

1 **Arousal levels explain inter-subject variability of neuromodulation effects**

2 Marco Esposito¹, Clarissa Ferrari¹, Claudia Fracassi¹, Carlo Miniussi², Debora Brignani¹

3

4 ¹IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy

5 ²Center for Mind/Brain Sciences CIMEC, University of Trento, Rovereto (TN), Italy

6

7

8

9

10

11 **Corresponding Author:**

12 Debora Brignani

13 IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli

14 Via Pilastroni 4; 25125, Brescia, Italy

15 0039-0303501597

16 debora.brignani@cognitiveneuroscience.it

17

18

19 **Abstract**

20 Over the past two decades, the postulated modulatory effects of transcranial direct current stimulation
21 (tDCS) on the human brain have been extensively investigated, with attractive real-world
22 applications. However, recent concerns on reliability of tDCS effects have been raised, principally
23 due to reduced replicability and to the great interindividual variability in response to tDCS. These
24 inconsistencies are likely due to the interplay between the level of induced cortical excitability and
25 unaccounted individual state-dependent factors. On these grounds, we aimed to verify whether the
26 behavioural effects induced by a common prefrontal tDCS montage were dependent on the
27 participants' arousal levels. Pupillary dynamics were recorded during an auditory oddball task while
28 applying either a sham or real tDCS. The tDCS effects on reaction times and pupil dilation were
29 evaluated as a function of subjective and physiological arousal predictors. Both predictors
30 significantly explained performance during real tDCS, namely reaction times improved only with
31 moderate arousal levels; likewise, pupil dilation was affected according to the ongoing levels of
32 arousal. These findings highlight the critical role of arousal in shaping the neuromodulatory outcome,
33 and thus encourage a more careful interpretation of null or negative results.

34

35

36

37

38 **Keywords**

39 tDCS; arousal; pupil; interindividual variability; neuromodulation; state dependency; transcranial
40 electrical stimulation; tES.

41 1. Introduction
42
43 Founded on decades of experimentation, transcranial direct current stimulation (tDCS) is a research
44 tool capable of interacting with the central nervous system, that has been rediscovered at the
45 beginning of this century (1). Beside its value for basic research (2), tDCS has raised great interest
46 for real-world applications, like rehabilitative interventions for neurological and psychiatric diseases
47 (3) and cognitive enhancement (or detraction) in both young and older adults (4–7). However, the
48 development of more effective and generalizable stimulation protocols has been hindered by the gap
49 between our sparse knowledge of the physiological effects and the induced behavioral impact of tDCS
50 (8). What raises most concern is the lack of replicability among tDCS studies and the interindividual
51 variability in response to tDCS (9–15). In addition to non-optimal methodological practices, such as
52 inadequate control conditions and lack of statistical rigor, a complex interplay among biological
53 differences and the level of neuromodulatory effects might be crucial in explaining the reported
54 inconsistencies across studies (16–18). In particular, state-based factors, including the specific or
55 generalized levels of activation prior and during stimulation, the initial levels of performance,
56 wakefulness, task priming or novelty, might all play a decisive role. It appears conceivable to interpret
57 the final effects of tDCS as contingent on the level of network engagement (19,20). In line with this
58 prediction, several cognitive studies have reported a clear effect of baseline levels of different mental
59 capabilities on tDCS response (21–26). Most recently, individual differences in the behavioral effects
60 of prefrontal tDCS have been associated with the levels of excitability of the targeted cortex, indexed
61 by relative concentrations of GABA and glutamate (27).
62 Notably, tDCS affects large-scale brain systems extending well beyond the area under the stimulating
63 electrode (28–31). This approach translates into a lack of focality that closely resembles the spread
64 of the noradrenergic modulatory action exerted by the locus coeruleus (LC), which subtends arousal
65 functions. Several authors have highlighted the key adaptive role of this specific midbrain system in
66 shaping behavioral performance of primates (32–36). A large body of evidence suggests that the

67 exogenous direct currents and the endogenous noradrenergic modulatory action on target cells, share
68 the same central mechanism of neuronal gain control (34,37–39). Therefore, an interrelation between
69 the two stimulating activities seems reasonable to the extent that whenever the contrast between
70 activated and inhibited units becomes sufficiently increased or decreased any further added
71 neuromodulation can likely spoil the expected results. In this regard, a recent study has shown that
72 offline anodal tDCS may hinder the LC endogenous action during response inhibition processes due
73 to the induced alterations of pre-existent neural excitability levels (40). Given the above
74 considerations, it appears evident that great part of the tDCS behavioral variability reasonably stems
75 from the interdependency between the induced cortical excitability and the varying levels of arousal
76 experienced by participants before and during the experimental sessions.

77 The aim of this study was to verify whether the behavioural and physiological responses induced by
78 a common prefrontal tDCS montage were dependent on the participants' arousal levels. We selected
79 the tDCS montage used to stimulate prefrontal cortex in attentional and vigilance tasks (40–43),
80 which is also commonly used in a variety of other settings, such as language-related, executive
81 functions, episodic and visual working memory tasks (44–47). The tDCS was applied during an
82 auditory oddball task aimed to probe cognitive performance as a function of arousal levels (48–50).
83 Our task, indeed, was purposefully designed to keep participants alerted over uncertain intervals (i.e.,
84 variable inter stimulus interval) in a way that online tDCS effects would be necessarily subjected to
85 more frequent fluctuations of arousal (51,52).

86 We tracked pupillary changes as a proxy for the LC modulatory action (50,53–55). Accordingly, we
87 used reaction times (RT) and pupil dilation peaks (PD) as measures of LC phasic response to the
88 relevant stimuli (target), and pre-stimulus pupil diameter (PrePD) as a physiological marker of the
89 LC tonic discharge activity. Furthermore, because LC endogenous activity is closely related to the
90 perceived anxiety (56–58) subjective arousal levels were evaluated by means of State-Trait Anxiety
91 Inventory (STAI-Y) (59).

92

93 2. Methods

94 Mindful that the mere sensory stimulation could mimic the expected arousal effects, prior to
95 conducting the study, we ran a control experiment to validate our blind-controlled tDCS protocol
96 with respect to the potential alteration of arousal due to subjective sensations. To this end, ten healthy
97 participants were recruited. Pupillary dynamics were recorded at rest using the exact same setting as
98 in our main experiment (see section 2.3 and 2.4). Statistical analyses revealed no difference in eye-
99 blink rate and subjective discomfort between sham and real stimulation, ruling out the possibility of
100 tDCS confounding effects on arousal (see supplementary material).

101

102 2.1 *Participants*

103 Fifteen right-handed healthy participants took part in the main experiment. Data of one subject were
104 rejected prior to analyses due to the excessive noise in her/his pupil signal (i.e., interpolation rate >
105 30% of the whole epoch; see 2.3). The remaining 14 participants (8 females) had a mean age of 22.4
106 ($SD = 3.9$) and a mean score to the STAI-Y trait of 44.9 ($SD = 4.1$). Participants had no history of
107 neurological or psychiatric illness and had normal or corrected-to-normal visual acuity. Ethical
108 approval was obtained by the Ethics Committee of the IRCCS Centro San Giovanni di Dio
109 Fatebenefratelli, Brescia, Italy. All participants were given written informed consent.

110

111 2.2 *Study design and task procedure*

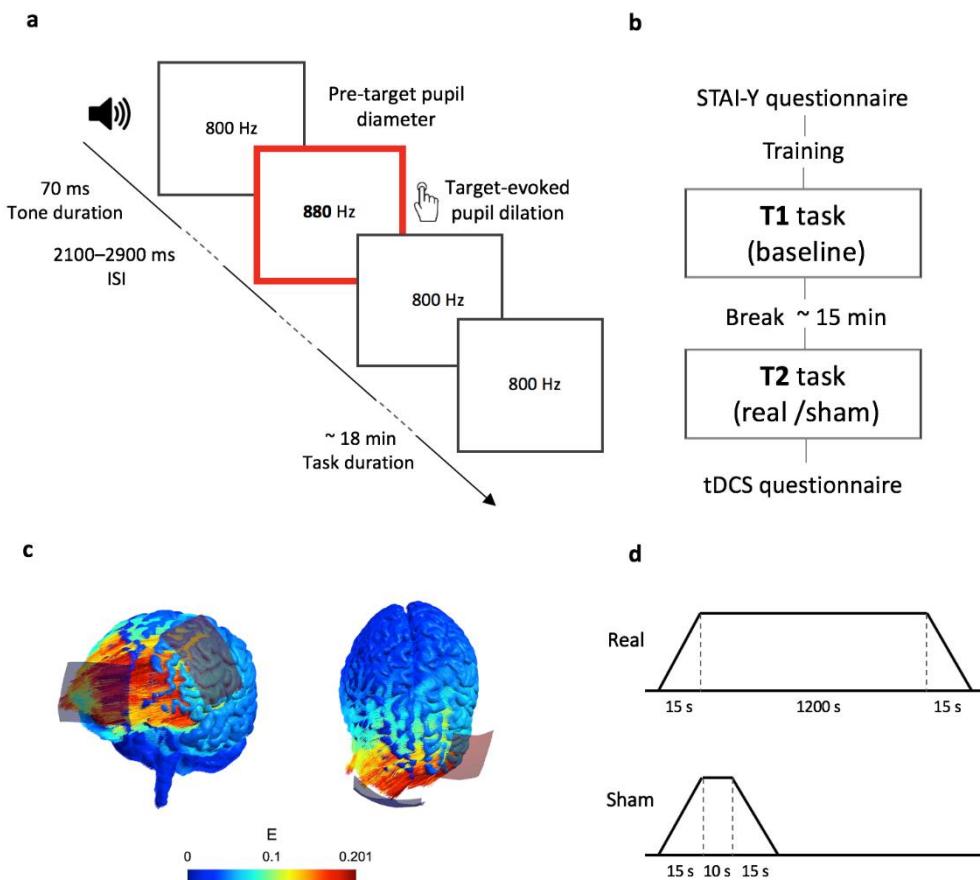
112 A single-blind within-subject design was implemented for this experiment. The testing sessions were
113 organized in two days separated by at least 48h in order to exclude any tDCS carryover effects. In
114 each session we collected behavioral and pupil data for the whole task duration (~18 min).
115 Participants completed the task twice: at *baseline* (T1) without any electrodes mounted on their scalp,
116 and subsequently either during *sham* or *real* stimulation (T2) (Figure 1b).

117 Participants were randomly assigned and counterbalanced across two session-orders of tDCS
118 protocol, so as to rule out any extra confounding variable. Importantly, they were kept blind to the

119 ongoing experimental condition (i.e., sham or real). However, any proportion of variability possibly
120 due to either orders of stimulation was accounted for by including the order group as an independent
121 fixed factor (see section 2.5). As for the time of the day, the same participant was tested at around the
122 same hour to control for any arousal variation due to the daily metabolic cycle and circadian rhythms
123 (60).

124 Participants seated in a soundproof dark room at the distance of about 55 cm from a 17-in LCD
125 monitor and with the only source of light provided by a grey fixation cross. The auditory oddball task
126 was presented using E-Prime presentation software (61) by means of two constant-loudness speakers
127 (Figure 1a).

128 In every task condition there was a fixed total number of trials (420) of which 20% included targets
129 (84) and 80% standards stimuli (336). The stimuli order was then pseudorandomized in a way that
130 target tones (880Hz) occurred after at least three standard tones (800 Hz). The interstimulus interval
131 was set to a range of 2.1-2.9 s and both stimuli lasted for 70 ms including 5 ms of fade in-out edit. In
132 so doing, we ensured enough time (~8 s) for any pupil dilation to return to baseline before overlapping
133 to the next target trial (50,53). Along with a short training session, participants were instructed to
134 readily press a button with their right index finger whenever detecting a target tone, and to keep their
135 gaze on the fixation cross throughout the task. Speed of response and gaze fixation were emphasized
136 before each task execution.


137 At the end of each experimental session participants were given a questionnaire to rate the perceived
138 sensations or discomforts that influenced their performance (62,63).

139 Finally, a careful screening on the amount of sleep, caffeine intake, nicotine and alcohol consumption
140 was carried out next to the above questionnaire. None of these factors was found to be associated
141 with either stimulation sessions.

142

143

144

Fig. 1. Study design and task paradigm. a, Example of a trial sequence. **b**, Overview of the experimental timeline, showing two testing sessions each one with two task conditions: baseline and stimulation. **c**, Simulation results for the applied tDCS montage and parameters using SimNIBS toolbox (Saturnino et al., 2019). The colors denote the electric fields simulated in a default head model. **d**, Schematic representation of the stimulation protocol

165 2.3 Pupil signal recording and pre-processing

166 Participants seated on a chair with adjustable height allowing for the use of a fixed chinrest, and thus
167 keeping variability in the eye-to-camera distance and visual angle as low as possible. For the pupil
168 diameter recording, an EyeLink 1000 Plus system (SR Research, Osgood, ON, Canada) was set up at
169 500 Hz sampling rate with left-monocular and pupil-CR tracking mode. A 9-point calibration
170 procedure was performed before each recording session. After the final session, participants were

171 asked to wear hand-crafted goggles whose left side incorporated an artificial eye with a 4 mm pupil,
172 carefully positioned over the subject's left eye. This allowed for a precise conversion of pupil
173 arbitrary units from the eye-tracker system output to millimeters. Pupil signal was processed offline.
174 Eye blink correction was implemented with a custom script in MATLAB (MathWorks, Inc, Natick,
175 MA, USA). A shape-preserving piecewise cubic interpolation method was chosen to interpolate
176 values ranging from 70 ms before blink onset to 300 after blink offset. Epoch segmentation (-1 s to
177 +2.5 s, relative to target onset), baseline correction (subtractive method, from -800 ms to +200 ms)
178 and visual inspection of pupil traces was carried out in the Brain Vision EEG analyzer software (Brain
179 Products GmbH, Munich, Germany). We extracted two variables of interest from pupil signal: (i)
180 pupil dilation (PD), as the peak value of the maximum dilation after targets presentation and (ii) Pre-
181 stimulus pupil diameter (PrePD) as the mean of 1 s data prior to tone presentation. All epochs with a
182 peak pupil diameter exceeding ± 2 mm were rejected (50).

183

184 *2.4 tDCS protocol*

185 A battery-driven current stimulator (Brain- STIM, EMS, Bologna, Italy) was used to deliver 1 mA
186 (0.028 mA/cm^2) direct current stimulation via two rubber electrodes (35 cm^2) which were inserted
187 inside two saline-soaked sponges. These were fixated with an elastic mesh stretching over the entire
188 head. In order to ensure a stable impedance level as well as keeping skin sensations at the minimum,
189 conductive electro-gel was also applied.

190 Similarly to previous studies (43), the electrodes montage consisted in placing the anode over the
191 area F3 of the EEG 10-20 system and the return (cathode) electrode over the right supra-orbital area
192 as reported in Figure 1c. The duration of the stimulation consisted of about 17 min (1040 s) with 15
193 s of currents fade-in and fade-out. Configuration of the sham condition included 15 s of fade-in, 10 s
194 of actual current delivery and 15 s of fade-out given at the beginning of the experiment only (see
195 Figure 1d).

196

197 2.5 Statistical analyses

198 As expected, the nature of our oddball task caused ceiling effects in the correct responses for all
199 conditions (accuracy rate > 98%). All the trials that included either a false alarm or a missed response
200 were left out from subsequent analyses on RT, as well as trials corresponding to RT faster than 150
201 ms or exceeding 1.96 standard deviations from the mean (number rejected trials: $M = 3.14$, $SD =$
202 1.39). All valid RT were then log-transformed to the base e in order to ensure a normal distribution
203 of the data. We considered only trials having no missing values at the two main outcomes RT and
204 PD, resulting in 52 trials overall. Importantly, these data points were not collapsed across conditions;
205 hence *Trial* was included in the analyses as an independent fixed factor, and thus affording a greater
206 reliability and robustness of the findings.

207 In order to study the effect of tDCS on the behavioral and physiological responses, we performed two
208 linear mixed models (LMM) on RT and on PD as dependent variables. Individual (subject-specific)
209 variation was accounted for by considering *Subjects* as random effect. Fixed effects, repeated within
210 subjects, were specified for *Condition* (2 levels, *real* and *sham*), *Time* (2 levels, *T1* and *T2*) and *Trial*
211 (52 levels); whereas *Order* (2 subgroups, *sham-real* and *real-sham*) was considered as a between-
212 subject fixed effect. In addition, the interaction *Condition* \times *Time* was assessed. Post hoc comparisons
213 were adjusted with Sidak correction for multiple comparisons.

214 The above LMM were subsequently adjusted for subjective arousal (measured by STAI-Y State
215 score) and for physiological arousal (evaluated by PrePD) in order to assess their effects on tDCS-
216 induced modulation. Akaike information criteria (AIC) was used to select the best fitted models (the
217 lower AIC the better model) and the corresponding predictors.

218 Finally, to control for any interdependence between the subjective and physiological measures of
219 arousal, we calculated Pearson's (r) two tailed correlations between PrePD and STAI-Y State score.
220 Correlations coefficients were all non-significant (p 's > 0.05). All statistical analyses were conducted
221 on SPSS Statistics (IBM Corp, Armonk, NY, USA).

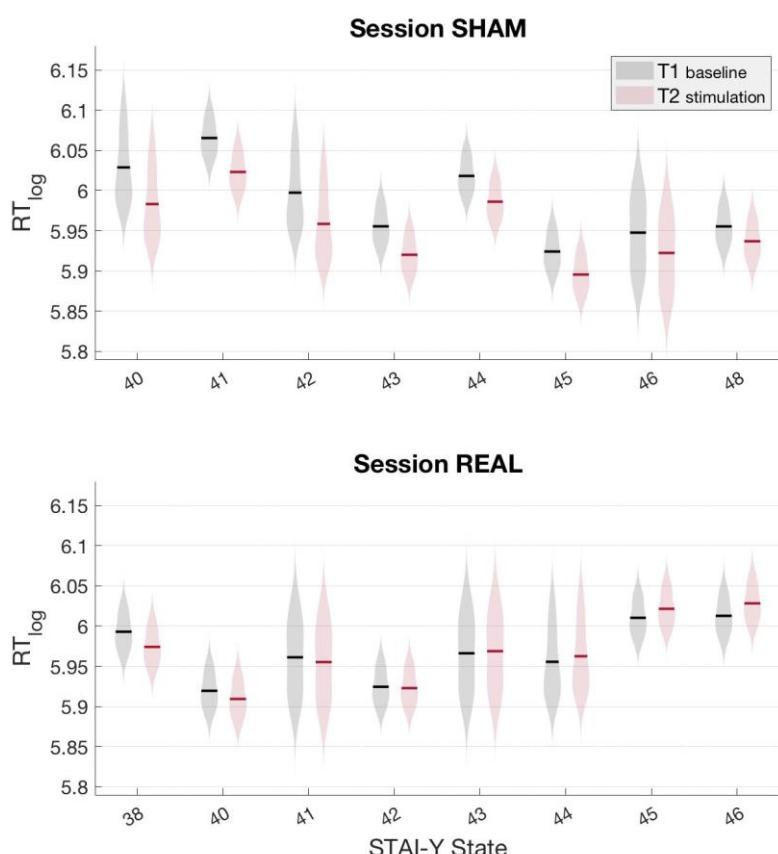
222

223 3. Results

224 Despite the random assignment, the participants included in the two *Order* subgroups exhibited
225 different levels of physiological tonic arousal (PrePD) already at the baseline of the first experimental
226 session, that is before applying the tDCS electrodes (two tailed independent t-tests [$t = -3.64$, $df =$
227 11.82 , $p = .003$]). No difference was found between the subgroups in the STAI-Y scores [$t = -.41$, df
228 $= 11.57$, $p = .68$].

229 As for the reported sensations, a Wilcoxon matched pair test revealed no significant difference
230 between sham and real stimulation [$Z = 1.34$, $p = 0.18$]. It was also ensured that their written responses
231 were consistent with their oral report. Therefore, it was safe to assume that participants were
232 completely unaware of the type of stimulation protocol.

233


234 3.1 Reaction times – RT

235 The unadjusted linear mixed model on RT [AIC = -2574] revealed no significant effects of the *Order*
236 [$F_{(1,11)} = .59$, $p = .477$] and a trend toward significance for *Condition* [$F_{(1,2419)} = 3.76$, $p = .053$] and
237 *Trial* [$F_{(51,98)} = 1.47$, $p = .05$], with slower RT occurring at the end of each tasks. A significant effect
238 of *Time* [$F_{(1,2399)} = 12.15$, $p < .001$] showed that performance significantly improved from *T1* [$M =$
239 5.98 ; $SE = .05$] to *T2* sessions [$M = 5.96$; $SE = .05$], indicating an overall practice effect. Importantly,
240 we found a significant *Condition* x *Time* interaction effect [$F_{(1,2403)} = 12.08$, $p = .001$], indicating a
241 different trend for real and sham conditions. The post-hoc comparison for *Time* revealed a significant
242 performance improvement during *sham* ($p < .001$), but not during *real* stimulation ($p = .99$). This
243 finding suggests that real tDCS hindered the practice effect that was present in the sham condition.

244 Next, LMM adjusted for STAI-Y and PrePD were separately performed (see Supplementary Table
245 1). We found an overall significant contribution of STAI-Y [$F_{(1,2312)} = 9.44$, $p = .002$] and more
246 importantly a significant 3-way interaction [*Condition* x *Time* x STAI-Y: $F = 19.1$, $df = 3/1857$, $p <$
247 $.001$], indicating that the subjective level of arousal affected the interaction *Condition* x *Time* on RT.
248 Specifically, STAI-Y state scores were predictive of the performance variations across tDCS

249 conditions. During sham session a performance improvement was observed for all the continuum of
250 arousal, although it diminished as the level of STAY-Y increased. In the real tDCS condition, RT
251 proved to be faster only when the levels of arousal were low, whereas such pattern was abolished or
252 even reversed with higher levels of arousal (i.e., higher STAI-Y scores, see Figure 2).

253

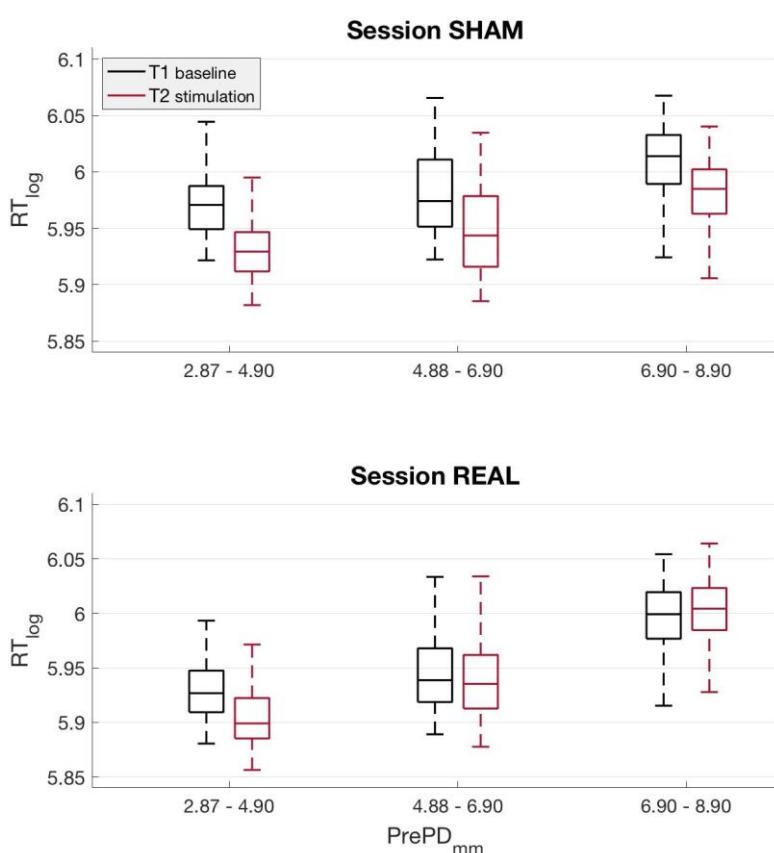


Fig. 2. Reaction times by subjective arousal. Average log-based RT of model fitted values are plotted as a function of STAI-Y scores, with results from session sham (top panel) and real (bottom panel). Each mean value is marked over the corresponding distribution of the data. Colors grey and red represent the baseline (T1) and stimulation (T2) task, respectively.

After adjusting for PrePD, *Condition* and *Time* remained significant [$F_{(1,2131)} = 6.88, p = .009$; $F_{(1,1967)} = 9.44, p = .032$ respectively], although the physiological predictor did not reach statistical significance [PrePD: $F_{(1,1834)} = 3.52, p = .061$]. Also in this case, the 3-way interaction [*Condition* x *Time* x PrePD: $F_{(3,1307)} = 5.57, p = .001$] revealed that the interaction between *Condition* and *Time*

279 was affected by participants' physiological level of arousal. Consistently with the aforementioned
280 effects of subjective levels of arousal, RT improvement across time was consistent in the sham
281 condition, but larger during trials with a reduced PrePD. During real tDCS, a trend toward lower or
282 no improvement was observed as physiological arousal increased (see Figure 3).

283

297 **Fig. 3. Reaction times by physiological arousal.** On each box, the interquartile range, the whiskers and the median of
298 predicted log-based RT are represented for three linearly interspaced bins of pre-target pupil diameter, with results from
299 session sham (top panel) and real (bottom panel). Colors grey and red represent the baseline (T1) and stimulation (T2)
300 task, respectively.

301

302

303 Based on the present results, a far more consistent trend emerged from the adjusted models as
304 compared to the same raw data (see Figure 4). This finding corroborates the importance of not
305 disregarding discrepancies rooted in interindividual differences, such as in physiological and
306 subjective arousal, but rather include them as predictors along with individual random effects.

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

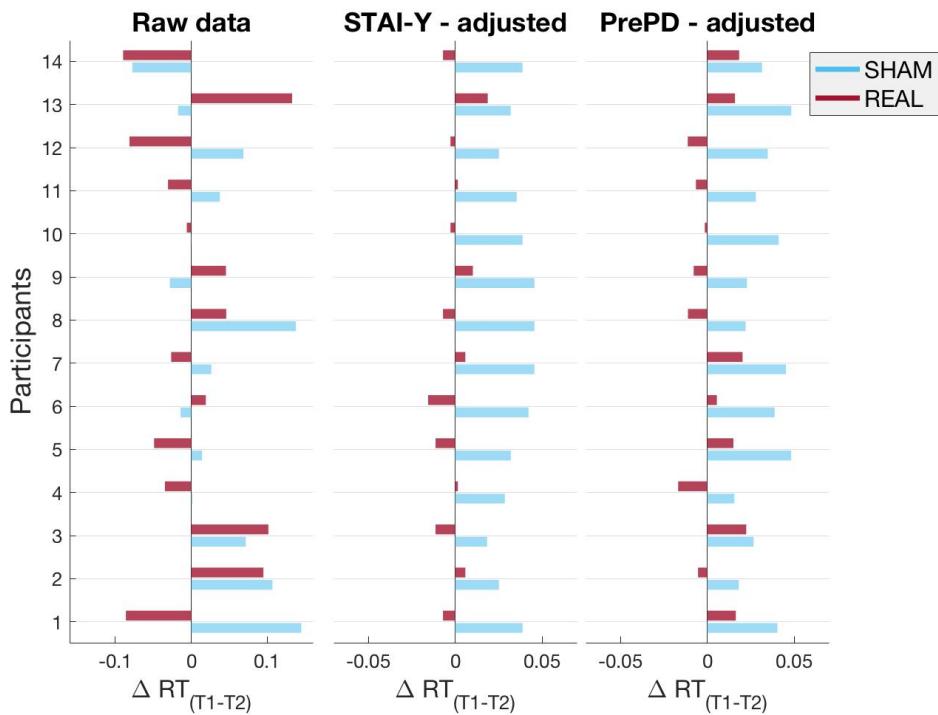
322

323

324

325

326


327

328

329

330

331

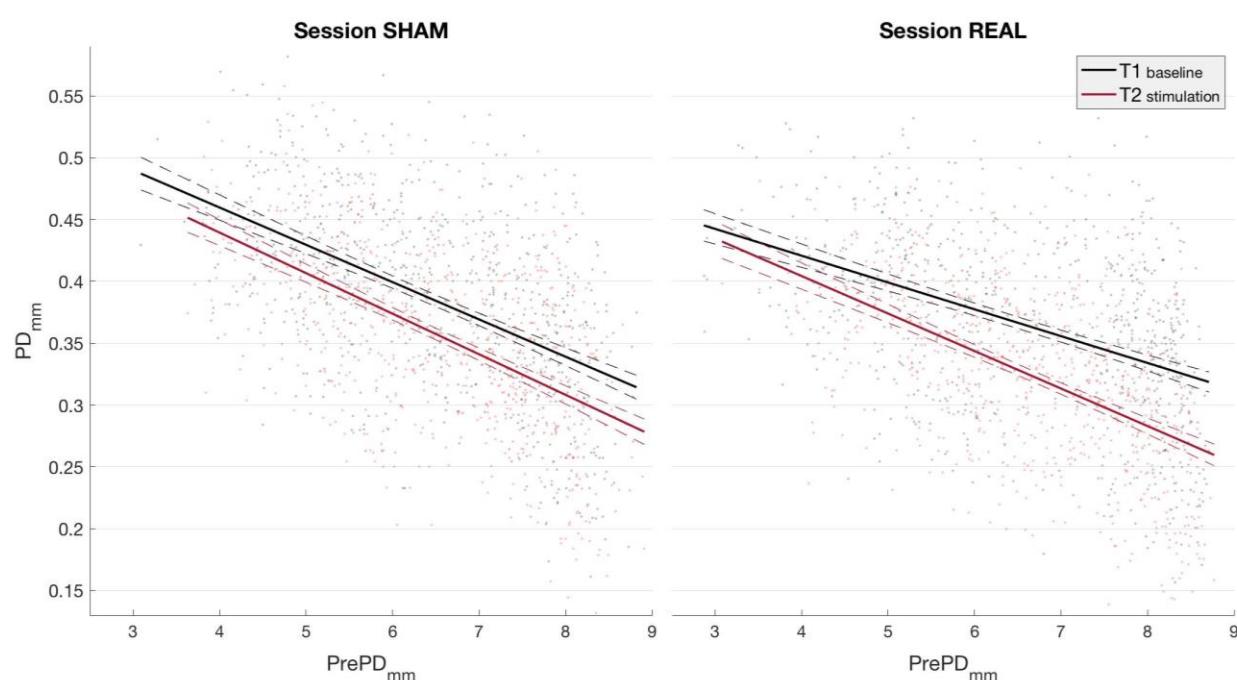


Fig. 4. Subject variability of reaction time change. Average log-based RT differences between the baseline (T1) and stimulation (T2) tasks are plotted on the vertical axis for each participant, separately for session sham (blue bars) and real (red bars). A different bar plot is used to represent mean differences from raw (left panel) and fitted data from the adjusted models using STAI-Y (middle panel) and PrePD (right panel) predictors. Negative and positive values on the horizontal axis indicate slower and faster performance, respectively.

3.2 Pupil dilation – PD

In the unadjusted LMM on PD, [AIC = 964.66], all fixed effects were significant [*Condition*: $F_{(1,1340)} = 10.46, p = .001$; *Time*: $F_{(1,1445)} = 15.83, p < .001$; *Trial*: $F_{(51,88)} = 5.94, p < .001$] except for the factor *Order* [$F_{(1,11)} = 1.96, p = .18$] and the interaction between *Condition* and *Time* [$F_{(1,1362)} = .75, p = .38$]. Importantly, pupil dilation decreased from *T1* [$M = .375; SE = .023$] to *T2* sessions [$M = .34; SE = .023$], indicating a general habituation of the phasic pupillary responses. However, no specific effect of tDCS on PD was revealed.

332 The adjustment for STAI-Y got worse the model fitting [AIC = 986.38], making the interaction
333 *Condition x Time x STAI-Y* not significant [$F_{(1,1066)} = 1.08, p = .35$] (see Supplementary Table 2).
334 On the contrary, adjusting for PrePD strongly improved the model fitting [AIC = -365.48], with
335 significant PrePD [$F_{(1,1794)} = 2231.23, p < .001$] and interaction *Condition x Time x PrePD* effects
336 [$F_{(3,1172)} = 6.5, p < .001$]. In detail, during the sham condition a decrease in pupil dilation consistently
337 occurred throughout the range of PrePD values, whereas during real tDCS the pupil dilation
338 progressively shifted toward a maximal suppression during trials with larger PrePD (Figure 5).

339
340 **Fig. 5. Pupil dilations explained by physiological arousal.** Model fitted PD values are plotted against pre-target pupil
341 diameter, with results from session sham (**left panel**) and real (**right panel**). Grey and red best-fitting lines describe the
342 trend of pupil dilation data points over pre-target pupil diameter respectively for the baseline (T1) and stimulation (T2)
343 task. Dashed lines represent prediction functional bounds, i.e. the uncertainty of predicting the fitted lines.
344

345
346 4. Discussion

347 In the present study, we addressed the question of whether variable effects of single session tDCS
348 could be dependent on the degree of arousal experienced before and during the experiment.

349 Subjective and physiological levels of arousal significantly accounted for the variation of reaction
350 times across two experimental sessions. Real tDCS appeared to hinder the practice effect observed
351 during the sham condition, with a trend becoming especially evident at higher levels of arousal. As
352 for pupil dilation, its values were significantly tied to the corresponding physiological fluctuations of
353 arousal. In particular, a more reduced pupillary response emerged during real tDCS as arousal levels
354 increased.

355 These results shed light on one relevant factor, which seems to account for the paucity of consistency
356 across tDCS effects in some experiments. What effectively emerges is that arousal is predictive of
357 the modulations induced by tDCS on task performance. A number of studies, which reported a
358 considerable inter- and intra-individual variability in response to tDCS protocols, investigated the
359 impact of demographic characteristics (e.g., age, gender), cortical architecture variations or
360 physiological measures specific to the targeted areas (e.g., levels of excitability of the primary motor
361 cortex), yet without considering general measures of activation comparable to arousal (9,64–68).

362 Here, we collected ratings on the subjective level of anxiety (i.e., STAI-Y State) before each
363 experimental session, thus serving as a fixed measure of arousal. Pre-target pupil diameter was instead
364 used as a dynamic proxy of arousal, allowing us to track its ongoing fluctuations (50,52,69). We
365 confirmed that pupil dilation values were negatively related with pre-target pupil diameter across all
366 conditions, as frequently reported in the literature (50,70–72).

367 When our measures of arousal were accounted for by statistical analyses, a clear picture emerged,
368 indicating that the effects induced by tDCS on the behavioral responses were dependent on both
369 subjective and physiological levels of arousal levels. In the sham session, participants speeded up
370 their responses when they completed the task for the second time. This practice effect emerged
371 somewhat independently of both the subjective and physiological levels of arousal, although a slightly
372 more pronounced improvement appeared with lower levels in either measures. During the application
373 of real tDCS, however, performance ceased to improve with the exception of trials characterized by
374 smaller pre-target pupil diameter and participants with a lower score at the STAI-Y questionnaire. A

375 negative or null behavioral outcome of anodal tDCS is not uncommon in the literature and learning
376 impairments have been reported in a host of different tDCS studies involving specific learning
377 outcomes, such as unimproved working memory for recognition or implicit categorization, blocked
378 consolidation of visual perception and inhibited motor learning (68,73–78).
379 We chose response speed as behavioural measure, given that its intrinsic low sensitivity heavily relies
380 on prior levels of fatigue and general activation (79–82). The interpretation of our behavioural results
381 is arguably consistent with an inverted U-shape curve between task performance and arousal.
382 According to this relationship, performance decline would occur when arousal levels are either too
383 high or too low (33,83). None of the participants reported sleep deprivation or otherwise drowsiness-
384 related conditions. Therefore, we can assume that the lower values of our predictors effectively
385 corresponded to moderate and not low levels of arousal. With this in mind, the finding that facilitatory
386 effects are principally associated with a moderate level of cortical excitation seems to support the
387 proposed cellular mechanism for a cortical excitation-inhibition balance (16,84). On these grounds,
388 tDCS exogenous modulation would negatively impact on the normal cortical functioning whenever
389 the levels of endogenous neural activity increase to the extent of a dysfunctional neuronal gain, with
390 spontaneous task disengagement causing slower responses. A direct consequence of this mechanism
391 would be the inhibition of task learning effects, unless the endogenous system is sufficiently inactive,
392 as in low arousal trials. The latter scenario provides an additional argument for when single session
393 tDCS is found to improve task performance in the face of variable but otherwise moderate and well-
394 balanced arousal levels. The understanding that an unbalanced combination of endogenous and
395 exogenous excitability-increase events can, in fact, lead to negative effects is also coherent with
396 frameworks on brain activity-dependent plasticity and on signal-to-noise ratio mechanisms (20,78).
397 Results on pupil dilation, which represents a physiological response to relevant stimuli, corroborate
398 the above interpretation. Only when the ongoing levels of arousal were considered in the analyses, a
399 specific effect of tDCS on pupil dilatation was revealed. An overall reduction of pupil dilation
400 occurred when participants completed the task for the second time (T2), consistently with a

401 physiological habituation effect that paralleled the practice effect seen in the behavioral results
402 (85,86). In particular, pupil dilation evenly decreased for the entire range of arousal in the sham
403 session, but crucial variations emerged during the application of real tDCS: looking at the lower end
404 of the arousal range, pupil dilation values were not as much reduced as in sham session. Conversely,
405 a more pronounced reduction in pupil dilation was observed in trials associated with higher arousal.
406 These, in fact, corresponded to the trials of unimproved response times following real tDCS.
407 Therefore, habituation of a phasic response may not necessarily indicate the same outcome direction
408 as the better performance after a practice effect (85,87). Pupil dilations primarily reflect the timely
409 increase of neural gain control, which translates into a system's responsivity amplification, and as
410 such can be ascribed in the aforementioned inverted-U curve (34,50,71,88). The implication is that
411 the additive effect of an exogenous neuromodulation would, on the one hand, contrast the natural
412 habituation effect on pupil dilation occurring below the intermediate range of tonic arousal and, on
413 the other hand, accentuate task disengagement at higher levels of tonic arousal, hence a greater
414 reduction in phasic response. An analogous explanation was put forward in a recent tDCS work
415 showing a reduction of pupil dilation - but no behavioral effects - during a Go-NoGo task, whereby
416 it was argued that an offline tDCS enhancement of neuronal membrane potential could hinder or
417 replace the endogenous gain control mechanisms of locus coeruleus (40).
418 Furthermore, outside the tDCS literature, phasic pupillary responses were found to be reduced
419 whenever participants' attention was not directed to the task, such as during episodes of mind
420 wandering (72,89–91). Indeed, recent empirical and theoretical formulations of mind wandering have
421 proposed that the locus coeruleus–norepinephrine system is tightly linked to different internally-
422 driven cognitive states, i.e., on- and off-task states with various degrees of deliberate control (36,92).
423 In this respect, the possibility of a direct and focally targeted tDCS modulation of mind wandering
424 has been recently debated with uncertain conclusions (93). Based on this knowledge, it is not unlikely
425 that our tDCS effects would also be partly dependent on the arousal-mediated propensity of mind
426 wandering activity during the task. Although not covered by the aims of this study, the above

427 possibility justifies the argument for a selective alteration of arousal via exogenous neuromodulation.
428 For example, vigilance decrements and physiological sleep pressure were somewhat diminished after
429 prolonged frontal anodal tDCS (41,94) with a magnitude of effects greater than caffeine (95,96).
430 Whereas for the arousal modulation related to a specific event, stimulus-locked bursts of electric
431 random noise stimulation were used to enhance performance and LC phasic responses, as indexed by
432 skin conductance measurements (25). Despite this compelling evidence, it is still difficult to conclude
433 that certain tDCS montages can directly modulate the deep brain arousal structures (97–99). Note
434 though that other mechanisms could involve changes in the neocortical neurons, whose membrane
435 potential shifts are known to be coupled with alteration in pupil diameter (34,100,101).

436

437 In summary, our data collectively offer an explanation for the negative or null effects of a common
438 prefrontal tDCS application. We are aware that the interpretation of these particular results may not
439 apply to all tDCS studies. Nevertheless, the large variability of arousal levels that we found across
440 participants leads us to reflect more closely on what may mask the desired effects in the varied and
441 still growing landscape of stimulation studies, which often fail to incorporate, but simply
442 acknowledge, the crucial aspect of individual state-dependent variables (102–105).

443 The importance of brain state is not a novel idea in the literature on non-invasive brain stimulation.
444 The ongoing or basal levels of activation, included in the concept of “state-dependency”, have been
445 extensively reported to impact the effects of transcranial magnetic stimulation (TMS) (106).
446 Nevertheless, considering the mechanisms of action of tDCS, which modulates excitability of neurons
447 by hyperpolarizing or depolarizing their membrane potential (107,108), tDCS effects might be more
448 sensitive to the arousal levels than TMS. In a similar vein, these considerations might be applicable
449 to any kind of current stimulation modality.

450

451 Taken together, the discussed findings should encourage a more careful interpretation of null or
452 negative effects of tDCS. This is far from saying that all replication failures are due to inherently

453 inefficacious tDCS protocols with exhausted future potential (15). Such observations should instead
454 help ascribing the outcome of those protocols to the interrelation of the locus coeruleus–
455 norepinephrine system and the spreading of induced currents in the brain (40,42). In this sense, future
456 tDCS studies might consider useful to have both dynamic and fixed measures of arousal as an accurate
457 way to monitor its impact on the final outcome. If successful, these achievements would be of great
458 help also in assessing the degree of effectiveness with which tDCS protocols are being utilized to
459 treat or ameliorate clinical conditions.

460

461

462

463 **Disclosure statement**

464 This work has not been published and has not been submitted for publication elsewhere while under
465 consideration. The authors declare no potential conflict of interest.

466

467 **Acknowledgements**

468 CF, CM and DB have been supported by the projects of the Italian Ministry of Health “Ricerca
469 Corrente”.

470

471

472 **References**

473

474 1. Priori A. Brain polarization in humans: A reappraisal of an old tool for prolonged non-
475 invasive modulation of brain excitability., *Clinical Neurophysiology*. 2003; 114: 589–95.

476 2. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity
477 transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines.
478 *Clinical Neurophysiology*. 2017; 128: 1774–809.

479 3. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al.
480 Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation
481 (tDCS). *Clinical Neurophysiology*. 2017; 128: 56–92.

482 4. Santarnecchi E, Brem A-K, Levenbaum E, Thompson T, Kadosh RC, Pascual-Leone A.
483 Enhancing cognition using transcranial electrical stimulation. *Curr Opin Behav Sci*. 2015; 4:
484 171–8.

485 5. Nelson J, McKinley RA, Phillips C, McIntire L, Goodyear C, Kreiner A, et al. The Effects of
486 Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity. *Front*
487 *Hum Neurosci*. 2016; 10: 589.

488 6. Ke Y, Wang N, Du J, Kong L, Liu S, Xu M, et al. The Effects of Transcranial Direct Current
489 Stimulation (tDCS) on Working Memory Training in Healthy Young Adults. *Front Hum*
490 *Neurosci*. 2019; 13:19.

491 7. Summers JJ, Kang N, Cauraugh JH. Does transcranial direct current stimulation enhance
492 cognitive and motor functions in the ageing brain? A systematic review and meta- analysis.
493 *Ageing Research Reviews*. 2016; 25: 42–54.

494 8. Bestmann S, de Berker AO, Bonaiuto J. Understanding the behavioural consequences of
495 noninvasive brain stimulation. *Trends Cogn Sci*. 2015; 19(1): 13–20.

496 9. Wiethoff S, Hamada M, Rothwell JC. Variability in response to transcranial direct current
497 stimulation of the motor cortex. *Brain Stimul*. 2014; 7(3): 468–75.

498 10. Horvath JC, Forte JD, Carter O. Quantitative review finds no evidence of cognitive effects in
499 healthy populations from single-session transcranial direct current stimulation (tDCS). *Brain*
500 *Stimul.* 2015; 8(3): 535–50.

501 11. Horvath JC, Forte JD, Carter O. Evidence that transcranial direct current stimulation (tDCS)
502 generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in
503 healthy human subjects: A systematic review. *Neuropsychologia*. 2015; 66: 213–36.

504 12. Horvath JC, Carter O, Forte JD. No significant effect of transcranial direct current
505 stimulation (tDCS) found on simple motor reaction time comparing 15 different simulation
506 protocols. *Neuropsychologia*. 2016; 91: 544–52.

507 13. Buch ER, Santarecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on
508 motor learning and memory formation: A consensus and critical position paper. Vol. 128,
509 *Clinical Neurophysiology*. 2017; 589–603.

510 14. Medina J, Cason S. No evidential value in samples of transcranial direct current stimulation
511 (tDCS) studies of cognition and working memory in healthy populations. *Cortex*. 2017; 94:
512 131–41.

513 15. Filmer HL, Mattingley JB, Dux PE. Modulating brain activity and behaviour with tDCS:
514 Rumours of its death have been greatly exaggerated. *Cortex*. 2020; 123: 141–51.

515 16. Krause B, Márquez-Ruiz J, Cohen Kadosh R. The effect of transcranial direct current
516 stimulation: A role for cortical excitation/inhibition balance? *Frontiers in Human*
517 *Neuroscience*. 2013; 7: 602.

518 17. Horvath JC, Carter O, Forte JD. Transcranial direct current stimulation: five important issues
519 we aren't discussing (but probably should be). *Front Syst Neurosci*. 2014; 8: 2.

520 18. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of
521 response in transcranial direct current stimulation studies. *Front Cell Neurosci*. 2015; 9: 181.

522 19. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive
523 neuroscience. *Neuroscience and Biobehavioral Reviews*. 2013; 37: 1702–12.

524 20. Fertonani A, Miniussi C. Transcranial electrical stimulation: What we know and do not know
525 about mechanisms. *Neuroscientist*. 2017; 23(2): 109–23.

526 21. Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with
527 more education. *Neurosci Lett*. 2012; 521(2): 148–51.

528 22. Benwell CSY, Learmonth G, Miniussi C, Harvey M, Thut G. Non-linear effects of
529 transcranial direct current stimulation as a function of individual baseline performance:
530 Evidence from biparietal tDCS influence on lateralized attention bias. *Cortex*. 2015; 69: 152–
531 65.

532 23. Hsu TY, Tseng P, Liang WK, Cheng SK, Juan CH. Transcranial direct current stimulation
533 over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term
534 memory task. *Neuroimage*. 2014; 98: 306–13.

535 24. Hsu TY, Juan CH, Tseng P. Individual differences and state-dependent responses in
536 transcranial direct current stimulation. *Front Hum Neurosci*. 2016; 10: 643.

537 25. Mauri P, Miniussi C, Balconi M, Brignani D. Bursts of transcranial electrical stimulation
538 increase arousal in a continuous performance test. *Neuropsychologia*. 2015; 74: 127–36.

539 26. Sarkar A, Dowker A, Kadosh RC. Cognitive enhancement or cognitive cost: Trait-specific
540 outcomes of brain stimulation in the case of mathematics anxiety. *J Neurosci*. 2014; 34(50):
541 16605–10.

542 27. Filmer HL, Ehrhardt SE, Bollmann S, Mattingley JB, Dux PE. Accounting for individual
543 differences in the response to tDCS with baseline levels of neurochemical excitability.
544 *Cortex*. 2019; 115: 324–34.

545 28. Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W. Transcranial direct current
546 stimulation over the primary motor cortex during fMRI. *Neuroimage*. 2011; 55(2): 590–6.

547 29. Wagner S, Rampersad SM, Aydin Ü, Vorwerk J, Oostendorp TF, Neuling T, et al.
548 Investigation of tDCS volume conduction effects in a highly realistic head model. *J Neural
549 Eng*. 2013; 11(1): 016002.

550 30. Weber MJ, Messing SB, Rao H, Detre JA, Thompson-Schill SL. Prefrontal transcranial
551 direct current stimulation alters activation and connectivity in cortical and subcortical reward
552 systems: A tDCS-fMRI study. *Hum Brain Mapp*. 2014; 35(8): 3673–86.

553 31. Sandrini M, Xu B, Volochayev R, Awosika O, Wang WT, Butman JA, et al. Transcranial
554 direct current stimulation facilitates response inhibition through dynamic modulation of the
555 fronto-basal ganglia network. *Brain Stimul*. 2020; 13(1): 96–104.

556 32. Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: Modulation of
557 behavioral state and state-dependent cognitive processes. *Brain Research Reviews*. 2003; 42:
558 33–84.

559 33. Aston-Jones G, Rajkowsky J, Cohen J. Role of locus coeruleus in attention and behavioral
560 flexibility. *Biological Psychiatry*. 1999; 46: 1309–20.

561 34. Aston-Jones G, Cohen JD. Adaptive gain and the role of the locus coeruleus-norepinephrine
562 system in optimal performance. *J Comp Neurol*. 2005; 493(1): 99–110.

563 35. Sara SJ, Bouret S. Orienting and Reorienting: The Locus Coeruleus Mediates Cognition
564 through Arousal. *Neuron*. 2012; 76: 130–41.

565 36. Mittner M, Hawkins GE, Boekel W, Forstmann BU. A Neural Model of Mind Wandering.
566 *Trends Cogn Sci*. 2016; 20(8): 570–8.

567 37. Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: Gain,
568 signal-to-noise ratio, and behavior. *Science*. 1990; 249(4971): 892–5.

569 38. Moxon KA, Devilbiss DM, Chapin JK, Waterhouse BD. Influence of norepinephrine on
570 somatosensory neuronal responses in the rat thalamus: A combined modeling and in vivo
571 multi-channel, multi-neuron recording study. *Brain Res*. 2007; 1147(1): 105–23.

572 39. Lafon B, Rahman A, Bikson M, Parra LC. Direct Current Stimulation Alters Neuronal
573 Input/Output Function. *Brain Stimul*. 2017; 10(1): 36–45.

574 40. Adelhöfer N, Mückschel M, Teufert B, Ziemssen T, Beste C. Anodal tDCS affects
575 neuromodulatory effects of the norepinephrine system on superior frontal theta activity

576 during response inhibition. *Brain Struct Funct.* 2019; 224(3): 1291–300.

577 41. Nelson JT, McKinley RA, Golob EJ, Warm JS, Parasuraman R. Enhancing vigilance in
578 operators with prefrontal cortex transcranial direct current stimulation (tDCS). *NeuroImage.*
579 2014; 85: 909–17.

580 42. Brosnan MB, Arvaneh M, Harty S, Maguire T, O’connell R, Robertson IH, et al. Prefrontal
581 modulation of visual processing and sustained attention in aging, a tDCS–EEG coregistration
582 approach. *J Cogn Neurosci.* 2018; 30(11): 1630–45.

583 43. Savic B, Cazzoli D, Müri R, Meier B. No effects of transcranial DLPFC stimulation on
584 implicit task sequence learning and consolidation. *Sci Rep.* 2017; 7(1): 1–10.

585 44. Penolazzi B, Pastore M, Mondini S. Electrode montage dependent effects of transcranial
586 direct current stimulation on semantic fluency. *Behav Brain Res.* 2013; 248: 129–35.

587 45. Plewnia C, Zwissler B, Längst I, Maurer B, Giel K, Krüger R. Effects of transcranial direct
588 current stimulation (tDCS) on executive functions: Influence of COMT Val/Met
589 polymorphism. *Cortex.* 2013; 49(7): 1801–7.

590 46. Sandrini M, Brambilla M, Manenti R, Rosini S, Cohen LG, Cotelli M. Noninvasive
591 stimulation of prefrontal cortex strengthens existing episodic memories and reduces
592 forgetting in the elderly. *Front Aging Neurosci.* 2014; 6: 289.

593 47. Mulquiny PG, Hoy KE, Daskalakis ZJ, Fitzgerald PB. Improving working memory:
594 Exploring the effect of transcranial random noise stimulation and transcranial direct current
595 stimulation on the dorsolateral prefrontal cortex. *Clin Neurophysiol.* 2011; 122(12): 2384–9.

596 48. Beatty J. Task-evoked pupillary responses, processing load, and the structure of processing
597 resources. *Psychol Bull.* 1982; 91(2): 276–92.

598 49. Polich J. Updating P300: An integrative theory of P3a and P3b. Vol. 118, *Clinical*
599 *Neurophysiology.* 2007; 2128–48.

600 50. Murphy PR, Robertson IH, Balsters JH, O’connell RG. Pupillometry and P3 index the locus
601 coeruleus-noradrenergic arousal function in humans. *Psychophysiology.* 2011; 48(11): 1532–

602 43.

603 51. Langner R, Eickhoff SB. Sustaining attention to simple tasks: A meta-analytic review of the
604 neural mechanisms of vigilant attention. *Psychol Bull.* 2013; 139(4): 870–900.

605 52. Unsworth N, Robison MK, Miller AL. Pupillary correlates of fluctuations in sustained
606 attention. *J Cogn Neurosci.* 2018; 30(9): 1241–53.

607 53. Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD. Pupil diameter tracks changes in control
608 state predicted by the adaptive gain theory of locus coeruleus function. *Cogn Affect Behav*
609 *Neurosci.* 2010; 10(2): 252–69.

610 54. Jepma M, Nieuwenhuis S. Pupil diameter predicts changes in the exploration-exploitation
611 trade-off: Evidence for the adaptive gain theory. *J Cogn Neurosci.* 2001; 23(7): 1587–96.

612 55. Costa VD, Rudebeck PH. More than Meets the Eye: The Relationship between Pupil Size
613 and Locus Coeruleus Activity. *Neuron.* 2016; 89: 8–10.

614 56. Eysenck HJ. Biological basis of personality. *Nature.* 1963; 199(4898): 1031–4.

615 57. Mizuki Y, Suetsugi M, Ushijima I, Yamada M. Differential effects of dopaminergic drugs on
616 anxiety and arousal in healthy volunteers with high and low anxiety. *Prog Neuro-*
617 *Psychopharmacology Biol Psychiatry.* 1997; 21(4): 573–90.

618 58. Robbins T, Everitt B. Central norepinephrine neurons and behavior. *Psychopharmacol Fourth*
619 *Gener Progress.* 1995; 363–72.

620 59. Spielberger, D. C. State-Trait Anxiety Inventory. In: *The Corsini Encyclopedia of*
621 *Psychology.* Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2010; 1–1.

622 60. Oken BS, Salinsky MC, Elsas SM. Vigilance, alertness, or sustained attention: physiological
623 basis and measurement. *Clinical Neurophysiology.* 2006; 117: 1885–901.

624 61. Schneider W, Eschman A, Zuccolotto A. E-Prime user's guide. Pittsburgh: Psychology
625 Tools. 2001.

626 62. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C. Naming facilitation induced by
627 transcranial direct current stimulation. *Behav Brain Res.* 2010; 208(2): 311–8.

628 63. Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric
629 stimulation? Safety, sensations and secondary induced effects. *Clin Neurophysiol*. 2015;
630 126(11): 2181–8.

631 64. Katz B, Au J, Buschkuhl M, Abagis T, Zabel C, Jaeggi SM, et al. Individual differences and
632 long-term consequences of tDCS-augmented cognitive training. *J Cogn Neurosci*. 2017;
633 29(9): 1498–508.

634 65. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive
635 brain stimulation in healthy subjects. *Journal of Physiology*. 2010; 588: 2291–304.

636 66. van de Ruit M, Grey MJ. Interindividual Variability in Use-Dependent Plasticity Following
637 Visuomotor Learning: The Effect of Handedness and Muscle Trained. *J Mot Behav*. 2019;
638 51(2): 171–84.

639 67. López-Alonso V, Fernández-del-Olmo M, Costantini A, Gonzalez-Henriquez JJ, Cheeran B.
640 Intra-individual variability in the response to anodal transcranial direct current stimulation.
641 *Clin Neurophysiol*. 2015; 126(12): 2342–7.

642 68. Filmer HL, Ehrhardt SE, Shaw TB, Mattingley JB, Dux PE. The efficacy of transcranial
643 direct current stimulation to prefrontal areas is related to underlying cortical morphology.
644 *Neuroimage*. 2019; 196: 41–8.

645 69. Van Den Brink RL, Murphy PR, Nieuwenhuis S. Pupil diameter tracks lapses of attention.
646 *PLoS One*. 2016; 11(10): 1–16.

647 70. De Gee JW, Knapen T, Donner TH. Decision-related pupil dilation reflects upcoming choice
648 and individual bias. *Proc Natl Acad Sci U S A*. 2014; 111(5): E618–25.

649 71. Hong L, Walz JM, Sajda P. Your Eyes Give You Away: Prestimulus Changes in Pupil
650 Diameter Correlate with Poststimulus Task-Related EEG Dynamics. Hamed S Ben, editor.
651 *PLoS One*. 2014; 9(3).

652 72. Unsworth N, Robison MK. Pupillary correlates of lapses of sustained attention. *Cogn Affect
653 Behav Neurosci*. 2016; 16(4): 601–15.

654 73. Berryhill ME, Wencil EB, Branch Coslett H, Olson IR. A selective working memory
655 impairment after transcranial direct current stimulation to the right parietal lobe. *Neurosci
656 Lett.* 2010; 479(3): 312–6.

657 74. Fertonani A, Pirulli C, Miniussi C. Random Noise Stimulation Improves Neuroplasticity in
658 Perceptual Learning. *J Neurosci.* 2011; 31(43): 15416–23.

659 75. Ambrus GG, Zimmer M, Kincses ZT, Harza I, Kovács G, Paulus W, et al. The enhancement
660 of cortical excitability over the DLPFC before and during training impairs categorization in
661 the prototype distortion task. *Neuropsychologia.* 2011; 49(7): 1974–80.

662 76. Verhage MC, Avila EO, Frens MA, Donchin O, van der Geest JN. Cerebellar tDCS does not
663 enhance performance in an implicit categorization learning task. *Front Psychol.* 2017; 8: 476.

664 77. Peters MAK, Thompson B, Merabet LB, Wu AD, Shams L. Anodal tDCS to V1 blocks
665 visual perceptual learning consolidation. *Neuropsychologia.* 2013; 51(7): 1234–9.

666 78. Bortoletto M, Pellicciari MC, Rodella C, Miniussi C. The interaction with task-induced
667 activity is more important than polarization: A tDCS study. *Brain Stimul.* 2015; 8(2): 269–
668 76.

669 79. Welford A. Choice reaction time: Basic concepts. *React times.* 1980; 73–128.

670 80. Sturm W, Willmes K. On the functional neuroanatomy of intrinsic and phasic alertness. In:
671 *NeuroImage.* 2001; S76-84.

672 81. Davranche K, Burle B, Audiffren M, Hasbroucq T. Physical exercise facilitates motor
673 processes in simple reaction time performance: An electromyographic analysis. *Neurosci
674 Lett.* 2006; 396(1): 54–6.

675 82. van den Berg J, Neely G. Performance on a simple reaction time task while sleep deprived.
676 *Percept Mot Skills.* 2006; 102(2): 589–99.

677 83. Yerkes RM, Dodson JD. The relation of strength of stimulus to rapidity of habit-formation. *J
678 Comp Neurol Psychol.* 1908; 18(5): 459–82.

679 84. Krause B, Kadosh RC. Not all brains are created equal: The relevance of individual

680 differences in responsiveness to transcranial electrical stimulation. *Front Syst Neurosci.*
681 2014; 8: 1–12.

682 85. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, et al. Habituation
683 revisited: An updated and revised description of the behavioral characteristics of habituation.
684 *Neurobiol Learn Mem.* 2009; 92(2): 135–8.

685 86. Thompson RF, Spencer WA. Habituation: A model phenomenon for the study of neuronal
686 substrates of behavior. *Psychol Rev.* 1966; 73(1): 16–43.

687 87. Mackworth JF. Vigilance, arousal, and habituation. *Psychol Rev.* 1968; 75(4): 308–22.

688 88. Nieuwenhuis S, Aston-Jones G, Cohen JD. Decision making, the P3, and the locus
689 coeruleus-norepinephrine system. *Psychological Bulletin.* 2005; 131: 510–32.

690 89. Jubera-García E, Gevers W, Van Opstal F. Influence of content and intensity of thought on
691 behavioral and pupil changes during active mind-wandering, off-focus, and on-task states.
692 *Attention, Perception, Psychophys.* 2019; 12: 1–1.

693 90. Smallwood J, Brown KS, Tipper C, Giesbrecht B, Franklin MS, Mrazek MD, et al.
694 Pupillometric Evidence for the Decoupling of Attention from Perceptual Input during Offline
695 Thought. *PLoS One.* 2011; 6(3).

696 91. Mittner M, Boekel W, Tucker AM, Turner BM, Heathcote A, Forstmann BU. When the
697 brain takes a break: A model-based analysis of mind wandering. *J Neurosci.* 2014; 34(49):
698 16286–95.

699 92. Christoff K, Irving ZC, Fox KCR, Spreng RN, Andrews-Hanna JR. Mind-wandering as
700 spontaneous thought: A dynamic framework. *Nat Rev Neurosci.* 2016; 17(11): 718–31.

701 93. Chaieb L, Antal A, Derner M, Leszczyński M, Fell J. New perspectives for the modulation of
702 mind-wandering using transcranial electric brain stimulation. *Neuroscience.* 2019; 409: 69–
703 80.

704 94. Frase L, Piosczyk H, Zittel S, Jahn F, Selhausen P, Krone L, et al. Modulation of Total Sleep
705 Time by Transcranial Direct Current Stimulation (tDCS). *Neuropsychopharmacology.* 2016;

706 41(10): 2577–86.

707 95. McIntire LK, McKinley RA, Goodyear C, Nelson J. A comparison of the effects of
708 transcranial direct current stimulation and caffeine on vigilance and cognitive performance
709 during extended wakefulness. *Brain Stimul.* 2014; 7(4): 499–507.

710 96. McIntire L, Andy McKinley R, Nelson J, Goodyear C. Transcranial Direct Current
711 Stimulation (tDCS) versus caffeine to sustain wakefulness at night when dosing at start-of-
712 shift. *Advances in Intelligent Systems and Computing.* 2017; 157–72.

713 97. Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical
714 functional connectivity with transcranial direct current stimulation. *Hum Brain Mapp.* 2012;
715 33(10): 2499–508.

716 98. Bikson M, Rahman A, Datta A. Computational models of transcranial direct current
717 stimulation. *Clin EEG Neurosci.* 2012; 43(3): 176–83.

718 99. Chib VS, Yun K, Takahashi H, Shimojo S. Noninvasive remote activation of the ventral
719 midbrain by transcranial direct current stimulation of prefrontal cortex. *Transl Psychiatry.*
720 2013; 3(6): e268.

721 100. Destexhe A, Rudolph M, Paré D. The high-conductance state of neocortical neurons in vivo.
722 *Nat Rev Neurosci.* 2003; 4(9) :739–51.

723 101. McGinley MJ, David S V., McCormick DA. Cortical Membrane Potential Signature of
724 Optimal States for Sensory Signal Detection. *Neuron.* 2015; 87(1): 179–92.

725 102. Lanina AA, Feurra M, Gorbunova ES. No Effect of the Right Posterior Parietal Cortex tDCS
726 in Dual-Target Visual Search. *Front Psychol.* 2018; 9: 2112.

727 103. Talsma LJ, Kroese HA, Slagter HA. Boosting cognition: Effects of multiple-session
728 transcranial direct current stimulation on working memory. *J Cogn Neurosci.* 2017; 29(4):
729 755–68.

730 104. Penton T, Bate S, Dalrymple KA, Reed T, Kelly M, Godovich S, et al. Using High
731 Frequency Transcranial Random Noise Stimulation to Modulate Face Memory Performance

732 in Younger and Older Adults: Lessons Learnt From Mixed Findings. *Front Neurosci.* 2018;
733 12: 863.

734 105. Willis ML, Costantino AI, Nitsche MA, Palermo R, Rivolta D. Anodal tDCS and high-
735 frequency TRNs targeting the occipitotemporal cortex do not always enhance face
736 perception. *Front Neurosci.* 2019; 13: 78.

737 106. Silvanto J, Muggleton N, Walsh V. State-dependency in brain stimulation studies of
738 perception and cognition. *Trends Cogn Sci.* 2008; 12: 447–54.

739 107. Liebetanz D, Nitsche M, Tergau F, Paulus W. Pharmacological approach to the mechanisms
740 of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.
741 *Brain.* 2002; 125(10): 2238–47.

742 108. Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al.
743 Pharmacological modulation of cortical excitability shifts induced by transcranial direct
744 current stimulation in humans. *J Physiol.* 2003; 553(1): 293–301.

745

746

747

748

749

750

751

752

753

754

755

756

757