Methylation array analysis in primates

Analysis and annotation of genome-wide DNA methylation patterns in two nonhuman primate species using the Infinium Human Methylation 450K and EPIC BeadChips

Fabien Pichon¹, Florence Busato¹, Simon Jochems²,³,&, Beatrice Jacquelin²,
Roger Le Grand⁴, Jean-Francois Deleuze¹, Michaela Müller-Trutwin² and Jörg
Tost¹#

¹Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France.

²Institut Pasteur, HIV Inflammation and Persistence Unit, Paris, France.

³Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

⁴CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France.

& current address: Leiden University Medical Center, Leiden, Netherlands

#Corresponding author

Jörg Tost, Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France. email: tost@cng.fr

Methylation array analysis in primates

Abstract

The Infinium Human Methylation450 and Methylation EPIC BeadChips are useful tools for the study of the methylation state of hundreds of thousands of CpG across the human genome at affordable cost. However, in a wide range of experimental settings in particular for studies in infectious or brain-related diseases, human samples cannot be easily obtained. Hence, due to their close developmental, immunological and neurological proximity with humans, nonhuman primates are used in many research fields of human diseases and for preclinical research. Few studies have used DNA methylation microarrays in simian models. Microarrays designed for the analysis of DNA methylation patterns in the human genome could be useful given the genomic proximity between human and nonhuman primates. However, there is currently information lacking about the specificity and usability of each probe for many nonhuman primate species, including rhesus macaques (Macaca mulatta), originating from Asia, and African green monkeys originating from West-Africa (Chlorocebus sabaeus). Rhesus macagues and African green monkeys are among the major nonhuman primate models utilized in biomedical research. Here, we provide a precise evaluation and reannotation of the probes of the two microarrays for the analysis of genome-wide DNA methylation patterns in these two Cercopithecidae species. We demonstrate that up to 162,000 of the 450K and 255,000 probes of the EPIC BeadChip can be reliably used in Macaca mulatta or Chlorocebus sabaeus. The annotation files are provided in a format compatible with a variety of preprocessing, normalization and analytical pipelines designed for data analysis from 450K/EPIC arrays, facilitating high-throughput DNA methylation analyses in Macaca mulatta and Chlorocebus sabaeus. They provide the opportunity to the research community to focus their analysis only on those probes identified as reliable. The described analytical workflow leaves the choice to the user to balance coverage versus specificity and can also be applied to other Cercopithecidae species.

Methylation array analysis in primates

(350 mots max) now: 303

Keywords

Infinium, 450K, EPIC, microarray, DNA methylation, macaca, chlorocebus, rhesus macaque,

monkey, African green monkey, vervet, annotation

Background

DNA methylation is an epigenetic mark associated with gene regulation. It impacts a number

of key biological processes including genomic imprinting, X-chromosome inactivation,

repression of transposable elements, aging, carcinogenesis and immunity against infectious

diseases [1]. DNA methylation consists in the methylation of a cytosine (5-methylcytosine)

mostly immediately followed by a guanine. Because of this methylation, cytosines are

susceptible to deamination yielding thymines [2-4]. Due to their increased mutation rate, CpG

dinucleotides have been depleted during evolution and are thus under-represented in the

genome [5]. However, a higher density of mostly unmethylated CpG dinucleotides is found

in CpG islands, generally localized in the first exon and intron or in the promoter region of

genes [6,7].

CpG methylation can be measured in humans using the Infinium Human Methylation450

BeadChip Array (Infinium 450K), which measures methylation levels at more than 450,000

CpG across the human genome [8]. This array has been replaced by the Infinium Human

MethylationEPIC BeadChip Array (Infinium EPIC, which adds about 350,000 CpGs localized

in enhancers; [9]). Due to its accuracy and capacity to analyze large cohorts at an affordable

cost, the Infinium 450K microarray has been used in a wide range of epigenome-wide

association studies in humans (see review in [10]).

Only few genome-wide array tools are currently available for nonhuman primate models. Of

note, these species have a close phylogenic proximity with humans and a high percentage of

3

Methylation array analysis in primates

DNA identity and gene homology, raising the possibility of the use of human microarrays in studies in non-human primate models. Indeed, human gene expression microarrays have been used in various studies on monkeys, from HCV and SIV infection [11-13] to asthma [14] or glaucoma [15]. More recently, the human Affymetrix HG-U133 Plus 2.0 GeneChip has also been used for a gene expression study in the phylogenetically more distant lemur *Microcebus murinus*, which has been shown to be an excellent model for Alzheimer's disease ([16]; Pichon et al., unpublished data). In the latter study, human microarrays detected about 20% of lemur transcripts, which is expected because of the divergence of both species.

Similarly, the human Infinium 450K was also used for DNA methylation studies in great apes [17]. Seventy-three percent of the probes designed to the human genome mapped to the bonobo genome, 72%-77% to chimpanzee, 61% to gorilla and 44% to orangutan genomes [17,18]. Studies were also performed in monkeys of the cynomolgus macaque species (*Macaca fascicularis*) [19], rhesus macaque (*Macaca mulata, MM*) [18] and baboon [20]. For example, using different selection criteria for probes yielding reliable signals, 61% of human probes were mapped and annotated to the *Macaca fascicularis* genome and subsequently used to study the impact of birth weight on gene methylation and expression in *Macaca fascicularis* [21]. Microarrays initially designed for the interrogation of the human genome have thus been used to study gene expression or DNA methylation of nonhuman primate samples. This can be successfully done under the condition that a thorough evaluation of reliable CpG targeting probes is performed for the species of interest.

Several monkey species are widely used models to study complex human diseases contributing to unraveling the mechanisms or treatment of human and animal diseases. Rhesus macaques are for instance frequently used for the development of vaccines against viral diseases, including Sars-CoV-2, HIV, Influenza and Ebola virus [22-24]. They are also widely used in various studies ranging from development and imprinting, to addiction and

Methylation array analysis in primates

social cognition [25-30]. In parallel, the *Chlorocebus* genus, among which figure prominently African green monkeys (AGM), have been a gold standard model for the studies and fight against several infectious diseases, such as yellow fever, trypanosoma and plague in the past [31,32]. African green monkeys, in particular *Chlorocebus sabaeus*, are included in studies of neurological disorders, in pharmacological trials [33] and more recently also for the identification of mechanisms of protection against HIV/AIDS, MERS-CoV and SARS-CoV2 [34-37].

Macacca mulatta and Chlorocebus have therefore, together with baboons and cynomolgus macaques, become reference animal models for preclinical research. Nonetheless, no commercial off-the-shelf DNA methylation microarrays are available for these species. In the present study, we evaluated the use of the Infinium 450K and Infinium EPIC BeadChips for genome-wide DNA methylation analyses in samples from Chlorocebus sabaeus and Macaca mulatta and conducted an in-depth analysis of the available probes for these two old world monkey genomes. Results show that about one third of the Infinium 450K or EPIC human-designed probes can be reliably used to study DNA methylation in these Cercopithecidae and that the majority map to gene features. We provide for each species and each microarray a list of annotated probes that can be used by the scientific community for genome-wide DNA methylation studies in Chlorocebus sabaeus or Macaca mulatta. These detailed data on probe behavior were obtained with stringent criteria. They provide the flexibility to the research community to focus their analysis only to those probes identified as reliable.

Methods

Study approval

Animals were housed at the IDMIT center of the Commissariat à l'Energie Atomique (CEA, Fontenay-aux-Roses, France, permit number: A 92-032-02). The CEA complies with

5

Methylation array analysis in primates

Standards for Human Care and Use of Laboratory of the Office for Laboratory Animal

Welfare (OLAW, USA) under OLAW Assurance number #A5826-01. The Central

Committee for Animals at Institut Pasteur or Ethical Committee of Animal Experimentation

(CETEA-DSV, IDF, France) approved all animal experimental procedures (Notification

numbers: 10-051b, 12-006b). The studies were conducted in strict accordance with the

international European guidelines 2010/63/UE on protection of animals used for

experimentation and other scientific purposes (French decree 2013-118).

Samples

Blood was collected from 13 AGM (Chlorocebus sabaeus) and 17 rhesus macaques (Macaca

mulatta) by venipuncture on EDTA tubes. As several blood samples were available for

several animals, in total 21 Chlorocebus sabaeus and 25 Macaca mulatta samples were

included in the study. CD4+ peripheral blood mononuclear cells (PBMC) were purified, as

described previously using magnetic anti-CD4 beads (Miltenyi)[13], CD4+ T cell purity after

isolation was confirmed using flow cytometry (median 97%, IQR 93%-98%). DNA was

extracted from CD4+ T cells using the DNeasy blood and tissue kit (Qiagen), according to

manufacturer's protocol.

Infinium 450K analyses

One µg of DNA was bisulfite-treated using the EpiTect® 96 Bisulfite Kit (Qiagen, Hilden,

Germany) and analysed using the Infinium Human Methylation 450K BeadChips (Illumina,

6

San Diego, CA) according to the manufacturer's protocol.

Mapping of 50 bp probe sequences from Infinium 450K and EPIC

Methylation array analysis in primates

References genomes used in this work were downloaded from Ensembl: MMUL1.0 (corresponding to UCSC rheMac2) for *Macaca mulatta* and ChlSab1.1 for *Chlorocebus sabaeus*. Infinium 450K microarrays provide DNA methylation measures for 482,421 CpG sites across the human genome (135,476 Infinium I and 346,945 Infinium II probes). In the same way, Infinium EPIC allows measuring of 863,904 CpG (142,262 Infinium I and 721,642 Infinium II probes. 14,870 (3.1%) probes of the Infinium 450K and 18,903 (2.2%) probes of the Infinium EPIC contain two CpG separated by exactly 46 base pairs (bp), and thus located at each probe sequence extremity. In such cases, we used Blat [38] to determine which CpG was actually measured by the probe.

We then mapped all the 50 bp probe sequences targeting CpG positions in the human genome from the Infinium 450K and EPIC arrays to *Chlorocebus sabaeus (CS)* and *Macaca mulatta (MM)* genomes, consecutively, using Bowtie [39], allowing only a unique position on the respective genome and up to 3 mismatches. Sequences were thus classified as "Perfect Match", "1 mismatch", "2 mismatches", "3 mismatches" or "Unmapped" depending on the number of mismatches attributed by Bowtie. Unmapped probes included thus probes with either more than 3 mismatches as well as those that could not be mapped to unique location. Because of the necessity to only keep probe sequences that can reliably hybridize on simian genomes and inform on methylation state of the CpG sites, we removed probes containing mismatches at the CpG site, which were annotated as "CS-non-targeting" or "MM-non-targeting". Sequences with intact CpG sites were qualified as "CS-functional" or "MM-functional", for *Chlorocebus sabaeus* and *Macaca mulatta* respectively. Among the CS-functional or MM-functional probes, we also determined the exact position of the closest mismatch, if any, relative to the CpG if the mismatch was localized from 1 bp to 10 bp away from the CpG to yield the final selction of valid probes.

Methylation array analysis in primates

Annotation of Infinium 450K and EPIC probes in Macaca mulatta and Chlorocebus

sabaeus

chromosomal coordinates.

To annotate probes, the annotations files for Macaca mulatta and Chlorocebus sabaeus were retrieved from Ensembl (Version 84), containing respectively 44,725 and 28,078 transcripts for 30,246 and 27,985 genes (coding, non-coding and pseudogenes). In accordance with the annotation file provided by Illumina for the arrays we divided transcripts into 6 different categories: promoter region ranging from 1 bp to 200 bp upstream of the TSS (TSS200), promoter region ranging from 201 bp to 1,500 bp upstream of the TSS (TSS1500), 5' untranslated region (5'UTR), first exons (1stExon), 3' untranslated region (3'UTR) and gene bodies, excluding the 5' and 3' UTRs and first exons (Body). Similarly, CpG islands prediction files were downloaded from the UCSC genome browser (containing respectively 24,226 and 26,663 CpG islands for Macaca mulatta and Chlorocebus sabaeus) for the annotation relative to CpG islands following again the annotation criteria used by Illumina for the human genome. UCSC islands predictions are based on the following parameters: CpG obs/exp ratio > 0.6, CG content > 50%, length > 200bp. Shores are defined as island flanking regions ranging to up to 2,000 bp and shelves are defined as island flanking regions ranging from 2,001 bp to 4,000 bp. Northern and southern shores and shelves (noted N and S) are respectively defined as the upstream and downstream shores or shelves according to

Preprocessing and correction for Infinium I/II shift of 450K data for monkeys

To normalize and identify differentially methylated probes in the two monkey species, a refined version of subset quantile normalization (SQN) pipeline [40], which performs the SQN at the level of each individual sample prior to a between sample quantile normalization, was used to correct for the difference in the performance and dynamic range of Infinium I and

8

Methylation array analysis in primates

Infinium II probes. The original Illumina annotation file used in the pipeline were replaced by the ones created for *Macaca mulatta* and *Chlorocebus sabaeus*. Due to the stringent criteria in the probe selection process, no further filtering for e.g. non-specific probes was required.

Pyrosequencing analysis

Quantitative DNA methylation analysis for validation was performed by pyrosequencing of bisulfite-treated DNA [41]. Six regions of interest for validation were amplified using 30 ng of bisulfite-treated human genomic DNA and 5 to 7.5 pmol of forward and reverse primer, one of them being biotinylated. Sequences for oligonucleotides for PCR amplification and pyrosequencing are shown in Supplementary Table 1. Reaction conditions were either 1x HotStar Taq buffer supplemented with 1.6 mM MgCl₂, 100 µM dNTPs, 5 pM of each primer and 2.0 U HotStar Taq polymerase (Qiagen) in a 25 µl volume or 1X Phusion U Hotstart (Thermo Fisher Scientific) with 5 pM of each primer. The PCR program consisted of a denaturing step of 15 min at 95°C followed by 50 cycles of 30 s at 95°C, 30 s at the respective annealing temperature and 20 s at 72°C, with a final extension of 5 min at 72°C. 10 µl of PCR product were rendered single-stranded as previously described [41] and 4 pmol of the respective sequencing primer were used for analysis. Quantitative DNA methylation analysis was carried out on a PSQ 96MD system with the PyroGold SQA Reagent Kit (Qiagen) and results were analyzed using the PyroMark CpG software (V.1.0.11.14, Qiagen).

Results

Throughout the manuscript, we use a nomenclature of "targeting" probes, referring to probes that map and potentially target a CpG dinucleotide in the respective similar genomes allowing still for mismatches at any place in the probe including the CpG site, and "functional probes",

9

Methylation array analysis in primates

which target an intact CpG site in the simian genomes, as well as "valid probes", which is the final selection of probes based on the selection criteria described below in the results section. First, we mapped the human probes to the simian genomes. All 50 bp probe sequences designed to target a CpG in the human genome, were extracted from Illumina's manifest files for each microarray (482,421 sequences for the Infinium 450K and 863,904 for the Infinium EPIC).

Mapping probes of the Infinium 450K and EPIC BeadChip on the Chlorocebus sabaeus genome

From the 482,421 Infinium 450K CpG probes designed for the human genome, 231,217 (47.9%) mapped to *Chlorocebus sabaeus* (CS) genome according to our parameters, of which 36,439 (15.8%) were perfect matches, 57,785 (25.0%) had one mismatch, 69,312 (30.0%) had two and 67,681 (29.3%) had three mismatches (Figure 1, Table 1). A more careful study of the mismatch position showed that 59,305 (25.6%) probe sequences had at least one mismatch at the CpG site and were thus identified as CS-non-functional probes. Of note, these non-targeting probes presented a total of 60,377 mismatches of which 71.3% were $T \rightarrow C$ or $A \rightarrow G$, *i.e.* weak to strong ($W \rightarrow S$), nucleotide substitutions (*see* Supplementary Table 2). Out of the 231,217 mapped probes, 171,912 (74.4%) probe sequences were targeting a CpG dinucleotide and were thus identified as CS-functional (Table 1). From these CS-functional probes, 21.2.% has no mismatch at all, 51.7 % had the mismatch at more than 10 bp from the CpG and 46,457 (27 %) presented at least one mismatch at 10 bp or less from the CpG (Supplementary Table 3). The latter were further analyzed in more detail as described below.

We detailed the distribution of all the substitutions from the entire mapped probes set (Supplementary Table 4). We observed that a nucleotide located in a CpG site had more chances (around 13%) to be substituted than a base located outside a CpG site (about 3%).

Methylation array analysis in primates

Moreover, about 60% of these substitutions are W→S substitutions in CpG sites, while they represented around 20% along the whole 50 bp probe sequence.

Results from the Infinium EPIC BeadChip were very similar to those from Infinium 450K, with 408,933 (47.3%) CpG probes designed for the human genome mapping to the *Chlorocebus sabaeus* genome. Of these, 55,479 (13.6%) were perfect matches, 97,668 (23.9%) had one mismatch, 126,889 (31.0%) had two mismatches and 128,897 (31.5%) had three mismatches. From these mapped probes, 270,922 (66.3%, *versus* 74,4% in Infinium 450K) were identified as CS-functional and 138,011 were identified as CS-non-functional (Table 1). From these CS-functional probes, 73,853 presented at least one mismatch at 10 bp or less from the CpG (Supplementary Table 3) and were further investigated as described below.

As for Infinium 450K, we analyzed the distribution of all the substitutions from the whole mapped probe set (Supplementary Tables 5). From this distribution, it appeared that a base located in a CpG sites had higher chance to be substituted on the EPIC BeadChip (around 17%) than for Infinium 450K (around 13%, hypergeometric test p<0.001). In CpG sites, W→S nucleotide substitutions represented around 65%, while they represented around 20% along the entire 50 bp probe sequences.

Altogether, for their use in DNA methylation analysis using the two human BeadChips, 31.4 (EPIC) and 35.6 % (450K) of the probes could be classified as functional for *Chlorocebus sabaeus*.

Mapping probes of the Infinium 450K and EPIC BeadChip on the Macaca mulatta genome Similarly to Chlorocebus sabaeus, we found that of the 482,421 Infinium 450K CpG probes designed for the human genome, 226,655 (47.0%) mapped to the Macaca mulatta genome. Of these, 35,386 (15.6%) were perfect matches, 57,257 (25.3%) had one mismatch, 68,226

Methylation array analysis in primates

(30.1%) had two and 65,786 (29.0%) had three mismatches. Investigating the position of the respective mismatches showed that 58,189 (25.7%) probe sequences designed to the human genome had at least one mismatch at the CpG site and were thus identified as MM-non-functional (representing 59,228 mismatches) among which 71.2% were W→S substitutions (Supplementary Figure 1, Supplementary Table 3). 168,466 (74.3%) probe sequences designed to the human genome were identified as MM-functional (Table 1). From these MM-functional probes, 45,462 presented at least one mismatch at 10 bp or less from the CpG (Supplementary Table 3) requiring further evaluation as described below.

From the 863,904 Infinium EPIC CpG probes designed for the human genome, 402,935 (46.6%) mapped to the *Macaca mulatta* genome according to our parameters, from which 54,789 (13.6%) were perfect matches, 97,505 (24.2%) had 1 mismatch, 125,108 (31.0%) had 2 mismatches and 125,533 (31.2%) had 3 mismatches. Of these, 267,237 probes (66.3%, *versus* 74.3% in Infinium 450K) were identified as MM-functional and 135,698 were identified as MM-non-functional (Table 1). Of these MM-functional probes, 72,391 presented at least one mismatch at 10 bp or less from the CpG (Supplementary Table 3).

As above, we studied more carefully the distribution of all the substitutions from the whole mapped probes set (Supplementary Tables 6 and 7) and found a very similar distribution in *Macaca mulatta* as in *Chlorocebus sabaeus*.

Altogether, for their use in DNA methylation analysis using the two human BeadChips, 31.0 (EPIC) and 35.0 % (450K) of the probes could be classified as functional for *Macaca mulatta*.

These results showed in summary, that results were similar for the two species and allowing up to three mismatches for the 50 base pair probes potentially about a third of the probes on the respective arrays were targeting CpG positions in the two similar genomes. There was a strong overlap between the two similar species with 195,013 (about 85%) and 341,567 (about

Methylation array analysis in primates

84%) mapped probes in common between the two species and 139,085 (about 82%) and 216,272 (about 80%) probes in common for the Infinium 450K and Infinium EPIC microarrays, respectively.

As this probe set contained nonetheless probes which contained mismatches (outside the CpG position), which could have on influence on the probe behavior, a point which has been neglected in most studies so far. Therefore, final validation and refinement of the reliable probe sets required experimental analysis of samples from the respective species.

Validation and refinement of our selection criteria for the Infinium 450K BeadChip

To determine to which extent CpG probes designed for the human genome and mapping to simian genomes could efficiently be used to detect methylation on these two simian models, we analyzed 25 CD4+ T cell samples from *Macaca mulatta* and 21 from *Chlorocebus sabaeus* on the Infinium 450K array (Figure 2). The density distribution of beta-values of the probes identified as perfectly matching were very similar to the bimodal beta-values density distribution commonly observed for human samples [40]. Beta-values density distribution of probes containing a single mismatch remained close to beta-values density distribution of perfectly matched probes, and this density distribution was still similar for probes with two mismatches. However, probes containing three mismatches presented density distribution of beta-values which started to deviate from the expected bimodal distribution and the distribution for unmapped probes did no longer follow the expected distribution comforting our restriction to a maximum of three mismatches to be present. These results were similar for both species.

When analyzing the beta-values density distribution of probes in function of the position of the mismatch, we observed that, in both species, the beta-values distribution was closely related to the mismatch position (Figure 3). Thus, probes with a mismatch localized at 1 or 2

Methylation array analysis in primates

bp from CpG site presented an aberrant density distribution of beta-values among valid probes whereas probes containing a mismatch at 3-4 bp or more away from the CpG were similar to probes without mismatches independent of the number of mismatches present (one to three). We thus chose to remove probes presenting a mismatch at 1 or 2 bp from the CpG from the list of functional Infinium probes on simian models for both 450K and EPIC arrays. With this last filter, 162,053 CS-valid and 158,970 MM-valid probes remained for Infinium 450K (i.e. 33% of the Infinium 450K CpG probes), among which 130,484 (80.5% and 82.1%, respectively) were common to both species. For the Infinium EPIC array, 255,444 CS-valid and 252,235 MM-valid probes remained after filtering out probes presenting a mismatch at 1 or 2 bp from the CpG (i.e. 29% of the Infinium EPIC CpG probes). 202,495 (79.4% and 80.5%, respectively) of them were common to both species.

Furthermore, using Pyrosequencing, which as a sequencing-by-synthesis method is not dependent on human probes but uses species-specific amplification and sequencing primers, we validated DNA methylation levels measured by the respective Infinium probes at three CpG positions in each species showing a high correlation between the two orthogonal technologies and validating our approach of selecting reliable probes (Figure 4). The selected probes had a either or one mismatch (cg07181702, cg20733663, cg17245135 (n=0), cg21758672, cg09825979 cg15544721 (n=1)). There was no correlation between the presence and the position of the mismatch and the accuracy of the Infinium data compared to the Pyrosequencing data.

Annotation of valid probes

The annotation of the probes to the *Homo sapiens* genome (GRCh37) as described in the manifest files for both microarrays showed that the additional content of the Infinium EPIC BeadChip compared to the Infinium 450K array was mainly located in gene bodies, and in the

Methylation array analysis in primates

open sea using the gene feature and CpG island feature annotation, respectively (Figure 5). To

provide the user with similar information as contained in the Illumina manifest for the human

genome, we annotated the location of the CpGs with matching probes according to the

Ensembl gene annotation (version 84).

Chlorocebus sabaeus

Among the 162,053 CS-valid probes on the Infinium 450K BeadChip, 102,674 were

annotated for a gene feature (representing 16,259 genes) and 107,906 for a CpG island feature

using the CS genome. 74,858 CS-valid probes were annotated for both a gene and an island

feature. CS-valid probe sequences principally targeted CpGs located around transcription start

sites and gene bodies (about 65% in total) and around 35% of the CS-valid probes target CpG

in intergenic regions (versus 14% in human). According to UCSC islands prediction (see

Materials and Methods section), more than 37% of human-designed CS-valid probes target

CpG probes located in CpG islands, which is similar to the proportion for the human genome

(Figure 6).

Among the 255,444 CS-valid probes on the Infinium EPIC BeadChip, 153,571 were

annotated for a gene feature (representing 17,706 genes) and 130,041 for a CpG island

feature. 90,169 probes were annotated for both a gene and an island feature. The proportion of

the respective gene feature and CpG islands categories followed the trend observed for the

human genome with an increased proportion in intergenic regions and gene bodies on the

EPIC arrays (Figure 6).

Macaca mulatta

Among the 158,970 MM-valid probes on the Infinium 450K array, 104,571 were annotated to

a gene feature (representing 16,611 genes) and 98,884 to a CpG island feature (Figure 7).

73,352 MM-valid probes were annotated to both a gene and an island feature. As for CS-valid

15

Methylation array analysis in primates

probes, but even more pronounced, MM-valid probe sequences principally targeted CpGs located in TSS regions and gene bodies (about 78% in total, 22% in intergenic regions). The distributions among island features according to the UCSC CpG island prediction was more similar between species (Figures 5, 6).

Among the 252,235 MM-valid probes from Infinium EPIC mapped on the *Macaca mulatta* genome, 157,737 were annotated for a gene feature (representing 18,240 genes) and 119,248 for a CpG island feature. 88,355 MM-valid probes were annotated for both a gene and an island feature.

Compared to *Homo sapiens*, reliable Infinium 450K and EPIC probes followed the overall distribution of probes when using the CpG island feature annotation, while for the gene feature annotation the proportion of probes in intergenic regions was increased especially in *Chlorocebus sabaeus* at the expense of mainly gene body probes (Figures 5, 6 and 7). Overall 70 % of all simian genes were covered by at least one valid probe.

450K and EPIC manifest files for Chlorocebus sabaeus and Macaca mulatta

We provide the scientific community with new manifest files for Infinium 450K and EPIC BeadChips, adapted for genome-wide DNA methylation studies in *Chlorocebus sabaeus* or *Macaca mulatta* (Supplementary Material). We provide for each microarray and each species two files: one containing the whole set of CS-valid or MM-valid probes (filtered for probes with a mismatch at 1 or 2 bp from the CpG) and another file containing only perfectly matched probes. These annotation files retain the format of the original Illumina manifest and can thus be used without further modifications in analysis pipelines for BeadChips such as SQN [40] or the widely used ChAMP pipeline [42]. All columns of the respective manifest files are described in detail in the supporting file (manifest header descriptions file included in the compressed Supplementary Material). The last column details the number of mismatches

Methylation array analysis in primates

as well as the string for the position of the mismatch returned by Bowtie. The interested user can thus select a subset of probes based on more stringent parameters, if needed. Of note, the string for the mismatch of the positions should be reversed for probe sequences mapping on the reverse strand of the monkey genomes.

Discussion

Epigenome-wide association studies have recently been performed on many phenotypes, traits and diseases including cancer, immune, neurodegenerative and infectious diseases, with now more than 500 EWAS published [43] and many more large-scale studies are likely to be conducted in the near future, linking complex diseases and traits with changes in the epigenome. Furthermore, DNA methylation holds the promise to explain at least a part of the influences the environment has on a phenotype [44]. Cell lines or blood cells do in most cases not appropriately recapitulate the phenotype of complex diseases, requiring the use of tissue or animal models to further our understanding of disease etiology and evaluate potential future treatments. CS and MM represent reference models in biomedical research and due to the recently realized importance of epigenetic for human disease, it would be of importance to include DNA methylation analysis in comprehensive multi-level -omics analyses. However, few tools are currently available.

In the presented work we determined which probes of the most widely used DNA methylation arrays can be used to reliably analyze CpGs in the genomes CS and MM. The valid probes were very similar between *CS* and *MM*, with over 80% of mapped and valid CpG probe sequences in common between the two species. This is in agreement with the phylogenic proximity of these two *Cercopithecidae* [45]. However, the percentage of probes that can be reliably used differ from the one identified in a previous study conducted on *M. fascicularis* [19], a species closely related to *M. mulatta*, in which 61% of human probes mapped to the

Methylation array analysis in primates

simian genome in contrast to the 47.6% identified here for M. mulatta. This difference can be explained by the more stringent parameters for mapping probe sequences in our study rather than differences between the two simian genomes. For instance, we allowed only three mismatches instead of the four mismatches allowed in the study by Ong et al. [19] to align Infinium 450K probe sequences on the simian genomes as we observed that beta-values densities showed aberrant distributions for probes with more than three mismatches as well as probes with fewer mismatches close to the targeted CpG. This feature has not been considered in previous studies, but had clearly strong influence on the measured DNA methylation levels (Figure 3). Furthermore, in contrast to Ong et al., [19] we only kept uniquely matched sequences on simian genomes because probes measuring DNA methylation levels at CpG in multiple genomic regions are difficult to interpret and thus are not informative as has been demonstrated in human studies of the arrays [46]. Furthermore, we have annotated 75.4% of aligned probes sequences (versus 94% in Ong et al). This can be explained because we only annotated probe sequences localized in genes or at less than 2,000 bp from a gene using a similar annotation format to the one provided by Illumina for the human genome. A similar approach was also proposed for the analysis of DNA methylation and, following oxidative bisulfite treatment, hydroxymethylation in MM, allowing up to four mismatches [18]. Again, position of potential mismatches was not further evaluated. The same filtering approach as proposed by Ong et al. [19] was subsequently also used for a study on osteoarthritis using baboon samples which concluded that a total of 44 % of probes on the 450K BeadChip could be reliably used [20].

Recently, human DNA methylation capture panels were adapted to the analysis of DNA methylation of non-human primates and notably AGM. While this approach allows to capture a larger proportion of regulatory elements in the simian genomes [47], it comes at a higher price and thus less well suited for projects with larger number of samples. Furthermore, in

Methylation array analysis in primates

quantitative comparisons the Infinium BeadChips outperformed the sequencing-based approach in terms of quantitative precision even when pooling CpG levels of closely neighbored CpGs in the sequencing approach [48]. These results were obtained in human samples, it can thus be expected that the quantitative ratios will be increasingly distorted in the presence of sequence mismatches between the capture probes and the simian genomes. Homo sapiens and Macaca mulatta have diverged about 25 million years ago and their sequence identity is about 93% [49]. At random, we should therefore expect about 86.5% of CpG sites in common between Macaca mulatta, and humans. Nevertheless, only 74.3% of mapped probes sequences were identified as MM-targeting. Analyzing more precisely the distribution of mismatches, we observed that $C \rightarrow T$ and $G \rightarrow A$ (Strong to weak, $S \rightarrow W$) nucleotide substitutions accounted for 28.8% of mismatches, in line with the fact that CpG sites are privileged mutational hot spots during speciation, due to methylation of cytosines [2-4]. Of note, W→S nucleotide substitutions represented 38.3% of mismatches and around 60% when looking at CpG sites in agreement with the weak-to-strong bias observed during recent human evolution [50-52]. The same results were obtained for Chlorocebus sabaeus and similar results were found with the Infinium EPIC. For the latter, we observed a slightly increased substitution rate at CpG sites concomitant with a slightly lower number of valid probes compared to Infinium 450K for both species. This observation might be explained by the localization of the 350,000 additional probes in enhancers on the EPIC arrays as regulatory regions have been suggested to be fast evolving regions during human divergence from other primates [53,54]. As the overall percentage of reliable probes between the different generations of BeadChips remains similar, it can be expected that future human generations of human Infinium DNA methylation microarrays, will also improve the coverage of the simian genomes.

Methylation array analysis in primates

Annotation of these valid probes for gene features showed higher proportion of probes targeting CpGs located in intergenic regions compared to CpGs in promoter or gene regions. This tendency was increased in *Chlorocebus sabaeus* compared to *Macaca mulatta*. In contrast, the frequency of location of valid probes within CpG island features were similar between the two species. It is important to point out the different annotation levels between these distinct species, which impacts the number of identified/predicted genes and transcripts in each species. Indeed, human GRCh37 annotation (version 75 from Ensembl) contains 57,952 genes and pseudogenes for 196,501 transcripts plus thousands of alternate sequences, whereas 30.246 genes are annotated in *Macaca mulatta* for 44.725 transcripts and 27,985 genes are annotated in *Chlorocebus sabaeus* for only 28,078 transcripts [55,56]. CpG island feature annotations, in counterpart, are directly predicted from reference sequence. This might explain the observed differences between the species depending on the genomic region. It is indeed important to keep in mind that simian annotations generally are still less precise and documented than human annotation and this lack of information may contribute to the observed differences.

Nonetheless, we provide to the research community a list of 162,053 annotated CS-valid probes corresponding to 16,259 genes for *Chlorocebus sabaeus* and a list of 158,970 annotated MM-valid probes corresponding to 16,611 genes for *Macaca mulatta* for Infinium 450K array, as well as a list of 255,444 annotated CS-valid probes corresponding to 17,706 genes for *Chlorocebus sabaeus* and a list of 252,235 annotated MM-valid probes corresponding to 18,240 genes for *Macaca mulatta* for the newly released Infinium EPIC array. While previous studies identified list of probes, they did not provide a species-specific annotation file. Furthermore, we annotated probes according to Illumina gene and CpG island features and built annotation files following the Illumina manifest file format. We kept the human GRCh37 annotation for comparison purpose and our annotation files can directly be

Methylation array analysis in primates

used with a number of processing tools. Although the proportions of the different gene features are altered compared to the distribution for the human genome with a reduction in gene bodies and around the TSS, the current generation of the methylation microarray cover around 60 % of all known genes in the two species and these genes are covered by two to six probes allowing multiple reliable measurements of DNA methylation to increase confidence in the obtained data. This observation will also be reinforced by the fact that human array contains proportionally more probes in the promoter regions (often associated with CpG islands) ensuring that promoter CpGs regions remain sufficiently covered. While genes of special interest for a research group might be missing from these lists, the arrays provide the currently most comprehensive tool for DNA methylation analysis at a reasonable price. The number of available reliable probes exceeds by several orders of magnitude the number of probes available on the first generation of the Infinium DNA methylation BeadChips, the 27K array, which led to the discovery of DNA methylation changes following environmental exposure such as tobacco smoking [57] or disease associated changes [58,59], and whose success led to the development of the higher-density DNA methylation arrays evaluated in this study. While monkey-specific microarrays would constitute ideal tools, however, commercial of-the-shelf DNA methylation microarrays for model organisms have been awaited in vain. On the other hand, comprehensive whole genome bisulfite sequencing projects remain for most laboratories prohibitively expensive when performed at coverage allowing reliable methylation calls.

In summary, our approach using standard bioinformatic tools and validated quality criteria using orthogonal analysis technology concerning notably the importance of the number and position of any mismatches should be applicable to other simian and perhaps even other mammalian species. Our approach allows a rapid selection of reliable probes for any organism with an annotated genome sequence. Of course, a more divergent genome sequence.

Methylation array analysis in primates

will lead to a fewer probes that can be used with high confidence and for some organisms this might eventually lead to an unfavorable cost / output balance, such as mice where only 10-12k probes for the 450K BeadChip and 13K for the EPIC array were found reliable [18,60,61].

In conclusion, the presented work investigated in depth the suitability of human DNA methylation Infinium BeadChips for the use in two widely used simian model species. The annotation files are provided in a format compatible with a variety of preprocessing, normalization and analytical pipelines designed for data analysis from 450K/EPIC arrays facilitating high-throughput DNA methylation analyses in *Macaca mulatta* and *Chlorocebus sabaeus* for many questions of biomedical relevance.

Acknowledgements

We would like to acknowledge grant support from ANRS and the institutional budget form the CNRGH. SP was recipient of a PhD fellowship from the University Paris Diderot, Sorbonne Paris Cité.

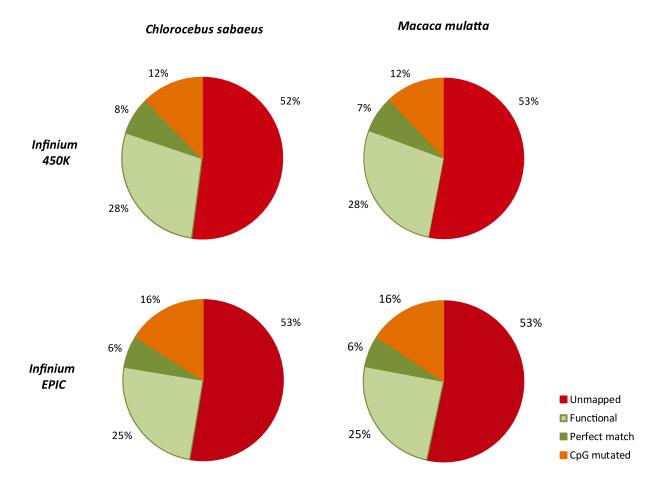
References

- 1. Andersen GB, Tost J (2018) A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 1708:3-30
- 2. Ehrlich M, Wang RY (1981) 5-Methylcytosine in eukaryotic DNA. Science 212:1350-1357
- 3. Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci USA 101:13994-14001
- 4. Walser JC, Ponger L, Furano AV (2008) CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 18:1403-1414
- 5. Duret L, Galtier N (2000) The covariation between TpA deficiency, CpG deficiency, and G+C content of human isochores is due to a mathematical artifact. Mol Biol Evol 17:1620-1625
- 6. Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, Bestor TH (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157-163
- 7. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412-1417
- 8. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692-702

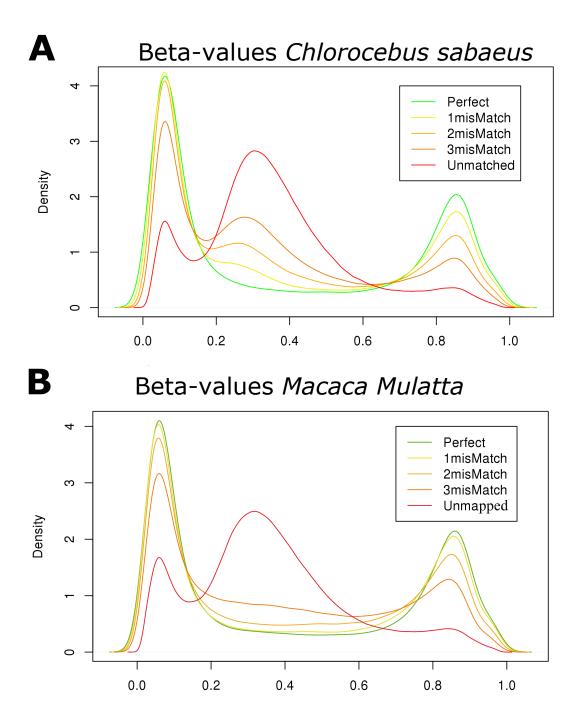
- 9. Moran S, Arribas C, Esteller M (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8:389-399
- 10. Flanagan JM (2015) Epigenome-wide association studies (EWAS): past, present, and future. Methods Mol Biol 1238:51-63
- 11. Lanford RE, Bigger C, Bassett S, Klimpel G (2001) The chimpanzee model of hepatitis C virus infections. ILAR J 42:117-126
- 12. Bosinger SE, Jacquelin B, Benecke A, Silvestri G, Muller-Trutwin M (2012) Systems biology of natural simian immunodeficiency virus infections. Curr Opin HIV AIDS 7:71-78
- 13. Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques P, Butor C, Silvestri G, Giavedoni LD, Lebon P, Barre-Sinoussi F, Benecke A, Muller-Trutwin MC (2009) Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 119:3544-3555
- 14. Zou J, Young S, Zhu F, Gheyas F, Skeans S, Wan Y, Wang L, Ding W, Billah M, McClanahan T, Coffman RL, Egan R, Umland S (2002) Microarray profile of differentially expressed genes in a monkey model of allergic asthma. Genome Biol 3:research0020
- 15. Miyahara T, Kikuchi T, Akimoto M, Kurokawa T, Shibuki H, Yoshimura N (2003) Gene microarray analysis of experimental glaucomatous retina from cynomologous monkey. Invest Ophthalmol Vis Sci 44:4347-4356
- 16. Abdel Rassoul R, Alves S, Pantesco V, De Vos J, Michel B, Perret M, Mestre-Frances N, Verdier JM, Devau G (2010) Distinct transcriptome expression of the temporal cortex of the primate Microcebus murinus during brain aging versus Alzheimer's disease-like pathology. PLoS One 5
- 17. Hernando-Herraez I, Prado-Martinez J, Garg P, Fernandez-Callejo M, Heyn H, Hvilsom C, Navarro A, Esteller M, Sharp AJ, Marques-Bonet T (2013) Dynamics of DNA methylation in recent human and great ape evolution. PLoS Genet 9:e1003763
- 18. Chopra P, Papale LA, White AT, Hatch A, Brown RM, Garthwaite MA, Roseboom PH, Golos TG, Warren ST, Alisch RS (2014) Array-based assay detects genome-wide 5-mC and 5-hmC in the brains of humans, non-human primates, and mice. BMC Genomics 15:131
- 19. Ong ML, Tan PY, MacIsaac JL, Mah SM, Buschdorf JP, Cheong CY, Stunkel W, Chan L, Gluckman PD, Chng K, Kobor MS, Meaney MJ, Holbrook JD (2014) Infinium monkeys: Infinium 450K array for the Cynomolgus macaque (Macaca fascicularis). G3 4:1227-1234
- 20. Housman G, Havill LM, Quillen EE, Comuzzie AG, Stone AC (2019) Assessment of DNA Methylation Patterns in the Bone and Cartilage of a Nonhuman Primate Model of Osteoarthritis. Cartilage 10:335-345
- 21. Buschdorf JP, Ong ML, Ong SX, MacIsaac JL, Chng K, Kobor MS, Meaney MJ, Holbrook JD (2016) Low birth weight associates with hippocampal gene expression. Neuroscience 318:190-205
- 22. Gaudinski MR, Coates EE, Novik L, Widge A, Houser KV, Burch E, Holman LA, Gordon IJ, Chen GL, Carter C, Nason M, Sitar S, Yamshchikov G, Berkowitz N, Andrews C, Vazquez S, Laurencot C, Misasi J, Arnold F, Carlton K, Lawlor H, Gall J, Bailer RT, McDermott A, Capparelli E, Koup RA, Mascola JR, Graham BS, Sullivan NJ, Ledgerwood JE, team VRCS (2019) Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet 393:889-898
- 23. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener van Vlissingen M, Fouchier R, de Swart R,

Koopmans M, Haagmans BL (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science

- 24. de Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T, Scott D, Cihlar T, Feldmann H (2020) Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA 117:6771-6776
- 25. Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S (2010) Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Human reproduction 25:1927-1941
- 26. Provencal N, Suderman MJ, Guillemin C, Massart R, Ruggiero A, Wang D, Bennett AJ, Pierre PJ, Friedman DP, Cote SM, Hallett M, Tremblay RE, Suomi SJ, Szyf M (2012) The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci 32:15626-15642
- 27. Sayers K, Evans TA, Menzel E, Smith JD, Beran MJ (2015) The misbehaviour of a metacognitive monkey. Behaviour 152:727-756
- 28. Brutcher RE, Nader SH, Nader MA (2016) Evaluation of the Reinforcing Effect of Quetiapine, Alone and in Combination with Cocaine, in Rhesus Monkeys. J Pharmacol Exp Ther 356:244-250
- 29. Gao F, Niu Y, Sun YE, Lu H, Chen Y, Li S, Kang Y, Luo Y, Si C, Yu J, Li C, Sun N, Si W, Wang H, Ji W, Tan T (2017) De novo DNA methylation during monkey pre-implantation embryogenesis. Cell Res 27:526-539
- 30. Barrett RLC, Dawson M, Dyrby TB, Krug K, Ptito M, D'Arceuil H, Croxson PL, Johnson PJ, Howells H, Forkel SJ, Dell'Acqua F, Catani M (2020) Differences in Frontal Network Anatomy Across Primate Species. J Neurosci 40:2094-2107
- 31. Gichuki CW, Nantulya VM, Sayer PD (1994) Trypanosoma brucei rhodesiense: use of an antigen detection enzyme immunoassay for evaluation of response to chemotherapy in infected vervet monkeys (Cercopithecus aethiops). Trop Med Parasitol 45:237-242
- 32. Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, Geisbert JB, Feng YR, Chan YP, Hickey AC, Broder CC, Feldmann H, Geisbert TW (2012) A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Science translational medicine 4:146ra107
- 33. Jentsch JD, Redmond DE, Jr., Elsworth JD, Taylor JR, Youngren KD, Roth RH (1997) Enduring cognitive deficits and cortical dopamine dysfunction in monkeys after long-term administration of phencyclidine. Science 277:953-955
- 34. Jasinska AJ, Schmitt CA, Service SK, Cantor RM, Dewar K, Jentsch JD, Kaplan JR, Turner TR, Warren WC, Weinstock GM, Woods RP, Freimer NB (2013) Systems biology of the vervet monkey. ILAR J 54:122-143
- 35. Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC, Else JG, Estes JD, Hahn BH, Hirsch VM, Kaur A, Kirchhoff F, Muller-Trutwin M, Pandrea I, Schmitz JE, Silvestri G (2009) Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med 15:861-865
- 36. Smits SL, van den Brand JM, de Lang A, Leijten LM, van Ijcken WF, van Amerongen G, Osterhaus AD, Andeweg AC, Haagmans BL (2011) Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol 85:4234-4245
- 37. Nalca A, Totura A, Livingston V, Frick O, Dyer D (2019) African green monkey model of Middle East respiratory syndrome coronavirus (MERS_CoV) infection. Int J Infect Dis 79:99-100
- 38. Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12:656-664


Methylation array analysis in primates

- 39. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25
- 40. Touleimat N, Tost J (2012) Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics 4:325-341
- 41. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2:2265-2275
- 42. Tian Y, Morris TJ, Webster AP, Yang Z, Beck S, Feber A, Teschendorff AE (2017) ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics 33:3982-3984
- 43. Xiong Z, Li M, Yang F, Ma Y, Sang J, Li R, Li Z, Zhang Z, Bao Y (2020) EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res 48:D890-D895
- 44. Chung FF, Herceg Z (2020) The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. Environ Health Perspect 128:15001
- 45. Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, Kessing B, Pontius J, Roelke M, Rumpler Y, Schneider MP, Silva A, O'Brien SJ, Pecon-Slattery J (2011) A molecular phylogeny of living primates. PLoS Genet 7:e1001342
- 46. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, Gallinger S, Hudson TJ, Weksberg R (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203-209
- 47. Lee JR, Ryu DS, Park SJ, Choe SH, Cho HM, Lee SR, Kim SU, Kim YH, Huh JW (2018) Successful application of human-based methyl capture sequencing for methylome analysis in non-human primate models. BMC Genomics 19:267
- 48. Heiss JA, Brennan KJ, Baccarelli AA, Tellez-Rojo MM, Estrada-Gutierrez G, Wright RO, Just AC (2020) Battle of epigenetic proportions: comparing Illumina's EPIC methylation microarrays and TruSeq targeted bisulfite sequencing. Epigenetics 15:174-182
- 49. Rhesus Macaque Genome S, Analysis C, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li Z, Liu YS, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers YH, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren W, White CS, Chinwalla AT, Feng Y, Halpern AL, Hillier LW, Huang X, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang SP, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csuros M, Glasscock J, Harris RA, Havlak P, Jackson AR, Jiang H, Liu Y, Messina DN, Shen Y, Song HX, Wylie T, Zhang L, Birney E, Han K, Konkel MK, Lee J, Smit AF, Ullmer B, Wang H, Xing J, Burhans R, Cheng Z, Karro JE, Ma J, Raney B, She X, Cox MJ, Demuth JP, Dumas LJ, Han SG, Hopkins J, Karimpour-Fard A, Kim YH, Pollack JR, Vinar T, Addo-Quaye C, Degenhardt J, Denby A, Hubisz MJ, Indap A, Kosiol C, Lahn BT, Lawson HA, Marklein A, Nielsen R, Vallender EJ, Clark AG, Ferguson B, Hernandez RD, Hirani K, Kehrer-Sawatzki H, Kolb J, Patil S, Pu LL, Ren Y, Smith DG, Wheeler DA, Schenck I, Ball EV, Chen R, Cooper DN, Giardine B, Hsu F, Kent WJ, Lesk A, Nelson DL, O'Brien W E, Prufer K, Stenson PD, Wallace JC, Ke H, Liu XM, Wang P, Xiang AP, Yang F, Barber GP, Haussler D, Karolchik D, Kern AD, Kuhn RM, Smith KE, Zwieg AS (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316:222-234
- 50. Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M, Jr., Vanderhaeghen P, Haussler D (2006) An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443:167-172


- 51. Katzman S, Capra JA, Haussler D, Pollard KS (2011) Ongoing GC-biased evolution is widespread in the human genome and enriched near recombination hot spots. Genome Biol Evol 3:614-626
- 52. Gotea V, Elnitski L (2014) Ascertaining regions affected by GC-biased gene conversion through weak-to-strong mutational hotspots. Genomics 103:349-356
- 53. Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, Siepel A, Pedersen JS, Bejerano G, Baertsch R, Rosenbloom KR, Kent J, Haussler D (2006) Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2:e168
- 54. Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, Wortham M, Tewari AK, London D, Song L, Lee BK, Iyer VR, Parker SC, Margulies EH, Wray GA, Furey TS, Crawford GE (2012) Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet 8:e1002789
- 55. Svardal H, Jasinska AJ, Apetrei C, Coppola G, Huang Y, Schmitt CA, Jacquelin B, Ramensky V, Muller-Trutwin M, Antonio M, Weinstock G, Grobler JP, Dewar K, Wilson RK, Turner TR, Warren WC, Freimer NB, Nordborg M (2017) Ancient hybridization and strong adaptation to viruses across African vervet monkey populations. Nat Genet 49:1705-1713
- 56. Warren WC, Jasinska AJ, Garcia-Perez R, Svardal H, Tomlinson C, Rocchi M, Archidiacono N, Capozzi O, Minx P, Montague MJ, Kyung K, Hillier LW, Kremitzki M, Graves T, Chiang C, Hughes J, Tran N, Huang Y, Ramensky V, Choi OW, Jung YJ, Schmitt CA, Juretic N, Wasserscheid J, Turner TR, Wiseman RW, Tuscher JJ, Karl JA, Schmitz JE, Zahn R, O'Connor DH, Redmond E, Nisbett A, Jacquelin B, Muller-Trutwin MC, Brenchley JM, Dione M, Antonio M, Schroth GP, Kaplan JR, Jorgensen MJ, Thomas GW, Hahn MW, Raney BJ, Aken B, Nag R, Schmitz J, Churakov G, Noll A, Stanyon R, Webb D, Thibaud-Nissen F, Nordborg M, Marques-Bonet T, Dewar K, Weinstock GM, Wilson RK, Freimer NB (2015) The genome of the vervet (Chlorocebus aethiops sabaeus). Genome Res 25:1921-1933
- 57. Breitling LP, Yang R, Korn B, Burwinkel B, Brenner H (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88:450-457
- 58. Halvorsen AR, Helland A, Fleischer T, Haug KM, Grenaker Alnaes GI, Nebdal D, Syljuasen RG, Touleimat N, Busato F, Tost J, Saetersdal AB, Borresen-Dale AL, Kristensen V, Edvardsen H (2014) Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy. Int J Cancer 135:2085-2095
- 59. Hasler R, Feng Z, Backdahl L, Spehlmann ME, Franke A, Teschendorff A, Rakyan VK, Down TA, Wilson GA, Feber A, Beck S, Schreiber S, Rosenstiel P (2012) A functional methylome map of ulcerative colitis. Genome Res 22:2130-2137
- 60. Wong NC, Ng J, Hall NE, Lunke S, Salmanidis M, Brumatti G, Ekert PG, Craig JM, Saffery R (2013) Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA. Genomics 102:38-46
- 61. Gujar H, Liang JW, Wong NC, Mozhui K (2018) Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. PLoS One 13:e0193496

Methylation array Reference genome		Infinium 450K				Infinium EPIC			
	Chlorocebus	s sabaeus	Maca mulat		Chlorocebu	s sabaeus	Масас	ra mulatta	
Total CpG probes	482,421	100.0%	482,421 100.0	0%	863,904	100.0%	863,904	100.0%	
Unmapped	251,204	52.1%	255,766 53.0	0%	454,971	52.7%	460,969	53.4%	
Targeting	231,217	47.9%	226,655 47.0	0%	408,933	47.3%	402,935	46.6%	
0 mismatch in targeting	36,439	15.8%	35,386 15.0	6%	55,479	13.6%	54,789	13.6%	
1 mismatch in targeting	57,785	25.0%	57,257 25.3	3%	97,668	23.9%	97,505	24.2%	
2 mismatches in targeting	69,312	30.0%	68,226 30.	1%	126,889	31.0%	125,108	31.0%	
3 mismatches in targeting	67,681	29.3%	65,786 29.0	0%	128,897	31.5%	125,533	31.2%	
Functional in targeting	171,912	74.4%	168,466 74.3	3%	270,922	66.3%	267,237	66.3%	
Functional 0 mismatch	36,439	21.20%	35,386 21.00	0%	55,479	20.48%	54,789	20.50%	
Functional 1 mismatch	47,691	27.74%	47,350 28.1	1%	75,028	27.69%	74,938	28.04%	
Functional 2 mismatches	47,831	27.82%	46,913 27.8	5%	76,717	28.32%	75,361	28.20%	
Functional 3 mismatches	39,951	23.24%	38,817 23.04	4%	63,698	23.51%	62,149	23.26%	
Non-functional in targeting	59,305	25.6%	58,189 25.7	7%	138,011	33.7%	135,698	33.7%	

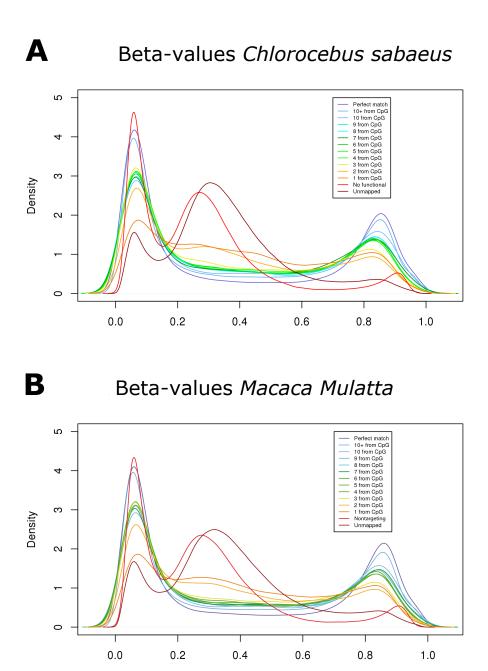

Table 1 : Mapping of the 50 bp probe sequences from the Infinium 450K and EPIC microarrays on the two simian genomes.

Figure 1: Proportion of probes of the Infinium 450K and the EPIC BeadChip mapping perfectly, with mismatches (functional), with a mutation at the CpG nucleotide or with more than three mismatches (unmapped) to the *Chlorocebus sabaeus* and *Macaca mulatta* genome.

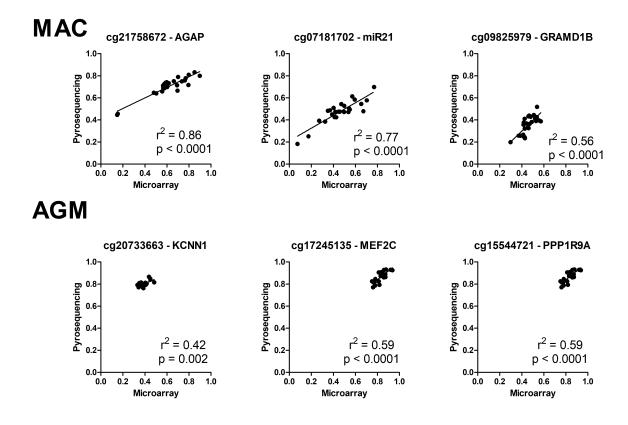


Figure 2: Beta-value density distribution for mapped and unmapped Infinium 450K CpG probes on *Chlorocebus sabaeus* (A) and *Macaca mulatta* (B) genome. Mapped probes are classified into categories representing probes with a perfect match, 1, 2 or 3 mismatches. For probes with 3 mismatches (dark orange) the beta-value distribution start to deviate from the bimodal distribution observed for probes with fewer or no mismatches. Unmapped probes (in red) have an aberrant beta-value distribution.

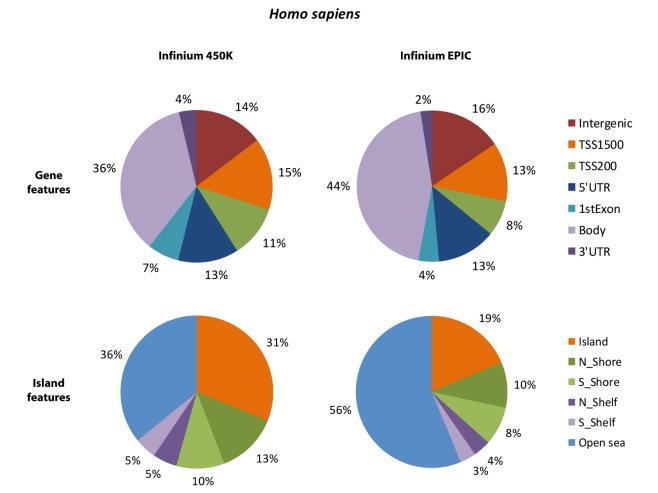


Figure 3: Beta-value density distribution for mapped and unmapped Infinium 450K CpG probes on *Chlorocebus sabaeus* (A) and *Macaca mulatta* (B) genome. Mapped probes are classified into categories representing probes with a perfect match and according to the mismatch position localized from 1 bp to 10 bp or more from CpG dinucleotide. Probes containing a mismatch localized at 1 or 2 bp (dark orange and orange) do no longer show the expected beta-value density distribution compared to the other mapped probes (yellow,

greens, blues and purple). Non-targeting probes (red) and unmapped probes (dark red) have an aberrant beta-value distribution.

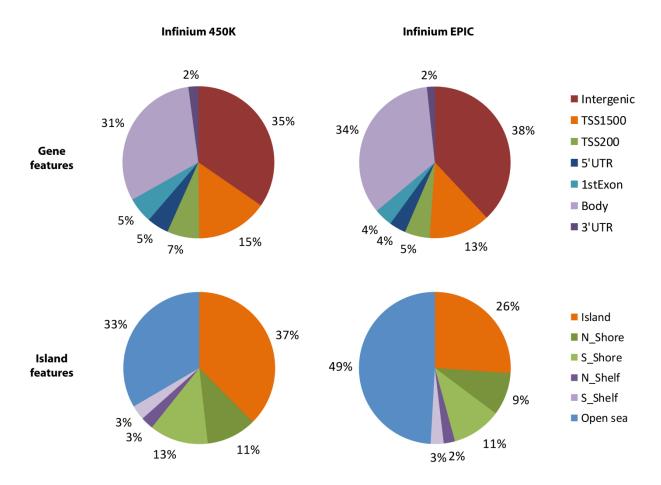


Figure 4: Validation of DNA methylation measures on CD4 T cells obtained on the Infinium 450K BeadChip by Pyrosequencing using locus-specific amplification primers designed for each species (Supplementary Table 1). Top row: *Macaca mulatta*, bottom row: *Chlorocebus sabaeus*.

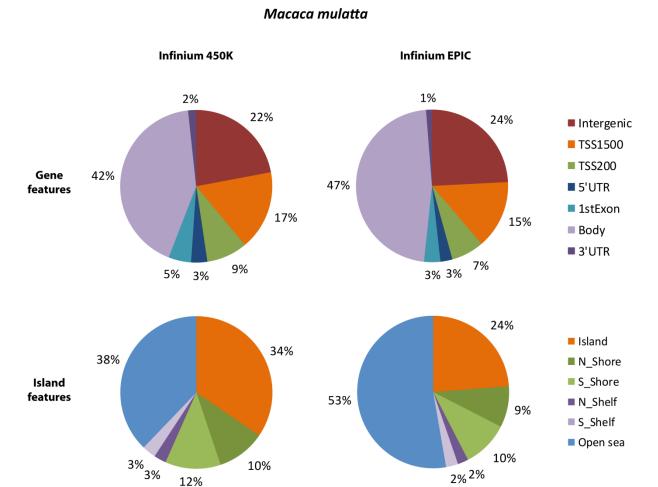


Figure 5: Distribution of human CpG probes in Infinium 450K and Infinium EPIC, as annotated by Illumina for *Homo sapiens* genome (GRCh37). All CpG probes are valid for human (482,421 probes in Infinium 450K and 863,904 in Infinium EPIC), which represent s 802,912 and 1,590,198 gene features annotations in total for Infinium 450K and Infinium EPIC, respectively. Note that one probe can be attributed to different transcripts and thus gene features, whereas one probe is attributed to only one island feature.

Chlorocebus sabaeus

Figure 6: Distribution of human-designed CS-valid CpG probes in Infinium 450K and Infinium EPIC, as annotated for *Chlorocebus sabaeus* genome (Ensembl ChlSab1.1 version 84). We defined 162,053 CS-valid probes for Infinium 450K and 255,444 for Infinium EPIC, representing 171,608 and 268,062 gene feature annotations in total for Infinium 450K and Infinium EPIC, respectively. Note that one probe can be attributed to different transcripts and thus gene features, whereas one probe is attributed to only one island feature.

Figure 7: Distribution of human-designed MM-valid CpG probes in Infinium 450K and Infinium EPIC, as annotated for *Macaca mulatta* genome (Ensembl MMUL1.0 version 84). We defined 158,970 MM-valid probes for Infinium 450K and 252,235 for Infinium EPIC, representing 246,788 and 390,548 gene feature annotations in total for Infinium 450K and Infinium EPIC, respectively. Note that one probe can be attributed to different transcripts and thus gene features, whereas one probe is attributed to only one island feature.