

1 **Functional requirement of the *Arabidopsis* importin- α nuclear transport**
2 **receptor family in autoimmunity mediated by the NLR protein SNC1**

3
4 Daniel Lüdke^{1,6}, Charlotte Roth^{1,6}, Sieglinde A. Kamrad¹, Jana Messerschmidt¹,
5 Denise Hartken¹, Jonas Appel¹, Bojan F. Hörnich^{1,2}, Qiqi Yan¹, Stefan Kusch^{1,3},
6 Melanie Klenke^{1,4}, Annette Gunkel¹, Lennart Wirthmueller⁵ and Marcel
7 Wiermer^{1,6,*}

8
9 ¹ Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-
10 Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077
11 Goettingen, Germany.

12 ² Present address: German Primate Center - Leibniz Institute for Primate Research,
13 Goettingen, Germany.

14 ³ Present address: Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH
15 Aachen University, Worringerweg 1, 52056 Aachen, Germany.

16 ⁴ Present address: Department of Plant Cell Biology, Albrecht-von-Haller-Institute for
17 Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077 Goettingen,
18 Germany.

19 ⁵ Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3,
20 06120 Halle (Saale).

21 ⁶ Molecular Biology of Plant-Microbe Interactions Research Group, Goettingen Center
22 for Molecular Biosciences (GZMB), University of Goettingen, 37077 Goettingen,
23 Germany.

24

25 [#] These authors contributed equally to the work.

26 * For correspondence: Email: wiermer@uni-goettingen.de

27 Phone: +49 (0)551-39177846, Fax: +49 (0)551-39177809

28

29 Short title: α -importins in autoimmunity of *snc1*

30 Keywords: IMPORTIN- α , SNC1, NLR, nuclear import, plant immunity, *Arabidopsis*

31

32 **SUMMARY**

33 IMPORTIN- α 3/MOS6 (MODIFIER OF SNC1, 6) is one of nine importin- α isoforms in
34 *Arabidopsis* that recruit nuclear localization signal (NLS)-containing cargo proteins to the
35 nuclear import machinery. *IMP- α 3/MOS6* is required genetically for full autoimmunity of
36 the nucleotide-binding leucine-rich repeat (*NLR*) immune receptor mutant *snc1*
37 (*suppressor of npr1-1, constitutive 1*) and *MOS6* also contributes to basal disease
38 resistance. Here, we investigated the contribution of the other *importin- α* genes to both
39 types of immune responses, and we analyzed potential interactions of all importin- α
40 isoforms with SNC1. By using reverse-genetic analyses in *Arabidopsis* and protein-
41 protein interaction assays in *N. benthamiana* we provide evidence that among the nine
42 α -importins in *Arabidopsis*, *IMP- α 3/MOS6* is the main nuclear transport receptor of
43 SNC1, and that *IMP- α 3/MOS6* is required selectively for autoimmunity of *snc1* and basal
44 resistance to mildly virulent *Pseudomonas syringae* in *Arabidopsis*.

45

46

47 **SIGNIFICANCE STATEMENT**

48 Specific requirement for the *Arabidopsis* α -importin *MOS6* in *snc1*-mediated
49 autoimmunity is explained by selective formation of *MOS6-SNC1* nuclear import
50 complexes.

51

52

53 INTRODUCTION

54 In eukaryotic cells, the nuclear envelope separates the nucleoplasm from the
55 surrounding cytoplasm. It acts as a protective compartment boundary for the genome,
56 but it also provides eukaryotic cells with an important regulatory feature to control the
57 specificity and timing of signaling pathways and gene expression in response to both
58 cellular and environmental stimuli (Kaffman and O'Shea, 1999; Orphanides and
59 Reinberg, 2002; Gu, 2018). The nuclear envelope consists of an inner and outer lipid
60 bilayer and is spanned by a multitude of nuclear pore complexes (NPCs) that fuse both
61 membranes to form a central channel for the selective bidirectional transport of
62 macromolecules as well as the passive diffusion of small soluble molecules <40-60 kDa
63 between the nucleoplasm and the cytoplasm (Stewart, 2007; Wang and Brattain, 2007;
64 Beck and Hurt, 2017). The approximately 30 different protein constituents of NPCs can
65 have predominantly structural functions or play active roles in nuclear transport and are
66 collectively termed nucleoporins (NUPs). NUPs containing intrinsically disordered
67 domains of hydrophobic phenylalanine (F)-glycine (G) repeats form a meshwork in the
68 central transport channel that is crucial for the function of NPCs (Grossman *et al.*, 2012;
69 Tamura and Hara-Nishimura, 2013; Beck and Hurt, 2017). This meshwork of FG-NUPs
70 creates the selective permeability barrier and provides binding sites for nuclear transport
71 receptors (NTRs) that traverse the central channel of the NPC during facilitated
72 transport (Schmidt and Görlich, 2016). NTRs include both importins and exportins which
73 recognize localization signals on their cargos and mediate nuclear import and export,
74 respectively (Pemberton and Paschal, 2005; Wente and Rout, 2010), albeit NTRs that
75 mediate bidirectional transport have also been described (Mingot *et al.*, 2001).

76 The transport of proteins destined for active nuclear import is generally mediated by
77 an importin- α and importin- β heterodimer. α -importins function as adapter proteins that
78 recognize and bind to nuclear localization signals (NLSs) of cargo proteins. The best
79 characterized NLSs are comprised of one (monopartite) or two (bipartite) sequence
80 motifs enriched in the basic amino acids lysine (K) and arginine (R). These canonical or
81 classical NLSs (cNLSs) have the consensus sequences [K(K/R)X(K/R)] and
82 [(K/R)(K/R)X₁₀₋₁₂(K/R)_{3/5}], respectively (Chang *et al.*, 2012; Marfori *et al.*, 2012).
83 Importin- α proteins possess a central series of ten armadillo (ARM) repeats that form
84 the NLS-binding cleft with two distinct NLS contact sites on its concave side, referred to
85 as the major and minor NLS binding site. Whereas both sites simultaneously interact
86 with bipartite cNLSs, monopartite cNLSs preferentially bind to the major site (Marfori *et*
87 *al.*, 2011; Chang *et al.*, 2013; Christie *et al.*, 2016). In addition to the ARM repeat
88 domain, importin- α family members typically contain an N-terminal α -helix that mediates
89 direct contact to importin- β and is therefore termed the importin- β -binding (IBB) domain.
90 The flexible IBB domain has a dual regulatory function. On the cytoplasmic side of the
91 NPC, it links the importin- α /NLS-cargo complex to the importin- β carrier molecule.
92 Importin- β subsequently mediates the active transport of the ternary complex into the
93 nucleus by directly interacting with the FG-NUP meshwork in the central channel of the
94 NPC (Kobe, 1999; Cook *et al.*, 2007; Chang *et al.*, 2012; Marfori *et al.*, 2012). In the
95 nucleoplasm, the ternary import complex is destabilized by binding of importin- β to the
96 small GTPase RAS-RELATED NUCLEAR PROTEIN (RAN) in its GTP-bound form,
97 resulting in dissociation of the importin- α IBB domain from importin- β . The IBB domain
98 harbors a cluster of basic amino acids that is related to bipartite NLSs and competes

99 with the NLSs of cargo proteins for binding to the ARM repeats (Kobe, 1999). This auto-
100 inhibitory effect of the IBB domain helps to free the cargo from importin- α ARM-repeats
101 inside the nucleoplasm after the IBB domain is released from importin- β by RAN-GTP
102 (Moroianu *et al.*, 1996; Kobe, 1999; Harreman *et al.*, 2003; Cook *et al.*, 2007; Chang *et*
103 *al.*, 2012). Subsequently, the dimeric importin- β /RAN-GTP complex is exported to the
104 cytoplasm, whereas a C-terminal acidic patch of importin- α interacts with the RAN-GTP-
105 bound export carrier CELLULAR APOPTOSIS SUSCEPTIBILITY (CAS) for recycling of
106 cargo-free importin- α back into the cytoplasm (Goldfarb *et al.*, 2004; Christie *et al.*,
107 2016). In the cytoplasm, RAN GTPase-ACTIVATING PROTEIN (RanGAP) and its co-
108 factor RAN GTP BINDING PROTEIN1 (RanBP1) impart GTP hydrolysis on RAN to
109 release importin- α and importin- β for another round of cargo import (Stewart, 2007).

110 The *importin- α* gene family has expanded substantially during the course of
111 eukaryotic evolution, probably reflecting adaptation towards a more complex, tissue-
112 and/or stimulus-specific regulation of nuclear protein import (Yano *et al.*, 1992;
113 Yasuhara *et al.*, 2007; Hu *et al.*, 2010; Kelley *et al.*, 2010; Pumroy and Cingolani, 2015).
114 The genome of the model plant species *Arabidopsis thaliana* encodes nine importin- α
115 paralogs, of which the isoforms $\alpha 1$ - $\alpha 4$, $\alpha 6$ and $\alpha 9$ are expressed ubiquitously based on
116 publicly available gene expression data (Wirthmueller *et al.*, 2013). *Arabidopsis*
117 *IMPORTIN- α 3* (*IMP- α 3*), also termed *MOS6* (for *MODIFIER OF SNC1*, 6), was identified
118 in a forward genetic screen for components that contribute to constitutive defense
119 activation and related growth inhibition of the autoimmune mutant *suppressor of npr1-1*,
120 *constitutive1* (*snc1*; Li *et al.*, 2001; Palma *et al.*, 2005). Constitutive immune pathway
121 activation in *snc1* plants is caused by an E₅₅₂K mutation in the nucleotide-binding

122 leucine-rich repeat (NLR) protein SNC1 (Zhang *et al.*, 2003). Plant NLR proteins
123 function as intracellular immune receptors that perceive pathogen-secreted virulence
124 factors (effectors) to activate a defense response termed effector-triggered immunity
125 (ETI). ETI is commonly associated with a hypersensitive cell death response (HR) at the
126 infection site to restrict pathogen spread (Cui *et al.*, 2015), albeit auto-activation of
127 SNC1 *per se* does not cause spontaneous cell death in the *snc1* mutant (Li *et al.*, 2001;
128 Zhang *et al.*, 2003). SNC1 is a nucleocytoplasmic Toll-Interleukin Receptor (TIR)-type
129 NLR (TNL) protein and its nuclear pool is essential for the autoimmune phenotype of
130 *snc1* plants (Cheng *et al.*, 2009; Zhu *et al.*, 2010a; Wiermer *et al.*, 2010). Therefore, the
131 identification of three mutant alleles of *mos6* as genetic suppressors of *snc1*
132 autoimmune phenotypes suggest that MOS6 imports the auto-active SNC1 or/and its
133 essential downstream signaling component(s) into the nucleus (Palma *et al.*, 2005).
134 Since mutations in MOS6 only partially suppresses *snc1* autoimmunity and *mos6* single
135 mutants show only mild defects in basal resistance (Palma *et al.*, 2005; Roth *et al.*,
136 2017), other α -importins may have partially overlapping functions with MOS6.

137 Here, we investigated the genetic requirement of the nine *Arabidopsis* α -importin
138 paralogs for manifestation of the autoimmune phenotype of *snc1*, and we analyzed the
139 nuclear import complex formation of the nine α -importins with the auto-active and
140 wildtype SNC1 proteins. We show that both protein variants of SNC1 strongly interact
141 with MOS6/IMP- α 3, whereas we detected no or only very weak interactions with the
142 other eight *Arabidopsis* α -importins when co-expressed transiently in leaves of *N.*
143 *benthamina*. The preferential association of SNC1 with MOS6/IMP- α 3 is consistent with
144 reverse-genetic analyses showing that a mutation in MOS6/IMP- α 3, but not in any other

145 *importin- α* gene, partially suppresses the dwarf autoimmune phenotype of *snc1* plants.
146 In addition, *mos6* but no other *importin- α* single mutant is compromised in basal disease
147 resistance. This suggests that MOS6/IMP- α 3 plays a major functional role in nuclear
148 import of SNC1 and possibly of cargo proteins involved in the regulation of basal
149 resistance in *Arabidopsis*.

150

151 **RESULTS**

152 ***MOS6/IMPORTIN- α 3 is selectively required for autoimmunity of *snc1****

153 In *Arabidopsis* genetic screens, three mutant alleles of the nuclear transport receptor
154 *MOS6/IMPORTIN- α 3* (*IMP- α 3*; *AT4G02150*) were identified as partial suppressors of
155 constitutive immunity activated in the *NLR* gene mutant *snc1* (Zhang *et al.*, 2003; Palma
156 *et al.*, 2005). Whereas *snc1* plants are severely stunted and have curly leaves, *snc1* and
157 *mos6* double mutants are of intermediate size between the wildtype Col-0 and *snc1* and
158 have leaves that are less curly compared to *snc1* (Palma *et al.*, 2005). Since all mutant
159 alleles of *mos6* do not completely suppress *snc1* autoimmunity (Palma *et al.*, 2005;
160 Wirthmueller *et al.*, 2015; Roth *et al.*, 2017), we reasoned that other α -*importins* may
161 partially compensate for loss of *MOS6* function. The *Arabidopsis* Col-0 reference
162 genome encodes for nine importin- α isoforms of which *IMP- α 1*, - α 2, - α 3/*MOS6*, - α 4, - α 6
163 and - α 9 are expressed ubiquitously throughout plant tissues (Hruz *et al.*, 2008;
164 Wirthmueller *et al.*, 2013). Figure 1 shows the phylogenetic relationships and the
165 schematic gene structures of *Arabidopsis IMP- α 1* - *IMP- α 9*. In order to investigate their
166 functional relevance for manifestation of the dwarf *snc1* autoimmune phenotype, we
167 established a collection of T-DNA insertion mutants for all nine individual *Arabidopsis*

168 *importin- α* genes that were obtained from the Nottingham Arabidopsis Stock Centre
169 (NASC; Scholl *et al.*, 2000). If available, two independent T-DNA insertion lines for each
170 *IMP- α* gene were ordered. Homozygous mutant lines of the individual *IMP- α* genes were
171 isolated via PCR-based genotyping and analyzed for disruption of functional transcripts
172 via RT-PCR, using cDNA-specific primers that flank or are downstream (upstream for
173 *imp- α 9*) of the T-DNA insertions (Figure S1). For each gene, one mutant line without
174 detectable full-length transcripts was subsequently used for further functional analyses
175 (Figures 1 and S1). To determine whether the *imp- α* mutants can suppress the *snc1*
176 autoimmune growth morphology, we crossed *snc1* with each of the *imp- α* mutant lines
177 to obtain homozygous *snc1 imp- α* double mutants in the F₂ generation. As shown in
178 Figure 2, only a defect in *MOS6/IMP- α 3* but not in any of the other eight *importin- α*
179 genes partially suppresses the stunted growth of *snc1* irrespective of the photoperiod.
180 These genetic data indicate that *IMP- α 1, - α 2, - α 4, - α 5, - α 6, - α 7, - α 8 and - α 9* are not
181 individually essential for establishment of the *snc1* autoimmune phenotype, whereas
182 *IMP- α 3/MOS6* plays a prominent role in *snc1*-mediated growth retardation.

183 *MOS6/IMP- α 3* is most closely related to *IMP- α 6* (Figure 1). However, the available
184 *imp- α 6* mutant allele (GK_435H12; Figure 1) that we crossed with *snc1* is located in the
185 last exon of the gene and we therefore cannot fully exclude the presence of a partially
186 functional *IMP- α 6* protein in this *imp- α 6* mutant. To further investigate whether *MOS6*
187 functions redundantly with *IMP- α 6* in autoimmunity of *snc1*, we used CRISPR/Cas9-
188 based genome editing to generate an *imp- α 6* mutation in the *snc1 mos6-1* double
189 mutant background. This mutation, named *imp- α 6-2*, introduces a premature stop codon
190 in the second exon of *IMP- α 6/At1G02690* (Figure S2A and B). As the *imp- α 6-2* mutation

191 did not further suppress the *snc1*-associated stunted growth morphology of the *snc1*
192 *mos6-1* double mutant (i.e. *snc1 mos6-1* and *snc1 mos6-1 imp-α6-2* as well as *snc1*
193 *mos6-1 imp-α6-1* (GK_435H12) plants are of similar size and have leaves that are less
194 curly compared to *snc1* and *snc1 imp-α6* plants; Figures 2 and S2C), our data suggest
195 that *IMP-α6* does not function redundantly with *MOS6/IMP-α3* in the *snc1* autoimmune
196 pathway.

197

198 ***MOS6/IMPORTIN-α3 is selectively required for basal resistance***

199 Mutations in *MOS6* not only suppress the stunted growth and constitutive immunity of
200 *snc1* (Figure 2; Palma *et al.*, 2005), but also result in enhanced disease susceptibility to
201 the oomycete pathogen *Hyaloperonospora arabidopsis* (*Hpa*) Noco2 and to the mildly
202 virulent bacterial pathogen *P. syringae* pv. *tomato* (*Pst*) DC3000 lacking the effectors
203 *AvrPto* and *AvrPtoB* (Δ*AvrPto/AvrPtoB*; Palma *et al.*, 2005; Wirthmueller *et al.*, 2015;
204 Roth *et al.*, 2017). To test the contribution of the other *importin-α* genes for basal
205 disease resistance, we inoculated the *importin-α* single mutants with *Pst* DC3000
206 Δ*AvrPto/AvrPtoB* and analyzed their disease susceptibility. For the infection assay, the
207 Col *eds1-2* mutant was used as hyper-susceptible control, whereas the *snc1* mutant
208 served as a control for enhanced disease resistance due to its constitutive defense
209 activation (Zhang *et al.*, 2003; Bartsch *et al.*, 2006; Roth *et al.*, 2017). Basal resistance
210 against *Pst* DC3000 Δ*AvrPto/AvrPtoB* was significantly compromised in *mos6* mutant
211 plants when compared to the wildtype Col-0 (Figure 3). Consistent with previous data,
212 the enhanced susceptibility of *mos6* mutant alleles was less pronounced as the
213 complete breakdown of resistance in Col *eds1-2* plants (Wirthmueller *et al.*, 2015; Roth

214 *et al.*, 2017). Single mutants of the other *importin- α* genes did not show significantly
215 altered susceptibility upon inoculation with *Pst* DC3000 Δ AvrPto/AvrPtoB and were as
216 resistant as wildtype plants (Figure 3). This suggests that among the nine α -*importins* in
217 *Arabidopsis*, *MOS6/IMP- α 3* does not only play a predominant role in *snc1*-mediated
218 autoimmunity (Figure 2), but also in basal disease resistance (Figure 3). Accordingly,
219 the individual disruption of *MOS6* or of any other *IMP- α* gene function is not
220 compensated for by increased expression of the remaining functional *IMP- α* genes
221 (Figure S3). We also did not detect an altered expression of any *IMP- α* in the *snc1* auto-
222 immune mutant. *Vice versa*, the expression of *SNC1* was also not obviously changed in
223 any of the *imp- α* single mutants compared to the wildtype control (Figure S3). Similarly,
224 the *IMP- α* gene expression levels are not considerably altered after infection with
225 pathogens in any of the datasets available via the Genevestigator (Hruz *et al.*, 2008) or
226 the Bar Expression databases (Toufighi *et al.*, 2005). Together, these data strongly
227 suggest a preferential involvement of *MOS6/IMP- α 3* in plant immune responses
228 (Figures 2, 3 and S2).

229

230 **Morphological characterization of *imp- α* single and higher order mutants**

231 The overall rosette size and growth morphology of *moss6* single mutants is
232 indistinguishable from Col-0 wildtype plants (Palma *et al.*, 2005; Roth *et al.*, 2017),
233 suggesting that loss of *MOS6* function does not affect regular plant growth and
234 development. To test whether this also holds true for the other *IMP- α* genes, we
235 investigated the growth phenotypes of our *imp- α* single mutant collection. When
236 cultivated under both short-day or long-day growth conditions, all examined *imp- α* single

237 mutants showed a wildtype-like growth phenotype in terms of rosette/plant size and
238 morphology, and the timing of floral transition and bolting. Only *imp- α 1* plants had a
239 marginally reduced rosette size (Figure 4). Together, this indicates that the functional
240 loss of individual *importin- α* isoforms does not have a major impact on regular plant
241 development.

242 To test whether *IMP- α* family members have overlapping functions in plant
243 development, we generated several *imp- α* double and triple mutant combinations and
244 characterized their growth phenotypes. Generally, growth of the *imp- α* double mutants
245 was indistinguishable from Col-0 wildtype plants, except for double mutants containing
246 the *imp- α 1* allele that were smaller than wildtype plants (Figure 5). This growth reduction
247 was most pronounced in the double mutant of the closely related *imp- α 1* and *imp- α 2*
248 (Figure 1). For the *mos6* *imp- α 1* combinations this phenotype was most clearly seen for
249 full-grown plants after five weeks growth under long-day conditions rather than for
250 rosette sizes. Beside this, no other obvious morphological defects were observed for
251 any of the *imp- α* double mutants that we investigated (Figures 5 and S2). The growth
252 retardation that we observed for the *imp- α 1* *imp- α 2* was even more extreme for *imp- α 1*
253 *imp- α 2* *mos6-4* triple mutant plants (Figure 6). In particular, when grown under short-day
254 conditions these plants were even smaller as compared to the severely stunted *snc1*
255 control (Figure 6). The phenotypes of all other triple mutant combinations were similar to
256 the wildtype control (Figure 6) and we did not detect an altered expression of the
257 remaining functional *IMP- α* genes in any of the triple mutants as compared to the
258 wildtype control (Figure S4). Together, these mutant analyses show that *IMP- α 1*, *IMP-*
259 *α 2* and *MOS6/IMP- α 3* have partially redundant functions important for regular plant

260 growth and development. However, when we infected triple mutants containing *mos6-4*
261 with *Pst* DC3000 Δ AvrPto/AvrPtoB, their susceptibility was similar to that of the *mos6-1*
262 single mutant, suggesting that MOS6 plays a major functional role in maintaining the
263 basal resistance layer to *Pst* DC3000 Δ AvrPto/AvrPtoB (Figure S5).

264

265 **NLR protein SNC1 preferentially associates with MOS6/IMP- α 3**

266 The preferential genetic requirement of *MOS6/IMP- α 3* for basal resistance (Figure 3)
267 and constitutive immunity caused by the E₅₅₂K mutation in the TNL protein SNC1
268 (Figure 2) is intriguing and the latter suggests that *MOS6/IMP- α 3* is responsible for
269 transport of the auto-active SNC1 (SNC1^{E552K}) or/and its essential downstream signaling
270 component(s) into the nucleus.

271 Bioinformatic analyses with default stringency settings revealed no strong candidate
272 sequences for an NLS in the SNC1 protein sequence (Nguyen Ba *et al.*, 2009; Kosugi *et*
273 *al.*, 2009). Lowering the thresholds for NLS prediction in NLStradamus and NLSmapper
274 identified three lower-scoring sequences that might function as NLS and mediate active
275 nuclear import of this ~163 kDa nucleocytoplasmic TNL protein (Figure 7A and Table
276 S1; Zhang *et al.*, 2003; Cheng *et al.*, 2009). As there are nine importin- α isoforms in
277 *Arabidopsis* (Figure 1; Wirthmueller *et al.*, 2013), and mutations in *MOS6* suppress
278 autoimmunity of *snc1* only partially (Figure 2; Palma *et al.*, 2005; Wirthmueller *et al.*,
279 2015; Roth *et al.*, 2017), other α -importins may cooperate with MOS6 in transporting
280 auto-active SNC1^{E552K} or its downstream signal transducers. To investigate the potential
281 interactions of MOS6/IMP- α 3 and the other eight α -importins with SNC1^{E552K} *in planta*,
282 we used *Agrobacterium*-mediated transient co-expression in leaves of *Nicotiana*

283 *benthamiana eds1a-1* plants (Ordon *et al.*, 2017) and conducted co-immunoprecipitation
284 (co-IP) analyses two days after *Agrobacterium* infiltration. Since a C-terminal 3xHA-
285 StrepII (3xHA-SII) epitope tag of MOS6/IMP- α 3 and a C-terminal fluorescent protein tag
286 of SNC1 do not interfere with the respective protein functions (Cheng *et al.*, 2009; Roth
287 *et al.*, 2017), we co-expressed the 3xHA-SII-tagged α -importins with mYFP-tagged
288 SNC1^{E552K}. We used the *N. benthamiana eds1a-1* mutant to investigate IMP- α /SNC1
289 transport complex formations, because the transient expression of both the auto-active
290 and the wildtype SNC1 (SNC1^{wt}, see below) triggers a HR-like cell death response in *N.*
291 *benthamiana* wildtype plants that depends on the essential TNL downstream signaling
292 component EDS1 (Figure S6; Wiermer *et al.*, 2005; Ordon *et al.*, 2017). Transient
293 expression of the mYFP-tagged SNC1^{E552K} and SNC1^{wt} confirmed a previously reported
294 nucleocytoplasmic localization (Cheng *et al.*, 2009). As expected for α -importins, we
295 also observed a nucleocytoplasmic distribution when we transiently expressed IMP- α 1
296 to IMP- α 9 in *N. benthamina eds1a-1*, albeit IMP- α 1, IMP- α 2, IMP- α 3/MOS6 showed a
297 predominantly nuclear localization as reported previously for other α -importins (Figure
298 S7 and S8; Kanneganti *et al.*, 2007; Chen *et al.*, 2018).

299 Using GFP-Trap[®] magnetic agarose beads (Chromotek) for immunoprecipitation of
300 SNC1^{E552K}-mYFP and subsequent detection of co-purifying 3xHA-SII-tagged α -importins
301 by anti-HA western blot analysis revealed that the auto-active SNC1 strongly interacts
302 with MOS6/IMP- α 3, whereas we detected only very weak interactions with the other
303 α -importins (Figure 7B, left). As the E₅₅₂K mutation of the auto-active SNC1 protein
304 variant is located in close proximity to one of the predicted NLSs of SNC1 (Figure 7A),
305 we investigated whether the mutation might influence recognition specificities by

306 importin- α proteins. Therefore, we also analyzed the interaction of the wildtype SNC1
307 protein (SNC1^{wt}) with the nine *Arabidopsis* α -importins. As shown in Figure 7B, the
308 association pattern of the wildtype SNC1 protein was highly similar to the auto-active
309 protein variant, i.e. SNC1^{wt} strongly interacts with MOS6/IMP- α 3, but only very weakly
310 associates with the other importin- α isoforms. These analyses show that both the auto-
311 active and wildtype SNC1 proteins preferentially interact with MOS6/IMP- α 3 *in planta*
312 and suggest that, among the nine α -importins in *Arabidopsis*, MOS6 is the main isoform
313 that mediates the import of SNC1 into the nucleus. The considerably weaker
314 associations between SNC1 and the other isoforms may collectively provide sufficient
315 nuclear import of SNC1^{E552K} to partially compensate for loss of MOS6 function in *snc1*-
316 mediated immunity.

317

318 **DISCUSSION**

319 Nuclear translocation and accumulation of certain NLR proteins, signal transducers
320 and/or transcription factors are important regulatory steps in controlling diverse cellular
321 defense pathways in plants (Gu, 2018). Cytoplasmic proteins containing cNLSSs are
322 recruited to the nuclear transport machinery via importin- α transport adapters that
323 recognize and bind the exposed cNLSSs of their cargos. The sequenced genomes of
324 higher plants usually encode several importin- α isoforms, suggesting either that subsets
325 of α -importins function redundantly or that multiple isoforms have evolved to confer
326 preferential nuclear entry of specific cargos (Wirthmueller *et al.*, 2013). The latter
327 functional diversification may arise from tissue-specific and/or temporally distinct
328 expression patterns, or from isoform-specific affinities for particular cargo substrates.

329 In *Arabidopsis*, autoimmunity of the *NLR* gene mutant *snc1* partially depends on
330 *MOS6/IMP- α 3*, one of nine members of the *importin- α* gene family (Palma *et al.*, 2005;
331 Wirthmueller *et al.*, 2013). Here, we made use of the dwarf morphology of *snc1* to
332 investigate the individual contribution of the other eight *importin- α* genes for
333 manifestation of this characteristic growth phenotype. We show that *MOS6* plays an
334 eminent role in *snc1*-mediated growth retardation, since the other *importin- α* genes are
335 not individually essential for establishment of this autoimmune phenotype (Figure 2).
336 However, mutations in *MOS6* do not fully suppress the dwarfism of *snc1* (Figure 2;
337 Palma *et al.*, 2005). We therefore cannot exclude the possibility that one or several other
338 α -*importin*(s) may partially compensate for loss of *MOS6* function in *snc1*-dependent
339 autoimmunity, albeit the higher order mutant combinations of *mos6* that we investigated
340 do not further impair basal defense responses, and the dwarfism of *snc1* is not further
341 suppressed in *snc1 mos6 imp- α 6* triple mutants as compared to *snc1 mos6* double
342 mutant plants (Figure S2). Alternatively, an importin- α independent nuclear transport
343 pathway may operate redundantly with *MOS6*. For instance, some NTRs of the importin-
344 β family are capable to directly bind to cargo proteins and mediate nuclear import
345 independently of importin- α (Christie *et al.*, 2016; Zhang *et al.*, 2017; Liu *et al.*, 2019).
346 Given that the SNC1 sequence does not harbor strong candidates for a cNLS, it remains
347 possible that direct binding to *MOS6* is mediated by an atypical NLS. It is also
348 conceivable that SNC1 might employ a piggy-back mechanism and binds to *MOS6*
349 indirectly via an NLS-containing interaction partner or specific adapter protein, as shown
350 for nuclear import of *Arabidopsis* phyA (Genoud *et al.*, 2008).

351 Our co-immunoprecipitation assays suggest that, among the nine importin- α family
352 members in *Arabidopsis*, MOS6 is the main nuclear import receptor of SNC1, providing
353 evidence for functional specialization of MOS6 (Figure 7). Support of this idea comes
354 from a report showing that nuclear accumulation of GFP-tagged SNC1-4 (a variant of
355 the auto-active SNC1^{E552K} that harbors an additional E₆₄₀K mutation) is affected in *mos6*
356 mutant protoplasts when compared to protoplasts of *Arabidopsis* wildtype plants (Zhu *et*
357 *al.*, 2010b). To obtain insights into possible specificity determinants that could explain
358 the high preference of SNC1 for MOS6 as NTR, we analyzed the crystal structure of the
359 MOS6 ARM repeat domain (Wirthmueller *et al.*, 2015) for amino acid polymorphisms
360 that are not shared with any other α -importin isoform. At the MOS6 major and minor
361 NLS binding sites, all core residues that can be predicted to make direct contact to cNLS
362 are conserved and therefore cannot explain specificity for SNC1 (Wirthmueller *et al.*,
363 2013; 2015). The only two surface-exposed residues within the MOS6 inner solenoid
364 that are not shared with any other *Arabidopsis* α -importin are N₂₇₅ and V₄₄₄. Based on
365 crystal structures of rice importin- α in complex with cNLS peptides (Chang *et al.*, 2012;
366 2013), neither of these two residues directly contributes to the NLS binding sites.
367 However, N₂₇₅ maps to the third helix of MOS6 armadillo repeat 5 and is located in
368 proximity to the cleft that accommodates the K in the P4' position of cNLS peptides
369 binding to the minor NLS binding site (Marfori *et al.*, 2011). Whether these polymorphic
370 residues outside of the core NLS binding grooves can explain the predominant role of
371 MOS6 as NTR for SNC1 is currently not known. However, from our protein interaction
372 assays we conclude that the considerably reduced associations of SNC1 with the other
373 importin- α isoforms may collectively be sufficient for transporting enough of the

374 SNC1^{E552K} pool into the nucleus to partially compensate for loss of MOS6 function in
375 *snc1 mos6* plants (Figures 2 and 7). This would explain why *mos6* only partially
376 suppresses *snc1*, and why the additional mutation of the closely related *IMP- α 6* in *snc1*
377 *mos6 imp- α 6* triple mutants is not sufficient to further suppress the *snc1*-associated
378 growth retardation of *snc1 mos6* double mutants (Figure S2C).

379 It should be noted that our conclusion is based on the formation of SNC1/IMP- α
380 transport complexes in the heterologous expression system *N. benthamiana*. We
381 therefore cannot fully exclude that the differential complex formations are, at least in
382 part, due to competition by other NLS-cargos in the cytosol of *N. benthamiana* cells, yet
383 our reverse-genetic analysis in *Arabidopsis* are consistent with the preferential co-
384 purification of MOS6 with immunoprecipitated SNC1 (Figure 7). Our co-IP results further
385 suggest that the E₅₅₂K mutation located in proximity to one of the predicted NLSs of
386 SNC1 does not obviously alter the importin- α binding affinities/specificities for the auto-
387 active SNC1^{E552K} as compared to SNC1^{wt} (Figure 7). Nuclear transport rates of cargos
388 are directly related to their binding affinities for their import receptors (Hodel *et al.*, 2006;
389 Timney *et al.*, 2006; Christie *et al.*, 2016). Therefore, it is unlikely that the *snc1*
390 autoimmune phenotype induced by the E₅₅₂K mutation is simply caused by altered
391 nuclear import rates of the SNC1^{E552K} protein.

392 Considering near identity in the core residues forming the NLS-binding sites of MOS6
393 and the leaf-expressed isoforms α 1, α 2, α 4 and α 6 (Wirthmueller *et al.*, 2015), it is
394 intriguing that MOS6 preferentially associates with SNC1 (Figure 7), and that the knock-
395 out of a single *importin- α* gene causes a specific phenotype such as the immunity
396 defects of *mos6* (Figures 2, 3, S2 and S5). In another example, Bhattacharjee *et al.*

397 (2008) reported that the loss of *IMP- α 4* but not of other *importin- α* genes impairs host
398 transformation by *Agrobacterium tumefaciens*, albeit several importin- α isoforms are
399 able to interact with the NLS-containing *A. tumefaciens* effectors VirD2 and VirE2 that
400 mediate nuclear translocation of the T-complex. *IMP- α 4* has the highest expression level
401 in *Arabidopsis* roots compared to the other α -*importin* genes (Wirthmueller *et al.*, 2013).
402 Significantly, Bhattacharjee *et al.*, (2008) also show that the *imp- α 4* phenotype can be
403 complemented by overexpression of not only *IMP- α 4*, but also of several other isoforms.
404 This suggests that although *IMP- α 4* appears to be the most crucial isoform for transfer
405 of the T-complex, other isoforms can compensate the loss of *IMP- α 4* function when their
406 cellular abundance is increased (Bhattacharjee *et al.*, 2008). Thus, nuclear import
407 kinetics are influenced not only by the affinity of a particular cargo for the NTR, but can
408 also be modified by the cytoplasmic concentrations of both the NTRs and the cargo
409 proteins (Timney *et al.*, 2006; Bhattacharjee *et al.*, 2008; Cardarelli *et al.*, 2009;
410 Wirthmueller *et al.*, 2015).

411 In plants, there are more prior examples of importin- α cargo selectivity as well as of
412 redundancy (Jiang *et al.*, 2001; Kanneganti *et al.*, 2007; Bai *et al.*, 2008; Wirthmueller *et*
413 *al.*, 2015; Gerth *et al.*, 2017; Roth *et al.*, 2017; Chen *et al.*, 2018; Contreras *et al.*, 2019).
414 Accordingly, in addition to the selective role of MOS6/IMP- α 3 in plant (auto-)immunity
415 (Figures 2, 3, 7, S2 and S5), our genetic analysis also revealed that *MOS6* has partially
416 overlapping functions with *IMP- α 1* and *IMP- α 2* in regular plant growth and development
417 (Figure 6). The molecular basis for this functional specialization/redundancy in nuclear
418 import pathways remains elusive. We speculate that polymorphic residues outside of the

419 core NLS binding grooves of MOS6/IMP- α 3 may explain the predominant role as NTR
420 for SNC1 and possibly other cargos involved basal defense regulation.

421 Nuclear import rates are regulated at several levels, including post-translational
422 modifications that can modulate cargo binding affinities by introducing direct changes to
423 the NLS or by blocking importin- α /cargo interactions through intra- or intermolecular
424 masking of NLSs (Christie *et al.*, 2016). For example, phosphorylation of residues in
425 vicinity of NLSs can result in cytoplasmic retention of the modified cargo variant by
426 preventing its association with importin- α (Rona *et al.*, 2013; Helizon *et al.*, 2018). Vice
427 versa, phosphorylation of residues in the linker region of bipartite NLSs can enhance the
428 affinity of an NLS for importin- α binding and increase nuclear translocation rates
429 (Hübner *et al.*, 1999; Christie *et al.*, 2016). Whether the SNC1/IMP- α affinities and/or
430 binding specificities in *Arabidopsis* are modulated via post-translational modifications
431 according to the actual cellular needs in response to environmental stimuli remains to be
432 determined.

433

434

435 **EXPERIMENTAL PROCEDURES**

436 **Plant material and growth conditions**

437 *Arabidopsis thaliana* plants were grown on soil in environmentally controlled chambers
438 with 65 % relative humidity. Short day conditions (SD) with an 8/16 h light/dark regime or
439 long day conditions (LD) with a 16/8 h light/dark regime at 22/18 °C were used for
440 growth morphology assessments. *Nicotiana benthamiana* plants were grown under a
441 16/8 h light/dark regime at 25/22 °C, 4-5 week old plants were used for transient

442 expression assays. The *N. benthamiana* *eds1a-1* mutant was previously described
443 (*Ordon et al.*, 2017). *A. thaliana* T-DNA insertion lines were obtained from the
444 Nottingham Arabidopsis Stock Centre (NASC, <http://arabidopsis.info>). PCR-based
445 genotyping using T-DNA flanking primers were used to identify and isolate homozygous
446 mutants (Table S2). The *snc1* (*Li et al.*, 2001), Col *eds1-2* (*Bartsch et al.*, 2006), *mos6-1*
447 and *mos6-2* (*Palma et al.*, 2005), and *mos6-4* (*Wirthmueller et al.*, 2015) mutants were
448 previously described. For the generation of *imp-α6-2* mutant lines, transgenic plants
449 were generated by transforming *snc1 mos6-1* double mutant with *Agrobacterium*
450 *tumefaciens* strain GV3101 pMP90RK carrying a binary vector for CRISPR/Cas9-based
451 gene editing (see below) by floral-dip (Clough and Bent, 1998). Homozygous *snc1*
452 *mos6-1 imp-α6-2* mutants were isolated using a T7-endonuclease assay before
453 determining the mutation via sequencing of the PCR amplified target region. *mos6-1*
454 *imp-α6-2* double and *imp-α6-2* single mutant plants were isolated by PCR-based
455 genotyping after backcrossing of *snc1 mos6-1 imp-α6-2* with Col-0 wildtype.

456

457 ***Pseudomonas* infection assay**

458 Plant infection assays were performed as previously described (*Roth et al.*, 2017).
459 Briefly, rosette leaves of 5-week-old soil grown plants were vacuum-infiltrated with a
460 suspensions of *Pst* DC3000 Δ AvrPto/AvrPtoB (*Lin and Martin*, 2005) with a bacterial
461 density of 1×10^5 cfu ml⁻¹ in 10 mM MgCl₂ and 0.001 % (v/v) Silwet L-77. Titers were
462 determined 1 h (d0) and 3 days (d3) after infiltration.

463

464

465 **Construction of plasmids**

466 The Gateway compatible binary destination vectors pXCSG-mYFP or pXCSG-3xHA-
467 StreplI were used for transient expression assays in *N. benthamiana* (Witte *et al.*, 2004;
468 Feys *et al.*, 2005; García *et al.*, 2010). Genomic sequences were PCR amplified using
469 gene specific primers listed in Table S2 and cloned into pENTR/D-TOPO (ThermoFisher
470 Scientific, <https://www.thermofisher.com>) entry vectors. Sequenced entry vectors were
471 used in LR-reactions with the respective destination vectors to receive expression
472 vectors. The binary vector for CRISPR/Cas9-based gene editing is derived from
473 pHEE401 (Wang *et al.*, 2015) and was provided by C. Thurow and C. Gatz (University of
474 Goettingen). The sgRNA was created via golden-gate cloning of annealed
475 complementary oligos 5'-**GATTGAGACTTACAATTGGAGGCGA**-3' and
476 5'-**AAACTCGCCTCCAATTGTAAGTCTC**-3' determining the target site (overhangs for
477 golden gate ligation sites are marked with bold letters). All sequence confirmed vectors
478 were transformed into *Agrobacterium tumefaciens* strain GV3101 pMP90RK using
479 electroporation.

480

481 **Transient expression in *N. benthamiana***

482 Agrobacteria were grown over night, harvested by centrifugation, resuspended in
483 infiltration buffer (10 mM MgCl₂, 10 mM MES pH 5.5, 150 µM acetosyringone) and
484 incubated for 2-3 h at room temperature. For co-expression, *Agrobacterium* strains
485 carrying the desired constructs were mixed with infiltration buffer to obtain a respective
486 final optical density (OD₆₀₀) of 0.3 for each strain. Infiltration into the abaxial side of 4-5
487 week old *N. benthamiana* leaves was conducted using a needleless syringe. The
488 silencing suppressor p19 was co-infiltrated in all transient expression experiments. For

489 cell death assays, the infiltrated leaf areas were photographed 5 days after infiltration.
490 Co-immunoprecipitation and confocal laser scanning microscopy were performed 2 days
491 after infiltration of Agrobacteria.

492

493 **Co-immunoprecipitation, total protein extracts and immunoblot analysis**

494 For co-immunoprecipitation, infiltrated *N. benthamiana* leaf tissue was harvested, frozen
495 in liquid nitrogen, homogenized by using a TissueLyser LT (Qiagen) and stainless steel
496 beads and mixed with protein extraction buffer (250 mM sucrose, 100 mM HEPES-KOH,
497 pH 7.5, 5 % (v/v) glycerol, 2 mM Na₂MoO₄, 25 mM NaF, 10 mM EDTA, 1 mM DTT, 0.5 %
498 (v/v) Triton X-100, plant protease inhibitor cocktail (#P9599, Sigma)). Cell debris was
499 removed by centrifugation at 17.000 g and filtering through a 95-µm nylon mesh. 7.5 µl
500 GFP-trap magnetic agarose beads (Chromotek) were equilibrated in protein extraction
501 buffer, added to the total protein extract and incubated for 3 h at 4°C under constant
502 rotation. Magnetic agarose beads were isolated using a magnetic rack and washed 3
503 times in 1 ml extraction buffer. Immunoprecipitated proteins were eluted by boiling in 4x
504 SDS loading dye (250 mM Tris-HCl (pH 6.8), 8 % (w/v) SDS, 40 % (v/v) Glycerol,
505 0.04 % (w/v) Bromophenol blue, 400 mM DTT). Input samples were mixed with SDS
506 loading dye before adding GFP-trap beads. For total protein extracts, homogenized
507 plant material was boiled directly in 2x SDS loading dye, debris was removed by
508 centrifugation at 17.000 g and the supernatant was used for immunoblot analysis. Total
509 protein extracts and input or IP samples were separated on 7.5 % or 10 % SDS
510 polyacrylamide gels. Proteins were transferred onto nitrocellulose membranes
511 (Amersham Protran, 0.45 µm; GE Healthcare Life Sciences) and incubated with primary
512 α-GFP (monoclonal, #11814460001, Roche) or α-HA (H9658; Sigma-Aldrich) antibody.

513 The secondary goat anti-mouse IgG-poly-HRP (polyclonal, #32230; ThermoFisher
514 Scientific) antibody was incubated and detected using SuperSignal West Femto
515 chemiluminescence substrate (#34095; ThermoFisher Scientific) on a ChemiDoc
516 imaging system (BioRad).

517

518 **Confocal laser scanning microscopy**

519 Microscopy was performed 2 days post infiltration of Agrobacteria with leaf discs
520 embedded in water using a 20x/0.70 objective (PL APO, CS) of a Leica TSC-SP5
521 confocal laser-scanning microscope controlled by Leica LAS AF software. YFP was
522 excited using 514 nm of an argon laser line and mCherry was excited using 561 nm of a
523 DPSS laser. Emitted fluorescence was detected at 525 – 555 nm for YFP and 580 – 620
524 nm for mCherry using Leica HyD detectors. Images were sequentially scanned
525 (512x512 at 400 Hz). Channels were merged using ImageJ (Schindelin *et al.*, 2012).

526

527 **RNA isolation and RT-PCR analyses**

528 Total RNA was isolated as described in Genenncher *et al.* (2016). Briefly, RNA was
529 isolated from soil grown plants using Trizol. Reverse transcription was performed using
530 RevertAid H Minus reverse transcriptase (Fermentas) and an oligo(dT)₁₈V primer at
531 42 °C in a 20 µL reaction volume with 1.5 µg of DNaseI-treated RNA as input. RT-PCRs
532 to analyze disruption of full length transcripts were performed using primers listed in
533 Table S2.

534

535

536

537 ***In silico* analyses**

538 Protein domain predictions of SNC1 were performed using the InterProScan 5 web tool
539 (Zdobnov and Apweiler, 2001). In addition, a Phyre2 (Kelley *et al.*, 2015) homology
540 model was used to determine the beginning of the unstructured region after the MHD-
541 like motif to assess the boundary of the NB-ARC domain (Steele *et al.*, 2019). NLS-
542 predictions were performed using NLStradamus (Nguyen Ba *et al.*, 2009) and
543 NLSmapper (Kosugi *et al.*, 2009). Exon-intron structures for schematic gene models are
544 based on the Araport11 genome annotation (Cheng *et al.*, 2017). Phylogenetic analysis
545 was performed using the maximum likelihood method and Whelan and Goldman model
546 (WAG; Whelan and Goldman, 2001) with 3 Gamma categories in MEGA X (v10.0.5)
547 (Kumar *et al.*, 2018).

548

549 **Statistical analyses**

550 Statistical differences were determined using R (<http://www.R-project.org>). One-way
551 analysis of variance (ANOVA) followed by Tukey's HSD was performed after analysis of
552 normal distribution using Shapiro-Wilk's test and analysis of variance using Levene's
553 test on log-transformed data. Statistically significant differences ($P < 0.05$) are marked
554 by asterisks. The data is presented using boxplots, with outliers defined as data points
555 outside 1.5 times the interquartile range above/below the upper/lower quartile.

556

557 **ACKNOWLEDGEMENTS**

558 We thank Xin Li (UBC Vancouver) for *mos6-1* and *mos6-2* seeds, Johannes Stuttmann
559 (MLU Halle-Wittenberg) for *N. benthamiana* *eds1a-1* seeds, C. Gatz and C. Thurow
560 (University of Goettingen) for binary CRISPR/Cas9 vectors and Jane Parker (MPIPZ

561 Cologne) for pXCSG-3xHA-StrepII and pXCSG-mYFP destination vectors. We
562 acknowledge Elena Petutschnig and Volker Lipka (University of Goettingen, Central
563 Microscopy Facility of the Faculty of Biology and Psychology) for support and access to
564 a Deutsche Forschungsgemeinschaft (DFG)-funded confocal microscopy platform (DFG
565 grant INST 186/824-1 FUGG to V.L.). This research was funded by the DFG IRTG 2172
566 “PRoTECT” program of the Goettingen Graduate Center of Neurosciences, Biophysics,
567 and Molecular Biosciences and the DFG research grants WI3208/4-2 and WI 3208/5-1
568 to M.W.

569

570 **CONFLICT OF INTEREST**

571 None of the authors has declared a conflict of interest.

572

573 **AUTHOR CONTRIBUTIONS**

574 D.L., C.R. and M.W. conceived and designed the experiments. D.L., C.R., S.A.K., J.M.,
575 D.H., J.A., B.F.H., Q.Y., S.K., M.K. and A.G. performed the experiments. D.L., C.R.,
576 L.W. and M.W. analyzed and discussed the data. D.L., L.W. and M.W. wrote the
577 manuscript with contributions from the other authors.

578

579 **SUPPORTING INFORMATION**

580 **Figure S1.** Schematic gene structures of *Arabidopsis* α -importins and their gene
581 expression in wildtype and respective mutants as investigated by RT-PCR analysis.

582 **Figure S2.** Independent mutant alleles of *imp- α 6* do not further suppress the *snc1*-
583 associated stunted growth morphology.

584 **Figure S3.** *Imp- α* single mutants do not show obviously altered expression of the
585 remaining functional *IMP- α* genes or *SNC1*.

586 **Figure S4.** *Imp- α* triple mutants or *snc1* mutants do not show obviously altered
587 expression of the remaining functional *IMP- α* genes.

588 **Figure S5.** Only the *mos6* allele contributes to immunity against mildly virulent *Pst* in
589 *imp- α* triple mutant lines.

590 **Figure S6.** *SNC1*^{wt} and *SNC1*^{E552K} can be transiently expressed to detectable levels in
591 the *Nicotiana benthamiana* *eds1a-1* mutant without induction of a cell death response.

592 **Figure S7.** Transiently expressed α -IMPORTINS, *SNC1*^{wt} and *SNC1*^{E552K} show a
593 nuclear-cytoplasmic localization in *Nicotiana benthamiana*.

594 **Figure S8.** Accumulation of full length mYFP-tagged IMPORTIN- α proteins upon
595 transient expression in *N. benthamiana*.

596 **Table S1.** NLS predictions for *SNC1*.

597 **Table S2.** Primers used in this study.

598

599 REFERENCES

600 **Bai, X., Correa, V.R., Toruño, T.Y., Ammar, E.-D., Kamoun, S. and Hogenhout, S.A.**
601 (2008) AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei. *Mol.*
602 *Plant-Microbe Interact.* **22**, 18–30.

603 **Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J.L., Bautor, J. and**
604 **Parker, J.E.** (2006) Salicylic Acid-Independent ENHANCED DISEASE
605 SUSCEPTIBILITY1 Signaling in *Arabidopsis* Immunity and Cell Death Is Regulated
606 by the Monooxygenase *FMO1* and the Nudix Hydrolase *NUDT7*. *Plant Cell*, **18**,
607 1038–51.

608 **Beck, M. and Hurt, E.** (2017) The nuclear pore complex: understanding its function
609 through structural insight. *Nat. Rev. Mol. Cell Biol.* **18**, 73–89.

610 **Bhattacharjee, S., Lee, L.-Y., Oltmanns, H., Cao, H., Veena, Cuperus, J. and Gelvin,**
611 **S.B.** (2008) IMP α -4, an *Arabidopsis* Importin α Isoform, Is Preferentially Involved in
612 *Agrobacterium*-Mediated Plant Transformation. *Plant Cell*, **20**, 2661–2680.

613 **Cardarelli, F., Bizzarri, R., Serresi, M., Albertazzi, L. and Beltram, F.** (2009) Probing
614 Nuclear Localization Signal-Importin α Binding Equilibria in Living Cells. *J. Biol.*
615 *Chem.* **284**, 36638–36646.

616 **Chang, C.-W., Couñago, R.L.M., Williams, S.J., Bodén, M. and Kobe, B.** (2012)
617 Crystal Structure of Rice Importin- α and Structural Basis of Its Interaction with Plant-
618 Specific Nuclear Localization Signals. *Plant Cell*, **24**, 5074–5088.

619 **Chang, C.-W., Couñago, R.M., Williams, S.J., Bodén, M. and Kobe, B.** (2013)
620 Distinctive Conformation of Minor Site-Specific Nuclear Localization Signals Bound
621 to Importin- α . *Traffic*, **14**, 1144–1154.

622 **Chen, C., Masi, R.D., Lintermann, R. and Wirthmueller, L.** (2018) Nuclear Import of
623 Arabidopsis Poly(ADP-Ribose) Polymerase 2 Is Mediated by Importin- α and a
624 Nuclear Localization Sequence Located Between the Predicted SAP Domains.
625 *Front. Plant Sci.* **9**, 1581.

626 **Cheng, C.-Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S. and**
627 **Town, C.D.** (2017) Araport11: a complete reannotation of the *Arabidopsis thaliana*
628 reference genome. *Plant J.* **89**, 789–804.

629 **Cheng, Y.T., Germain, H., Wiermer, M., et al.** (2009) Nuclear Pore Complex
630 Component MOS7/Nup88 Is Required for Innate Immunity and Nuclear
631 Accumulation of Defense Regulators in *Arabidopsis*. *Plant Cell*, **21**, 2503–16.

632 **Christie, M., Chang, C.-W., Róna, G., et al.** (2016) Structural Biology and Regulation of
633 Protein Import into the Nucleus. *J. Mol. Biol.* **428**, 2060–2090.

634 **Clough, S.J. and Bent, A.F.** (1998) Floral dip: a simplified method for Agrobacterium -
635 mediated transformation of *Arabidopsis thaliana*. *Plant J.* **16**, 735–743.

636 **Contreras, R., Kallemi, P., González-García, M.P., Lazarova, A., Sánchez-Serrano,**
637 **J.J., Sanmartín, M. and Rojo, E.** (2019) Identification of Domains and Factors
638 Involved in MINIYO Nuclear Import. *Front. Plant Sci.* **10**, 1044.

639 **Cook, A., Bono, F., Jinek, M. and Conti, E.** (2007) Structural Biology of
640 Nucleocytoplasmic Transport. *Annu. Rev. Biochem.* **76**, 647–671.

641 **Cui, H., Tsuda, K. and Parker, J.E.** (2015) Effector-Triggered Immunity: From
642 Pathogen Perception to Robust Defense. *Annu. Rev. Plant Biol.* **66**, 487–511.

643 **Feys, B.J., Wiermer, M., Bhat, R.A., Moisan, L.J., Medina-Escobar, N., Neu, C.,**
644 **Cabral, A. and Parker, J.E.** (2005) *Arabidopsis* SENESCENCE-ASSOCIATED
645 GENE101 Stabilizes and Signals within an ENHANCED DISEASE
646 SUSCEPTIBILITY1 Complex in Plant Innate Immunity. *Plant Cell*, **17**, 2601–13.

647 **García, A.V., Blanvillain-Baufumé, S., Huibers, R.P., Wiermer, M., Li, G., Gobbato,**
648 **E., Rietz, S. and Parker, J.E.** (2010) Balanced Nuclear and Cytoplasmic Activities
649 of EDS1 Are Required for a Complete Plant Innate Immune Response. *PLOS*
650 *Pathog.* **6**, e1000970.

651 **Genenncher, B., Wirthmueller, L., Roth, C., Klenke, M., Ma, L., Sharon, A. and**
652 **Wiermer, M.** (2016) Nucleoporin-Regulated MAP Kinase Signaling in Immunity to a
653 Necrotrophic Fungal Pathogen. *Plant Physiol.* **172**, 1293–1305.

654 **Genoud, T., Schweizer, F., Tscheuschler, A., Debrieux, D., Casal, J.J., Schäfer, E.,**
655 **Hiltbrunner, A. and Fankhauser, C.** (2008) FHY1 Mediates Nuclear Import of the
656 Light-Activated Phytochrome A Photoreceptor. *PLOS Genet.* **4**, e1000143.

657 **Gerth, K., Lin, F., Daamen, F., Menzel, W., Heinrich, F. and Heilmann, M.** (2017)
658 *Arabidopsis* phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional

659 nuclear localization sequence and interacts with alpha-importins. *Plant J.* **92**, 862–
660 878.

661 **Goldfarb, D.S., Corbett, A.H., Mason, D.A., Harreman, M.T. and Adam, S.A.** (2004)
662 Importin α : a multipurpose nuclear-transport receptor. *Trends Cell Biol.* **14**, 505–
663 514.

664 **Grossman, E., Medalia, O. and Zwerger, M.** (2012) Functional Architecture of the
665 Nuclear Pore Complex. *Annu. Rev. Biophys.* **41**, 557–584.

666 **Gu, Y.** (2018) The nuclear pore complex: a strategic platform for regulating cell
667 signaling. *New Phytol.* **219**, 25–30.

668 **Harreman, M.T., Cohen, P.E., Hodel, M.R., Truscott, G.J., Corbett, A.H. and Hodel,**
669 **A.E.** (2003) Characterization of the Auto-inhibitory Sequence within the N-terminal
670 Domain of Importin α . *J. Biol. Chem.* **278**, 21361–21369.

671 **Helizon, H., Rösler-Dalton, J., Gasch, P., Horsten, S. von, Essen, L.-O. and Zeidler,**
672 **M.** (2018) Arabidopsis phytochrome A nuclear translocation is mediated by a far-red
673 elongated hypocotyl 1–importin complex. *Plant J.* **96**, 1255–1268.

674 **Hodel, A.E., Harreman, M.T., Pulliam, K.F., Harben, M.E., Holmes, J.S., Hodel, M.R.,**
675 **Berland, K.M. and Corbett, A.H.** (2006) Nuclear Localization Signal Receptor
676 Affinity Correlates with in Vivo Localization in *Saccharomyces cerevisiae*. *J. Biol.*
677 *Chem.* **281**, 23545–23556.

678 **Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P.,**
679 **Gruissem, W. and Zimmermann, P.** (2008) Genevestigator V3: A Reference
680 Expression Database for the Meta-Analysis of Transcriptomes. *Adv. Bioinforma.*
681 **2008**, 420747.

682 **Hu, J., Wang, F., Yuan, Y., Zhu, X., Wang, Y., Zhang, Y., Kou, Z., Wang, S. and Gao,**
683 **S.** (2010) Novel Importin- α Family Member Kpna7 Is Required for Normal Fertility
684 and Fecundity in the Mouse. *J. Biol. Chem.* **285**, 33113–33122.

685 **Hübner, S., Smith, H.M.S., Hu, W., Chan, C.K., Rihs, H.-P., Paschal, B.M., Raikhel,**
686 **N.V. and Jans, D.A.** (1999) Plant Importin α Binds Nuclear Localization Sequences
687 with High Affinity and Can Mediate Nuclear Import Independent of Importin β . *J. Biol.*
688 *Chem.* **274**, 22610–22617.

689 **Jiang, C.-J., Shoji, K., Matsuki, R., et al.** (2001) Molecular Cloning of a Novel Importin
690 α Homologue from Rice, by Which Constitutive Photomorphogenic 1 (COP1)
691 Nuclear Localization Signal (NLS)-Protein Is Preferentially Nuclear Imported. *J. Biol.*
692 *Chem.* **276**, 9322–9329.

693 **Kaffman, A. and O’Shea, E.K.** (1999) Regulation of Nuclear Localization: A Key to a
694 Door. *Annu. Rev. Cell Dev. Biol.* **15**, 291–339.

695 **Kanneganti, T.-D., Bai, X., Tsai, C.-W., Win, J., Meulia, T., Goodin, M., Kamoun, S.**
696 **and Hogenhout, S.A.** (2007) A functional genetic assay for nuclear trafficking in
697 plants. *Plant J.* **50**, 149–158.

698 **Kelley, J.B., Talley, A.M., Spencer, A., Gioeli, D. and Paschal, B.M.** (2010)
699 Karyopherin $\alpha 7$ (KPNA7), a divergent member of the importin α family of nuclear
700 import receptors. *BMC Cell Biol.* **11**, 63.

701 **Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. and Sternberg, M.J.E.** (2015) The
702 Phyre2 web portal for protein modeling, prediction and analysis. *Nat. Protoc.* **10**,
703 845–858.

704 **Kobe, B.** (1999) Autoinhibition by an internal nuclear localization signal revealed by the
705 crystal structure of mammalian importin α . *Nat. Struct. Biol.* **6**, 388–397.

706 **Kosugi, S., Hasebe, M., Tomita, M. and Yanagawa, H.** (2009) Systematic identification
707 of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of
708 composite motifs. *Proc. Natl. Acad. Sci.* **106**, 10171–6.

709 **Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K.** (2018) MEGA X: Molecular
710 Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* **35**,
711 1547–1549.

712 **Li, X., Clarke, J.D., Zhang, Y. and Dong, X.** (2001) Activation of an EDS1-Mediated R-
713 Gene Pathway in the snc1 Mutant Leads to Constitutive, NPR1-Independent
714 Pathogen Resistance. *Mol. Plant-Microbe Interact.* **14**, 1131–1139.

715 **Lin, N.-C. and Martin, G.B.** (2005) An avrPto/avrPtoB Mutant of *Pseudomonas syringae*
716 pv. tomato DC3000 Does Not Elicit Pto-Mediated Resistance and Is Less Virulent on
717 Tomato. *Mol. Plant-Microbe Interact.* **18**, 43–51.

718 **Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y. and Li, S.** (2019) Importin β 4
719 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development
720 in Arabidopsis. *Plant Physiol.* **179**, 1080–1092.

721 **Marfori, M., Lonhienne, T.G., Forwood, J.K. and Kobe, B.** (2012) Structural Basis of
722 High-Affinity Nuclear Localization Signal Interactions with Importin- α . *Traffic*, **13**,
723 532–548.

724 **Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F.W., Curmi, P.M.,**
725 **Forwood, J.K., Bodén, M. and Kobe, B.** (2011) Molecular basis for specificity of
726 nuclear import and prediction of nuclear localization. *Biochim. Biophys. Acta*, **1813**,
727 1562–1577.

728 **Mingot, J.-M., Kostka, S., Kraft, R., Hartmann, E. and Görlich, D.** (2001) Importin 13:
729 a novel mediator of nuclear import and export. *EMBO J.* **20**, 3685–3694.

730 **Moroianu, J., Blobel, G. and Radu, A.** (1996) The binding site of karyopherin alpha for
731 karyopherin beta overlaps with a nuclear localization sequence. *Proc. Natl. Acad. Sci.* **93**,
732 6572–6576.

733 **Nguyen Ba, A.N., Pogoutse, A., Provart, N. and Moses, A.M.** (2009) NLStradamus: a
734 simple Hidden Markov Model for nuclear localization signal prediction. *BMC Bioinformatics*, **10**, 202.

735 **Ordon, J., Gantner, J., Kemna, J., Schwalgun, L., Reschke, M., Streubel, J., Boch,**
736 **J. and Stuttmann, J.** (2017) Generation of chromosomal deletions in
737 dicotyledonous plants employing a user-friendly genome editing toolkit. *Plant J.* **89**,
738 155–168.

739 **Orphanides, G. and Reinberg, D.** (2002) A Unified Theory of Gene Expression. *Cell*,
740 **108**, 439–451.

741 **Palma, K., Zhang, Y. and Li, X.** (2005) An Importin α Homolog, MOS6, Plays an
742 Important Role in Plant Innate Immunity. *Curr. Biol.* **15**, 1129–1135.

743 **Pemberton, L.F. and Paschal, B.M.** (2005) Mechanisms of Receptor-Mediated Nuclear
744 Import and Nuclear Export. *Traffic*, **6**, 187–198.

745 **Pumroy, R.A. and Cingolani, G.** (2015) Diversification of importin- α isoforms in cellular
746 trafficking and disease states. *Biochem. J.* **466**, 13–28.

747 **Rona, G., Marfori, M., Borsos, M., et al.** (2013) Phosphorylation adjacent to the
748 nuclear localization signal of human dUTPase abolishes nuclear import: structural
749 and mechanistic insights. *Acta Crystallogr. D Biol. Crystallogr.* **69**, 2495–2505.

750

751 **Roth, C., Lüdke, D., Klenke, M., Quathamer, A., Valerius, O., Braus, G.H. and**
752 **Wiermer, M.** (2017) The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-
753 α 3 interaction partner required for plant immunity. *Plant J.* **92**, 808–821.

754 **Schindelin, J., Arganda-Carreras, I., Frise, E., et al.** (2012) Fiji: an open-source
755 platform for biological-image analysis. *Nat. Methods*, **9**, 676–682.

756 **Schmidt, H.B. and Görlich, D.** (2016) Transport Selectivity of Nuclear Pores, Phase
757 Separation, and Membraneless Organelles. *Trends. Biochem. Sci.* **41**, 46–61.

758 **Scholl, R.L., May, S.T. and Ware, D.H.** (2000) Seed and Molecular Resources for
759 *Arabidopsis*. *Plant Physiol.* **124**, 1477–1480.

760 **Steele, J.F., Hughes, R.K. and Banfield, M.J.** (2019) Structural and biochemical
761 studies of an NB-ARC domain from a plant NLR immune receptor. *bioRxiv*, 557280.

762 **Stewart, M.** (2007) Molecular mechanism of the nuclear protein import cycle. *Nat. Rev.*
763 *Mol. Cell Biol.* **8**, 195–208.

764 **Tamura, K. and Hara-Nishimura, I.** (2013) The molecular architecture of the plant
765 nuclear pore complex. *J. Exp. Bot.* **64**, 823–832.

766 **Timney, B.L., Tetenbaum-Novatt, J., Agate, D.S., Williams, R., Zhang, W., Chait,**
767 **B.T. and Rout, M.P.** (2006) Simple kinetic relationships and nonspecific competition
768 govern nuclear import rates in vivo. *J. Cell Biol.* **175**, 579–593.

769 **Toufighi, K., Brady, S.M., Austin, R., Ly, E. and Provart, N.J.** (2005) The Botany
770 Array Resource: e-Northerns, Expression Angling, and promoter analyses. *Plant J.*
771 **43**, 153–163.

772 **Wang, R. and Brattain, M.G.** (2007) The maximal size of protein to diffuse through the
773 nuclear pore is larger than 60 kDa. *FEBS Lett.* **581**, 3164–3170.

774 **Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C. and Chen,**
775 **Q.-J.** (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently
776 generates homozygous mutants for multiple target genes in *Arabidopsis* in a single
777 generation. *Genome Biol.* **16**, 144.

778 **Wente, S.R. and Rout, M.P.** (2010) The Nuclear Pore Complex and Nuclear Transport.
779 *Cold Spring Harb. Perspect. Biol.* **2**, a000562.

780 **Whelan, S. and Goldman, N.** (2001) A General Empirical Model of Protein Evolution
781 Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. *Mol.*
782 *Biol. Evol.* **18**, 691–699.

783 **Wiermer, M., Feys, B.J. and Parker, J.E.** (2005) Plant immunity: the EDS1 regulatory
784 node. *Curr. Opin. Plant Biol.* **8**, 383–389.

785 **Wiermer, M., Germain, H., Cheng, Y.T., García, A.V., Parker, J.E. and Li, X.** (2010)
786 Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation
787 of defense regulators. *Nucleus*, **1**, 332–336.

788 **Wirthmueller, L., Roth, C., Banfield, M. and Wiermer, M.** (2013) Hop-on hop-off:
789 importin- α -guided tours to the nucleus in innate immune signaling. *Front. Plant Sci.*
790 **4**, 149.

791 **Wirthmueller, L., Roth, C., Fabro, G., et al.** (2015) Probing formation of cargo/importin-
792 α transport complexes in plant cells using a pathogen effector. *Plant J.* **81**, 40–52.

793 **Witte, C.-P., Noël, L., Gielbert, J., Parker, J. and Romeis, T.** (2004) Rapid one-step
794 protein purification from plant material using the eight-amino acid StrepII epitope.
795 *Plant Mol. Biol.* **55**, 135–147.

796 **Yano, R., Oakes, M., Yamaghishi, M., Dodd, J.A. and Nomura, M.** (1992) Cloning and
797 characterization of SRP1, a suppressor of temperature-sensitive RNA polymerase I
798 mutations, in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.* **12**, 5640–51.

799 **Yasuhara, N., Shibasaki, N., Tanaka, S., et al.** (2007) Triggering neural differentiation
800 of ES cells by subtype switching of importin- α . *Nat. Cell Biol.* **9**, 72–79.

801 **Zdobnov, E.M. and Apweiler, R.** (2001) InterProScan – an integration platform for the
802 signature-recognition methods in InterPro. *Bioinformatics*, **17**, 847–848.

803 **Zhang, Y., Goritschnig, S., Dong, X. and Li, X.** (2003) A Gain-of-Function Mutation in
804 a Plant Disease Resistance Gene Leads to Constitutive Activation of Downstream
805 Signal Transduction Pathways in *suppressor of npr1-1, constitutive 1*. *Plant Cell*, **15**,
806 2636–46.

807 **Zhang, Z., Guo, X., Ge, C., Ma, Z., Jiang, M., Li, T., Koiwa, H., Yang, S.W. and
808 Zhang, X.** (2017) KETCH1 imports HYL1 to nucleus for miRNA biogenesis in
809 *Arabidopsis*. *Proc. Natl. Acad. Sci.* **114**, 4011–16.

810 **Zhu, Y., Qian, W. and Hua, J.** (2010b) Temperature Modulates Plant Defense
811 Responses through NB-LRR Proteins. *PLOS Pathog.* **6**, e1000844.

812 **Zhu, Z., Xu, F., Zhang, Yaxi, Cheng, Y.T., Wiermer, M., Li, X. and Zhang, Yuelin**
813 (2010a) *Arabidopsis* resistance protein SNC1 activates immune responses through
814 association with a transcriptional corepressor. *Proc. Natl. Acad. Sci.* **107**, 13960–
815 13960.

816

817

818 **FIGURE LEGENDS**

819 **Figure 1.** Phylogenetic tree and schematic gene structures of α -importins in
820 *Arabidopsis*. (A) Bootstrap consensus tree using the WAG maximum likelihood method
821 based on a manually refined MUSCLE alignment of the full length amino acid
822 sequences performed in MEGA X (v10.0.5). IMP- α 9 was used to root the tree, numbers
823 at nodes indicate support from 100 bootstraps. α -IMPs with strong expression in rosette
824 leaves are highlighted in green (Wirthmueller *et al.*, 2013). (B) Gene structure drawn to
825 scale with exons as black boxes and introns as solid lines. Start (ATG) and Stop codons
826 are indicated as triangles above, positions of the respective T-DNA insertions as
827 triangles below gene structures. The solid line below the *MOS6* gene structure marks
828 the approximate region of the genomic rearrangement in the *mos6-1* mutant, the

829 deletion in the *mos6-2* mutant is indicated by an asterisk (Palma *et al.*, 2005), and the
830 premature Stop codon in the *imp- α 6-2* CRISPR/Cas9 mutant is indicated by an open
831 triangle.

832

833 **Figure 2.** Only a loss of *MOS6* partially suppresses the *snc1*-associated stunted growth
834 morphology. Representative images of plants grown in parallel for three or five weeks
835 under short day (SD) and long day (LD) conditions, respectively. Scale bar = 1 cm.

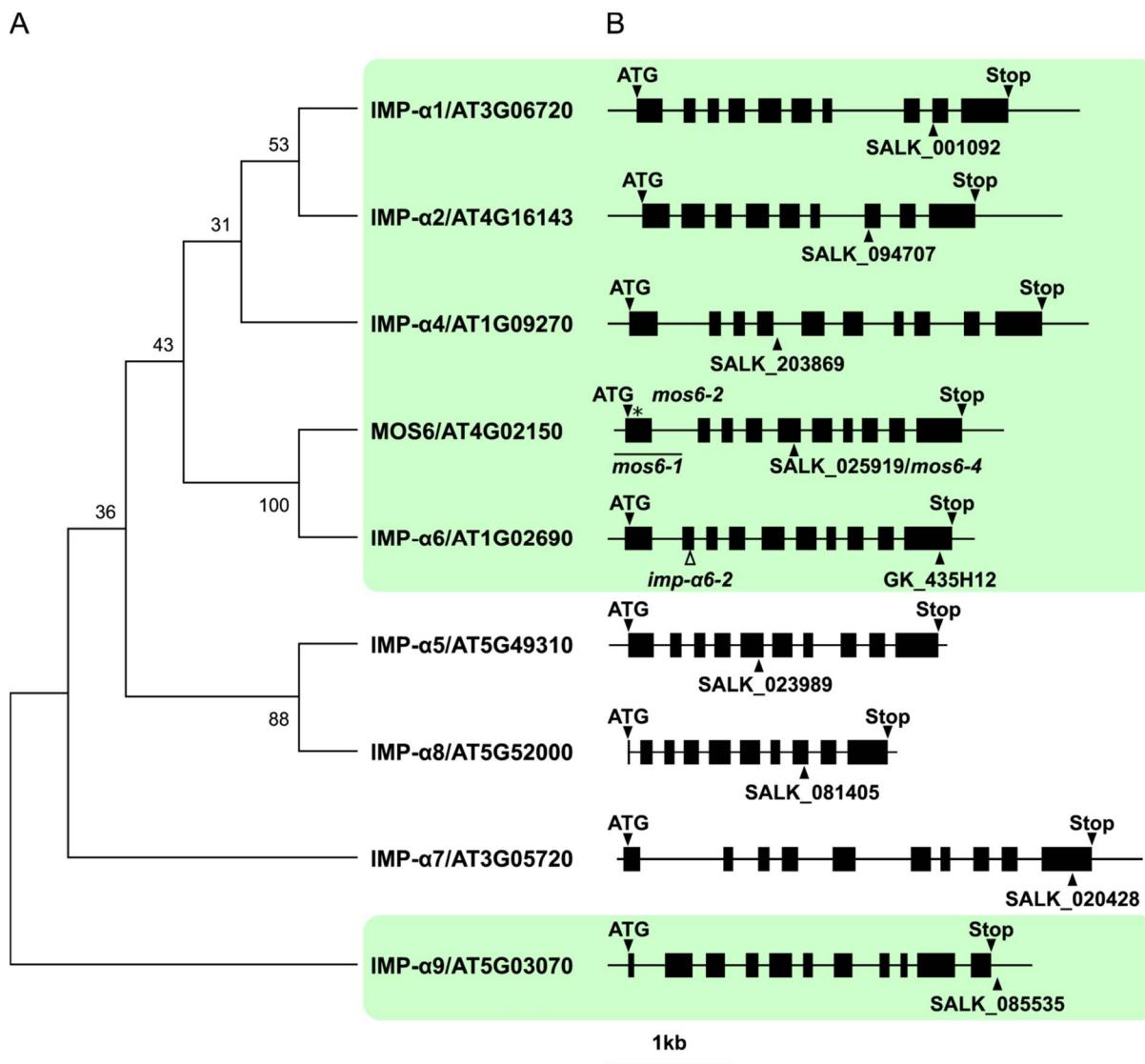
836

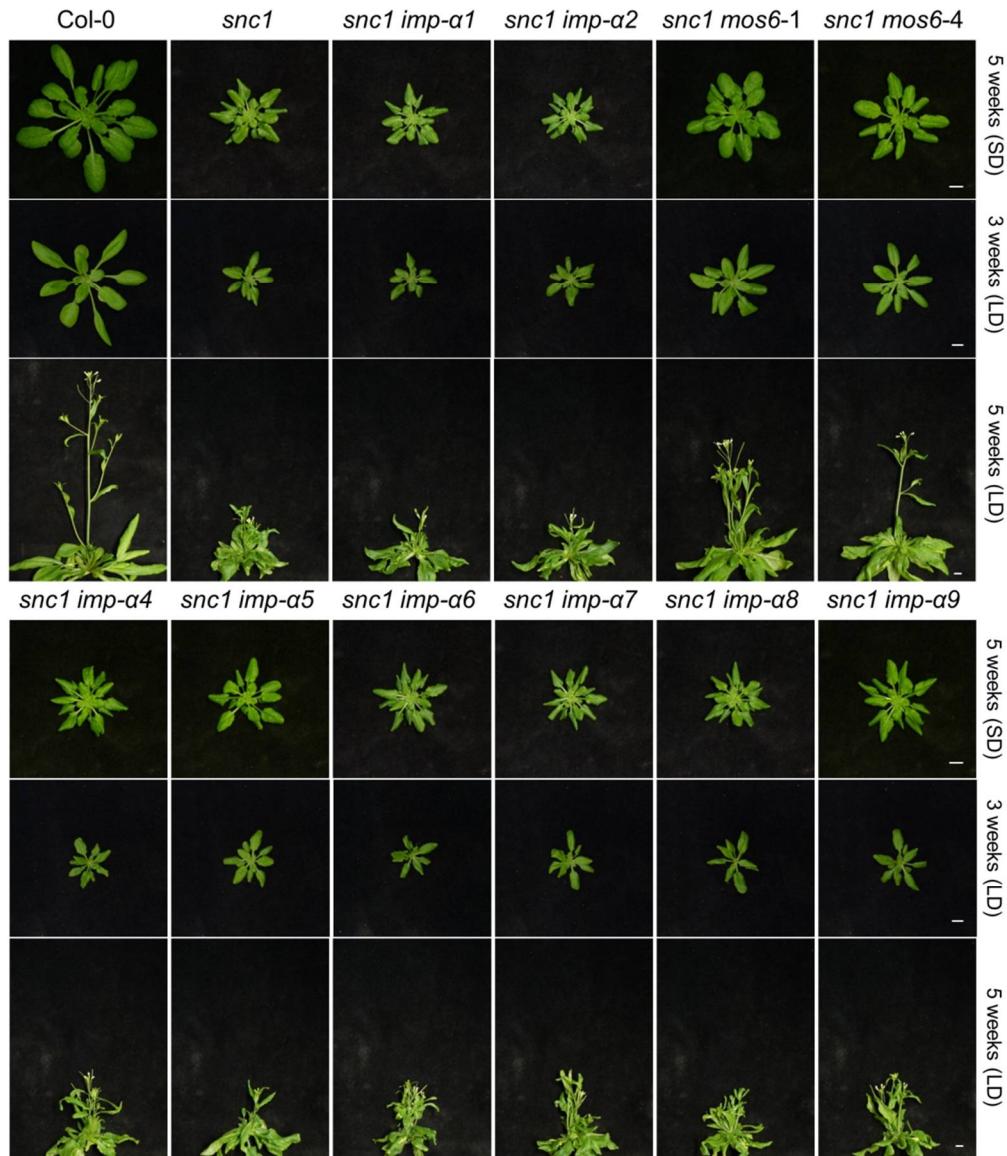
837 **Figure 3.** Only *mos6* alleles but no other *imp- α* mutant lines show enhanced
838 susceptibility to mildly virulent *P. syringae*. Four week old plants of the indicated
839 genotypes were vacuum infiltrated with a *Pst* DC3000 (Δ AvrPto/AvrPtoB) suspension of
840 1×10^5 cfu ml⁻¹. Colony-forming units (cfu) within the infiltrated plant tissues were
841 quantified immediately (day 0), or three days after infiltration (day 3). Data is presented
842 as boxplots (day 0: n=6; day 3: n=9), outliers are indicated as black dots, underlined
843 asterisks indicate statistically significant differences to Col-0 (one-way ANOVA; Tukey's
844 test, $P < 0.05$). The experiment was repeated three times with similar results.

845

846 **Figure 4.** *Imp- α* single mutants do not show obvious growth defects. Representative
847 images of plants grown in parallel for three or five weeks under short day (SD) and long
848 day (LD) conditions, respectively. Scale bar = 1 cm.

849

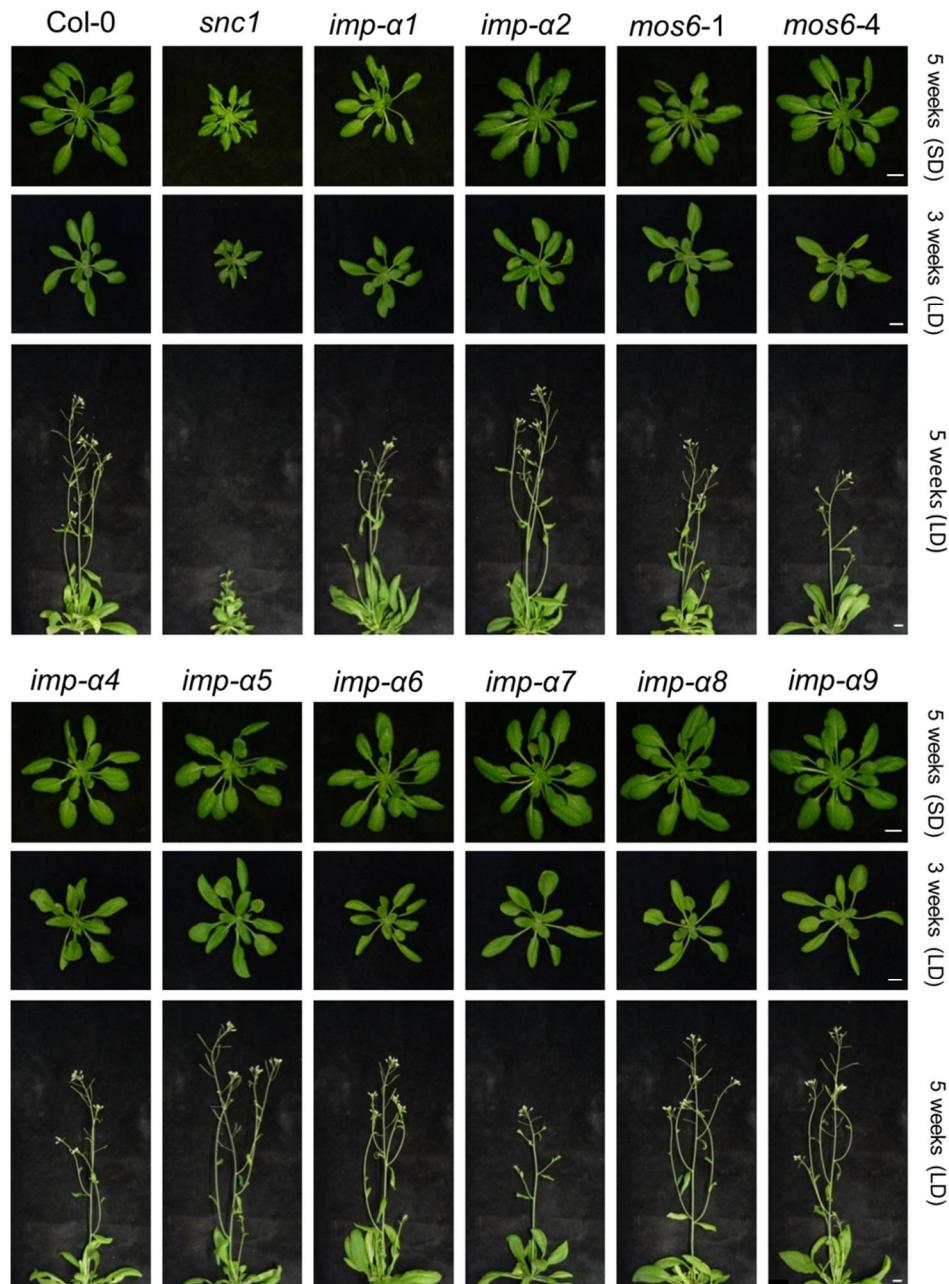

850 **Figure 5.** Growth morphology of *imp- α* double mutant combinations. Representative
851 images of plants grown in parallel for four or five weeks under short day (SD) and long
852 day (LD) conditions, respectively. Scale bar = 1 cm.


853
854 **Figure 6.** Growth morphology of *imp- α* triple mutant combinations. Representative
855 images of plants grown in parallel for four or five weeks under short day (SD) and long
856 day (LD) conditions, respectively. Scale bar = 1 cm.

857
858 **Figure 7.** SNC1^{E552K} and SNC1^{wt} predominantly interact with IMP- α 3/MOS6. (A)
859 Schematic protein domain structure with predicted beginning and end of the respective
860 domains, indicated by the amino acid positions within the sequence of SNC1. The auto-
861 activating E₅₅₂K point mutation and the predicted NLS sequences (Table S1, highlighted
862 in green) are indicated. (B) 3xHA-StrepII (3xHA-SII)-tagged α -IMPORTINS or GUS
863 control were transiently co-expressed in *Nicotiana benthamiana* eds1a-1 with mYFP-
864 tagged SNC1^{E552K} (left) or SNC1^{wt} (right), together with the silencing suppressor p19.
865 Two days post-infiltration of *Agrobacterium tumefaciens*, mYFP-tagged proteins were
866 immunoprecipitated using GFP-Trap[®] magnetic agarose beads (IP: α -GFP). Co-
867 immunoprecipitation of 3xHA-SII-tagged IMP- α proteins was detected by α -HA
868 immunoblots. The upper two blots show total protein extracts (Input) probed with α -GFP
869 and α -HA, respectively. Ponceau S (PonS) staining of the membrane was used to
870 monitor loading. Similar results were obtained in three independent experiments.

871


872 **FIGURES**


886

887 **Figure 2.** Only a loss of MOS6 partially suppresses the *snc1*-associated stunted growth
888 morphology. Representative images of plants grown in parallel for three or five weeks under
889 short day (SD) and long day (LD) conditions, respectively. Scale bar = 1 cm.
890

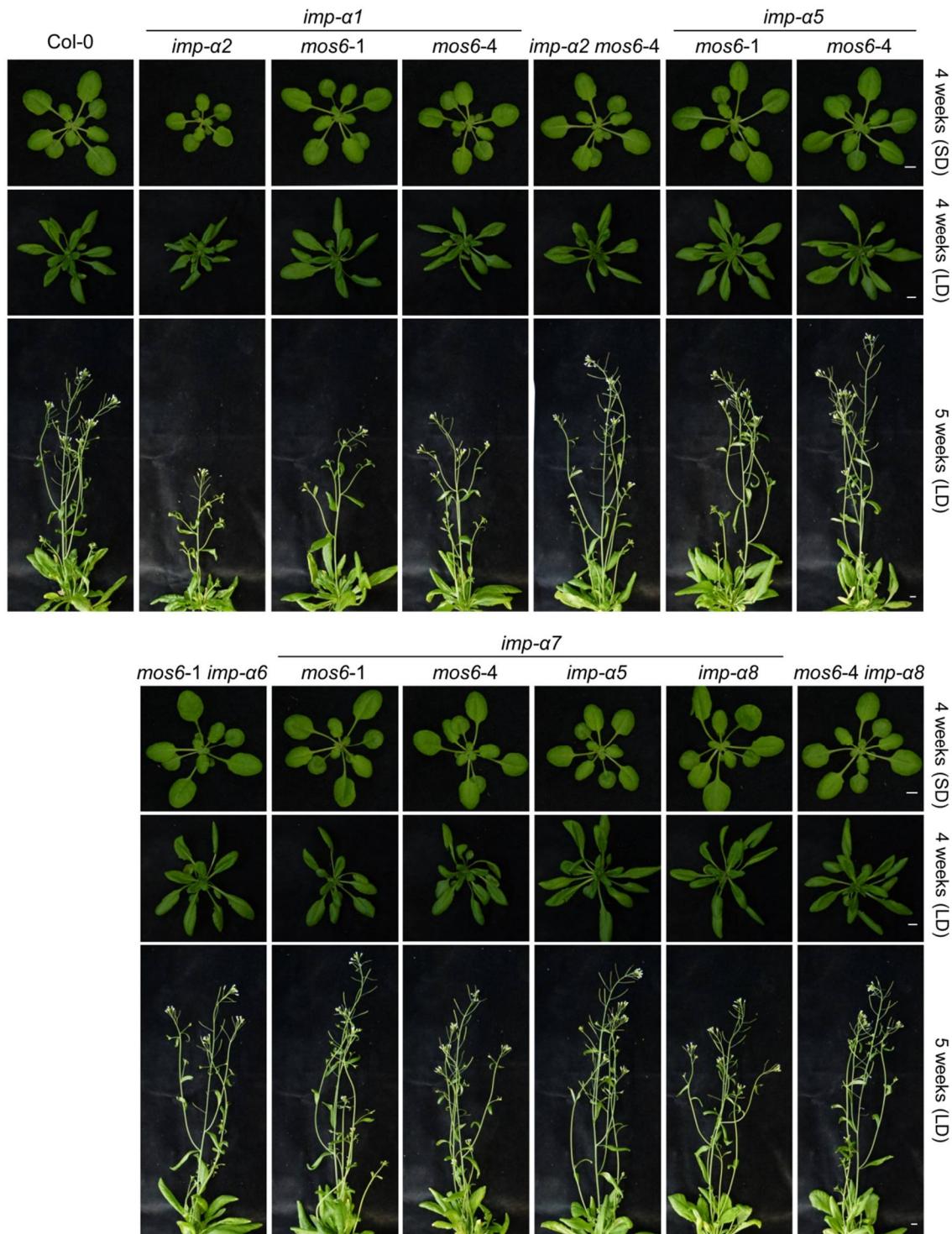
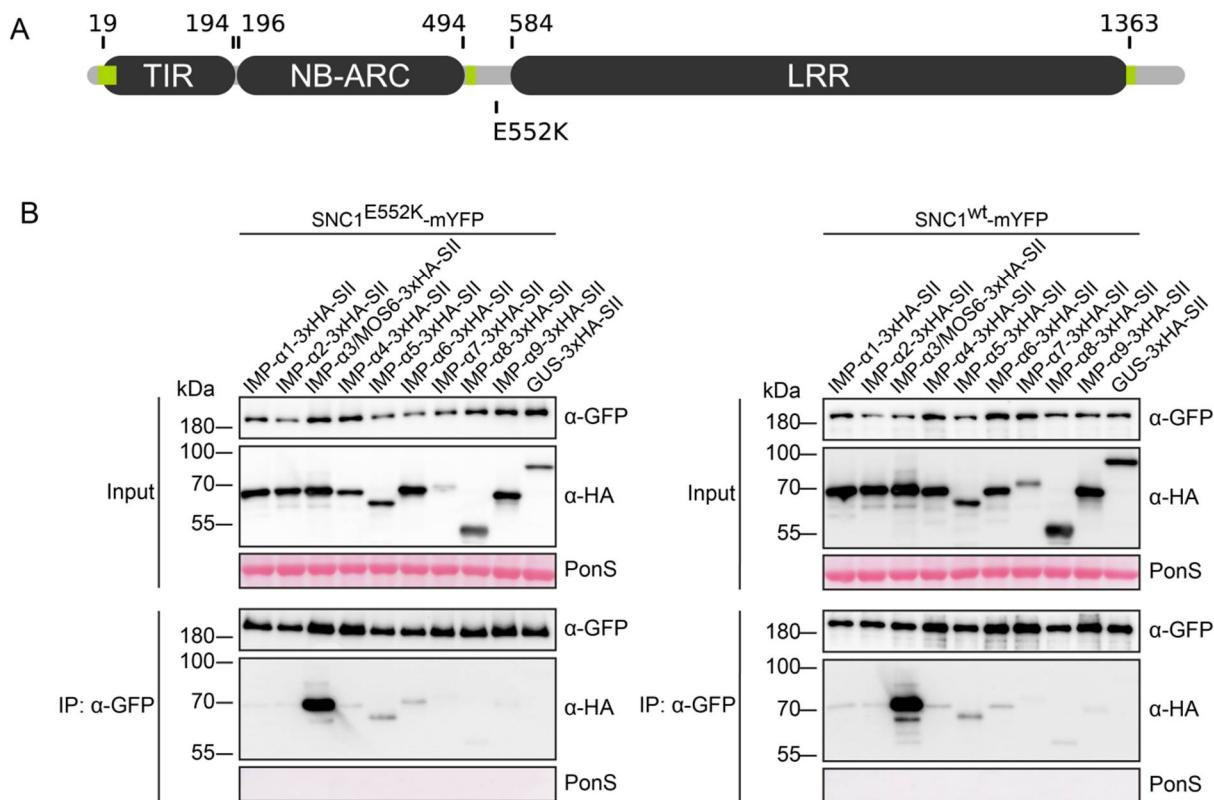

891
892
893
894
895
896
897
898
899
900

Figure 3. Only *mos6* alleles but no other *imp- α* mutant lines show enhanced susceptibility to mildly virulent *P. syringae*. Four week old plants of the indicated genotypes were vacuum infiltrated with a *Pst* DC3000 (Δ AvrPto/AvrPtoB) suspension of 1×10^5 cfu ml⁻¹. Colony-forming units (cfu) within the infiltrated plant tissues were quantified immediately (day 0), or three days after infiltration (day 3). Data is presented as boxplots (day 0: n=6; day 3: n=9), outliers are indicated as black dots, underlined asterisks indicate statistically significant differences to Col-0 (one-way ANOVA; Tukey's test, $P < 0.05$). The experiment was repeated three times with similar results.

901

902 **Figure 4.** *Imp-α* single mutants do not show obvious growth defects. Representative images of
903 plants grown in parallel for three or five weeks under short day (SD) and long day (LD)
904 conditions, respectively. Scale bar = 1 cm.


905

906 **Figure 5.** Growth morphology of *imp-α* double mutant combinations. Representative images of
907 plants grown in parallel for four or five weeks under short day (SD) and long day (LD) conditions,
908 respectively. Scale bar = 1 cm.

909

910 **Figure 6.** Growth morphology of *imp- α* triple mutant combinations. Representative images of
911 plants grown in parallel for four or five weeks under short day (SD) and long day (LD) conditions,
912 respectively. Scale bar = 1 cm.

914 **Figure 7.** SNC1^{E552K} and SNC1^{WT} predominantly interact with IMP- α 3/MOS6. (A) Schematic
915 protein domain structure with predicted beginning and end of the respective domains, indicated
916 by the amino acid positions within the sequence of SNC1. The auto-activating E₅₅₂K point
917 mutation and the predicted NLS sequences (Table S1, highlighted in green) are indicated. (B)
918 3xHA-StrepII (3xHA-SII)-tagged α -IMPORTINS or GUS control were transiently co-expressed in
919 *Nicotiana benthamiana* eds1a-1 with mYFP-tagged SNC1^{E552K} (left) or SNC1^{WT} (right), together
920 with the silencing suppressor p19. Two days post-infiltration of *Agrobacterium tumefaciens*,
921 mYFP-tagged proteins were immunoprecipitated using GFP-Trap® magnetic agarose beads (IP:
922 α -GFP). Co-immunoprecipitation of 3xHA-SII-tagged IMP- α proteins was detected by α -HA
923 immunoblots. The upper two blots show total protein extracts (Input) probed with α -GFP and
924 α -HA, respectively. Ponceau S (PonS) staining of the membrane was used to monitor loading.
925 Similar results were obtained in three independent experiments.