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Abstract 16 

While T cell immunity is an important component of the immune response to Zika virus 17 

(ZIKV) infection generally, the efficacy of these responses during pregnancy remains unknown. 18 

Here, we tested the capacity of CD8 lymphocytes to protect from secondary challenge in four 19 

macaques, two of which were depleted of CD8+ cells prior to rechallenge with a heterologous 20 

ZIKV isolate. The initial challenge during pregnancy produced transcriptional signatures 21 

suggesting complex patterns of immune modulation, but all animals efficiently controlled the 22 

rechallenge virus, implying that the primary infection conferred adequate protection. The 23 

secondary challenge promoted humoral responses and activation of innate and adaptive immune 24 

cells, suggesting a brief period of infection prior to clearance. These data confirm that ZIKV 25 

infection during pregnancy induces sufficient immunity to protect from a secondary challenge and 26 

suggest that this protection is not solely dependent on CD8 T cells but entails multiple arms of the 27 

immune system. 28 
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Introduction 32 

ZIKV was first isolated nearly seventy years prior to the Brazilian outbreak of 2015 (Dick 33 

et al., 1952; Zanluca et al., 2015), but the recent epidemic became associated with vertical 34 

transmission dynamics and congenital syndromes that were unprecedented for ZIKV or any other 35 

flavivirus (Plourde and Bloch, 2016). Although infrequent neurological manifestations, including 36 

Guillain-Barre syndrome, meningitis, and meningoencephalitis, became linked to infection in 37 

adults (Araujo et al., 2016; Avelino-Silva and Martin, 2016; Brasil et al., 2016; Ellul et al., 2016), 38 

the most severe neurological consequences were documented in infants born to mothers infected 39 

during pregnancy (Barton and Salvadori, 2016; Melo et al., 2016). Referred to as congenital Zika 40 

syndrome (CZS) (Moore et al., 2017), this collection of manifestations has provided the greatest 41 

justification to develop prophylactic and therapeutic countermeasures against the virus. Several 42 

murine and NHP models have been developed to understand mechanisms of maternal-to-fetal 43 

transmission and to develop and test antiviral therapies and vaccines (Aliota et al., 2016; Dudley 44 

et al., 2016; Hirsch et al., 2017; Koide et al., 2016; Magnani et al., 2018; Morrison and Diamond, 45 

2017; Nguyen et al., 2017; O'Connor et al., 2018; Osuna et al., 2016), but NHPs may provide a 46 

superior model to study vertical transmission and congenital hazards due to the similarities in 47 

placental structure and gestational development to humans (Morrison and Diamond, 2017). 48 

Experimental ZIKV vaccine efforts to date have been successful, with a number of 49 

candidate vaccines having advanced to clinical trials, but an often underappreciated consideration 50 

in vaccine design is whether protective responses can be attained in the context of pregnancy. 51 

Complex interactions between sex hormones and the immune system make pregnant women more 52 

susceptible to a host of infections (Kourtis et al., 2014), so an important question in ZIKV vaccine 53 
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design is whether immunity induced during pregnancy is sufficient to prevent subsequent 54 

infections and if this protection extends to infants born to women infected during pregnancy. 55 

A recent study showed that NHPs infected during pregnancy establish long-term immune 56 

responses that are sufficient to protect against secondary challenge (Moreno et al., 2019), a finding 57 

that is also true in non-pregnant macaques (Aliota et al., 2016). Similar to other flaviviruses, ZIKV 58 

infection results in rapid neutralizing antibody titers (Coffey et al., 2017), suggesting that humoral 59 

immunity may be the most important correlate of protection. However, ZIKV-specific T cell 60 

responses have been described in mice (Elong Ngono et al., 2017; Huang et al., 2017; Pardy et al., 61 

2017), macaques (Dudley et al., 2016), and humans (Grifoni et al., 2018; Grifoni et al., 2017; 62 

Ricciardi et al., 2017; Xu et al., 2016), so cell-mediated immunity might also have role in 63 

protection from secondary infection. Here, we used the rhesus macaque model to address whether 64 

ZIKV infection during pregnancy induces sufficient immunity to protect from rechallenge, and we 65 

also asked whether CD8 lymphocytes are an important component of this protection. 66 

Materials and Methods 67 

CD8 depletion 68 

Approximately nine months after an initial challenge during the 3rd trimester of pregnancy, 69 

as described previously (Magnani et al., 2018), two of four dams were depleted of CD8a+ 70 

lymphocytes (primarily NK cells and CD8+ T cells) using the anti-CD8a MT807R1 antibody 71 

(Nonhuman Primate Reagent Resource, RRID:AB_2716320) with a standard four-dose regimen 72 

over 10 days. CD8+ cell counts in blood were monitored by FACS analysis, and animals were 73 

screened for adverse events after each administration and none were observed. 74 
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Viral challenge and viral load quantification 75 

Primary ZIKV inoculations of the primary ZIKV isolate Rio-U1 were described previously 76 

(Magnani et al., 2018). The challenge virus was isolated in 2015 from the urine of a pregnant 77 

woman in Rio de Janeiro (Bonaldo et al., 2016). Briefly, four Indian rhesus macaques were initially 78 

challenged with ZIKV Rio-U1 at 104 plaque forming units (PFU) during the 3rd trimester of 79 

pregnancy, resulting in serum viremia that peaked at 3 days post infection (dpi) with 5-6 logs of 80 

viral RNA/ml in plasma that cleared between 14 and 28 dpi. One animal, M09, had detectable 81 

virus in amniotic fluid just prior to full term fetal harvest, between 35 and 40 dpi. Two infants 82 

were sacrificed for tissue harvest, but no evidence of in utero infection was present. The other two 83 

infants were kept alive for a viral challenge and behavioral observation, as described previously 84 

(Maness et al., 2019). 85 

Secondary inoculations of the heterologous Puerto Rican isolate PRVABC-59 were carried 86 

out at the same dose (104 PFU), and route (subcutaneous) as the primary challenge. Blood and 87 

cerebrospinal fluid (CSF) were drawn on days 0, 3, 5, 7, 14, and 28 post challenge. Viral RNA 88 

was isolated from serum and CSF using the Roche High Pure Viral RNA Kit followed by 89 

quantification as described previously (Magnani et al., 2018). Animals were euthanized 28 dpi 90 

(n=2) or 30 dpi (n=2) after secondary challenge. 91 

RNA-sequencing and analysis 92 

Total RNA was extracted from PBMC pellets at the indicated timepoints using the Zymo 93 

Quick-RNA Miniprep kit. RNA was purified using the Zymo RNA clean & concentrator-25 kit 94 

and quantitated using the Qubit RNA BR assay kit (Thermo Fisher). A beta release of the Collibri 95 

3’ mRNA Library Prep Kit (Invitrogen) was used to prepare libraries, and sequencing was carried 96 

out at the Tulane NextGen sequencing core using an Illumina NextSeq instrument with 150 cycles. 97 
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Sequencing data were aligned and mapped to the rhesus macaque genome (Mmul_10 98 

assembly) using STAR (Dobin et al., 2013) with default settings in gene quantification mode. 99 

Differentially expressed genes (DEGs) were calculated using DESeq2 (Love et al., 2014), and 100 

pathway analysis was carried out using gene set variation analysis (GSVA) (Hänzelmann et al., 101 

2013), gene set enrichment analysis (GSEA) (Subramanian et al., 2005), ReactomePA (Yu and 102 

He, 2016), and Ingenuity Pathway Analysis (IPA) (Qiagen). For GSVA analysis, gene sets in the 103 

Reactome databank were used, and pairwise comparisons among conditions were carried out using 104 

limma (Ritchie et al., 2015). Gene sets were considered significantly differentially enriched at 105 

p<0.05. For GSEA analysis, a false discovery rate (FDR) below 25% was used to identify gene 106 

sets in the Hallmarks collection that were significantly enriched at 3 or 7 dpi relative to pre-107 

infection. For these analyses, a gene set permutation of 1000 was utilized. In IPA, the two 108 

transcriptionally responding animals at 3 dpi (M08 and M09) were used to identify signaling 109 

patterns at this timepoint, while all 3rd trimester animals were analyzed at 7 dpi. Volcano plots, 110 

heatmaps, and Venn diagrams were generated using the EnhancedVolcano, pheatmap, and 111 

VennDiagram packages in R, respectively. For heatmaps of read count data, log2-transformed read 112 

counts of genes responsible for core enrichment of the indicated gene sets are plotted. Differential 113 

expression data from a previous cohort of male rhesus and cynomolgus macaques infected with 114 

the identical ZIKV isolate (Rio-U1) (Schouest et al., 2019, PREPRINT) is shown in Fig. 4. For 115 

this analysis, transcriptional profiles of immune signaling were generated using the nCounter NHP 116 

Immunology Panel of 770 macaque immune response genes (NanoString Technologies). RNA had 117 

been extracted from PAXgene blood RNA tubes (PreAnalytiX) using the PAXgene blood RNA 118 

kit (PreAnalytiX), and cDNA was synthesized using the RT2 First Strand Kit (Qiagen). 119 

Transcriptional responses were assessed at 3 dpi relative to expression levels pre-infection using 120 
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nSolver software v4.0 (NanoString Technologies). Only DEGs that were present in both datasets 121 

(previous male cohort and 3rd trimester animals at each timepoint) were included in comparison 122 

analyses. 123 

Anti-ZIKV binding antibody titers 124 

Serum was tested for reactivity to ZIKV antigen using the commercial enzyme-linked 125 

immunospot assay (ELISA, Xpressbio) from before the initial infection, 28 days after the initial 126 

infection, on the day of reinfection, and 30 days after rechallenge. Responses during primary 127 

infection, reported as optical density (OD), were tested at a 1:50 dilution. This dilution proved too 128 

concentrated for the rechallenge, so a 1:200 dilution was used. 129 

Flow cytometry 130 

Cryopreserved PBMCs were thawed and labeled with the following antibodies: CD16 131 

AL488, CD169 PE, CD28 PE-CF594, CD95 PCP-Cy5.5, CD3 PE-Cy7, CD8 Pacific Blue, CD14 132 

BV605, HLA-DR BV650, CD69 BV711, NKG2A APC, and CD4 APC-H7, followed by fixation, 133 

permeabilization, and labeling with an antibody against Ki67 AL700. Flow cytometry data were 134 

collected on a BD LSR II instrument and analyzed using FlowJo v10. 135 

Results 136 

CD8 lymphocyte depletion and rechallenge 137 

CD8a lymphocyte depletion (targeting primarily CD8 T cells and NK cells) resulted in a 138 

rapid decrease in CD8+ cell counts to an undetectable level (Fig. 1a). Given that ZIKV can persist 139 

in tissues long past the clearance of virus from the serum, viral loads were determined prior to 140 

rechallenge to ensure CD8 depletion did not result in recrudescent viremia from a cryptic reservoir, 141 

and none was detected (data not shown). Following rechallenge, viral RNA was not detected by 142 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2020. ; https://doi.org/10.1101/2020.05.08.082610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.082610
http://creativecommons.org/licenses/by-nc-nd/4.0/


qRT-PCR in any sample at any timepoint, suggesting complete immunity to the Puerto Rican strain 143 

(Fig. 1b). 144 

Transcriptome analysis following primary challenge 145 

Although the primary infection appeared to confer complete protection in that all animals 146 

resisted rechallenge, we carried out transcriptome analysis to assess the quality of immune 147 

responses mounted during pregnancy. Primary infection resulted in the up- and downregulation of 148 

many genes at 3 and 7 dpi (Fig. 2a-b), but PCA revealed that early changes in gene expression at 149 

3 dpi were driven principally by only 2 of 4 animals (Fig. 2c). By 7 dpi, however, all animals 150 

showed more uniform responses (Fig. 2c) that were characterized by the differential expression of 151 

a greater number of genes (Fig. 2d). To identify how changes in gene expression affected global 152 

signaling patterns during infection, we carried out an unsupervised, phenotype-independent 153 

analysis by way of GSVA (Hänzelmann et al., 2013). Interestingly, the two transcriptionally 154 

responsive animals at 3 dpi appeared to show trends mirroring those seen in all animals at 7 dpi 155 

(Fig. 2e). Enriched gene sets generally related to inflammation, innate immunity, viral replication, 156 

cell cycle arrest, and cell death, while downregulated gene sets involved hormone signaling, 157 

neurotransmitter release, and small molecule transport (Fig. 2e). 158 

Despite the up- and downmodulation of gene sets at 3 and 7 dpi (Fig. S1a-b) that in many 159 

cases appeared to be overlapping (Fig. 2e), a number of gene sets were differentially enriched at 160 

day 7 relative to day 3 (Fig. 3a), suggesting the possibility of divergent transcriptional signatures 161 

at these timepoints. Thus, we carried out a more detailed pathway analysis focusing on the 162 

progression of signaling patterns. Although there were fewer DEGs identified at 3 dpi relative to 163 

7 dpi (Fig. 2d), a more varied functional fingerprint was evident at day 3 (Fig. 3b). GSEA of 164 

Reactome networks showed that maintenance of structural proteins was affected at either 165 
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timepoint, though diseases associated with metabolism and protein modification were detected 166 

only at 3 dpi (Fig. 3b-c). GSEA additionally revealed some level of immune activation at 3 dpi, 167 

with an effect on neutrophil degranulation and platelet activation (Fig. S1c). Interestingly, GAS6 168 

was upregulated at 3 dpi (Fig. S1c), which is a bridging molecule that facilitates binding of ZIKV 169 

virions to the putative entry receptor AXL (Meertens et al., 2017). Gamma-carboxylation was also 170 

induced at this timepoint (Fig. S1c), a function important in the binding of GAS6 to AXL (Geng 171 

et al., 2017). 172 

Viral infection is often associated with perturbations to metabolic processes, so to further 173 

characterize these effects which were initially identified by GSVA, we carried out targeted GSEA 174 

to compare phenotypes at 3 and 7 dpi to pre-infection. Indeed, we found that gene sets relating to 175 

cell respiration and lipid metabolism were among the most highly induced functions, and 176 

enrichment of these gene sets was generally greatest at 3 dpi (Fig. 3d). At day 3, there were 177 

additional signs of immunomodulation, including TGFb signaling and angiogenesis, but by day 7, 178 

it was apparent that more of an inflammatory phenotype had emerged, marked by interferon (IFN) 179 

and proinflammatory cytokine signaling (Fig. 3d). The metabolic reprogramming at 3 dpi was 180 

characterized by changes in cell respiration (oxidative phosphorylation, glycolysis) and lipid 181 

metabolism (adipogenesis, fatty acid metabolism, cholesterol homeostasis, peroxisome) (Fig. 3d) 182 

that at the gene level showed activation in only the two early responding animals (Fig. S1d-e). 183 

Overarching effects on cell respiration and lipid metabolism might be explained by the induction 184 

of autophagy, which was also significantly enriched at 3 dpi (Fig. 3e). Autophagy has been shown 185 

to promote maternal-to-fetal transmission of ZIKV in mice through metabolic reprogramming in 186 

placental trophoblasts (Cao et al., 2017), and interestingly, one of the animals that showed early 187 
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upregulation of autophagy signaling also had virus detectable in the amniotic fluid at multiple 188 

timepoints (Fig. S2a). 189 

In contrast to the robust IFN responses that were evident in a previous cohort of male 190 

macaques infected with the identical ZIKV strain (Fig. 4a), the 3rd trimester females showed 191 

comparatively muted innate immune responses at either timepoint. The female cohort showed 192 

limited evidence of inflammation (platelet degranulation and pattern recognition) that partially 193 

overlapped with signaling patterns previously observed in the males (Fig. 4b-c), but IPA rather 194 

pointed to an immunomodulatory phenotype in the 3rd trimester animals at 3 dpi (Fig. S2b). In the 195 

males, transcriptional responses at day 3 indicated robust IFN signaling (Fig. 4a) and high levels 196 

of leukocyte homing and activation (Schouest et al., 2019, PREPRINT), while the same pathways 197 

were depressed in 3rd trimester animals at the equivalent timepoint (Fig. S2b). Signs of 198 

immunoregulation were evident at 3 dpi, characterized by a lack of immune cell recruitment and 199 

activation that was driven by a decrease in a core set of chemokines (IL2) and their receptors 200 

(CCR7, IL12RB1), together with downregulated adhesion proteins (SELP, CD48, SELL, ICOS, 201 

CD40LG), signaling molecules (IRF1, NFATC2), and activation markers (CD69, CD48) (Fig. 202 

S2b). By 7 dpi, there was downregulation of estrogen receptor (ESR1) and other genes relating to 203 

fertility (AR, CCNE2) and organ development (CAV1, PPARGC1A) (Fig. S2c), implying a 204 

negative impact on reproductive function. IPA predicted the up- and downregulation of several 205 

immunomodulatory molecules in 3rd trimester animals at both timepoints (Fig. S2d), including 206 

FGF2, which is known to support ZIKV infection by suppressing IFN signaling (Limonta et al., 207 

2019). A number of other inflammatory pathways and immunomodulators such as TGFb, IL10, 208 

and type-I IFN were also inversely regulated between 3 and 7 dpi (Fig. S2d-e), suggesting a 209 

complex regulation of immunity that was not present in non-pregnant animals infected with the 210 
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same virus. We caution that transcriptional responses in the previous male cohort were profiled 211 

using NanoString technology, which is a more targeted platform compared to RNAseq, but the 212 

absence of robust antiviral signaling in the pregnant animals nonetheless suggests patterns of 213 

transcriptional activation that differed fundamentally from non-pregnant macaques. 214 

Sustained anti-ZIKV antibody titers expand after rechallenge 215 

Despite transcriptional evidence of an immunomodulatory phenotype during the initial 216 

challenge, binding antibodies were detected at 28 dpi using a 1:50 dilution of blood plasma, the 217 

only post-infection timepoint tested (Fig. 5a). Binding antibodies were re-assessed on the day of 218 

rechallenge, again using a 1:50 dilution, to provide a reference for determining humoral responses 219 

to a secondary infection. However, at this dilution, antibody responses were outside of the 220 

detection range (OD > 3.5) (data not shown), suggesting they had continued to rise since 28 dpi of 221 

the initial infection. We then repeated the assay using a 1:200 plasma dilution and found that the 222 

concentration of binding antibodies expanded after rechallenge in 3 of 4 animals, while antibodies 223 

in the fourth animal remained above the limit of detection (Fig. 5b). 224 

Immune activation following secondary challenge 225 

We also assessed the activation of innate and adaptive immune cells as a surrogate of 226 

infection, given that viral RNA was not detected in the serum of any animal following rechallenge. 227 

Using a multicolor flow cytometry panel that we adapted from a previous ZIKV study (Schouest 228 

et al., 2019), we evaluated the proliferation (Ki67) and activation (CD69 or CD169) of T cells and 229 

monocyte subsets cells before and after rechallenge. CD169 is a biomarker of inflammation that 230 

has been used to track monocyte activation during acute ZIKV infection in macaques (Hirsch et 231 

al., 2017). 232 
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Classical and intermediate monocytes showed no discernable changes in frequency or 233 

activation following secondary challenge (Fig. 6a-f). However, nonclassical monocytes (CD14-234 

/low, CD16+) expanded at 3 dpi in CD8-depleted animals (Fig. 6g). Although nonclassical 235 

monocytes showed no change in CD169 expression (Fig. 6h), there was an increase in activation 236 

as measured by CD69 expression predominantly in nondepleted animals at 5 dpi (Fig. 6i). 237 

Following rechallenge, central memory CD4 T cells expanded in frequency primarily in 238 

CD8-depleted animals (Fig. 7a), and these cells also showed increases in activation (CD69 239 

expression, Fig. 7b) and proliferation (Ki67 expression, Fig. 7c) between 3-5 dpi in the same 240 

animals. Nondepleted animals showed an increase in central memory CD4 T cell proliferation 241 

during the same period (Fig. 7c), but the magnitude of this increase was marginal compared to that 242 

of the CD8-depleted animals. Effector memory CD4 T cells showed a modest increase in 243 

frequency in CD8-depleted animals at 3-5 dpi (Fig. 7d) without clear changes in activation or 244 

proliferation (Fig. 7e-f). Naïve CD4 T cells showed a striking drop in frequency between 3-5 dpi, 245 

which was most pronounced in CD8-depleted animals (Fig. 7g). The decline in naïve CD4 T cell 246 

frequency was concomitant with an increase in activation (CD69 expression, Fig. 7h) and 247 

proliferation (Ki67 expression, Fig. 7i) primarily in 3 of 4 animals. 248 

Interestingly, phenotypic patterns in the CD8 T cell subsets of nondepleted animals 249 

generally mirrored those that occurred in the CD4 T cells of CD8-depleted animals. Although 250 

central memory CD8 T cells did not show appreciable changes in frequency (Fig. 8a) or activation 251 

(Fig. 8b) after rechallenge, there was a clear increase in proliferation between 3-5 dpi (Fig. 8c). 252 

Effector memory CD8 T cells expanded between the day of rechallenge and 5 dpi (Fig. 8d), but 253 

these cells did not become activated (Fig. 8e) and showed an increase in proliferation in only one 254 

of two nondepleted animals (Fig. 8f). In similar fashion to naïve CD4 T cells, naïve CD8 T cells 255 
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dropped in frequency following rechallenge until 5 dpi (Fig. 8g) and showed marked increases in 256 

activation (Fig. 8h) and proliferation (Fig. 8i). 257 

Discussion 258 

ZIKV has been a known teratogen for some time, but the impacts of pregnancy on the 259 

quality of virus-specific immune responses have yet to be fully understood. The decrease in ZIKV 260 

incidence in the Western hemisphere since the peak of the outbreak in 2015 is of little reassurance 261 

until effective vaccines and therapeutics are mobilized. Although ZIKV vaccine candidates have 262 

performed well in preclinical settings, the congenital risks associated with ZIKV infection 263 

introduce a set of challenges to vaccine development that requires special consideration and 264 

carefully chosen animal models. Pregnancy presents a substantially altered immunologic state to 265 

facilitate fetal development and protect the mother and developing fetus from infectious agents 266 

(Kourtis et al., 2014), so it follows that immune correlates of protection during pregnancy might 267 

differ from mechanisms that are important in nonpregnant individuals. 268 

Whether immune responses induced during pregnancy, due to either infection or 269 

vaccination, is sufficient to protect from subsequent infection has begun to be examined in murine 270 

and NHP models. A recent study in IFN-deficient mice showed that a live-attenuated vaccine 271 

protected pregnant dams from infection and also prevented in utero transmission, and this 272 

protection appeared to be mostly dependent on neutralizing antibodies (Shan et al., 2019). The 273 

report cautioned that higher antibody titers were required to protect pregnant animals compared to 274 

nonpregnant animals, and pregnancy appeared to negatively impact the potency of the T cell 275 

response induced by the vaccine, which are important considerations in the evaluation of future 276 

vaccine candidates. A separate study in NHPs showed that animals initially challenged during 277 

pregnancy mount immune responses similar to non-pregnant animals, and these responses 278 
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adequately protect against a secondary challenge (Moreno et al., 2019). Again, antibodies appeared 279 

to be the most important correlate of protection since cell-mediated responses were not detected 280 

following reinfection. Our data similarly demonstrate that primary infection during pregnancy 281 

provides some level of protection; the presence of serum antibodies that continued to rise following 282 

rechallenge suggests a humoral response that might have limited viremia on secondary challenge. 283 

However, previous work has indicated that the best indicator of immunity to the related flavivirus 284 

dengue virus (DENV) in NHPs is not the absence of viremia but the lack of an anamnestic response 285 

following secondary challenge (Halstead et al., 1973). Although infection of NHPs with ZIKV 286 

typically produces a rapid serum viremia within days (Dudley et al., 2016; Magnani et al., 2018), 287 

the absence of virus following rechallenge in the present study does not exclude the possibility of 288 

low-level viral replication that we failed to detect. In either case, it is clear that immune responses 289 

mounted during pregnancy confer some level of protection to reinfection. Such a finding is not 290 

entirely surprising, as several studies have shown an efficient generation of immunity by vaccines 291 

administered during pregnancy (Healy, 2012; Munoz et al., 2014; Ohfuji et al., 2011; Sperling et 292 

al., 2012). Outdated models portray pregnancy as a global suppression of immunity (Mor et al., 293 

2017), but these perspectives are no longer generally accepted, as it has become clear that 294 

pregnancy is rather a complex alteration of particular immune subsets to balance fetal development 295 

and protection from infection (Kourtis et al., 2014). Indeed, pregnancy is a progressive biological 296 

process that requires a progressively adapting immune microenvironment (Mor et al., 2017). 297 

Our data show phenotypic changes in immune cell populations in both CD8-depleted and 298 

nondepleted animals, indicating that some level of cellular immune involvement might have 299 

conferred resistance to rechallenge. Nondepleted animals showed preferential expansion of 300 

effector memory CD8 T cells, while CD8-depleted animals showed greater increases in memory 301 
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CD4 T cell subsets, possibly suggesting a compensatory CD4 response as we have observed 302 

previously in a cohort of male macaques that were similarly CD8 depleted prior to ZIKV challenge 303 

(Schouest et al., 2019). Antibody-mediated depletion experiments in mice have also illustrated the 304 

redundancy of adaptive responses to ZIKV, with the depletion of individual immune cell 305 

populations resulting in alternative compensatory responses (Scott et al., 2018). Together, these 306 

studies begin to reveal the plasticity of immune responses to ZIKV that may coordinate to maintain 307 

overall immune integrity. 308 

Although limited sample availability precluded analysis of antigen specific CD8+ T cell 309 

responses, the potential for CD8+ lymphocytes to aid in protection from rechallenge is intriguing. 310 

Vaccine induced CD8 T cells are important in protection from Ebola virus challenge (Gupta et al., 311 

2005; Sullivan et al., 2011; Warfield et al., 2005), and the lack of CD8 T cell epitopes in the 312 

currently licensed DENV vaccine (Dengvaxia, Sanofi Pasteur) might contribute to some of the 313 

efficacy concerns associated with vaccination (Tian et al., 2019). Whether this experimental 314 

readout will also be true for ZIKV immunity in humans is unknown, but these findings nonetheless 315 

underscore the importance of CD8 responses in protection from these viruses generally and in 316 

vaccine design. ZIKV-specific CD8 T cells are described in multiple species (Elong Ngono et al., 317 

2017; Grifoni et al., 2018; Huang et al., 2017; Pardy et al., 2017) and may be important for viral 318 

clearance in mouse models. CD8 T cells have active roles in controlling infections caused by other 319 

flaviviruses including West Nile virus (Grifoni et al., 2018; Klein et al., 2005; Shrestha and 320 

Diamond, 2004; Shrestha et al., 2006; Wang et al., 2006; Wang et al., 2003), DENV (de Alwis et 321 

al., 2016; Lam et al., 2017; Regla-Nava et al., 2018; Rivino and Lim, 2017; Shi et al., 2015; Yauch 322 

et al., 2009), and yellow fever virus (Akondy et al., 2009; Bassi et al., 2015; Co et al., 2009; 323 
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Nogueira et al., 2013), which, given their relatedness, implies that CD8 T cells may be similarly 324 

important in limiting ZIKV infection. 325 

Phenotypic changes among monocyte subsets were minimal, but monocytes are the 326 

primary targets of ZIKV in the blood (Foo et al., 2017; Michlmayr et al., 2017; O'Connor et al., 327 

2018), so any alterations in frequency or activation of these cells are potentially interesting. The 328 

increases in nonclassical monocyte frequency and activation in CD8-depleted and nondepleted 329 

animals are intriguing because among monocytes, the nonclassical subset is preferentially targeted 330 

by ZIKV infection (O'Connor et al., 2018). Moreover, in pregnant women, Asian-lineage ZIKV 331 

infection selectively expands nonclassical monocytes and induces an M2-skewed 332 

immunosuppressive phenotype (Foo et al., 2017). Why nonclassical monocytes responded 333 

differently among CD8-depleted and nondepleted animals is unclear, but similar patterns occurred 334 

in a previous study from our group that also used CD8 depletion in a cohort of male rhesus 335 

macaques (Schouest et al., 2019). In that study, the collateral depletion of NK cells in CD8-336 

depleted animals appeared to skew patterns of monocyte activation among treatment groups, which 337 

might have also been the case here. The previous male cohort also showed strong upregulation of 338 

the activation marker CD169 on monocytes during acute infection (Schouest et al., 2019), but in 339 

contrast, the pregnant animals showed little fluctuation in CD169 expression, consistent with the 340 

lack of viremia in these animals. Together, these cellular immune data suggest some involvement 341 

of innate and adaptive cellular immune responses to the rechallenge virus, but the complete 342 

absence of viremia in both groups confirms that protection from rechallenge was robust. 343 

Despite this protection, transcriptome analysis offered a more nuanced view of the impacts 344 

of pregnancy on immune activation during infection. Patterns of transcriptional activation in these 345 

animals differed fundamentally from non-pregnant macaques our group has previously inoculated 346 
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with the same ZIKV strain, raising the possibility of immune modulation during pregnancy. For 347 

example, in a male cohort, we observed robust IFN signaling together with strong induction of 348 

immune cell activation and homing during acute infection (Schouest et al., 2019). While there was 349 

some evidence of inflammation and innate immunity in 3rd trimester macaques, the transcriptional 350 

landscape in these animals was characterized by a level of complexity that also entailed metabolic 351 

and hormonal effects that might have ultimately skewed immune outcomes. The suppression of 352 

immune cell homing and activation was particularly intriguing and might imply an 353 

immunomodulatory phenotype, possibly owing to maternal hormonal regulation. Although 354 

pregnancy has, in the past, been viewed as an immunosuppressive host-graft relationship to prevent 355 

fetal damage, current models recognize pregnancy as a progression of stages, each requiring 356 

unique immunological cues (Mor et al., 2017). In the pregnant animals, immune activation was 357 

altered even among the two timepoints we obtained post-challenge, possibly reflecting a complex 358 

regulation of immunity to ZIKV infection in the context of pregnancy. Although we also detected 359 

several gene expression signatures that were predicted to negatively impact fetal development, any 360 

immunoregulatory phenotype that might have occurred ultimately did not compromise fetal health. 361 

Infants from two dams were born healthy and quickly cleared postnatal ZIKV challenge, and no 362 

adverse effects on nervous system development or behavior were noted, as described previously 363 

(Maness et al., 2019). 364 

In addition to altered immune activation patterns, metabolic reprogramming through 365 

autophagy also appeared to characterize infection in these animals. Although autophagy generally 366 

aids in pathogen degradation and in the induction of immune responses during microbial infection 367 

(Ma et al., 2013), ZIKV and DENV, like other viruses, interact directly with autophagy pathways 368 

to promote their own replication (Chiramel and Best, 2018). Moreover, it has been shown in mice 369 
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that ZIKV activates autophagy in placental trophoblasts to enhance vertical transmission (Cao et 370 

al., 2017), so it was fascinating that a pregnant macaque with evidence of early autophagy signaling 371 

patterns also had virus cross the placental barrier. Since autophagy is at its core a degradative 372 

process that frees biomolecules such as lipids to enter energy producing pathways, functions we 373 

detected in pregnant ZIKV infected animals, further metabolomic experiments should address 374 

whether autophagic flux is related to ZIKV infection generally or ZIKV infection during 375 

pregnancy specifically. 376 

Conclusions 377 

Together, our data confirm findings from a recent study in NHPs suggesting that pregnancy 378 

does not overtly impair immune responses to ZIKV infection, a finding with potential implications 379 

for vaccine design. We caution that the cohort of animals used in immune phenotyping 380 

experiments was initially infected during the 3rd trimester of pregnancy, so it remains possible that 381 

infection during the 1st or 2nd trimesters might produce less protective responses. Our findings add 382 

to a growing body of data describing the correlates of ZIKV-induced immunity in animal models 383 

of pregnancy, justifying vaccine research efforts in this unique subpopulation. 384 
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Figure legends 401 

Figure 1: Study design 402 

(A) CD8a+ cells were depleted in two of four 3rd trimester animals using a 10-day protocol. 403 

Absolute counts of CD8+ cells in the blood dropped to near zero before ZIKV rechallenge. (B) 404 

Nine months after initial infection during pregnancy, four macaques, including the two CD8 405 

depleted animals, were challenged subcutaneously with 104 PFU of a Puerto Rican ZIKV strain 406 

(PRVABC-59), and viral loads monitored for one month. 407 

Figure 2: Transcriptome analysis of primary infection during pregnancy 408 

(A-D) Volcano plots showing DEGs in PBMC at 3 dpi (A) and 7 dpi (B). (C) PCA plot showing 409 

the impacts of infection on the transcriptional landscape at 0, 3, and 7 dpi (d0, day 0; d3, day 3; 410 

d7, day 7; PC, principal component; consistent throughout). (D) Venn diagram showing the 411 

number of DEGs (p<0.05) at 3 and 7 dpi. (E) Heatmap showing GSVA values among significantly 412 

modulated gene sets. Gene sets in the Reactome databank were included if statistical significance 413 

was attained in pairwise comparisons among timepoints. (ES, enrichment score.) 414 

Figure 3: Transcriptional signatures of infection during pregnancy 415 
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(A) Volcano plot showing gene sets significantly modulated at 7 dpi relative to 3 dpi. (B-C) 416 

Enrichment map plots showing the interrelatedness of gene set networks at 3 dpi (B) and 7 dpi (C). 417 

(D) Gene sets from the Hallmarks collection that were significantly enriched (FDR<25%) by 418 

GSEA in 3rd trimester animals at both timepoints (top) or only at 3 dpi (middle) or 7 dpi (bottom). 419 

(E) Heatmap showing read count data for autophagy related genes. 420 

Figure 4: Comparison of gene expression patterns in pregnant animals to a previous male 421 

cohort 422 

(A) Volcano plot showing DEGs from a previous cohort of male rhesus and cynomolgus macaques 423 

infected with ZIKV Rio-U1 (Schouest et al., 2019). DEGs were calculated from NanoString 424 

transcriptional analysis of immune responses in whole blood at 3 dpi relative to 0 dpi. (B-C) 425 

Comparison of DEGs among the previous male cohort and pregnant animals at 3 dpi (B) and 7 dpi 426 

(C). Pathway enrichment (bottom) was carried out on DEGs in common among the cohorts (top). 427 

Figure 5: Anti-ZIKV humoral responses 428 

(A-B) ELISA was used to assess anti-ZIKV humoral immunity after primary infection (A) and 429 

rechallenge (B). Antibody titers measured at a 1:50 dilution rose between the day of primary 430 

infection and day 28 (A). Anti-ZIKV antibody responses also expanded following rechallenge (B), 431 

which were tested at a 1:200 dilution as 1:50 proved too concentrated for the dynamic range of the 432 

assay. 433 

Figure 6: Monocyte changes after ZIKV rechallenge 434 

Classical (CD14+, CD16-) (A-C), intermediate (CD14+, CD16+) (D-F), and non-classical 435 

(CD14low/-, CD16+) (G-I) monocytes were assessed for changes in frequency (A, D, G) and 436 

activation as measured by CD69 expression (B, E, H) and CD169 expression (C, F, I), after ZIKV 437 

rechallenge. 438 
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Figure 7: CD4 T cell changes after ZIKV rechallenge 439 

Central memory (A-C), Effector memory (D-F), and naïve (G-I) CD4 T cells were assessed for 440 

changes in frequency (A, D, G), activation as measured by CD69 expression (B, E, H), and 441 

proliferation as measured by Ki67 expression (C, F, I), after ZIKV rechallenge. 442 

Figure 8: CD8 T cell changes after ZIKV rechallenge 443 

Central memory (A-C), Effector memory (D-F), and naïve (G-I) CD8 T cells were assessed for 444 

changes in frequency (A, D, G), activation as measured by CD69 expression (B, E, H), and 445 

proliferation as measured by Ki67 expression (C, F, I), after ZIKV rechallenge. 446 

Supplementary Figure 1: Pathway analysis of transcriptional signatures 447 

(A-B) Volcano plots showing gene sets significantly modulated at 3 dpi (A) and 7 dpi (B) relative 448 

to pre-infection. (C) Gene network showing signaling patterns and genes induced at 3 dpi. (D-E) 449 

Heatmaps showing read count data for genes relating to oxidative phosphorylation (D) and fatty 450 

acid metabolism (E). 451 

Supplementary Figure 2: Putative consequences of gene expression patterns in pregnant 452 

animals 453 

(A) Viral loads in serum and amniotic fluid (AF) during primary challenge in M09. (B-C) 454 

Regulator effects pathways from IPA, showing the predicted activation states of upstream 455 

regulators and canonical pathways at 3 dpi (B) and 7 dpi (C). (D-E) Predicted activation of 456 

biological regulators (E) and canonical pathways (F) at 3 and 7 dpi. Z-score represents predicted 457 

activation of the molecule or pathway. 458 

  459 
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