

1 Nucleoid openness profiling links bacterial genome structure to 2 phenotype

3 Mahmoud M Al-Bassam^[a1], Oriane Moyne^[a1], Nate Chapin^[a1], Karsten Zengler^[*a,b,c]

4 *Correspondence should be addressed to: Karsten Zengler (kzengler@ucsd.edu)

5 ^aDepartment of Pediatrics, University of California, San Diego, La Jolla, California 92093-0760, USA

6 ^bDepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA

7 ^cCenter for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093-0403, USA

8 ¹Equal contribution

9

10 **Keywords:**

11 Nucleoid structure, Tn5 transposase, Nucleoid-associated proteins, Chromatin structure, H-NS, HiC,
12 Transcription factor binding sites, POP-seq

13

14 **ABSTRACT**

15 Gene expression requires specific structural alternations in the nucleoid structure to enable the access
16 of the transcription machinery into the genomic DNA. In prokaryotes, DNA binding proteins,
17 including nucleoid-associated proteins (NAPs) and transcription factors (TFs), drive the change in
18 structure and gene expression. Currently, studies of global NAP and TF binding are often hindered by
19 the lack of appropriate epigenomic tools. Here, we present POP-seq, a method that provides *in vivo*
20 genome-wide openness profiles of the bacterial nucleoid. We demonstrate that POP-seq can be used
21 to map the global *in vivo* protein-DNA binding events. Our results highlight a negative correlation
22 between genome openness, compaction and transcription, suggesting that regions that are not

23 accessible to Tn5 transposase are either too compacted or occupied by RNA polymerase. Importantly,
24 we also show that the least open regions are enriched in housekeeping genes, while the most open
25 regions are significantly enriched in genes important for fast adaptation to changing environment.
26 Finally, we demonstrated that the genome openness profile is growth condition specific. Together,
27 those results suggest a model where one can distinguish two types of epigenetic control: one stable,
28 long-term silencing of highly compacted regions, and a second, highly responsive regulation through
29 the dynamic competition between NAPs and RNA polymerase binding. Overall, POP-seq captures
30 structural changes in the prokaryotic chromatin and provides condition-specific maps of global
31 protein-DNA binding events, thus linking overall transcriptional and epigenetic regulation directly to
32 phenotype.

33

34 **INTRODUCTION**

35 Genome organization is crucial to all life forms. In eukaryotes, histone oligomers organize the
36 chromosomal DNA into nucleosomes of defined sizes, the building blocks of higher-order structures.
37 By contrast, such well-defined structures are lacking in bacteria. Instead, a wide variety of poorly
38 conserved nucleoid-associated proteins (NAPs) control the dynamic organization of the nucleoid and
39 directly affect how genetic information is accessed, interpreted, and implemented^{1,2,3,4}. Among the
40 most widely studied NAPs is H-NS in *E. coli*⁵ and its functional analog, Rok in *B. subtilis*⁶, both
41 known to have high affinity towards AT-rich regions^{7,8}.

42 Omic technologies have revolutionized molecular biology by providing accurate measurements of
43 molecular components, such as protein, RNA, and *cis*-acting elements. Yet, there currently exist few
44 techniques for comprehensive identification and assessment of dynamic NAP binding and nucleoid
45 organization *in vivo*. Implementation of HiC and similar methods have provided vital insights into the

46 three-dimensional structure of the chromosome. However, HiC is limited by its technical and
47 bioinformatic intricacy, the need for extreme sequencing depth, and the prerequisite for highly
48 synchronous cell cultures, limiting its use to only a handful of selected bacteria^{3,9,10,11} and archaea¹².
49 As such, studies of the bacterial nucleoid at large remain challenging and therefore the effect of NAPs
50 on global gene expression and nucleoid conformation remains poorly understood in the most
51 abundant and diverse domain of life.

52 Here, we describe POP-seq (Prokaryotic chromatin Openness Profiling sequencing) as a method to
53 interrogate changes in the openness of prokaryotic nucleoids associated with changes in the growth
54 conditions and rapidly elucidate the state of bacterial genome organization. We present the results of
55 POP-seq experiments carried out on the two major model bacteria, Gram-negative *E. coli* and Gram-
56 positive *B. subtilis*. We compare our findings with previously published genomic studies to unravel
57 the relationships between POP-seq measurements, NAP binding, DNA compaction, and gene
58 expression. First, we show that POP-seq footprint signals are highly correlated with transcription
59 factor binding sites (TFBS) and can potentially be used to identify novel TFBS in *E. coli* with both
60 high reproducibility and high resolution. The POP-seq signals were also found highly correlated with
61 both H-NS in *E. coli* and Rok in *B. subtilis*, suggesting that silencing of AT-rich genes by the binding
62 of specialized NAPs is widespread within Gram-negative and Gram-positive bacteria. Through the
63 integration of POP-seq with HiC and RNA-seq data, we unravel the role of the silencing NAPs in the
64 epigenetic control of fast-response AT-rich genes. Our results suggest NAPs that bind AT-rich
65 regions are fundamentally required for both Gram-negative and Gram-positive bacteria, despite the
66 lack of amino acid sequence homology among these NAPs. Overall, POP-seq can provide an
67 extensive map of protein-DNA binding events and genome-to-phenome associations in a fast and
68 cost-effective manner.

69

70 **RESULTS**

71 ***POP-seq captures the open nucleoid of bacteria***

72 To study the accessibility state of chromatin in bacteria, we employed a hyperactive Tn5 transposase.
73 We performed our studies with *E. coli* as it is the most profoundly studied bacterium with copious
74 omics data readily available in the public domain. The nucleoids of *E. coli* cells were first fixed with
75 1% formaldehyde to stabilize short-range DNA-protein interactions. The fixed cells were lysed and
76 ions and small molecules, such as salts and sugars, were removed from the lysate by buffer exchange
77 to eliminate any chance of modulating Tn5 activity. The lysate was diluted to 700 pg of DNA
78 (equivalent to ~1,500 *E. coli* cells), after which the fixed nucleoid was fragmented by Tn5
79 tagmentation and the resulting fragments were PCR-amplified to generate POP-seq sequencing
80 libraries (**Fig. 1a**).

81 In eukaryotes, the fragment length distribution obtained from open chromatin has several notable
82 characteristics that offer insight into the underlying chromatin structure. First, fragments generated
83 from open chromatin were shorter than those produced from more compact regions. Second, the
84 distribution of longer fragments fell into defined periods that reflect multiples of constant-sized
85 nucleosomes. The POP-seq fragment length distribution ranged from ~30 to ~500 bp and was skewed
86 to the right towards longer fragments (**Fig. 1b**), similar to eukaryotic fragment length profile¹³.
87 However, no fragment periods similar to the ones found in eukaryotes¹³, were observed. The absence
88 of this periodicity can be explained by the nature of the prokaryotic nucleoid, which lacks fixed sized
89 nucleosomes. Instead, the prokaryotic nucleoid is organized and maintained by an array of NAPs^{2,14},
90 leading to protected DNA fragments varying in size. Notably, the length distribution of both

91 prokaryotes and eukaryotes had oscillations with a period of 10.5 bp, indicative of the helical pitch of
92 DNA^{13,15}.

93 POP-seq experiments performed on biological replicates were highly correlated (Pearson's R=0.99,
94 p-value<2.2e⁻¹⁶, using average coverage over 5 kb windows), consistent with the concept that binding
95 of NAPs and TFs is both highly organized and rigorously regulated (**Fig 1c**). The frequency of the
96 Tn5 tagmentation events and the intensity of the resulting signals were greater at promoter sites
97 compared to coding regions (**Fig. 1d**). It is well-established that DNA-binding proteins occlude Tn5
98 transposition at their sites of occupancy¹³, but the flanking regions are known to be hypersensitive to
99 Tn5¹³ or DNase I¹⁶. Therefore, it is not surprising that strong POP-seq signals were found in
100 intergenic promoter regions, particularly because these signals overlapped with known TF or NAP
101 binding sites curated in EcoCyc¹⁷ (**Fig. 1e**). Interestingly, we found intense Tn5 signals at intergenic
102 regions where no TFs or NAPs have been reported to bind, suggesting that POP-seq could detect
103 novel regulatory binding sites in *E. coli* (**Fig. 1e**).

104 ***POP-seq recapitulates previous NAP findings in bacteria***

105 We found that AT-rich regions are hypersensitive to tagmentation by Tn5 (**Fig. 2a**). The broadly
106 distributed POP-seq signal in these regions indicates that DNA binding events are occurring in a
107 sequence-agnostic manner, highly reminiscent of the action of NAPs. In particular, H-NS is known
108 for its strong tendency to bind to AT-rich regions¹⁸ (**Fig. 2b**). Genome-wide comparison of POP-seq
109 signals with H-NS ChIP-seq signals revealed that the signals are highly correlated (Pearson's
110 correlation R=0.87, p-value<2.2 e⁻¹⁶ over 5-kb windows, **Fig. 2c**), suggesting that H-NS binding
111 regions are hypersensitive to tagmentation by Tn5. Furthermore, POP-seq signals were enriched over
112 broad-scale protein-rich domains (extensive protein occupancy domains, EPODs) previously

113 identified by Vora et al., 2009 (magenta boxes in **Fig. 2d**). Overall, these findings imply that H-NS
114 does not entirely occlude Tn5 transposase accessibility and that DNA flanking the H-NS binding sites
115 is hypersensitive to tagmentation. This is consistent with *in vitro* experiments in which DNA bound
116 by H-NS was resistant to DNase I digestion, while DNA immediately flanking the H-NS binding
117 regions was hypersensitive to DNase I^{19,20,21}.

118 ***POP-seq can identify transcription factor binding sites***

119 The majority of gene regulation takes place at the transcriptional level. Transcription factors
120 recognize specific sequences in *cis*-regulatory elements embedded in promoter sites and modulate
121 transcription either positively or negatively. Due to the poor conservation of NAPs and TFs, the
122 understanding of the regulatory network underlying gene expression represents a major challenge in
123 bacteria. As such, we wondered if POP-seq signals can provide *in vivo* maps of DNA-binding events
124 over the entire genome.

125 The median POP-seq signal over non-coding regions (including promoter sites) is higher than the
126 median POP-seq signal over open reading frames (ORFs) by three-folds (Mann-Whitney p-value<2e⁻¹⁶). Further, we found that these signals are more prominent over transcription start sites (TSSs) (**Fig. 2e**), which is the center of transcriptional regulation. Our results imply that the nucleoid is more open
127 at promoter sites, consistent with what is described in eukaryotes²², and that the signals could be
128 originating from transcription factor-DNA binding events.

129 Thus, we examined the Tn5 tagmentation sites (POP-seq footprints), in which we only scored the 9
130 nucleotides covered by the Tn5 transposase for each aligned read. As a result, we generated two
131 genome-wide alignment files for each experiment: one for the forward-strand sequencing reads and
132 another for the reverse-strand sequencing reads. We tested if local depletions (footprints) in the two

135 alignment files could be used to identify active transcription factor binding sites (TFBS) (**Fig. 2f**). We
136 found that POP-seq signals are five-fold higher in the vicinity of putative TFBS curated in EcoCyc
137 relative to the rest of the genome (Student's t-test, p-value<2.2e⁻¹⁶). Further, we built a supervised
138 model to predict whether each genome position is likely to contain a TFBS. As H-NS is a major
139 contributor of the total POP-seq signal, the retained model took into account both POP-seq and H-NS
140 Chip-seq signals, as well as the presence or absence of a gene at each genome position as predictors
141 of EcoCyc-annotated TFBS (see Methods). With a sensitivity of 71% and a specificity of 84%, our
142 model demonstrated that POP-seq is capable of efficiently highlighting genomic regions most likely
143 to harbor a TFBS. Altogether, our results demonstrate that POP-seq can determine overall TF binding
144 dynamics *in vivo*.

145 Next, we explored the POP-seq hypersensitive sites and tested if these can be used to determine
146 TFBSs. We used the EcoCyc¹⁷ TFBS positions for each TF across the entire *E. coli* genome and
147 explored the POP-seq signals that flanked the binding sites of each TF. Using the Wellington
148 algorithm²³, we found a sharp increase in the POP-seq signals flanking the center of many TFBSs
149 tested (**Fig. 2g**), which diminished in positions distant from the TFBSs. The unfixed and naked DNA
150 control showed no significant signals. These results demonstrate that POP-seq can reveal the
151 positions of TFBSs with high accuracy.

152 ***Highly accessible genes are readily adapted to growth conditions***

153 In order to gain insights into the functional importance of genome openness, we performed RAST
154 functional annotation of the *E. coli* genome, and tested which functional subsystems are associated
155 with low or high POP-seq signals. Our results show that the genes with the lowest POP-seq signal are
156 involved in house-keeping metabolic functions, such as ribosomal proteins, respiratory complex I,

157 and electron transport complexes (**Supplementary Table 1**). On the contrary, genes with the highest
158 POP-seq signal are involved in functions that require a fast adaptive response to changing growth
159 conditions, such as alternative carbon source utilization pathways (e.g. xylose, D-ribose, D-allose, L-
160 fucose, D-gluconate and ketogluconates), core-oligosaccharide biosynthesis, adherence and motility
161 (especially related to fimbriae expression), CRISPRs, periplasmic acid stress response, toxin-
162 antitoxin replicon stabilization systems, and general secretion pathways (**Supplementary Table 2**).
163 Additionally, we observed that the 20 most Tn5-accessible subsystems present a significantly higher
164 AT content and four-fold more H-NS binding than the 20 least-accessible ones (Mann-Whitney p-
165 values<2.10⁻¹⁶). Together, these data demonstrate that genes that require a fast and reversible
166 response to changing growth conditions are AT-rich, regulated by NAPs (H-NS in this case), and
167 highly accessible to Tn5.

168 To validate the influence of bacterial growth condition on genome openness dynamics, we conducted
169 POP-seq on *E. coli* grown in minimal medium (MM) containing ribose, xylose, or glucose. Principal
170 component analysis (PCA) indicated that bacteria grown in MM+glucose or Luria-Bertani (LB)
171 present similar POP-seq profiles, while remarkable differences were seen in MM+ribose or
172 MM+xylose media (**Fig. 3a**). A global overview of the POP-seq signal measured in MM+glucose,
173 ribose or xylose over the *E. coli* genome confirms the major differences between profiles, especially
174 when comparing those obtained in presence (red lines **Fig. 3b**) or absence (green and blue lines **Fig.**
175 **3b**) of glucose as the main carbon source. These results highlight that POP-seq signals are directly
176 linked to structural changes in the bacterial nucleoid and occur in direct response to changes in
177 environmental conditions.

178 Moreover, comparative analysis allowed the identification of 13 RAST subsystems showing a
179 significantly decreased POP-seq signal in both MM+xylose and ribose compared to glucose (DESeq2

180 p-values, FDR adjusted <0.05 , **Fig. 3c**). Most of those subsystems are related to alternative sugar
181 utilization pathways (**Fig. 3c**), suggesting a removal of NAPs transcription inhibition to adapt to the
182 absence of glucose. These results show that POP-seq signals are directly linked to structural changes
183 in the bacterial nucleoid, and occur in direct response to changes in environmental conditions.
184 Therefore, POP-seq can link structural modifications of the nucleoid with function.

185 ***The nucleoid openness is constrained by DNA compaction or transcription***

186 Inspection of high- and low-accessibility regions shows that AT-rich genes are generally silenced by
187 H-NS and have high Tn5 accessibility, while highly transcribed genes are far less accessible (**Fig.**
188 **4a**), as elongating RNA polymerase occludes H-NS (and Tn5) accessibility¹. Therefore, it is possible
189 that high transcription or highly compacted genomic regions negatively affect genome accessibility
190 measured by POP-seq. To assess this possibility, we evaluated the global relationship between DNA
191 compaction¹¹, RNA expression²⁴, and Tn5 accessibility (POP-seq). To enable direct comparison, the
192 3-dimensional matrix of DNA-DNA contacts from a HiC experiment¹¹ was flattened into a 1-
193 dimensional array. All datasets were Z-score normalized and the signals were lightly smoothed and
194 binned into 928 equal regions (5 kb each, **Supplementary figure 1**). We observed a significant
195 negative correlation between POP-seq and HiC signals (Pearson's R=-0.44, p-value <0.01), showing
196 that highly compacted regions are not likely to be accessible to Tn5.

197 Next, we performed a hierarchical cluster analysis (HCA) of the 928 *E. coli* genomic bins according
198 to the POP-seq, RNA-seq, and HiC signals. Three distinct clusters (C1-3) were identified (**Fig. 4b**).
199 C1 (56% of the *E. coli* genome) represents genomic regions with low openness, high compaction and
200 low transcription, C2 (5% of the genome) represents highly transcribed regions, and C3 (38% of the

201 genome) represents regions with high accessibility, low compaction and low transcription (p-value of
202 Student's t-test<0.05).

203 Our data show that the organization of the genomic regions can be driven either by compaction (C1),
204 transcription (C2), or openness (C3), in a mutually exclusive fashion (Fig. 4b). We show that
205 transcriptionally active regions (C2) are enriched in housekeeping functions (RAST analysis, Fisher
206 test p-value<0.05). The high correlation between POP-seq and H-NS ChIP-seq data suggests that the
207 gene expression in the accessible regions is silenced by H-NS. The C3 regions are significantly
208 associated with alternative sugar utilization pathways (Fisher test p-value<0.05). The compacted
209 regions (C1) had no significant enrichment of any biological function. Our results reinforce the notion
210 that the genome structure-function relationship is governed by compaction, transcription, and
211 openness, and the latter appears to include highly dynamic and fast-responsive functions.

212 ***POP-seq experiment of *B. subtilis* captures Rok transcriptional control***

213 We conducted POP-seq experiments in two biological replicates for *B. subtilis* to test the applicability
214 of POP-seq across other bacterial phyla. The two POP-seq biological replicates were highly
215 correlated (Pearson's R=0.997, p-value<2.2e⁻¹⁶, 10-kb bins), confirming that, like *E. coli*, NAP and
216 TF binding in *B. subtilis* is strictly regulated. We also observed that, as in *E. coli*, genes exhibiting the
217 highest POP-seq signal are involved in fast-adaptive RAST functions (sporulation, sugar and amino
218 acid utilization, multidrug resistance proteins), and the majority of less accessible genes were
219 involved in housekeeping functions (translation initiation, cytochrome C and D, ribosomal proteins)
220 (p-value of Mann-Whitney test, FDR adjusted<0.05).

221 Despite having comparable GC content (50.8% for *E. coli* and 43.6 % for *B. subtilis*), the genome
222 organization of *E. coli* and *B. subtilis* is remarkably different. Rok and SMC (structural maintenance

223 of chromosomes) play key roles in genome organization and are both among the best characterized
224 NAPs in *B. subtilis*. Rok is a functional analogue of H-NS and ChIP-seq experiments have shown that
225 Rok binds to AT-rich regions (Smits & Grossman 2010, **Fig. 4c**). The correlation between POP-seq
226 and Rok ChIP-seq data was strongly significant (p-value<2.2⁻¹⁶). However, unlike in *E. coli* where H-
227 NS and POP-seq signals were highly correlated (**Fig. 4c**), the Rok ChIP-seq signals were only
228 partially correlated with the POP-seq signals (Pearson's R=0.44, 10-kb bins).

229 The SMC complex is composed of Smc, ScpA and ScpB and is known to have a critical role in long-
230 range DNA compaction²⁵. Therefore, we explored the contribution of SMC binding to the total POP-
231 seq signal by comparing our POP-seq data to previously published SMC ChIP-seq data²⁵. We found
232 that the POP-seq (and the majority of Rok ChIP-seq) signals are mutually exclusive to the SMC
233 ChIP-seq signals (**Fig. 4c**), implying that SMC occupied regions are inaccessible to Tn5. Regions
234 highly accessible to Tn5 that are neither occupied by Rok nor by SMC (**Blue box Fig. 4c**) raise the
235 possibility of a hitherto unknown NAP that has binding properties reminiscent of Rok.

236 ***B. subtilis* and *E. coli* have three major openness clusters in common**

237 To further investigate the relationships between genome accessibility, compaction, and transcription,
238 we performed HCA for 10-kb bins of the *B. subtilis* genome for the POP-seq, HiC, and RNA-seq
239 datasets. Similar to *E. coli*, our results led to the identification of three major clusters C1, C2, and C3,
240 characterized by high HiC, high RNA, or high POP-seq signals, respectively (p-value of pairwise
241 Student's t tests, FDR adjusted<0.05) (**Fig. 4d**), confirming that Tn5 accessibility is constrained by
242 compaction or transcription in *B. subtilis* as well as in *E. coli*.

243 Together, the results of HCA in *B. subtilis* show remarkable concordance with those obtained from *E.*
244 *coli* (**Fig. 4d**), demonstrating the potential of POP-seq to study the open nucleoid of a wide range of

245 bacterial phyla. Moreover, our observations in both bacteria also suggest that POP-seq can reveal the
246 epigenetic mechanisms controlling the transcription of AT-rich genes that are required for fast
247 environmental and nutritional adaptations (**Fig. 4e**). Indeed, HCA identified three different genomic
248 clusters driven either by compaction (C1), transcription (C2), or openness to NAP binding/silencing
249 (C3) in a mutually exclusive manner.

250 We suggest that in C1, the high level of compaction prevents both Tn5 accessibility and NAPs DNA
251 binding, and occludes RNA transcription, suggesting a stable, condition-independent silencing of
252 genes in those regions. Regions with active transcription (C2) are not accessible to Tn5 and are
253 significantly enriched in housekeeping genes. Finally, highly accessible regions (C3) show a high AT
254 content and H-NS/Rok binding, causing decreased transcriptional activity despite low compaction.
255 These NAP-silenced genes are involved in fast-response functions and their expression level depends
256 strongly on the growth condition, as shown by the differences between the POP profiles of *E. coli*
257 grown in different culture media (**Fig. 3**).

258

259 **DISCUSSION**

260 DNA folding proteins participate in genome structure organization, thus influencing DNA
261 compaction, transcription, and replication¹. The *in vivo* monitoring of these proteins on a genome-
262 scale has so far been hindered by the lack of high throughput tools and the few tools currently
263 available are laborious and limited to a handful of selected organisms. To address this technical gap,
264 we developed POP-seq, which employs genome-wide Tn5 tagmentation to identify thousands of
265 protein-DNA binding events *in vivo*. Integrating POP-seq with HiC and RNA-seq data showed that
266 the *E. coli* and *B. subtilis* genomes are broadly organized into regions that are either compacted,

267 highly transcribed, or open to the AT-binding NAPs (H-NS and Rok). Moreover, the protein-DNA
268 binding events detected by POP-seq can be used to determine TFBS as well as for monitoring the
269 genome openness as a proxy for overall nucleoid structural changes. Thus, we argue that POP-seq
270 provides an essential new perspective on the bacterial nucleoid that could lead to in-depth
271 understanding of the interplay between genome structure, specific functions and the overall
272 phenotype.

273 Our results show a strong concordance between POP-seq signal and binding of important regulatory
274 NAPs, as shown by the correlations between POP-seq, and H-NS in *E. coli*. In *B. subtilis*, the
275 binding of Rok explains a major proportion of the observed POP-seq signal, but there are many AT-
276 rich regions, which are accessible by Tn5, but are unoccupied by Rok and it is unclear whether there
277 are other NAPs that bind to these regions. The genomic regions occupied by SMC are not accessible
278 to Tn5 and DNA binding of both Rok and SMC seems to be mutually exclusive, hinting towards a
279 novel functional role for Rok (and likely another unknown NAP) in constraining the genome-wide
280 SMC binding regions.

281 POP-seq quantifies the concerted effects of all NAPs and TFs in the cell growing in a given
282 environment with high sensitivity. By comparing these signals at different growth conditions, we can
283 readily detect changes in the nucleoid structure. Thus, we propose that POP-seq constitutes an
284 accurate, high throughput and cost-effective method for the study of protein-DNA interactions. POP-
285 seq can be applied to identify active TF and NAP binding sites *in vivo* with high accuracy, thereby
286 allowing a system-level understanding of the dynamics underlying gene regulatory networks.

287 Functional analysis of the most- and least-accessible genes shows that the nucleoid structure is
288 carefully controlled to achieve an optimal transcriptional profile. Moreover, multi-omics integration

289 of genome-wide POP-seq, ChIP-seq, HiC, and RNA-seq data provided insights regarding the
290 interplay between genome accessibility, DNA compaction, and RNA transcription in control of gene
291 expression and distinguishing phenotypes. This view is supported by the finding that *E. coli* genome
292 accessibility is greatly modified after growth in the presence or absence of glucose as carbon source,
293 with important decrease of POP-seq signal (likely due to the removal of H-NS binding) upon
294 activation of alternative sugar utilization pathways. We thus demonstrate that POP-seq aids in
295 unraveling epigenetic control of genes requiring a fast and reversible adaptation to the environment,
296 by the competition between RNA polymerase and NAPs for DNA binding.

297 In summary, POP-seq enables rapid elucidation of the openness of the prokaryotic chromatin, which
298 is directly linked to its structure. POP-seq is independent of culture synchronization and provides
299 high resolution mapping of protein-DNA events. Due to its simplicity and cost effectiveness, it can be
300 implemented to study a plethora of bacterial species in high throughput to elucidate the structural
301 changes in the chromatin and link them directly to phenotype.

302

303 METHODS

304 Bacterial strains and growth conditions

305 *E. coli* K12 substrain MG1655 was grown in LB for most of the experiments. Other *E. coli* growth
306 media used in this study is M9 MM supplemented with either glucose, xylose or ribose. *B. subtilis*
307 PY79 was grown in rich CH medium²⁶. All bacterial cultures were done at 37°C with shaking and
308 harvested at mid-log phase.

309 POP-seq Method

310 Bacterial cultures were grown to mid exponential phase ($OD_{600} = 0.3\text{-}0.5$) in Luria-Bertani medium at
311 37°C . Crosslinking was achieved by treatment with 1% formaldehyde for 20 minutes. Cells were
312 pelleted by centrifugation and the cell pellets were lysed by grinding in liquid nitrogen or by bead
313 bashing at 4°C for 10 mins. 500 μL SET buffer (75 mM NaCl, 25 mM EDTA pH 8, 20 nM Tris-HCl
314 pH 7.5) were used for grinding. Lysate was resuspended in 2x protease inhibitor solution (cComplete
315 mini, Roche) and centrifuged for 10 min at 14,000 rpm and 4°C . 25 μL of supernatant was used for
316 buffer exchange with Tris-EDTA (10 mM Tris, 1 mM EDTA, pH 8) with a 45 min incubation period
317 at room temperature.

318 Hi-sensitivity Qubit DNA kit (Thermo Fisher) was used to measure the DNA concentration directly
319 from the lysate. 700 pg DNA were used as input for the illumina Nextera kit. After library
320 preparation, AMPure beads were used to purify the library as recommended by the manufacturer. The
321 libraries from all experiments were sequenced in either the Illumina HiSeqTM 4000 or MiSeqTM
322 instruments at UCSD IGM genomics center. 100 bp-cycle kits or 150 bp-cycle kits were used to
323 sequence the libraries.

324 **Data preparation for POP-seq versus HiC comparison**

325 The *E. coli* HiC contact matrices (GSM2870426_mat_BC110_CACT_wt_LB_37C.txt.gz and
326 GSM2870427_mat_BC110_CACT_wt_LB_37C_repl.txt) were both acquired from Lioy *et al.*
327 (2018)¹¹. The mean one-dimensional (1-D) structure of the *E. coli* genome was reconstructed from
328 the 3-D contact data, GitHub repository
329 https://github.com/koszullab/E_coli_analysis/blob/master/python_codes/comp_short.py¹¹ accessed
330 Nov. 13th 2019). The resulting 1-D HiC data had a total 928 bins. However, an intrinsic curvature,
331 which hinders comparison with other datasets was seen. Accordingly, we corrected the HiC data by

332 local regression fitting model (**Supplementary Fig. 1**) on R version 3.4.4 (R Core Team, 2018). Each
333 bin had RPM values summed over windows of 5000 nucleotides. The resulting dataset was z-score-
334 normalized and smoothed using the Signal.savgol_filter from the Scipy Python library with
335 window_length of 11 for POP-seq and 7 for HiC (due to its lower resolution) and a polyorder of 3.

336 The 2D matrices of the *B. subtilis* HiC contact maps (GSE68418,
337 GSM1671399_01_Rudnerlab_HindIII_HiC_PY79.matrix.txt.gz and
338 GSM1671400_02_Rudnerlab_HindIII_HiC_PY79_rep1.matrix.txt.gz) were acquired from Wang et
339 al. (2015)¹⁰. The 3D mean matrix was flattened to a 1D array as in *E. coli*, without the need to correct
340 for curvature. However, the resulting bins were only 404 bins, due to the 10-kb resolution of the
341 original HiC dataset. The resulting dataset was z-score-normalized and smoothed using the
342 Signal.savgol_filter from the Scipy Python library with window_length of 15 for POP-seq and 25 for
343 HiC (due to its lower resolution) and a polyorder of 3.

344 **ChIP-seq and RNA-seq and data analysis and plotting**

345 The H-NS ChIP-seq sequencing files (ERR01957) were acquired from Kahramanoglu et al.
346 (2011)¹⁸. The *B. subtilis* Rok ChIP-seq was acquired from Smits and Grossman (2010)⁶
347 (GSE23199). The *B. subtilis* SMC ChIP-seq was acquired from Wang et al. (2017)²⁵ (GSE85612).
348 The *E. coli* RNA-seq data was acquired from Choi et al. (2019)²⁴ (SRR8242101 and SRR8242105).
349 The *B. subtilis* RNA-seq data was acquired from SRR2984942-3 under accession number
350 PRJNA304431. Bowtie2 was used to align the sequencing reads using default parameters. The
351 coverage was calculated with samtools mpileup and normalized in RPM (reads per million) and the
352 resulting wig files were plotted using Integrated Genome Browser (IGB).

353 **Data analysis**

354 In the general procedure, primers and adapter sequences were removed using trim_galore
355 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in paired-end mode (--paired)
356 with the quality cutoff (-q) set to 22 and -fastqc enabled. Next, reads were aligned to the reference
357 genome using bowtie2²⁷. Wig files containing the number of mappings at each genome position were
358 generated using the samtools mpileup command and normalized by reads per million (RPM). The
359 resulting wig files were processed using in-house Python scripts. FeatureCounts²⁸ was used to
360 determine the number of fragments corresponding to each region of interest (features), which could
361 be a gene or promoter. A minimum of 2/3 of each read must be within the gene in order for it to be
362 assigned (--fracoverlap 0.66). DESeq2²⁹ was then used to determine the differential POP-seq and
363 RNA-seq signals for each feature. Downstream analyses were performed using R version 3.6.1 (R
364 Core Team, 2019).

365 **POP-seq footprinting**

366 In order to accurately determine the location of specific Tn5 transposition events so as to precisely
367 pinpoint individual binding sites, mapped reads were trimmed to a 9 bases at the 5' end which are
368 normally covered by the Tn5 protein at the site of transposition¹³. Trimming and alignment were
369 performed as in the general case using trim_galore and bowtie2.

370 **Statistical analyses**

371 Statistical analyses were performed using R version 3.6.1 (R Core Team, 2019). All statistical tests
372 were considered significant if the p-value was below 0.05, after False Discovery Rate (FDR)
373 adjustment in case of multiple testing³⁰. A logistic regression supervised model was built to predict
374 the likelihood of each nucleotide to be at the vicinity of a TFBS according to POP-seq measurements.
375 For each nucleotide, the dependent variable was coded 1 if the corresponding genome position was

376 referenced as a TFBS in EcoCyc¹⁷, 0 if not. Explanatory variables were selected by stepwise bottom-
377 up selection according to the Akaike Information Criterion³¹, and included POP-seq and H-NS ChIP-
378 seq signals, as well as the presence/absence of a gene in every genome position. The logistic
379 regression returns a value in the interval [0, 1] and the best threshold for setting the prediction to 1
380 (event) or 0 (no event) for each genome position was calculated by analysis of the receiver operating
381 characteristic (ROC) curve. The logistic model was built using the R package MASS and ROC curve
382 analysis was performed using the pROC package.

383

384 **REFERENCES**

385 1. Dame, R. T., Rashid, F.-Z. M. & Grainger, D. C. Chromosome organization in bacteria:
386 mechanistic insights into genome structure and function. *Nat. Rev. Genet.* (2019).
387 doi:10.1038/s41576-019-0185-4

388 2. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure
389 and gene expression. *Nat. Rev. Microbiol.* **8**, 185–95 (2010).

390 3. Le, T. B., Imakaev, M. V., Mirny, L. A. & Laub, M. T. High-resolution mapping of the
391 spatial organization of a bacterial chromosome. TL - 342. *Science* **342** VN-, 731–734
392 (2013).

393 4. Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial Chromosome Organization and
394 Segregation. *Annu. Rev. Cell Dev. Biol.* **31**, 171–99 (2015).

395 5. Grainger, D. C. Structure and function of bacterial H-NS protein. *Biochem. Soc. Trans.*
396 (2016). doi:10.1042/BST20160190

397 6. Smits, W. K. & Grossman, A. D. The transcriptional regulator Rok binds A+T-rich DNA
398 and is involved in repression of a mobile genetic element in *Bacillus subtilis*. *PLoS*
399 *Genet.* **6**, (2010).

400 7. Gordon, B. R. G. *et al.* Structural basis for recognition of AT-rich DNA by unrelated
401 xenogeneic silencing proteins. *Proc. Natl. Acad. Sci. U. S. A.* (2011).
402 doi:10.1073/pnas.1102544108

403 8. Duan, B. *et al.* How bacterial xenogeneic silencer rok distinguishes foreign from self
404 DNA in its resident genome. *Nucleic Acids Res.* (2018). doi:10.1093/nar/gky836

405 9. Marbouth, M. *et al.* Condensin- and Replication-Mediated Bacterial Chromosome
406 Folding and Origin Condensation Revealed by HiC and Super-resolution Imaging. *Mol.*
407 *Cell* **59**, 588–602 (2015).

408 10. Wang, X. *et al.* Condensin promotes the juxtaposition of dna flanking its loading site in
409 *Bacillus subtilis*. *Genes Dev.* (2015). doi:10.1101/gad.265876.115

410 11. Lioy, V. S. *et al.* Multiscale Structuring of the *E. coli* Chromosome by Nucleoid-
411 Associated and Condensin Proteins. *Cell* (2018). doi:10.1016/j.cell.2017.12.027

412 12. Takemata, N., Samson, R. Y. & Bell, S. D. Physical and Functional
413 Compartmentalization of Archaeal Chromosomes. *Cell* (2019).
414 doi:10.1016/j.cell.2019.08.036

415 13. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
416 Transposition of native chromatin for fast and sensitive epigenomic profiling of open
417 chromatin, DNA-binding proteins and nucleosome position. *Nat. Methods* **10**, 1213–8

418 (2013).

419 14. Macvanin, M. & Adhya, S. Architectural organization in *E. coli* nucleoid. *Biochim.*
420 *Biophys. Acta - Gene Regul. Mech.* **1819**, 830–835 (2012).

421 15. Bajic, M., Maher, K. A. & Deal, R. B. Identification of open chromatin regions in plant
422 genomes using ATAC-seq. in *Methods in Molecular Biology* (2018). doi:10.1007/978-1-
423 4939-7318-7_12

424 16. He, H. H. *et al.* Refined DNase-seq protocol and data analysis reveals intrinsic bias in
425 transcription factor footprint identification. *Nat. Methods* (2014).
426 doi:10.1038/nmeth.2762

427 17. Keseler, I. M. *et al.* The EcoCyc database: Reflecting new knowledge about *Escherichia*
428 *coli* K-12. *Nucleic Acids Res.* (2017). doi:10.1093/nar/gkw1003

429 18. Kahramanoglou, C. *et al.* Direct and indirect effects of H-NS and Fis on global gene
430 expression control in *Escherichia coli*. *Nucleic Acids Res.* **39**, 2073–2091 (2011).

431 19. Nasser, W. & Reverchon, S. H-NS-dependent activation of pectate lyases synthesis in the
432 phytopathogenic bacterium *Erwinia chrysanthemi* is mediated by the PecT repressor.
433 *Mol. Microbiol.* (2002). doi:10.1046/j.1365-2958.2002.02782.x

434 20. Ryan Will, W., Whitham, P. J., Reid, P. J. & Fang, F. C. Modulation of H-NS
435 transcriptional silencing by magnesium. *Nucleic Acids Res.* (2018).
436 doi:10.1093/nar/gky387

437 21. Giangrossi, M., Wintraecken, K., Spurio, R. & De Vries, R. Probing the relation between
438 protein-protein interactions and DNA binding for a linker mutant of the bacterial

439 nucleoid protein H-NS. *Biochim. Biophys. Acta - Proteins Proteomics* (2014).

440 doi:10.1016/j.bbapap.2013.11.010

441 22. Koh, P. W. *et al.* An atlas of transcriptional, chromatin accessibility, and surface marker
442 changes in human mesoderm development. *Sci. Data* (2016). doi:10.1038/sdata.2016.109

443 23. Piper, J. *et al.* Wellington: A novel method for the accurate identification of digital
444 genomic footprints from DNase-seq data. *Nucleic Acids Res.* (2013).
445 doi:10.1093/nar/gkt850

446 24. Choi, J. S., Park, H., Kim, W. & Lee, Y. Coordinate regulation of the expression of SdsR
447 toxin and its downstream pphA gene by RyeA antitoxin in *Escherichia coli*. *Sci. Rep.*
448 (2019). doi:10.1038/s41598-019-45998-z

449 25. Wang, X., Brandão, H. B., Le, T. B. K., Laub, M. T. & Rudner, D. Z. *Bacillus subtilis*
450 SMC complexes juxtapose chromosome arms as they travel from origin to terminus.
451 *Science* (80-). (2017). doi:10.1126/science.aai8982

452 26. Harwood, Colin, R; Cutting, Simon, M. *Molecular biological methods for Bacillus*.
453 (Wiley, 1990).

454 27. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat.*
455 *Methods* (2012). doi:10.1038/nmeth.1923

456 28. Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: An efficient general purpose program
457 for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

458 29. Love, M. I., Anders, S. & Huber, W. *Differential analysis of count data - the DESeq2*
459 *package*. *Genome Biology* **15**, (2014).

460 30. Klipper-Aurbach, Y. *et al.* Mathematical formulae for the prediction of the residual beta
461 cell function during the first two years of disease in children and adolescents with
462 insulin-dependent diabetes mellitus. *Med. Hypotheses* (1995). doi:10.1016/0306-
463 9877(95)90228-7

464 31. Akaike, T., Fanardjian, V. V., Ito, M. & Nakajima, H. Cerebellar control of the
465 vestibulospinal tract cells in rabbit. *Exp. Brain Res.* (1973). doi:10.1007/BF00234131

466

467 **ACKNOWLEDGEMENTS**

468 This study is based on work supported by the U.S. Department of Energy (DOE), Office of Science,
469 Office of Biological & Environmental Research under Awards DE-SC0012658 and DE-SC0012586.

470

471 **AUTHOR CONTRIBUTIONS**

472 M.M.A-B and K.Z. conceived the study with input from O.M. M.M.A-B, N.C. O.M. and N.C. carried
473 out the experiments and performed all data analysis. All authors wrote and reviewed the manuscript.

474

475 **Figure 1. Overview of the POP-seq procedure and quality control checks of the data. (a)**
476 Summary of the major steps of the POP-seq method. The library generation takes ~2 hours. **(b)**
477 Distribution of the aligned fragment sizes. The subpeaks (spikes) are separated by ~10 bp. **(c)**
478 Correlation between two replicates of *E. coli* POP-seq. Each point represents the mean z-scored RPM
479 coverage over a 5-kb window. The experiment is highly reproducible with $R^2=0.99$ (p-value<2.2e-
480 16). **(d)** Number of Tn5 tagmentation sites (top pie chart) and intensity of Tn5 tagmentation (bottom

481 pie chart) found in the coding and the intergenic regions. The data is normalized by the total lengths
482 of both regions. (e) Examples of POP-seq tagmentation sites. Most of the tagmentation events are
483 present in intergenic regions. The blue spikes superimpose over experimentally verified TFBSSs (small
484 blue bars on top) from EcoCyc¹⁷. The red spikes could represent potentially novel TFBS

485

486 **Figure 2. POP-seq recapitulates known TFs and NAPs binding regions. (a)** Genome-wide
487 correlation between POP-seq and AT% content datasets. **(b)** Genome-wide correlation between H-NS
488 and AT%. **(c)** Genome-wide correlation between POP-seq and H-NS. The data in (a-c) were summed
489 over 5 kb windows, z-score normalized and plotted. R represents Pearson's correlation coefficient.
490 **(d)** Agreement between POP-seq and protein occupancy domains (EPODs, Magenta boxes) reported
491 by Vora et al. 2009. AT-rich regions are occupied by H-NS and are also accessible by Tn5 (POP-
492 seq). The POP-seq footprint (FP) track is comprised of the 9-bp region between the two strand-
493 transfer events catalyzed by each tagmenting transposase, which are by necessity occupied during
494 tagmentation. It is therefore a more localized measure of accessibility to Tn5 than full-length reads.
495 **(e)** Aggregated enrichment of the POP-seq signal over *E. coli* TSSs (top). The signal around each
496 TSS (+/- 1 kb) was calculated and used to construct a heatmap in which the TSS-proximal regions are
497 sorted by average signal strength (bottom). **(f)** Examples of PurR, TyrR, and TrpR TFBS from
498 EcoCyc detected by POP-seq footprints. The binding sites are flanked by strong POP-seq signals on
499 both positive and negative strands. **(g)** Cumulative footprinting signals for major TFs in *E. coli*. The
500 Wellington algorithm²³ was used to calculate the signals flanking the corresponding EcoCyc TFBSSs.
501 The control footprints over naked DNA shows no significant signals.

502

503 **Figure 3. Differential POP-seq profiles of *E. coli* after growth in various culture media. (a)**
504 Principal Component Analysis of the mean POP-seq signal at every *E. coli* genome position. The
505 overall POP signals are highly similar in MM+glucose or LB, medium while alternative carbon
506 sources (ribose and xylose) induce major modifications. **(b)** Genome-wide POP-seq signal profiles of
507 *E. coli* grown in MM with glucose, xylose, and ribose. The signals were smoothed using 100 kb
508 windows. Glucose signals are significantly higher downstream of the 3 Mbp position **(c)** Heatmap
509 showing all the RAST subsystems with a significantly lowered average POP-seq signal in both
510 MM+ribose and MM+xylose compared to MM+glucose (DESeq analysis). The POP-seq values are
511 normalized as percent values for each subsystem. Most of those subsystems are related to alternative
512 sugar/carbon sources utilization pathways.

513

514 **Figure 4. Relationship between transcription, nucleoid compaction, and Tn5 accessibility.**
515 **(a)** Comparison between the GC content, RNA-seq, H-NS Chip-seq, and POP-seq signals over
516 a section of the *E. coli* genome. Actively transcribed genes (grey arrows highlighted with
517 magenta boxes) show low POP-seq signal. Untranscribed genes show high H-NS binding and
518 high POP-seq signals. **(b)** Heatmap and hierarchical clustering agglomeration (HCA) (Ward
519 agglomeration on Euclidean distances) of 5 kb bins of the *E. coli* genome according to HiC,
520 RNA-seq, and POP-seq signals. The three genomic clusters, C1, C2, and C3, are significantly
521 enriched in HiC, RNA, or POP-seq signals, respectively. **(c)** Comparison between GC content,
522 RNA-seq, SMC, and Rok Chip-seq and POP-seq signals over a section of the *B. subtilis*
523 genome. Genes with high AT content show high Rok Chip-seq and POP-seq signals. SMC
524 occupied regions are not accessible by Tn5 (magenta boxes and grey genes). Some regions are
525 hypersensitive to Tn5 but the DNA binding protein is unknown (blue boxes and blue genes).

526 (d) Heatmap and HCA of the 10 kb bins of the *B. subtilis* genome. Similar to *E. coli* (b), C1,
527 C2, and C3 clusters are found, with significantly enriched HiC, RNA, or POP-seq signals,
528 respectively. (e) Schematic view of the H-NS / Rok epigenetic control of the *E. coli* / *B.*
529 *subtilis* genome highlighted by POP-seq experiment. Cluster 1 (C1) is characterized by a high
530 genome compaction making it not accessible to neither Tn5 (low POP) nor RNA polymerase
531 (low RNA-seq). Cluster 2 (C2) refers to regions with active transcription, contains mostly
532 house-keeping genes, and the RNA-polymerase activity hinders Tn5 accessibility (low POP).
533 Cluster 3 (C3) demonstrates a high POP and H-NS/Rok binding, which hinders RNA
534 polymerase transcription. The H-NS regulated genes are involved in fast-responsive functions
535 and depend strongly of the growth conditions.

536

537

538

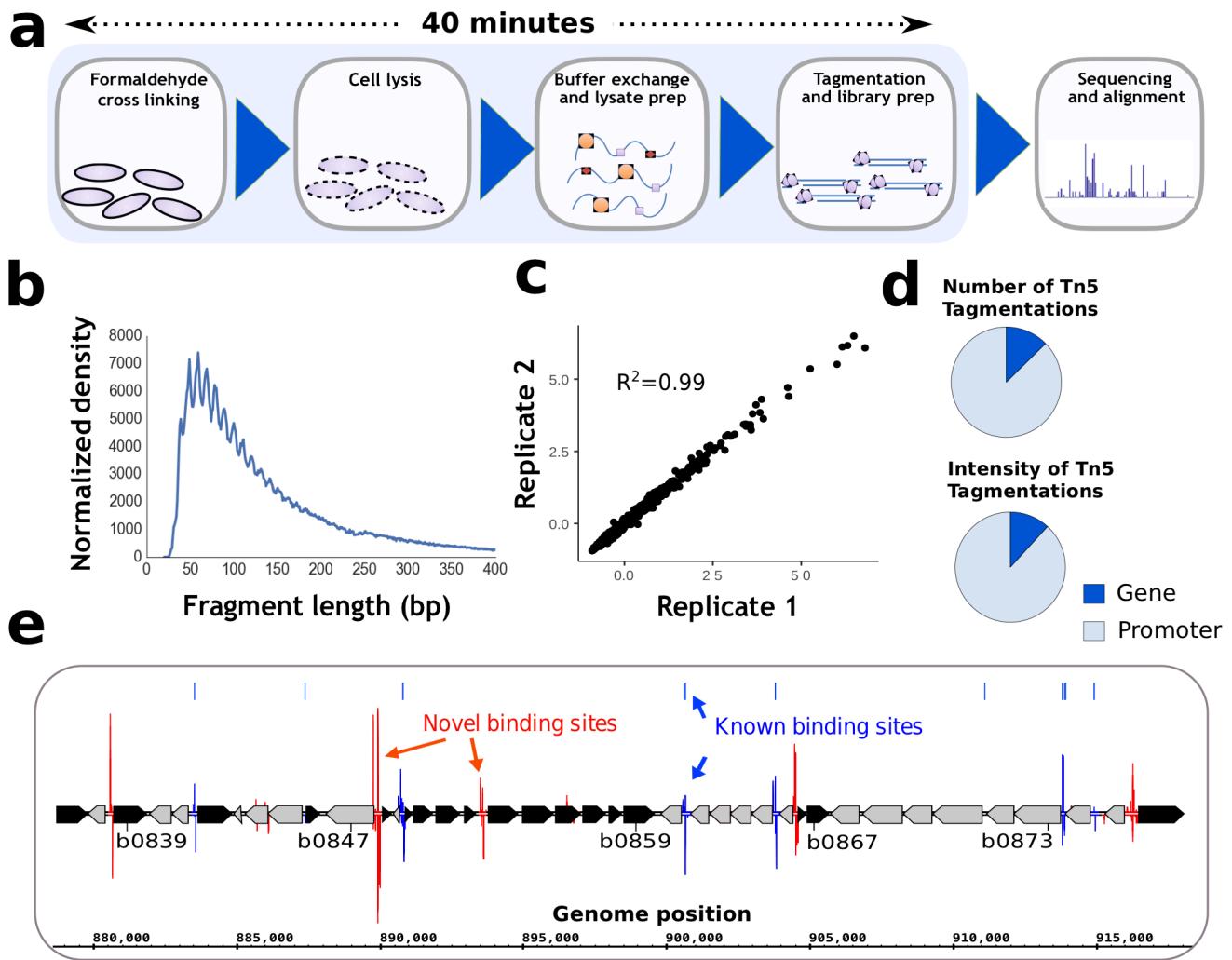
539

540

541

542

543


544

545

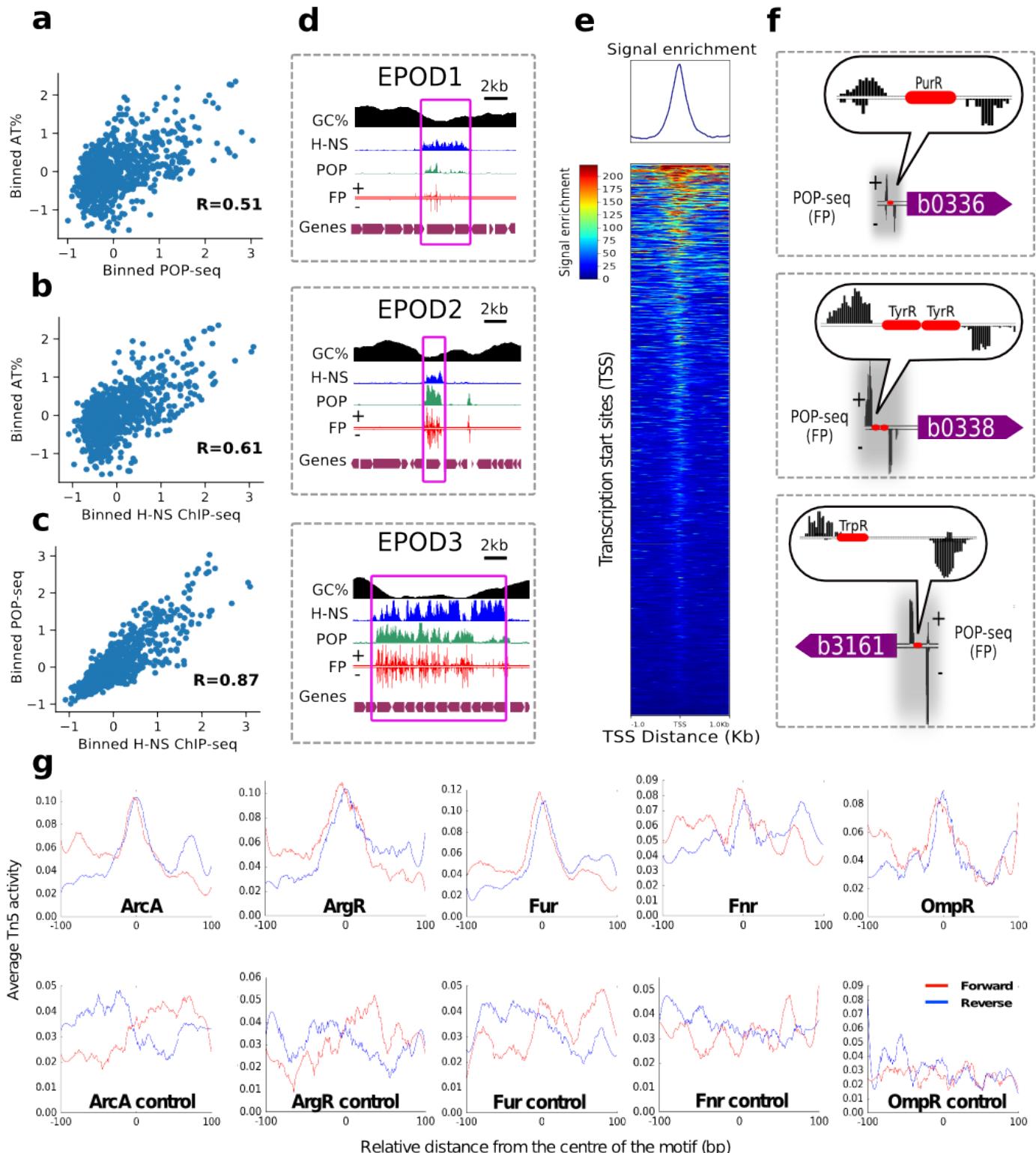
546

547

548 **Figure 1**

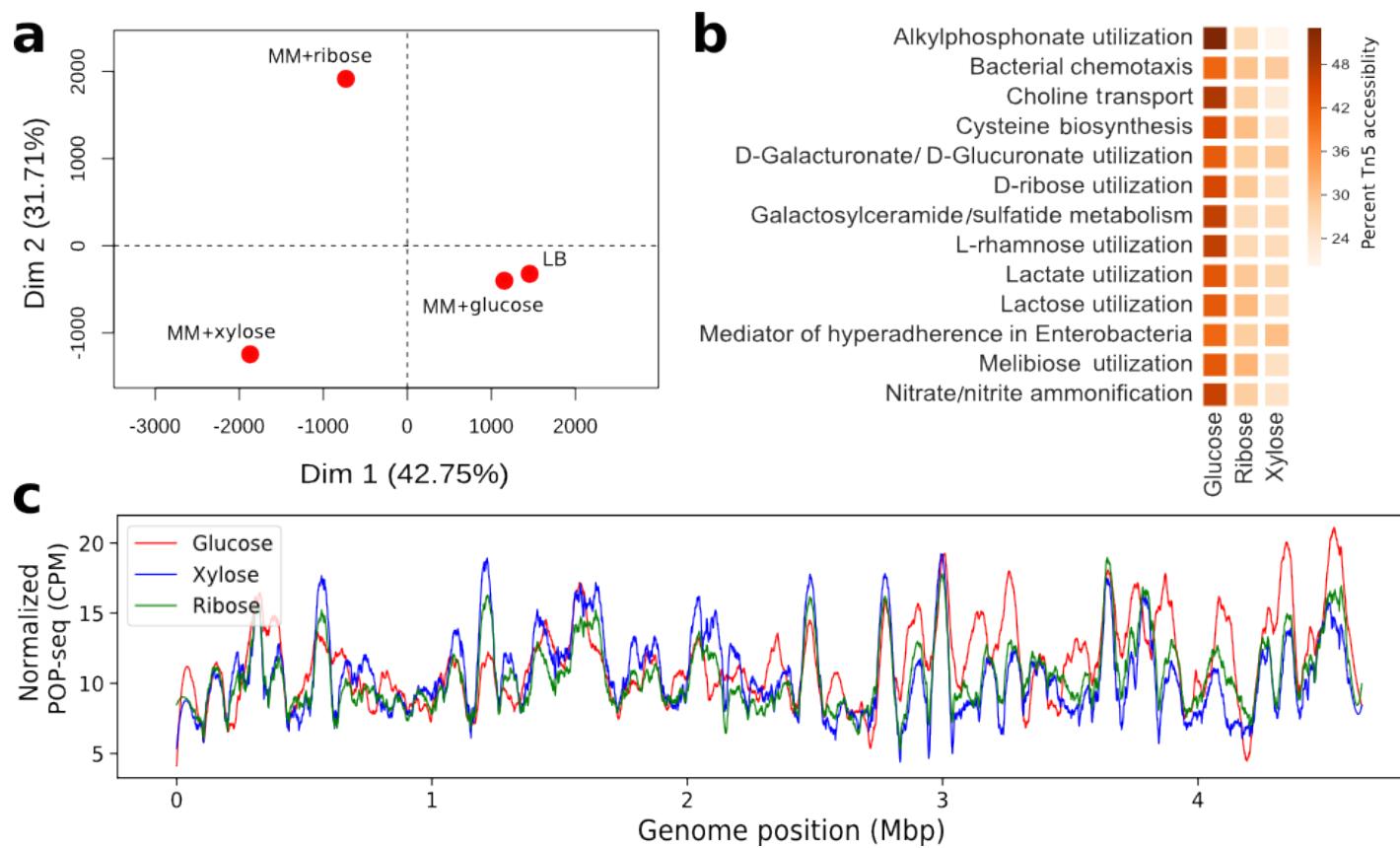
549

550


551

552

553


554

555 **Figure 2**

556

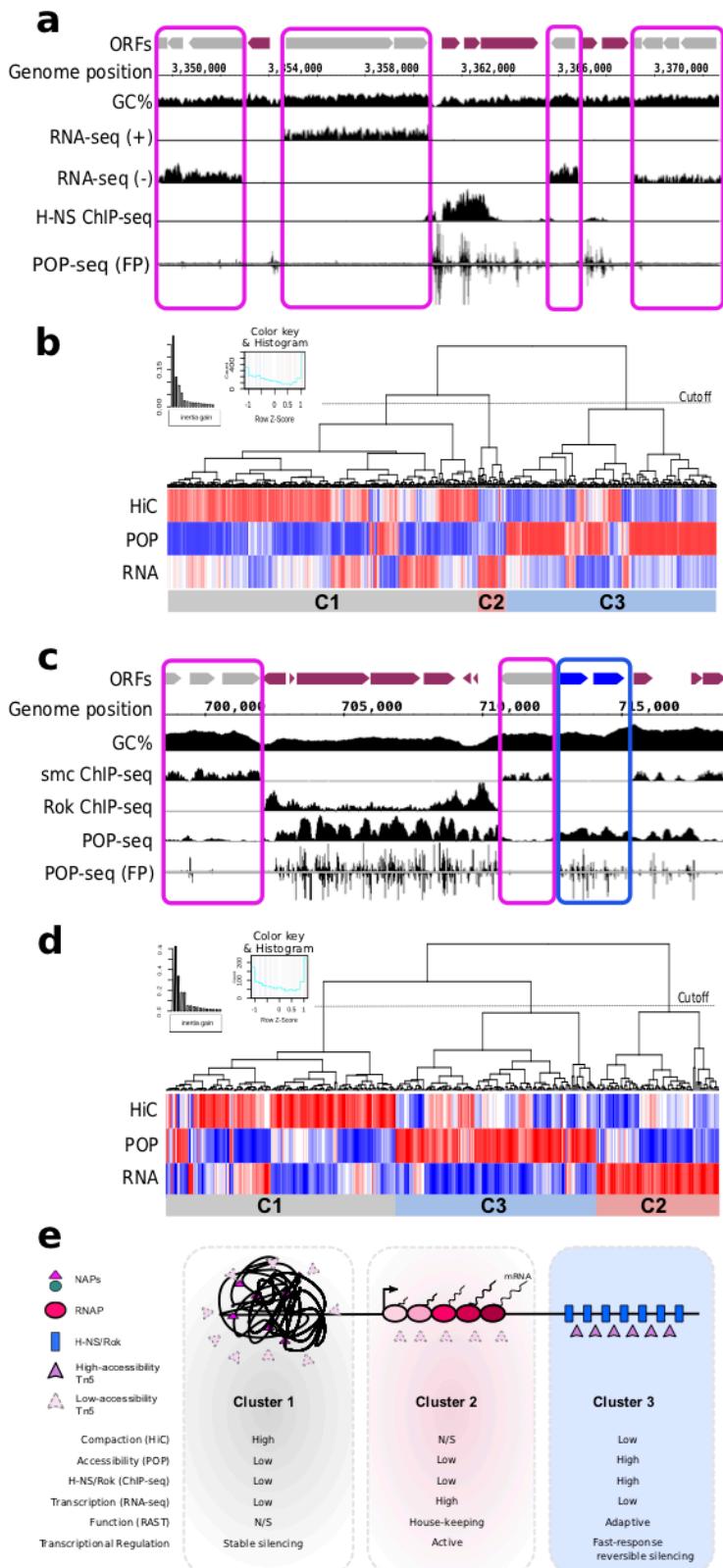
557 **Figure 3**

558

559

560

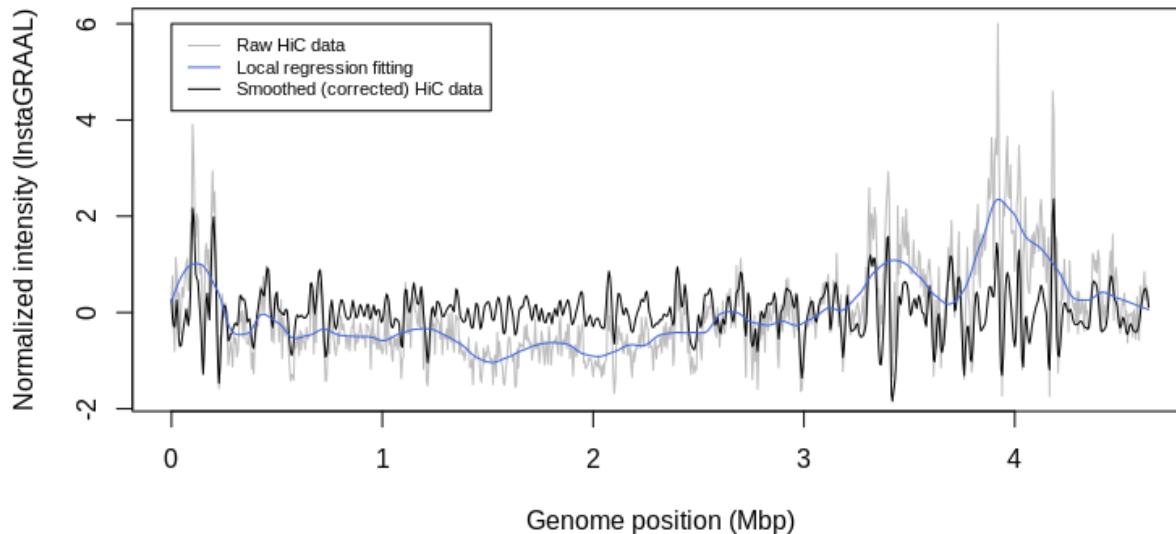
561


562

563

564

565


566 **Figure 4**

568

569 **SUPPLEMENTARY DATA**

Smoothing of HiC data using a local regression model

570

571 **Supplementary figure 1. Smoothing of HiC data using a local regression fitting.** We used a local regression model (blue line) of
572 the raw HiC data (grey line) to calculate smoothed HiC values (black line).

573

574 **Supplementary table 1. Top 20 subsystems with the most significantly higher POP signal**

<i>Subsystem</i>	<i>mean signal in subsystem</i>	<i>mean signal out of subsystem</i>	<i>p-value</i>	<i>p-value (adjusted)</i>
LOS core	26.01	4.40	0.00	0.00
oligosaccharid				
e biosynthesis				
The usher	31.08	4.46	0.00	0.00
protein HtrE				

fimbrial				
cluster				
CRISPRs	16.38	4.52	0.00	0.01
Mediator of	9.30	4.54	0.00	0.02
hyperadheren				
ce YidE in				
Enterobacteria				
and its				
conserved				
region				
Orphan	7.54	4.53	0.00	0.02
regulatory				
proteins				
Periplasmic	52.86	4.46	0.00	0.03
Acid Stress				
Response in				
Enterobacteria				
D-gluconate	9.03	4.53	0.00	0.03
and				
ketogluconate				
s metabolism				
D-allose	11.44	4.53	0.00	0.05
utilization				
General	6.40	4.55	0.00	0.05
Secretion				
Pathway				

The fimbrial	23.00	4.52	0.00	0.05
Sfm cluster				
Xylose	11.12	4.53	0.00	0.06
utilization				
Biofilm	10.72	4.54	0.00	0.06
Adhesin				
Biosynthesis				
Curli	12.71	4.53	0.00	0.07
production				
L-fucose	7.18	4.55	0.00	0.07
utilization				
A toxin- antitoxin	23.88	4.53	0.00	0.07
module				
cotranscribed				
with DinB				
Lysine	18.18	4.53	0.00	0.07
degradation				
D-ribose	8.74	4.54	0.00	0.07
utilization				
The fimbrial	9.34	4.54	0.01	0.08
Stf cluster				
Unknown	7.52	4.54	0.01	0.09
carbohydrate				
utilization				
(cluster Ydj)				

L-rhamnose	8.12	4.54	0.01	0.09
utilization				

575

576 **Supplementary table 2. Top 20 subsystems with the most significantly lower POP signal**

<i>Subsystem</i>	<i>mean signal in subsystem</i>	<i>mean signal out of subsystem</i>	<i>p-value</i>	<i>p-value (adjusted)</i>
Ribosome	1.85	4.59	0.00	0.00
LSU bacterial				
Ribosome	0.84	4.59	0.00	0.00
SSU bacterial				
Respiratory	0.89	4.58	0.00	0.00
Complex I				
Na(+-)	0.97	4.57	0.00	0.01
translocating				
NADH-				
quinone				
oxidoreductas				
e and rnf-like				
group of				
electron				
transport				
complexes				
Alkylphospho	1.96	4.57	0.00	0.06
nate				
utilization				
Ethanolamine	2.23	4.57	0.00	0.06

utilization				
Mycobacteriu	0.28	4.56	0.00	0.06
m virulence				
operon				
involved in				
protein				
synthesis				
(LSU				
ribosomal				
proteins)				
Histidine	1.38	4.57	0.00	0.06
Biosynthesis				
Thiamin	1.79	4.57	0.00	0.06
biosynthesis				
Osmoprotecta	1.29	4.56	0.01	0.09
nt ABC				
transporter				
YehZYXW of				
Enterobacteria				
les				
De Novo	1.80	4.57	0.01	0.13
Purine				
Biosynthesis				
Fatty Acid	2.22	4.57	0.02	0.17
Biosynthesis				
FASII				
tRNA	0.40	4.56	0.02	0.17

aminoacylato				
n, Phe				
Transcription	1.85	4.57	0.02	0.20
initiation,				
bacterial				
sigma factors				
Bacterial	2.06	4.57	0.03	0.22
Cytoskeleton				
The	1.46	4.56	0.03	0.22
mdtABCD				
multidrug				
resistance				
cluster				
KDO2-Lipid	2.34	4.57	0.03	0.22
A				
biosynthesis				
TCA Cycle	1.87	4.56	0.03	0.22
Biogenesis of	2.65	4.56	0.03	0.22
c-type				
cytochromes				
RuvABC plus	1.22	4.56	0.03	0.24
a hypothetical				