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Abstract 

The advancement of technologies to measure highly multiplexed spatial data requires the            

development of scalable methods that can leverage the spatial information. We present            

MISTy, a flexible, scalable and explainable machine learning framework for extracting           

interactions from spatial omics data. MISTy builds multiple views focusing on different spatial             

or functional contexts to dissect different effects, such as those from direct neighbours             

versus those from distant cells. MISTy can be applied to different spatially resolved -omics              

data with dozens to thousands of markers. We evaluate the performance of MISTy on an ​in                

silico dataset and demonstrate its applicability on two breast cancer datasets measured with             

imaging mass cytometry and spatial transcriptomics, respectively. We show the relevance of            

the information extracted when separating the effect of close and distant cells. Finally, we              

demonstrate the integration of activities of pathways estimated in a spatial context for the              

analysis of intercellular signaling. 
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Introduction 

Highly multiplexed, spatially resolved data at single cell resolution is becoming available at             

an increasing pace thanks to recent and ongoing technical developments. In contrast to             

dissociated single-cell data, this data informs us on the cell-to-cell heterogeneity in tissue             

slices while conserving the arrangement of cells​1​. Therefore, each cell can be studied in its               

microenvironment. We can observe the spatial distribution of the expression of markers of             

interest, their interactions within the local cellular niche and at the level of tissue structure. All                

these aspects provide an excellent platform to gain better insight into multi-cellular            

processes, in particular cell-cell communication. 

 

The proliferation of spatial technologies leads to the generation of large amounts of data.              

Different technologies allow for measuring different types of molecules with varying           

resolution, capturing different areas of tissue with diverse numbers of readouts.           

Immunofluorescence-based methods allow detection of the expression of tens to hundreds           

of proteins at subcellular resolution ​2,3 and hundreds to potentially thousands of RNA species             

at single-cell resolution ​4,5​. Mass spectrometry-assisted methods enable detection of the          

expression of a high number of proteins at the resolution of tissue patches​6,7 and tens of                

markers at subcellular resolution ​8​, and over hundred metabolites at cellular and subcellular            

resolutions​9,10​. Finally, barcoding-based approaches​11,12 facilitate the measurement of        

genome-wide expression at a resolution of hundreds of microns, i.e., several cells, and are              

being further developed to increase the resolution to below ten microns​13,14​. Complementally,            

we are also witnessing the rapid development of methods for spatial localization that             

combine limited amounts of spatially resolved data with richer, but dissociated single-cell            

data ​15–18​, which can alleviate the various shortcomings of the technologies. Therefore, there            

is a need for methods to analyse large amounts of rich and spatially-resolved data. These               

methods should ideally be able to handle the variety of produced data and scale well with                

future technology improvements.  

 

Currently, there is a limited number of methods available for the analysis of high-resolution              

spatially-resolved data. One group of methods focuses on the analysis of the significant             

patterns and the variability of expression of individual markers​19–21 to describe the landscape             

of expression within a tissue. Another group of methods considers, more broadly, the             

analysis of the interactions between the markers within different spatial contexts, that is the              

expression in the directly neighboring cells or the effect of the expression of a marker in the                 
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broader tissue structure. The methods within the latter group focus mainly on identifying             

interactions in the local cellular niche, by establishing the statistical significance of the             

distribution of automatically identified cell types in the neighborhood of each cell ​22–24​. These             

methods assume a fixed form of nonlinear relationship between markers or have a             

predefined set of spatial contexts which can be explored. Spatial Variance Component            

Analysis (SVCA)​25​, for example, goes a step further by examining intercellular interactions by             

decomposing the source of the variation to three fixed spatial contexts: intrinsic,            

environmental and intercellular effects.  

 

We introduce here a Multiview Intercellular SpaTial modeling framework (MISTy), an           

explainable machine learning framework for knowledge extraction and analysis of single-cell,           

highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of           

marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible             

framework able to build models to describe the different spatial contexts, that is, the types of                

relationship among the observed expressions of the markers, such as intracellular regulation            

or paracrine regulation. For each of these contexts MISTy builds a component in the model,               

called a view. Furthermore, the views can also capture cell-type specific relationships, or             

focus on relations between different anatomical regions. Each MISTy view is considered as             

a potential source of variability in the measured marker expressions. Each view is then              

analyzed for its contribution to the total expression of each marker and is explained in terms                

of the interactions with other measurements that led to the observed contribution. Our             

approach is modular, easily parallelizable and thus scalable to samples with millions of cells              

and thousands of measured markers. 

 

We validated MISTy on ​in silico data generated by a custom algorithm. We further applied               

our framework on an Imaging Mass Cytometry (IMC) dataset consisting of 46 breast cancer              

biopsies. We show that MISTy is able to extract and extend the set of inter-cellular               

interactions found with previous approaches. Finally, MISTy can extract knowledge about           

the interactions among signaling pathways and ligands expressed in the microenvironment           

from different spatial views. We demonstrate this on spatial transcriptomics data of breast             

cancer. These case studies illustrate the flexibility of MISTy to analyse diverse types of              

spatial omics data. 
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Results 

MISTy: Multiview intercellular spatial modeling framework 

MISTy is a late fusion multiview framework for the construction of a domain-specific,             

explainable model of the expression of markers (Figure 1). For each marker of interest in a                

sample, we can model cell-cell interactions coming from different spatial contexts as different             

views. The first and main view, containing all markers of interest, is the intrinsic view, where                

we relate the expression of other markers to a specific marker of interest within the same                

location. To capture the local cellular niche, we can create a view that relates the expression                

from the immediate neighborhood of a cell to the observed expression within that cell; we               

call this view a juxtaview. To capture the effect of the tissue structure, we can create a view                  

that relates the expression of markers measured in cells within a radius around a given cell,                

and we call this view a paraview (see Methods).  

 

Importantly, MISTy is not limited to the abovementioned views. Other views can be added to               

the pipeline that can offer an insight about relations coming not only as a function of space.                 

For example, views can focus on interactions between different cell types, interactions within             

specific regions of interest within the sample or a higher level functional organization. 

 

Formally, we consider a matrix where each column represents a marker ( )     [Y ]u,i         .. ni = 1  

and each row is a spatial location ( ). is the vector made by all observations of        .. Lu = 1  Y .,i         

the marker . MISTy models its expression asi  

 ,             (1) α  α F (Y ) (F (G ( X , Y , T ))Y ·, i =  I +  0 0
˜ +  ∑

 

v
αv v v  ˜   

where , i.e. all markers except the target marker. are models constructed  YỸ =  ·, ∀k=i/         F v     

by a machine learning algorithm (in this work we consider to be Random Forests) for          F        

each view . are domain-specific functions that transform the data to generate  v  G           

informative variables (features) from the expression at the corresponding spatial      Y     

localization . Optionally, can depend on other specific properties , such as annotated X   G        T     

functions, regions or cell-type. The functions can be used to generate alternative views     G          

that can be inputs to the model function . For example, given gene expression data, a        F         

function can be used to infer pathway activities at each location. The corresponding G              

variables can be input to MISTy to relate the activities of pathways at each location with                
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those from a broader spatial context. Finally, are the late fusion parameters of the       α        

meta-model that balances the contribution of each view to the prediction. 

 

Figure 1. MISTy: An explainable multi-view framework for modeling intercellular interactions           

from highly multiplexed spatial data. ​MISTy models marker relations coming from different spatial             

views: intrinsic, local niche view (juxtaview), the broader, tissue view (paraview), or others, based              

directly on marker expressions or derived typology or functional characterisations of the data. At              

output, MISTy extracts information about the contribution of different spatial views to the expression of               

markers in each cell. MISTy also estimates the markers’ interactions coming from each view that               

explain those contributions. These results can be described qualitatively as communities of interacting             

markers for each view. 

 

The above model is trained in two steps. First, the models for each view are trained                

independently. MISTy models the intrinsic view as a baseline view that is      (Y )F 0
˜        

independent from the spatial localization of the cell. Other intercellular views are then added              

to . The user can add a number of additional, intercellular views, and separately the (Y )F 0
˜        v         

effect of each view for each marker on the improvement in predictive performance of the               

multiview model. The contribution of each view is captured by the late fusion parameters              α  
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of the meta-model. Second, we estimate parameters of the meta-model after training the      α         

view-specific models independently, by linear regression. 

 

In principle, MISTy can construct models for the functions with any algorithm that fulfills         F       

two requirements. First, the algorithm should construct ensemble models, with constituents           

trained on a bootstrap sample (bag) from the data. Second, they should be or consist of                

explainable models. The first criteria guarantees the unbiased use of the measurements in             

both steps of model training. The predictions of the constituents of an ensemble model can               

be made on portions of the data (out-of-bag), that were not used for their training. The                

second criteria means that a global explanation of the model or the importances of the               

features can be obtained post-hoc from the trained models. As proof of principle, in this work                

we use Random Forests​26 for where the feature importances can be explained by the     ,F           

reduction of variance in the constituent trees. 

 

MISTy generates a model for each marker of interest that can be readily used to make                

predictions of marker expressions under different conditions. For example, we can increase            

or reduce the expression of a certain marker ​in silico and explore the effects of the new                 

condition. Importantly, we can use the model to estimate how much the different views,              

such as intrinsic or paracrine effects, contribute to the prediction of the expression of each               

target marker. At the first level, the meta-model can be interpreted in two different ways.               

First, to answer the question of how much the intercellular views improve the prediction of               

the expression in addition to the intracellular view. This can be achieved by comparing the               

predictive performance of a single intracellular view vs all views combined in a meta-model.              

Second, by comparing the values of the fusion parameters, we can investigate how much              

the individual views contribute to explaining the marker expression that led to the             

aforementioned improvement in predictive performance.  

 

Given this information, at a second level, we can further analyse the feature importances.              

For each target marker, we can inspect each view-specific model and analyse how important              

is the contribution of each marker in that view to the prediction of the expression of the target                  

marker. These importances correspond to potential relations between the predictor and the            

target marker in the specific spatial or other context modelled by the corresponding view.              

MISTy outputs the estimated importances of significant marker relations. Since these           

relations are based on the importance of a marker in predicting the target they cannot be                

assumed to be directly causal nor directional. The relations between markers may occur             
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through a network of intermediate interactions in the specific biological context, which can be              

further explored by enrichment of these relations using curated databases of intra- and             

intercellular interactions.  

 

Finally, if multiple samples are available during the analysis, the relations from individual             

samples are aggregated to produce robust results (see Methods). By aggregation, we            

accentuate consistently inferred interactions from individual samples and reduce the number           

of false positive interactions. 

In silico ​ performance 

We first assessed the performance of MISTy to reconstruct ​in silico intra- and intercellular              

interaction networks. For this, we created a tissue simulator that can mimic the interactions              

of different cell-types through ligand binding and subsequent signaling events (Figure 2A;            

see Methods). The dynamic model simulates the production, diffusion, degradation and           

interactions of 11 molecular species until a steady state distribution of markers are reached.  

The simulated values for every molecular species, at every location is recorded and passed              

as input to MISTy (Supp Figure 1). Information about the different cell-types, their             

intracellular wiring or which cell type expresses which ligand is not given as input to MISTy.                

We use this procedure to estimate the robustness of MISTy to infer interactions. 

 

The MISTy pipeline for ​in silico data consists of two views, intracellular view and broader               

tissue structure view (paraview). When we compare the predictive performance of this model             

to a model with a single intrinsic view, we see the highest improvement in predictive               

performance, for the expression of markers ligC, ligB, ligA and ECM, which are the diffusing               

molecules in the model. The improvement is reflected in the observed contributions of the              

tissue structure view (Figure 2B).  

 

We evaluated the performance of MISTy to recover interactions among markers. MISTy            

identified strong importance between prodC-ligC and also between ECM-protE (Figure 2C).           

These two steps are part of the ECM production pathway involving cellType2 and cellType3.              

In the dynamical model, prodC produces ligC in cellType2, which diffuses on the lattice and               

activates protE in both cellType1 and cellType3. In turn, protE activates ECM production in              

cellType3. Note that these interactions appear both in the intrinsic and paraview views. This              

is because these interactions involve diffusive compounds (ligC and ECM), that are             

produced by intracellular proteins and then  diffuse to the neighbourhood.  
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Figure 2. Evaluating MISTy on in silico data. ​(A) MISTy was evaluated on the task of reconstruction                 

of simulated interaction networks. Models of intra- (black arrows) and intercellular (orange arrows)             

interactions of four different cell types, arranged on a grid representing a tissue, were used to simulate                 

measurements of 11 molecular species. (B) Contribution of each view to the prediction of the marker                

expressions in the meta-model. The stacked barplot represents normalized values of the fusion             

coefficients of the respective views for each marker. (C) Marker interactions in the intrinsic and               

paraview. Heatplot shows the interactions found by MISTy, red stars highlight the ground truth              

interactions. (D) Receiver operating characteristic (ROC) and precision-recall (PR) curves depicting           

the aggregate performance of MISTy on all ten samples for the intrinsic view and paraview. The                

dashed lines represent the expected performance of an uninformed classifier, the gray iso-lines             

represent points in ROC space with informedness (Youden’s J statistic) equal to 0.1, 0.2, 0.5 and 0.8                 

and points in PR space with F1 measure equal to 0.1, 0.2, 0.5 and 0.8. (E) Communities of marker                   

interactions identified by the Louvain method for community detection on the heatplots. 
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The production of ligB, ligC and ECM by the respective prodB, prodC and protE nodes are                

clearly captured (Figure 2C, 2E). There is also a strong interaction reported between ligA              

and ligD, as well as between prodA and prodD in the intrinsic view. In the model, there is no                   

connection between these nodes. Therefore, they are considered as false positives.           

However, we can notice that all of them are co-expressed in cellType1, which can explain               

the result.  

 

Across the individual samples, we observed variance in MISTy’s performance, in both the             

area under the receiver operating characteristic curve (AUROC) and the area under the             

precision-recall curve (AUPRC) (Supp Figure 2). We aggregated the results from all layouts             

(see Methods section for details) and calculated the performance (Figure 2D). The            

aggregation strategy maximized the extracted knowledge available in the samples (AUROC=           

0.80 and 0.84 and AUPRC = 0.61 and 0.66 for the intrinsic and the paraview, respectively).                

In summary, MISTy is able to reliably extract interactions in the ​in silico​ case study. 

Application to an Imaging Mass Cytometry breast cancer dataset 

We applied MISTy on an Imaging Mass Cytometry dataset consisting of 46 samples of              

breast cancer representing all three grades coming from 26 patients​24​. We processed each             

sample with MISTy independently and we aggregated the outputs in four ways: for each of               

the three tumor grades separately, and for all samples. We designed the MISTy pipeline for               

this task to include three different views: An intrinsic view, a view focusing on the local                

celular niche (juxtaview), and a view capturing the effect of the broader tissue structure              

(paraview), as illustrated in Figure 2B and detailed in the Methods section. 

  

In the aggregated results from all samples, we found that the multiview model resulted in               

significant improvements in variance explained of up to 25% over using the intrinsic view              

only. This is consistent with results obtained with another method, SVCA, on the same data ​25               

(Supp Figure 3). Highest median improvement was detected for the markers pS6 (median             

2.2%, max 17.7%), SMA (median 3.6%, max 10%) and Ki67 (median 1.8%, max 7.9%). This               

is expected, since these three markers have distinct spatial distributions: pS6 represents            

“active” stroma present in distinct regions of the tumor microenvironment, SMA represents            

smooth muscle Actin, which is expressed in ductal structures and blood vessels; and Ki67 is               

a marker of proliferation and is highly expressed in tumor regions. The highest change in               

variance explained (24.9%) in a single sample was observed for CAIX, a marker of hypoxia.               

In grade 1 tumor samples (n = 16), we observed the highest improvement for markers               
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Cytokeratin7 (median 5.6%, max 14%) and signaling marker pErk12 (median 1.6%, max            

20.4%) (Supp Figure 4A). In grade 2 tumor samples (n = 3), we observed the highest                

improvement in CD3 (median 1.1%, max 18.4%) and Slug (median 1%, max 19%) (Supp              

Figure 4B). In grade 3 samples (n = 24) we observed the highest improvement for CAIX                

(median 0.6%, max 23.5%) and pS6 (median 6.2%, max 19.5%) (Supp Figure 4C). This was               

expected due to higher levels of hypoxia at an advanced tumor stage. In addition, pS6 was                

shown to interact with CAIX, which explains the coupled appearance. The results illustrate             

how MISTy can recapitulate previous findings without the need of single cell clustering and              

cell type annotation using prior-knowledge ​24​.  

 

We next analyzed the contribution of each view to the prediction of the multi-view model               

(Figure 3A). Across all aggregations of the samples, a high contribution of the juxtaview was               

observed for immune cell markers CD20, CD3, CD44, and CD68 (mean contribution to             

prediction of 18%). This finding is consistent with the results obtained with SVCA​25​, where it               

was shown that the highest increase in variance explained is due to cell-cell interactions,              

which in turn were found to be significantly correlated with the average number of neighbors               

per cell. With MISTy we further dissected the effect of the juxtaview and paraview. We find                

that a significant contribution (higher value of the fusion parameter in the meta-model)             

comes from the paraview compared to the juxtaview. This is consistent with the increase in               

variance explained in the samples. Namely, the mean contribution to the prediction of the              

intrinsic view was 69%, of the juxtaview 9% and of the paraview 22%.  

 

To explain the contributions of each view, we further analyzed the importances of the              

features as predictors for the expression of each marker of interest (Figure 3B, C and D). In                 

the intrinsic view, we observed groups of markers (communities) that consistently interact in             

grade-specific analyses and across all samples (Figure 3E). In the juxtaview we observed a              

community of interactions involving epithelial markers (Cytokeratin 7, Cytokeratin 8/18 and           

E-cadherin) on one hand, and community of interactions involving stromal markers (SMA,            

Fibronectin and Vimentin) on the other. There is a pronounced decline in the number of               

highly important features in the juxtaview and the paraview, when comparing grade 1 and              

grade 3 tumors (Supp Figures 5, 6 and 7). This is likely due to cells being mainly intrinsically                  

driven in grade 3 samples, due to high density and advanced state of cancer. In other words,                 

normal tissues are highly structured, and the underlying tissue structure is critical to perform              

tissue relevant functions. A tumor destroys the underlying structure and creates a more             

“random” distribution of tumor / stromal cells.  
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Figure 3. Application of MISTy to the Imaging Mass Cytometry dataset. (A) Normalized values of               

the fusion coefficients of the respective views for each marker. (B) Importances of marker expression               

as predictors of the expression of each target marker in the intrinsic view. (C) Importances in the                 

juxtaview. (D) Importances in the paraview. The importances are extracted from the view-specific             

models for each target marker. (E) Communities of marker interactions identified by applying the              

Louvain method for community detection on the symmetric adjacency matrices generated from the             

heatplots. 
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Application to a spatial transcriptomics breast cancer dataset 

An important feature of MISTy is its independence from the technology and flexibility to              

analyze different spatially-resolved data. Even more, the properties of the data obtained from             

different technologies can be leveraged to create different explanatory views.  

 

To illustrate this, we analyzed the spatial gene expression profiles of two sections of a               

sample of invasive ductal carcinoma in breast tissue profiled with 10x Visium​27​. The 10x              

Visium slides contain 4992 total spots of ​55 µm in diameter per captured area that enable                

the profiling of up to 10 cells per spot. With this technology, thousands of spatially resolved                

genes can be profiled simultaneously within a sample, allowing for characterization of            

molecular processes. 

 

Previously, we have shown the utility of the footprint-based method PROGENy to robustly             

estimate the activity of signaling pathways, in both bulk and single-cell transcriptomics​28,29​.            

PROGENy estimates the pathways’ activity by looking at the expression changes in            

downstream target genes, rather than on the genes that constitute the pathway itself. Due to               

the resolution and the gene coverage of 10x Visium slides, the same approach can be               

applied to spatial transcriptomics datasets to enhance the functional view of the data. We              

estimated pathway activities for two reasons: 1) to reduce the dimensions of the data into               

interpretable and functionally relevant features, while still using the information of as many             

genes as possible, and 2) to provide a set of features that are more stable than the sparse                  

expression of marker genes. 

 

For each sample section, we estimated the activities of 14 cancer relevant signaling             

pathways of each spot using PROGENy​28 (Figure 4A). We observed clear localized            

activities of all pathways (Supp Figures 8 and 9). While crosstalk mechanisms are expected              

within a spot, we hypothesized that the local pathway activity can also be regulated by               

neighbouring cells in other spots via direct ligand-receptor interactions or indirect processes            

triggered by the microenvironment. Therefore, we identified a set of 275 expressed genes in              

both sections annotated as ligands (Figure 4A) in the meta-resource OmniPath ​30 (see            

Methods) and designed the MISTy pipeline to model pathway activities using three different             

views: An intrinsic view of pathway activities and two functional paraviews focusing on             

pathway activity and ligand expression, respectively (see Methods). 
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The multiview model improved the variance explained by up to 11% compared to the single,               

intrinsic view (Supp Figure 10). We found a mean contribution of 74% of the intrinsic view,                

16% of the ligand expression paraview and 10% of the pathway activity paraview to the               

prediction of pathway activities in the multi-view model (Figure 4B).  

 

The ligand expression paraview contributed the most to the prediction of the Estrogen and              

Hypoxia pathways. These pathways also showed the highest average improvement in           

variance explained with the multiview model. The moderate contribution of the functional            

paraviews could be due to the pathway crosstalk within a spot. The importances of the               

features used as predictors in each view are consistent with biological processes. In the              

intrinsic view, we observed relationships between NFkB and TNFa, and P53 and MAPK that              

have been reported previously​28​. To illustrate this, we can look at the spatial distribution of               

P53 and MAPK activity and observe their anticorrelation (Figure 4C). Additionally, when            

compared with the importances of the pathways in the paraview, we found similar             

interactions suggesting consistency of function in large areas of the tissue. Moreover, we             

also observed new interactions among pathways that may represent long distance           

dependencies. For example JAK-STAT as a predictor of WNT, an interaction that is not              

present in the intrinsic view (Figure 4D). Among the top interactions observed between the              

pathway activities and ligands (Figure 4E), we recovered the relationship between SEMA4C            

and Estrogen that has been linked to poor disease outcome in luminal type breast cancers​31​.               

SEMA4B is an important predictor of Hypoxia that is in concordance with the known              

repression of this protein with HIF1-a (Figure 4E)​32,33​. TGFb has a strong interaction with              

extracellular matrix proteins such as VCAN, COL5A1, and COL16A1. This effect is in             

agreement with the reported regulation of this pathway to proteins responsible for the             

collagen remodeling in other cancers​34,35​. Together, these results show the effectiveness of            

MISTy in retrieving tissue-level interactions between different functional layers of          

information.  
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Figure 4. Application of MISTy to a spatial transcriptomics dataset. ​(A) Pathway activities and              

ligand expression coverage in the two sections analyzed. (B) Contribution of each view to the               

prediction of the pathway activities in the meta-model. The stacked barplot represents normalized             

values of the fusion coefficients of the respective views for each pathway. (C) Variable importances               

for the intrinsic view; pathway activity scores of p53 and MAPK in the first section. (D) Variable                 

importances for the pathway paraview; pathway activity scores of JAK-STAT and WNT in the first               

section. (E) Top variable importances for the ligands paraview (mean importance > 2); expression of               

SEMA4B and pathway activity score of Hypoxia in the first section. 
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Discussion 

Here we present MISTy, an explainable framework for the analysis of highly multiplexed             

spatial data. It can scale to match the increasing complexity and resolution of data due to                

recent and upcoming technological advancements. MISTy complements the methods that          

leverage spatial information to explore intercellular interactions. The current approaches          

mainly focus only on the local cellular niche, i.e., the expressions measured in the immediate               

neighborhood of each cell ​22–24​. Other methods that consider the broader tissue structure are             

relatively inflexible ​25​. They consider a fixed form of nonlinear relationship between markers            

at predefined spatial contexts, and they do not scale well due to their high computational               

complexity. In contrast, MISTy offers a flexible range of spatial analyses in a scalable              

framework. We present a selected set of pipelines for the analysis of spatial data, using not                

only the marker expressions but also derived features, such as pathway activities. 

 

We established a performance baseline for MISTy on ​in silico data before applying MISTy to               

real-world data. We showed that MISTy achieves high performance on the task of             

reconstructing the intra- and inter-cellular networks of interactions. 

 

We then applied MISTy to two real-world spatial-omics data sets from breast cancer             

samples. First, we applied MISTy on imaging mass cytometry data, capturing dozens of             

protein markers at (sub)cellular resolution. The results show that we were not only able to               

recapitulate results from the literature without prior-knowledge-based cell type annotation,          

but to also generate new hypotheses. Our results show that the information that is available               

from the expression of markers in the broader tissue structure is often more important than               

their expression in the local cellular niche. This highlights that not only cellular niches but               

also tissue structure have a direct impact on cellular states and should be included into the                

“microenvironment” definition.  

 

Further, we applied MISTy on a spatial transcriptomics data set, one of the first publicly               

available samples measured with 10x Visium. Here, thousands of transcripts are measured            

in spots containing several cells. Given the richness of the data, we were able to go a step                  

further and consider the analysis of functional features, in the form of pathway activities              

which were inferred from the data. In particular, we showed the crosstalk between pathways              

and the ligand-pathway interactions in the context of the broader tissue structure in breast              

cancer. 
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Although the interactions extracted by MISTy cannot be considered directly as causal, they             

can facilitate the downstream analysis of biological systems at the tissue level in several              

directions: (i) To predict the behavior of systems under perturbations, by using the MISTy              

model to generate marker expressions based on the new conditions; (ii) To guide the              

reconstruction of multicellular causal signaling networks, using databases to identify          

mechanisms giving rise to the extracted interactions; and subsequently (iii) To construct            

mechanistic models of the dynamical behavior of the system constrained by the extracted             

explanations.  

 

The work we presented lays the foundation for further exploration of MISTy in several              

directions. One direction is to address the scalability of MISTy to millions of cells and               

thousands of markers per sample, which is beyond what the available technologies can             

offer, but is likely to come in the near future. To do this we are exploring approximate but                  

accurate methods to replace the computationally expensive step of generating views where            

the pairwise distances between all cells need to be calculated. Another direction is the              

exploration of the performance that can be achieved by MISTy with different ensemble             

approaches using various types of explainable constituent models. Finally, MISTy can be            

used to generate more specific views. In particular, views that capture the spatial             

expression of specific cell types, so that we can dissect the spatial interactions between              

different cell types, or views that focus on regions of the tissue, for example, healthy vs                

pathological, where we would model the interactions between the functionally different           

regions. 

 

In summary, we believe that MISTy is a valuable tool to analyse spatially resolved data,               

adaptable to multiple data modalities and biological contexts, that will also evolve as             

experimental techniques improve. MISTy is freely available as an open-source R package. 

Methods 

In silico ​ benchmark 

The ​in silico model is a two-dimensional cellular automata model that focuses on signaling              

events, therefore cell growth, division, motility and death are neglected. First, we created ten              

random layouts. To account for cellular heterogeneity in the tissue, we assigned one of four               

different cell-types , to each spot of the layout or left it empty (intercellular  T1, ...CT4C              
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space). Each of these cell-types has a distinct set of receptors expressed and distinct              

intracellular wiring. To keep the model simple, we considered 11 biological species S =              

{ligands: ligA, ligB, ligC and ligD; intracellular proteins: protE, protF; ligand producing nodes:             

prodA, prodB, prodC and prodD}. The intracellular processes involve two layers, first the             

ligand activation of signaling hubs, represented by protE and protF, and ligand            

production/secretion regulated by proteins (prodA, prodB, probC and prodD)(Figure 2A).          

The model simulates the production, diffusion, degradation and interactions of these 11            

molecular species on a 100-by-100 grid. Ligands are produced in each cell-type based on              

the activity level of their production nodes and then freely diffuse, degrade or interact with               

other cells on the grid. Other molecular species involved in signaling are localised in the               

intracellular space and their activity depends on ligand binding and intracellular wiring.  

 

The model is formally stated by the following partial differential equations for each species: 

. (2)Δc (x, , ) (x, , ) (x, , ) ∂t
∂c (x,y,t)s = ds s y t + P s y t − Ds y t  

 

This equation describes the diffusion, the production/activation and the degradation of the            

species. We made the following assumptions. is the concentration of species      (x, , )cs y t       

at the grid point (x,y) at time t. The diffusion is homogenous across the image, thes∈ S                  

diffusion coefficient of species ​s is . Only ligands and ECM are diffusing, other intracellular      ds          

molecules cannot leave the cell. 

 

The production term includes the generation of ligands and the activation of intracellular             

proteins. It depends on the cell-types and the activity of the production node: for ligands, ​ligX                

production depends on ​prodX node: for     (x, , ) α prodX (x, , )P i y t =  i,ct i y t   

and , the coefficient defines which cell typeligA, igB, igC, igD}i∈ { l l l   t Tc ∈ C   αi,ct       

produces which proteins and how strongly the production depends on the activity of the              

production node. 

 

For intracellular proteins, the protein activity depends on the abundance of the ligands that              

activate its pathway: , for and   (x, , ) β c (x, , )P i y t =  i,l
ct

 

 
l y t   protE, protF}i∈ {   

. The encodes the interactions between the ligand and theligA, igB, igC, igD}l∈ { l l l   βi,l
ct

 
         

proteins in each cell type as shown in the graph in Figure 2.  
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Degradation is proportional to the concentration of ligands, intracellular proteins and ECM,            

, where is a constant degradation coefficient.(x, , ) c (x, , )Ds y t = γs s y t γs   

 

The above model was simulated from a randomised initial condition until a steady state              

distribution of the species and activity was achieved (Supp Figure 1).  

 

We aggregated the interactions from the mechanistic model for the different cell types in joint               

binary matrices of directed ground truth interactions for the different views. To compare the              

matrices to the importance matrices from the output of MISTy, we transformed the joint              

matrices into undirected matrices . We then quantified the performance of     sgn(A A )Au =  +  T        

MISTy for the task of reconstruction of intra- and intercellular networks from the true and the                

extracted interaction matrices.  

Data acquisition and processing 

Imaging Mass Cytometry  

The Imaging Mass Cytometry dataset consists of 46 samples from 26 breast cancer patients              

with varying disease grades​24​. The raw data was segmented and single cell features were              

extracted with histoCAT. The samples contain between 267 and 1455 cells with measured             

expression of 26 proteins / protein modifications. The cell-level data was preprocessed as             

defined in Arnol et al.​25​ in order to assure the validity of direct comparison of results. 

 

Spatial transcriptomics 

The data and sample information were obtained from 10x Genomics​27​. The data consists of              

spatial transcriptomic measurements of two sections of a sample analyzed with 10x            

Genomics Visium. The sections come from tissue from a patient with grade 2 ER​+​, PR​-​,               

HER2 ​+​, annotated with ductal carcinoma in-situ, lobular carcinoma in-situ and invasive           

carcinoma. The mean sequencing depths were reported to be 149,800 and 137,262 reads             

per spot for a total of 3,813 and 4,015 spots per section respectively. The median UMI                

counts per spot were reported as 17,531 and 16,501, and the median genes per spot as                

5,394 and 5,100 respectively. The raw data was preprocessed and count matrices were             

generated with ​spaceranger-1.0.0​. Individual count matrices were normalized with         

sctransform implemented in Seurat 3.1.2 ​36​. For each spot, we estimated signaling pathway            

activities with PROGENy’s model matrix using the top 1000 genes of each transcriptional             

footprint. We retrieved from Omnipath ​30 all proteins labeled as ligands and in each dataset              

we filtered all ligands whose expression was captured in at least 30% of the spots. 
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View generation 

For the application of MISTy on IMC and spatial transcriptomics data, in addition to the               

intrinsic view, we considered creating views by aggregating the available spatial and            

expression information in two ways. For the IMC data we created a view that describes the                

local cellular niche (juxtaview) and a view that describes the broader tissue structure             

(paraview), both created using the measured marker expression directly. For the spatial            

transcriptomics data we created a paraview using the estimated pathway activities at each             

patch and a paraview using the measured expressions of a set of ligands. 

 

We consider a dataset , represented as a matrix of dimensions      [X  Y ]D =  (n×s) (n×k)        

of spatially-resolved highly-multiplexed measurements of a sample, where is s )n × ( + k          n   

the number of measured units (pixels, cells, patches) available in the sample, is the            s    

number of spatial dimensions in the geometry matrix and is the number of measured        X   k      

markers in the expression matrix .Y  

 

The juxtaview was generated by summing the expressions of its direct neighboring cells, i.e.,              

, where represents the set of neighboring cells of cell . The neighboring Gc = ∑
 

j∈N c

Ỹ j,·   N c         c    

cells for each cell can be determined either during image segmentation, for example by              

setting a threshold of membrane to membrane distance, or, as in the case for the application                

of MISTy on IMC data, by post-hoc neighborhood estimation. For the application of MISTy              

on IMC data the neighborhood of each cell in a sample was estimated by constructing a cell                 

graph by 2D Delaunay triangulation followed by removal of edges with length larger than the               

25th percentile of all pairwise cell distances across all samples, which corresponded to             

11.236 microns from the cell centroid. 

 

The paraview was generated by weighted aggregation of the expressions of all cells             

(patches) from the sample , where is the Euclidean distance between     YGc =  ∑
n

j=1 
e−d /l2

ij
2

j,·
˜   dij      

cells and , calculated from matrix and is a parameter controlling the shape of the i   j     X   l          

weighting radial basis function. The parameter corresponds to the radius around the cell      l         

where we consider the values of the weighting function to allow for substantial contribution of               

the measured expressions. For the application of MISTy to both IMC and spatial             
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transcriptomics data, we optimized the value for the parameter . For each sample, we         l      

constructed models for each marker, with parameter . This        2, , 0, 0, 0, 00}l ∈ { 5 1 2 5 1   

corresponds to an effective radius of influence of 2 to 100 pixels or micrometers. Then, for                

each marker we selected the value for such that the estimated improvement in predictive       l         

performance by using the multi-view model in contrast to the intrinsic view model is              

maximized. For each model (Random Forest), we estimate the predictive performance by            

measuring the variance explained on out-of-bag samples. 

Importance weighting and result aggregation 

To calculate the interaction importances from a sample we used information from the two              

layers of interpretability and explainability: the values of the fusion parameters ( in Eq. (1))           αv    

in the meta-model and their respective p-values for each target marker and the       pk (v)      k    

importances of features for the prediction of each target marker extracted from the Ikj
(v)   j            

predictive model for view  yields the MISTy interaction importance:v  

       (3).(1 p )M kj
(v) =  σ

Ik
(v)

2
I − Ikj

(v)
k

(v)ˉ
−  k

(v)  

 

Since the importances extracted from a Random Forest model (used for the current   Ikj
(v)           

instance of MISTy) represent the amount of variance reduction in the target expression, the              

MISTy interaction importances correspond to the standardized value (by mean and          Ikj
(v)ˉ   

variance ) of the variance reduction weighted by the quantile of the statistic σ
Ik

(v)
2           p1 −  k

(v)     

under the null hypothesis of zero contribution of the fusion coefficient for view for target             v    k

in the linear meta-model. The importance derived from variance reduction can be            

generalized to any measure of impurity or values extracted by other feature importance             

estimation methods, given the model constituents of MISTy. Since the MISTy importances            

are standardized, importances from multiple samples can then be aggregated by simple            

averaging, while their interpretation remains the same. 

 

For views that contain the same set of predictors as targets, we also identified the               

communities of interactions from the estimated importances. For this, we transformed the            

square matrix of estimated predictor-target interactions to an undirected graph adjacency  A           

matrix as . We then extract the community structure from the graph using the  A AAp =  +  T             
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Louvain algorithm​37​, a commonly used algorithm for community detection by grouping nodes,            

such that the modularity of the graph is maximized. 

Code availability 

The code of MISTy as an R-package as well as the scripts to generate the results shown in                  

this paper are available at ​https://saezlab.github.io/misty/​. 

Acknowledgements 

JT acknowledges the financial support from the European Union and the Slovenian Ministry             

of Education, Science and Sport (agreement No. C3330-17-529021). DS was supported by            

an Early Postdoc Mobility fellowship (no. P2ZHP3_181475). We would like to thank Nicolàs             

Palacio-Escat for the Figure 1 design and Olga Ivanova for providing feedback on the              

manuscript.  

Author contributions 

JT designed and implemented MISTy. JT and JSR designed the experimental evaluation. JT             

implemented the pipelines for the analysis of the data with MISTy. AG designed and              

implemented the cellular automata model and generated the ​in silico data and analysed the              

results. RORF generated the functional views of the spatial transcriptomics data and            

analysed the results. DS analysed the results of the IMC and ST breast cancer data. JSR                

supervised the project. JT drafted the manuscript. All authors contributed to the manuscript             

writing. All authors read, commented, and approved the final manuscript. 

References 

1. Chen, X., Teichmann, S. A. & Meyer, K. B. From Tissues to Cell Types and Back: 

Single-Cell Gene Expression Analysis of Tissue Architecture. ​Annual Review of 

Biomedical Data Science​ vol. 1 29–51 (2018). 

2. Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular 

organization to cellular states. ​Science​ ​361​, (2018). 

3. Lin, J.-R. ​et al.​ Highly multiplexed immunofluorescence imaging of human tissues and 

tumors using t-CyCIF and conventional optical microscopes. ​Elife​ ​7 ​, (2018). 

4. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. 

Spatially resolved, highly multiplexed RNA profiling in single cells. ​Science​ ​348​, 

22 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084145doi: bioRxiv preprint 

https://paperpile.com/c/DseAeA/Qcel
https://saezlab.github.io/misty/
http://paperpile.com/b/DseAeA/AseV
http://paperpile.com/b/DseAeA/AseV
http://paperpile.com/b/DseAeA/AseV
http://paperpile.com/b/DseAeA/AseV
http://paperpile.com/b/DseAeA/AseV
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/9KDb
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/FtuS
http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/Aj72
https://doi.org/10.1101/2020.05.08.084145
http://creativecommons.org/licenses/by/4.0/


 

aaa6090 (2015). 

5. Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA 

profiling by sequential hybridization. ​Nature methods​ vol. 11 360–361 (2014). 

6. Aichler, M. & Walch, A. MALDI Imaging mass spectrometry: current frontiers and 

perspectives in pathology research and practice. ​Lab. Invest.​ ​95​, 422–431 (2015). 

7. Butler, H. J. ​et al. ​ Using Raman spectroscopy to characterize biological materials. 

Nature Protocols​ vol. 11 664–687 (2016). 

8. Giesen, C. ​et al.​ Highly multiplexed imaging of tumor tissues with subcellular resolution 

by mass cytometry. ​Nat. Methods​ ​11​, 417–422 (2014). 

9. Rappez, L. ​et al.​ Spatial single-cell profiling of intracellular metabolomes in situ. ​bioRxiv 

510222 (2019) doi:​10.1101/510222 ​. 

10. Passarelli, M. K. ​et al.​ The 3D OrbiSIMS—label-free metabolic imaging with subcellular 

lateral resolution and high mass-resolving power. ​Nature Methods​ vol. 14 1175–1183 

(2017). 

11. Rodriques, S. G. ​et al.​ Slide-seq: A scalable technology for measuring genome-wide 

expression at high spatial resolution. ​Science​ ​363​, 1463–1467 (2019). 

12. Ståhl, P. L. ​et al. ​ Visualization and analysis of gene expression in tissue sections by 

spatial transcriptomics. ​Science​ ​353​, 78–82 (2016). 

13. Vickovic, S. ​et al.​ High-definition spatial transcriptomics for in situ tissue profiling. ​Nat. 

Methods​ ​16​, 987–990 (2019). 

14. Stickels, R. R. ​et al. ​ Sensitive spatial genome wide expression profiling at cellular 

resolution. ​bioRxiv​ 2020.03.12.989806 (2020) doi:​10.1101/2020.03.12.989806 ​. 

15. Bageritz, J. ​et al.​ Gene expression atlas of a developing tissue by single cell expression 

correlation analysis. ​Nature Methods​ vol. 16 750–756 (2019). 

16. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. 

Nature​ ​576​, 132–137 (2019). 

17. Stuart, T. ​et al. ​ Comprehensive Integration of Single-Cell Data. ​Cell​ ​177​, 
1888–1902.e21 (2019). 

18. Tanevski, J. ​et al.​ Predicting cellular position in the Drosophila embryo from Single-Cell 

Transcriptomics data. ​bioRxiv​ (2019). 

19. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially 

resolved transcriptomic studies. ​Nat. Methods​ ​348​, aaa6090 (2020). 

20. Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in 

single-cell gene expression data. ​Nat. Methods​ ​15​, 339–342 (2018). 

21. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially 

23 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084145doi: bioRxiv preprint 

http://paperpile.com/b/DseAeA/Aj72
http://paperpile.com/b/DseAeA/qIEj
http://paperpile.com/b/DseAeA/qIEj
http://paperpile.com/b/DseAeA/qIEj
http://paperpile.com/b/DseAeA/qIEj
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/TME7
http://paperpile.com/b/DseAeA/AXZz
http://paperpile.com/b/DseAeA/AXZz
http://paperpile.com/b/DseAeA/AXZz
http://paperpile.com/b/DseAeA/AXZz
http://paperpile.com/b/DseAeA/AXZz
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/4wfV
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/85Vy
http://dx.doi.org/10.1101/510222
http://paperpile.com/b/DseAeA/85Vy
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/o7bl
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/itvi
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/QSHC
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/641F
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/GNgw
http://dx.doi.org/10.1101/2020.03.12.989806
http://paperpile.com/b/DseAeA/GNgw
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/ARar
http://paperpile.com/b/DseAeA/fINh
http://paperpile.com/b/DseAeA/fINh
http://paperpile.com/b/DseAeA/fINh
http://paperpile.com/b/DseAeA/fINh
http://paperpile.com/b/DseAeA/fINh
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/sJxV
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/EMJZ
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/Stew
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/XJn9
http://paperpile.com/b/DseAeA/9X9a
https://doi.org/10.1101/2020.05.08.084145
http://creativecommons.org/licenses/by/4.0/


 

variable genes. ​Nat. Methods​ ​15​, 343–346 (2018). 

22. Keren, L. ​et al.​ A Structured Tumor-Immune Microenvironment in Triple Negative Breast 

Cancer Revealed by Multiplexed Ion Beam Imaging. ​Cell​ ​174​, 1373–1387.e19 (2018). 

23. Goltsev, Y. ​et al. ​ Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed 

Imaging. ​Cell​ ​174​, 968–981.e15 (2018). 

24. Schapiro, D. ​et al.​ histoCAT: analysis of cell phenotypes and interactions in multiplex 

image cytometry data. ​Nat. Methods​ ​14​, 873–876 (2017). 

25. Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling 

Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component 

Analysis. ​Cell Rep.​ ​29​, 202–211.e6 (2019). 

26. Breiman, L. Random Forests. ​Mach. Learn.​ ​45​, 5–32 (2001). 

27. Datasets -Spatial Gene Expression -Official 10x Genomics Support. 

https://support.10xgenomics.com/spatial-gene-expression/datasets​. 

28. Schubert, M. ​et al.​ Perturbation-response genes reveal signaling footprints in cancer 

gene expression. ​Nat. Commun.​ ​9 ​, 20 (2018). 

29. Holland, C. H. ​et al.​ Robustness and applicability of transcription factor and pathway 

analysis tools on single-cell RNA-seq data. ​Genome Biol.​ ​21​, 36 (2020). 

30. Türei, D., Korcsmáros, T. & Saez-Rodriguez, J. OmniPath: guidelines and gateway for 

literature-curated signaling pathway resources. ​Nat. Methods​ ​13​, 966–967 (2016). 

31. Gurrapu, S., Pupo, E., Franzolin, G., Lanzetti, L. & Tamagnone, L. Sema4C/PlexinB2 

signaling controls breast cancer cell growth, hormonal dependence and tumorigenic 

potential. ​Cell Death Differ.​ ​25​, 1259 (2018). 

32. pubmeddev & Jian H, E. al. Hypoxia and hypoxia-inducible factor 1 repress SEMA4B 

expression to promote non-small cell lung cancer invasion. - PubMed - NCBI. 

https://www.ncbi.nlm.nih.gov/pubmed/24474252 ​. 

33. Jian, H., Liu, B. & Zhang, J. Hypoxia and hypoxia-inducible factor 1 repress SEMA4B 

expression to promote non-small cell lung cancer invasion. ​Tumour Biol.​ ​35​, 4949–4955 

(2014). 

34. Cheon, D.-J. ​et al.​ A collagen-remodeling gene signature regulated by TGF-β signaling 

is associated with metastasis and poor survival in serous ovarian cancer. ​Clin. Cancer 

Res.​ ​20​, 711–723 (2014). 

35. Yeung, T.-L. ​et al.​ TGF-β modulates ovarian cancer invasion by upregulating 

CAF-derived versican in the tumor microenvironment. ​Cancer Res.​ ​73​, 5016–5028 

(2013). 

36. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell 

24 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084145doi: bioRxiv preprint 

http://paperpile.com/b/DseAeA/9X9a
http://paperpile.com/b/DseAeA/9X9a
http://paperpile.com/b/DseAeA/9X9a
http://paperpile.com/b/DseAeA/9X9a
http://paperpile.com/b/DseAeA/9X9a
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/IEYa
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/nWLo
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/j4gu
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/uLw5
http://paperpile.com/b/DseAeA/nWUX
http://paperpile.com/b/DseAeA/nWUX
http://paperpile.com/b/DseAeA/nWUX
http://paperpile.com/b/DseAeA/nWUX
http://paperpile.com/b/DseAeA/nWUX
http://paperpile.com/b/DseAeA/y8f1
https://support.10xgenomics.com/spatial-gene-expression/datasets
http://paperpile.com/b/DseAeA/y8f1
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/c7co
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/N2Yz
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/tb5Z
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/jkAN
http://paperpile.com/b/DseAeA/5sFs
http://paperpile.com/b/DseAeA/5sFs
https://www.ncbi.nlm.nih.gov/pubmed/24474252
http://paperpile.com/b/DseAeA/5sFs
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/rl0g
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/QYuU
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/g5oR
http://paperpile.com/b/DseAeA/BYKk
https://doi.org/10.1101/2020.05.08.084145
http://creativecommons.org/licenses/by/4.0/


 

RNA-seq data using regularized negative binomial regression. ​Genome Biol.​ ​20​, 1–15 

(2019). 

37. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 

communities in large networks. ​Journal of Statistical Mechanics: Theory and Experiment 

vol. 2008 P10008 (2008). 

 

 

 

25 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.084145doi: bioRxiv preprint 

http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/BYKk
http://paperpile.com/b/DseAeA/Qcel
http://paperpile.com/b/DseAeA/Qcel
http://paperpile.com/b/DseAeA/Qcel
http://paperpile.com/b/DseAeA/Qcel
http://paperpile.com/b/DseAeA/Qcel
https://doi.org/10.1101/2020.05.08.084145
http://creativecommons.org/licenses/by/4.0/


 

Supplementary figures 

 

Sup Figure 1. Steady state distribution of simulated species from a single sample. 
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Sup Figure 2. Additional results from the in silico analysis. ​(A) Improvement in the predictive               

performance (variance explained) for all in silico samples when considering multiple views in contrast              

to a single, intrinsic view. (B) Distribution of AUROC values for the individual samples for the intrinsic                 

and paraview. (C) Distribution of AUPRC values for the individual samples for the intrinsic and               

paraview. 
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Sup Figure 3. Improvement in the predictive performance (variance explained) for all IMC             

samples of breast cancer when considering multiple views in contrast to a single, intrinsic              

view. 
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Sup Figure 4. Improvement in the predictive performance (variance explained) for IMC samples             

of breast cancer by grade when considering multiple views in contrast to a single, intrinsic               

view. ​(A) Grade 1. (B) Grade 2. (C) Grade 3. 
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Sup Figure 5. Inferred interactions and communities from IMC grade 1 breast cancer samples.  

 

Sup Figure 6. Inferred interactions and communities from IMC grade 2 breast cancer samples.  
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Sup Figure 7. Inferred interactions and communities from IMC grade 3 breast cancer samples. 
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Sup Figure 8. Estimated standardized PROGENy’s signaling pathway activities for the f ​i​rst            

section of a sample of invasive ductal carcinoma in breast tissue profiled with 10x Visium 
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Sup Figure 9. Estimated standardized PROGENy’s signaling pathway activities for the second            

section of a sample of invasive ductal carcinoma in breast tissue profiled with 10x Visium. 
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Sup Figure 10. Improvement in the predictive performance (variance explained) of           

target-pathway specific models when considering multiple views in contrast to a single,            

intrinsic view. 
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