

16 **Born to be young: prenatal thyroid hormones increase early-life telomere length**

17
18 Antoine Stier^{1,2*}, Bin-Yan Hsu¹, Coline Marciau¹, Blandine Doligez³, Lars Gustafsson⁴, Pierre
19 Bize⁵ and Suvi Ruuskanen¹

20
21 ¹ Department of Biology, University of Turku, Turku, Finland

22 ² Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK

23 ³ Department of Biometry and Evolutionary Biology, CNRS, Université de Lyon France

24 ⁴ Department of Ecology and Genetics / Animal Ecology, University of Uppsala, Uppsala, Sweden

25 ⁵ School of Biological Sciences, University of Aberdeen, Aberdeen, UK

26
27 *: corresponding author: antoine.stier@gmail.com / amstie@utu.fi

28
29 Antoine Stier: <https://orcid.org/0000-0002-5445-5524>

30 Bin-Yan Hsu: <https://orcid.org/0000-0002-3799-0509>

31 Coline Marciau: <https://orcid.org/0000-0001-5559-4289>

32 Blandine Doligez: <https://orcid.org/0000-0003-3015-5022>

33 Lars Gustafsson: <https://orcid.org/0000-0001-6566-2863>

34 Pierre Bize <https://orcid.org/0000-0003-0454-2598>

35 Suvi Ruuskanen: <https://orcid.org/0000-0001-5582-9455>

36
37 **Author contribution:** AS, BYH & SR designed the study. BYH and SR conducted the fieldwork, AS and
38 CM conducted laboratory work. BD, LG & PB contributed to data collection. AS analyzed the data and
39 wrote the manuscript with input from all authors.

40
41 **Competing interest statement:** the authors declare having no competing interests

42
43 **This file includes:** Main Text, Figure 1, Figure 2

44
45 **Character count:** 9400

46 **Reference count:** 15

47
48 **Keywords**

49 Aging, mitochondria, telomere length, bird, fetal programming.

50

51 **Abstract**

52 Prenatal environmental conditions can have lifelong consequences on health and aging. The
53 underlying mechanisms remain nonetheless little understood. Thyroid hormones (THs) are important
54 regulators of embryogenesis transferred from the mother to the embryo. In an avian model, we
55 manipulated embryo exposure to maternal THs through egg injection and investigated the
56 consequences on postnatal growth and aging. We first report that mitochondrial DNA (mtDNA) copy
57 number and telomere length significantly decrease from early-life to late adulthood, thus confirming
58 that these two molecular markers are hallmarks of aging in our wild bird model. The experimental
59 elevation of prenatal THs levels had a transient positive effect on postnatal growth. Elevated prenatal
60 THs had no effect on mtDNA copy number but significantly increased telomere length both soon after
61 birth and at the end of the growth period (equivalent to offsetting *ca.* 4 years of post-growth telomere
62 shortening). These findings suggest that prenatal THs have a key role in setting the ‘biological’ age at
63 birth, and thus might influence longevity.

64 **Main text**

65 Prenatal environmental conditions can have lifelong consequences on health and aging, but
66 most remains to be done to uncover the mechanisms linking the pre and postnatal stages (1). Thyroid
67 hormones (THs) are master regulators of development, health and aging (2-4). They are transferred
68 from the mother to the embryo (4) and thyroid disorders during pregnancy can induce developmental
69 pathologies in human (5). Surprisingly, there is currently no experimental data on the effects of
70 prenatal THs on postnatal health and aging.

71 Two challenges must be overcome when testing for long-term consequences of maternally-
72 transmitted hormones. First, manipulating the prenatal hormonal environment in mammalian models
73 is usually problematic since treatments are applied to the mother and can have indirect effects on the
74 embryo. Avian models offer an ideal alternative since prenatal conditions can be directly manipulated
75 through hormonal injection in the egg (4). The second challenge is to be able to measure long-term
76 effects using health and aging markers that are accurately and adequately mirroring age-related health
77 impairments. Two promising markers are mitochondrial DNA (mtDNA) copy number and telomere
78 length since both markers are decreasing with age and have been associated with increased mortality
79 risks (6, 7). Telomere length is considered as a proxy of 'biological' age, with more relevance to
80 mortality risk than chronological age (8). Interestingly, most of the inter-individual variation in
81 telomere length is already set at birth, and thus may be caused by different exposure to maternal
82 hormones (9).

83 In a free-living bird population of collared flycatchers (*Ficedula albicollis*), we first investigated
84 age-related changes in telomere length and mtDNA copy number using data covering the entire
85 lifespan spectrum for this population. Results show that mtDNA copy number (Fig. 1A) and telomere
86 length measured either using a relative qPCR method (*rTL*, Fig. 1B) or an absolute *in-gel* quantification
87 (*absTL*, Fig. 1C) significantly decreased from growth completion to late-adulthood. These findings are
88 in accordance with reports from the human literature (6, 7) and validate their use as hallmarks of aging
89 in our avian model.

90 Using egg-injection of THs we then investigated the effect of prenatal THs on postnatal mtDNA
91 copy number and telomere length. Based on the known stimulation of mitochondrial biogenesis by
92 THs (10), we predicted that increasing prenatal THs should increase early-life mtDNA copy number,
93 which could be a cellular pathway supporting the transient growth-enhancing effect previously
94 demonstrated (11). Conversely, since THs are known to increase oxidative stress and enhance growth
95 (two pathways accelerating telomere shortening (9)), we predicted that increasing prenatal TH levels
96 should shorten telomere length at birth, and/or increase early postnatal telomere shortening.

97 We confirmed the growth-enhancing effect of prenatal THs (Fig. 2A) in our subsample of
98 individuals from (11) but found no significant impact of prenatal THs on mtDNA copy number (Fig. 2B),
99 despite a considerable early-life reduction in mtDNA copy number during the growth period
100 (equivalent to the reduction occurring over 3.5 years in individuals post-growth, based on Fig. 1A).
101 Contrary to our predictions, increasing prenatal THs led to longer telomeres (measured as *rTL*) soon
102 after hatching (Fig. 2C), and this effect was maintained at the end of the growth period (day 12). This
103 is confirmed by the analysis of absolute telomere length (*absTL*) at day 12, showing longer telomeres
104 in birds hatched from TH-injected eggs (Fig. 2D). The effect of increasing prenatal THs on telomere
105 length was substantial, being equivalent to offsetting *ca.* 4.3 years (*rTL*) and 3.6 years (*absTL*) of
106 telomere shortening (based on Fig. 1B and 1C).

107 The beneficial effect of prenatal THs on telomere length is unlikely related to oxidative stress
108 prevention, since we previously found no differences in oxidative stress markers in these experimental
109 birds (11). One previous study reported that the promoter of *hTERT* (the catalytic subunit of the
110 enzyme telomerase, responsible for elongating telomeres) contains a binding site for THs (12).
111 Consequently, one hypothesis would be that prenatal THs could elongate telomeres early in life
112 through the activation of the telomerase enzyme. The positive correlation found between the mRNA
113 expression of the thyroid-stimulating hormone and telomere length in human adipose tissue could
114 support such an hypothesis (13).

115 While the exact mechanisms remain to be identified, our study demonstrates that prenatal TH
116 levels have the potential to elongate telomeres in early-life, and thus to set the ‘biological’ age at birth.
117 This is the first study to show that telomere length at birth could be increased by modulating the
118 prenatal hormonal environment. Thyroid function is known to influence cardiovascular disease risk
119 and life expectancy in adult humans (3), but no information is currently available regarding the impact
120 of prenatal TH exposure on adult health and lifespan. Epidemiological and long-term experimental
121 studies investigating the impact of prenatal THs on lifespan are now required to establish if the effect
122 observed here on telomeres translates into a longevity gain.

123

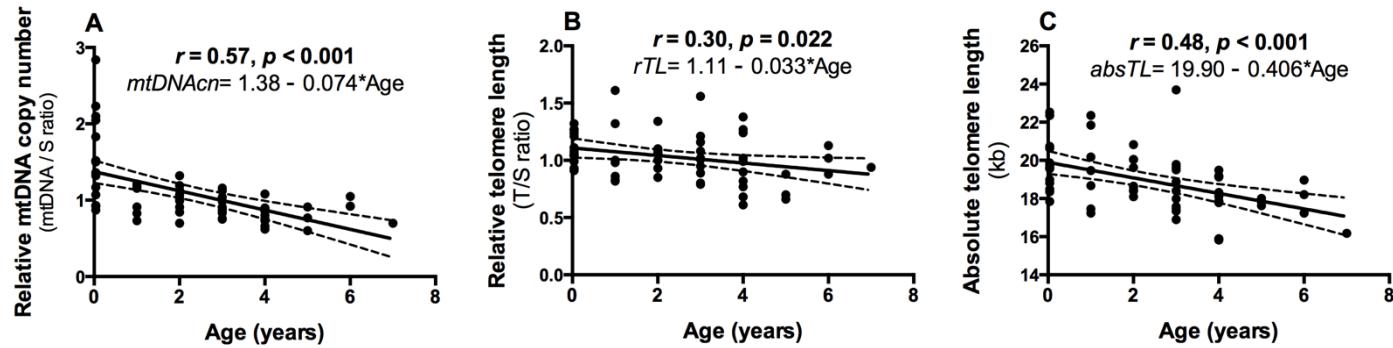
124 **Experimental procedures**

125 The study was conducted in the long-term monitored population of collared flycatchers on Gotland,
126 Sweden (Jordbruksverkets permit no. ID 872). We selected 44 adult birds of known-age (1 to 7 years
127 old, *i.e.* cross-sectional data; maximum lifespan = 9.8 years) from the long-term monitoring program.
128 Thirty-two nests were used for the prenatal manipulation of THs, 16 *Control* (vehicle-injected) and 16
129 TH nests in which eggs were injected with *ca.* a 2SD increase of TH egg content based on natural range,
130 following the procedure described in (11). Birds were weighed and blood sampled as soon as possible
131 after hatching (day 2, < 10µL of blood) and at the end of growth (*i.e.* day 12; < 50µL of blood). Relative
132 mtDNA copy number of blood cells has been measured as described in (14). Both relative telomere
133 length (*rTL* measured using qPCR) and absolute telomere length (*absTL*, measured using *in-gel* TRF)
134 have been measured as described in (15). Age-related variations in mtDNA copy number and telomere
135 length were tested using parametric correlation tests. The effects of prenatal TH elevation and age on
136 body mass, mtDNA copy number and telomere length (*rTL* and *absTL*) were tested using linear mixed
137 models, with nest identity as a random effect (to control for multiple birds per nest), bird ID as the
138 repeated effect, and age, treatment and their interaction as fixed effects. Non-significant interactions
139 were removed from final models. Sex was excluded from final analyses since it was never significant.
140 Data used in this article is publicly available at: <https://figshare.com/s/be8dca3133cc1db8af90>.

141

142 **Acknowledgements**

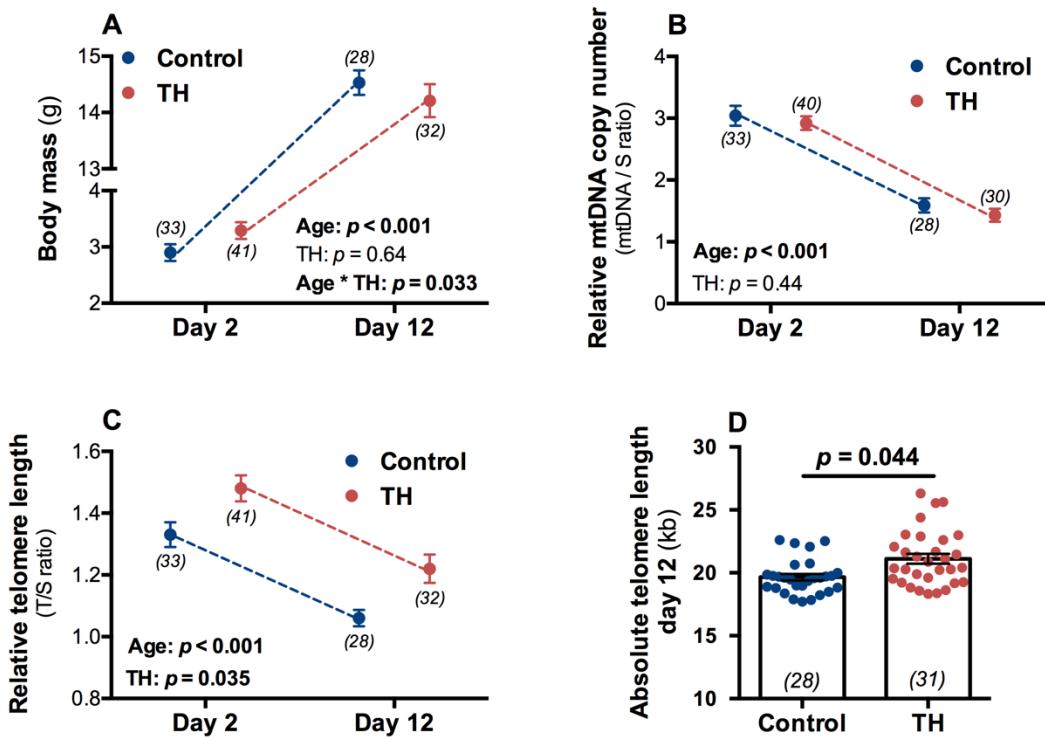
143 We are grateful to many students and Szymek Drobniak for their help in the field, as well as to Pat
144 Monaghan for providing access to TRF facilities. The project was funded by a Marie Skłodowska-Curie
145 Postdoctoral Fellowship (#658085) and a 'Turku Collegium for Science and Medicine' Fellowship to AS,
146 and an Academy of Finland grant (# 286278) to SR.


147

148 **References**

- 149 1. Preston JD, Reynolds LJ, Pearson KJ (2018) Developmental Origins of Health Span and Life Span: A Mini-
150 Review. *Gerontology* 64(3):237–245.
- 151 2. Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. *J Endocrinol* 187:1–15.
- 152 3. Bano A, et al. (2017) Association of Thyroid Function With Life Expectancy With and Without
153 Cardiovascular Disease. *JAMA Intern Med* 177(11):1650–8.
- 154 4. Ruuskanen S, Hsu B-Y (2018) Maternal Thyroid Hormones: An Unexplored Mechanism Underlying
155 Maternal Effects in an Ecological Framework. *Physiol Biochem Zool* 91(3):904–916.
- 156 5. Delitala AP, Capobianco G, Cherchi PL, Dessoile S, Delitala G (2019) Thyroid function and thyroid
157 disorders during pregnancy: a review and care pathway. *Arch Gyneco Obst* 299:327–338.
- 158 6. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. *Cell*
159 153(6):1194–1217.
- 160 7. Mengel-From J, et al. (2014) Mitochondrial DNA copy number in peripheral blood cells declines with
161 age and is associated with general health among elderly. *Hum Genet* 133(9):1149–1159.
- 162 8. Jylhävä J, Pedersen NL, Hägg S (2017) Biological Age Predictors. *EBioMedicine* 21(C):29–36.
- 163 9. Entringer S, de Punder K, Buss C, Wadhwa PD (2018) The fetal programming of telomere biology
164 hypothesis: an update. *Philos Trans R Soc Lond, B, Biol Sci* 373(1741):20170151–15.
- 165 10. Weitzel JM, Iwen KA (2011) Coordination of mitochondrial biogenesis by thyroid hormone. *Mol Cell
166 Endocrinol* 342(1-2):1–7.
- 167 11. Hsu B-Y, Doligez B, Gustafsson L, Ruuskanen S (2019) Transient growth-enhancing effects of elevated
168 maternal thyroid hormones at no apparent oxidative cost during early postnatal period. *J Avian Biol*
169 50(1):4692–10.
- 170 12. Cong YS, Wen J, Bacchetti S (1999) The human telomerase catalytic subunit hTERT: organization of the
171 gene and characterization of the promoter. *Hum Mol Genet* 8(1):137–142.
- 172 13. Moreno-Navarrete JM, et al. (2018) Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats
173 Inform About Cellular Senescence. *Cell Physiol Biochem* 51(1):142–153.
- 174 14. Stier A, Bize P, Hsu B-Y, Ruuskanen S (2019) Plastic but repeatable: rapid adjustments of mitochondrial
175 function and density during reproduction in a wild bird species. *Biol Letters* 15(11):20190536.
- 176 15. Kärkkäinen T, et al. (2019) Impact of continuous predator threat on telomere dynamics in parent and
177 nestling pied flycatchers. *Oecologia* 191(4):757–766.

178


179 **Figures**

185 **Fig. 1: Age-related variation in potential key hallmarks of aging in wild collared flycatchers:** (A) decrease in relative
186 **mtDNA copy number**, (B) decrease in **relative telomere length** measured with qPCR, and (C) decrease in **absolute**
187 **telomere length** measured with *in-gel* TRF. Data is cross-sectional, adult birds were of known-age and chicks were
188 12 days old (from control group only, 1 chick per nest). Regression lines are plotted \pm 95% C.I., N = 58 (44 adults, 14
189 nestlings).

190

191

202 **Fig. 2: Effects of experimental prenatal thyroid hormone elevation on:** (A) body mass growth, (B) early-life
203 dynamics of mtDNA copy number, (C) early-life dynamics of relative telomere length, and (D) absolute telomere
204 length at the end of growth (day 12). Means are plotted \pm SE, p-values and sample sizes are indicated within each
205 panel.