make predictions 
about long-term evolutionary distances that are based on short-term dynamics alone (53). For tasks 
that involve long evolutionary distances across species, the PAM and BLOSUM matrices are likely 
to be more suitable.  

Another essential property of the constructed matrices we present is their asymmetry (Fig. 4). 
Conveying directionality in our model was made possible thanks to our reliance on genetic variants 
that are associated with allele frequencies (for further details, see Methods). In contrast, the 
BLOSUM matrices assume symmetry of substitutions by design, since they were constructed from 
cross-species multiple sequence alignment data and are transformed into scores using a log-odds 
ratio. The symmetric PAM scoring matrices are derived from asymmetric transition matrices and 
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are symmetric as a result of the transformation into a scoring model. Having considered the 
directionality of amino-acid and codon substitution in the human population, we have found a 
substantial observed asymmetry for some amino acids (Fig. 3B). Specifically, tryptophan (W) and 
valine (V) appear to be central hubs of such directional tendencies. Notably, specific AAs can be 
signified by being targets (tend to be substituted to more than by) or sources (vice versa). We found 
that tryptophan (W), and to a lesser extent, glutamic acid (E) and glutamine (Q), are attractors. 
Valine (V), and to a lesser extent, serine (S) and isoleucine (I), act as sources. Repeating the 
analysis (as in Fig. 3B) using a relaxed threshold (Supplementary Fig. S3) substantiates the 
target/source AA partition. Interestingly, the AAs marked as source include all AAs with 6 codons 
(R, S, L) and most AAs with 4 codons. Our methodology allows us to investigate these insights also 
at the resolution of codons, exposing that patterns of asymmetry vary between codons of the same 
AAs (Supplementary Fig. S2). For example, the asymmetric substitution of isoleucine (I) to lysine 
(K) is dominated by a specific codon (ATA substitution to AAA). In this view, a particular case is of 
serine (S) codons. The 6 codons are may be thought of as composed of two sets of codons, which 
exhibit distinct substitution patterns, with broad functional implications (17). Specifically, regions 
that are subjected to an accelerated evolution tend to substitute within one serine codon set, while 
the conserved region in the same proteins tend to substitute within the other serine codon set. Our 
findings support the notion that in proteins, different substitution paths are likely to have functional 
implications (17).  

In summary, we have constructed human-specific substitution matrices and characterized their 
unique properties. Given the robustness and interpretability of these matrices, we encourage their 
use as a baseline model for codon and amino-acid substitutions in the healthy human population. 
The demonstrated PTM and ion-binding analyses illustrated in this work is an example of the type 
of studies that could be performed given a reliable background model. We anticipate that more 
genetic and proteomic functional elements can be exposed through these matrices. To allow the 
extension of this methodology to other datasets, including specific human subpopulations, we 
provide the source code of our methods (see Methods). We anticipate that such a methodology 
could be easily applied to other organisms with multiple genetic samples (e.g., mouse (54)). Viral 
isolates, which often contain thousands of samples per strain, could be a particularly relevant 
subject for such methods. 

 
Materials and Methods 
 
Data 
To construct human-specific codon and AA substitution matrices, we combined genetic variation 
data with functional annotations of coding genes (Fig. 1A). Human genetic variations were 
extracted from ExAC (18), which provides a good tradeoff of quantity and quality of genetic data in 
the human population (European origin biased). Importantly, the cohort of ExAC was chosen to 
minimize bias of pathogenic variants, and exclude individuals with rare genetic diseases. We treat 
each variant as a substitution from the major allele, which we defined as the most frequent allele 
in the population, to the minor allele, which is any other allele observed in the specific exomic 
location.  
Functional gene annotations were taken from the UniProt database and the GENCODE project. 
The exact procedure of combining genetic and proteomic annotations is described in (28). Briefly, 
we used version 19 of GENCODE (compatible with version GRCh37 of the human reference 
genome, which was used by ExAC). We recovered the DNA sequences of the genes annotated in 
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GENCODE using UCSC’s reference genome. We considered only the protein-coding regions of 
genes (annotated as “CDS” in GENCODE). Protein sequences and protein annotations (e.g., 
PTMs; see next section) were taken from UniProt for all 20,168 reviewed human proteins (from the 
SwissProt section). We only considered the GENCODE gene isoforms identical to the primary 
UniProt protein sequences. We discarded genes that failed this exact one-to-one mapping, ending 
up with 18,115 successfully mapped genes. These combined genetic-proteomic gene entities 
allowed us to determine the protein-level consequences of genetic variants (e.g., synonymous, 
missense, or nonsense). This pipeline is available as an independent open-source Python library 
(https://github.com/nadavbra/geneffect). 
ExAC identified 7,404,909 high-quality human genomic variants. From this dataset, indels were 
removed, and 7,087,528 SNVs remained. 326,369 genomic positions contained multiallelic 
variants, which were counted as 631,985 nucleotide substitutions, contributing 305,616 additional 
variants. 83,045 nonsense mutation variants were discarded. Of the 7,627,480 nucleotide 
substitutions, 4,786,729 were within the coding regions of the 18,115 mapped protein-coding 
genes. These synonymous and missense SNVs comprised the final dataset used in this work. 
 
PTMs and ion-binding site annotations 
PTMs and ion-binding site annotations were extracted from UniProt, except for ubiquitination 
annotations, which were obtained from PhosphoSitePlus (55). For a small number of cases, PTM 
proteomic locations of variants mapped to locations on the reference genome that code for 
inappropriate AAs. Importantly, both UniProt and Phosphosite annotations are supported by strong 
experimental evidence and literature. 
 
Constructing probabilistic human-specific substitution matrices 
HC1 represents the estimated substitution probability of each pair of the 61 coding codons (i.e., 
excluding the three stop codons). Each non-diagonal entry of HC1 was calculated by: 
𝐻𝐶#$%,$' =

∑ *++∈-.%→.'
01.%0

  [1] 

 
Where 𝑉$%→$' denotes the set of all variants substituting codon 𝑐#	to  𝑐5 (	𝑐# ≠ 𝑐5),	𝑉$% the set of all 
variants substituting 𝑐#	 to any codon (including a self-substitution), and 𝑓8 the frequency of the  
𝑐5	allele in a variant  𝑣 substituting  𝑐# to  𝑐5 (as derived from ExAC).  
The diagonal values were calculated by: 
 
𝐻𝐶$,$# =: 𝐻𝐶$,$;

#

$;<$
 [2] 

 
We assumed the directionality of each variant to be from the major to the minor allele. In particular, 
we always have that 𝑓8 ≤ 0.5. Note that the major allele is not always the reference allele (the allele 
matching the human reference genome). This is not the case in ~8% of the ~5M processed variants. 
Since the aggregated data offers information about each exomic position independently, it 
essentially ignores the effect of dependence between variants. 
The non-substitution (diagonal) values of the matrix complement the sum of each row to 1. This, 
along with the normalization in Eq.1, yields a row-stochastic matrix, meaning that each row 𝑖  of the 
matrix can be interpreted as the distribution of conditional substitution probabilities (from the 𝑐B  
codon to every other codon). Each entry, in turn, may be interpreted as the conditional probability 
of observing 𝑐5  in a genomic position where 𝑐# is the major allele. 
The amino-acid substitution matrix HA1 is derived from HC1 by considering codon frequencies: 
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𝐻𝐴#DD%,DD' = ∑ ∑ 𝑟$% ⋅ 𝐻𝐶
#
$%,$'$'∈GHH'$%∈GHH%

 [3] 
 
Where 𝐶𝑎𝑎1	and 𝐶𝑎𝑎2denote the sets of codons that code for the amino-acids 𝑎𝑎# and 𝑎𝑎5, 
respectively, and 𝑟$%  is the frequency in which 𝑎𝑎# is coded by the 𝑐1 codon, relative to all 

the codons of 𝑎𝑎# (i.e., ., 𝑟𝑐1 =
|𝑉𝑐1|

∑𝑐2∈𝐶𝑎𝑎1
|𝑉𝑐2|

).  

 
As with HC1, an entry of HA1 may be conceived as the conditional probability of observing 
amino-acid	𝑎𝑎5 in a proteomic position in which 𝑎𝑎# is the major allele.  
As HC1 and HA1 were generated through statistical analysis of single-nucleotide 
variations, substitutions between codons that differ in more than one nucleotide cannot be 
directly inferred. Since most codon pairs differ by more than one nucleotide, both HC1 and 
HA1 are sparse matrices. To estimate substitution frequencies between pairs of codons 
requiring multiple consecutive substitution events to transition between them, we treat HC1 

and HA1 as transition matrices of Markov chains. For every number of consecutive 
substitutions k, the k-th power matrices HCk and HAk represent the Markov chains that are 
a result of repeating the original Markov chains k times. To obtain a complete substitution 
matrix (i.e., with non-zero substitution probabilities for all possible substitutions), we chose 
to take HA1 to the power of 3. This is HA3, since 3 is the lowest number of nucleotide 
substitutions required between each pair of coding-codons. This is a desired quality, since 
we aim to model substitution propensities between closely related sequences which 
require a low number of evolutionary steps. As demonstrated (Fig. 4), this choice has little 
impact on our analysis. 
 
Comparing the amino-acid substitution model to a nucleotide substitution model 
To examine to what extent our substitution matrix reflects evolutionary signals at the amino-acid 
level, we compared it to a matrix derived from nucleotide substitution frequencies, which we used 
as a simple background model (Fig. 2B). To this end, we first constructed a 4x4 nucleotide 
substitution matrix (Fig. 2A), derived from the same set of variants used to construct HC1. We then 
used this nucleotide-level matrix to derive an expected 61x61 codon substitution matrix, by 
considering the probability of a codon substitution to be the product of the probabilities of the single-
nucleotide substitutions involved in that codon (e.g., the substitution of CTG to TTA was assigned 
the probability of C to T multiplied by the probability of T to T and the probability of G to A). This 
codon-level substitution matrix was then projected into a 20x20 AA substitution matrix, through the 
same process used to convert HC1 to HA1 (see previous section). The resulting AA-level matrix 
reflects the expected probabilities of AA substitutions given only the substitution preferences of 
single nucleotides while assuming a lack of evolutionary pressure at the codon, or amino-acid, 
level. By dividing the empirical AA substitution matrix, HA1, with that background model (entry-
wise), we obtained the observed-to-expected probability ratios of all the AA substitutions and could 
determine which AA substitutions show a significant deviation from that background model. 
 
Deviation from symmetry 
To quantify the strength of directionality observed in the substitution matrix, we measured the 
deviation of amino-acid substitutions from symmetry by calculating the ratios between the 
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conditional probabilities of substitutions to the conditional probabilities of the opposite substitutions. 
For example, the directionality of the substitution of lysine (K) to arginine (R) under HA3 is measured 

by MN
O
P,Q

MNOQ,P
. In other words, we divided HA3, entry-wise, by (HA3)T. To enhance readability, the matrix 

shown in Fig. 4A is lower triangular, and its entries are transformed by log2. This means that positive 
entries signify substitutions that are preferred over their opposite substitution, and negative entries 
signify the opposite. 
 
Comparison to BLOSUM and PAM  
To compare our substitution models to the score matrices of BLOSUM, Spearman’s correlation 
coefficient (ρ) was measured for each row of HA3 with each corresponding row of the examined 
BLOSUM matrix. For instance, ρ was calculated for the arginine (R) row of HA3 and the arginine 
(R) row of BLOSUM100. This process was done for all rows of HA3 against their corresponding rows 
in each BLOSUM version (Fig 4A). For each BLOSUM version, its average correlation with HA3 
was used to summarize these measurements. Furthermore, to examine the effect of the power of 
the HA1 matrix to the correlation to BLOSUM, the average correlation coefficient was calculated for 
each BLOSUM version, and different powers of HA1 (Fig 4B). These analyses were repeated for 
the PAM matrices (Fig 4C-D). 
 
Functional annotation analysis  
To demonstrate the capacity of our human-specific substitution model to reflect protein functional 
annotations (Table 1 and Fig. 5), we examined nine major PTMs (acetylation, hydroxylation, 
disulfide bond formation, methylation, N-linked glycosylation, O-linked glycosylation, 
phosphorylation, succinylation and ubiquitination) and three types of ion-binding sites (zinc, 
magnesium and iron). For each PTM or ion-binding site, we considered the set of variants at the 
annotated proteomic locations, and generated codon and amino-acid substitution matrices 
corresponding to that subset of variants (e.g. HA1iron-binding, HC3ubiquitination, etc.). These matrices were 
generated through the same method by which the global matrices (e.g. HA1, HC3) were 
constructed, and they differ only by the subset of used variants (within ExAC dataset). To highlight 
the unique aspects of the substitution profiles for these functionally annotated sites, compared to 
unannotated sites (Fig. 5), each annotation-specific matrix was divided by its corresponding non-
annotation matrix, element-wise (i.e. the matrix derived from all the other variants).  
To test the significance of each annotation-specific substitution (e.g., lysine (K) to proline (P) in 
ubiquitination sites), we examined two complementary aspects of significance, based on either i) 
the number of annotated variants or ii) their allele frequencies (AF). In terms of the number of 
variants, a significant substitution may exhibit a significantly higher or lower number of variants in 
sites annotated by that PTM\ion-binding. To test whether a substitution 𝑎𝑎# → 	𝑎𝑎5 is significantly 
associated with an annotation in terms of the number of variants, we considered the set of all 
variants whose major allele is 𝑎𝑎# and used Fisher’s exact test to determine if the subset of these 
variants that substitute into 𝑎𝑎5 is enriched with the subset of variants with that annotation. 
Likewise, to test differences in AF, we used Mann-Whitney U test (two-sided) to compare the AF 
of the variants of the tested substitution which are in annotated vs. unannotated sites (e.g. lysine 
(K) to proline (P) variants in ubiquitinated vs. non-ubiquitinated sites). In both tests, we required a 
sample size of at least 50 annotated variants. To control the false discovery rate, Benjamini–
Hochberg FDR was applied for each of the two types of tests, across all annotation-specific 
substitutions, with a significance threshold of 0.05. In this work we show the annotation-specific 
substitutions that are FDR-significant according to at least one of the two tests (Table 1 and Fig. 
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5). Significant annotation-specific substitutions are labeled as either enriched (E) or depleted (D) 
for each of the two tests. With respect to the number of variants, we consider it to be enriched if 
the odds-ratio is greater than 1. With respect to the AF test, we consider it to be enriched when the 
average AF of annotated variants is greater than that of unannotated variants. 
Data and code availability 
 
The data that support the findings of this study can be downloaded from 
ftp.broadinstitute.org/pub/ExAC_release/release0.3/ExAC.r0.3.sites.vep.vcf.gz. Matrices, codon 
counts, and further results are available in the supplementary data. Relevant code generated during 
this study is available at github.com/tairsha/taxa-specific-substitution-matrix. 
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