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ABSTRACT  14 

Gene expression requires specific structural alternations in the nucleoid structure to enable the access 15 

of the transcription machinery into the genomic DNA. In prokaryotes, DNA binding proteins, 16 

including nucleoid-associated proteins (NAPs) and transcription factors (TFs), drive the change in 17 

structure and gene expression. Currently, studies of global NAP and TF binding are often hindered by 18 

the lack of appropriate epigenomic tools. Here, we present POP-seq, a method that provides in vivo 19 

genome-wide openness profiles of the bacterial nucleoid. We demonstrate that POP-seq can be used 20 

to map the global in vivo protein-DNA binding events. Our results highlight a negative correlation 21 

between genome openness, compaction and transcription, suggesting that regions that are not 22 
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accessible to Tn5 transposase are either too compacted or occupied by RNA polymerase. Importantly, 23 

we also show that the least open regions are enriched in housekeeping genes, while the most open 24 

regions are significantly enriched in genes important for fast adaptation to changing environment. 25 

Finally, we demonstrated that the genome openness profile is growth condition specific. Together, 26 

those results suggest a model where one can distinguish two types of epigenetic control: one stable, 27 

long-term silencing of highly compacted regions, and a second, highly responsive regulation through 28 

the dynamic competition between NAPs and RNA polymerase binding. Overall, POP-seq captures 29 

structural changes in the prokaryotic chromatin and provides condition-specific maps of global 30 

protein-DNA binding events, thus linking overall transcriptional and epigenetic regulation directly to 31 

phenotype.  32 

 33 

INTRODUCTION 34 

Genome organization is crucial to all life forms. In eukaryotes, histone oligomers organize the 35 

chromosomal DNA into nucleosomes of defined sizes, the building blocks of higher-order structures. 36 

By contrast, such well-defined structures are lacking in bacteria. Instead, a wide variety of poorly 37 

conserved nucleoid-associated proteins (NAPs) control the dynamic organization of the nucleoid and 38 

directly affect how genetic information is accessed, interpreted, and implemented1,2,3,4. Among the 39 

most widely studied NAPs is H-NS in E. coli5 and its functional analog, Rok in B. subtilis6, both 40 

known to have high affinity towards AT-rich regions7,8. 41 

Omic technologies have revolutionized molecular biology by providing accurate measurements of 42 

molecular components, such as protein, RNA, and cis-acting elements. Yet, there currently exist few 43 

techniques for comprehensive identification and assessment of dynamic NAP binding and nucleoid 44 

organization in vivo. Implementation of HiC and similar methods have provided vital insights into the 45 
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three-dimensional structure of the chromosome. However, HiC is limited by its technical and 46 

bioinformatic intricacy, the need for extreme sequencing depth, and the prerequisite for highly 47 

synchronous cell cultures, limiting its use to only a handful of selected bacteria3,9,10,11 and archaea12. 48 

As such, studies of the bacterial nucleoid at large remain challenging and therefore the effect of NAPs 49 

on global gene expression and nucleoid conformation remains poorly understood in the most 50 

abundant and diverse domain of life.  51 

Here, we describe POP-seq (Prokaryotic chromatin Openness Profiling sequencing) as a method to 52 

interrogate changes in the openness of prokaryotic nucleoids associated with changes in the growth 53 

conditions and rapidly elucidate the state of bacterial genome organization. We present the results of 54 

POP-seq experiments carried out on the two major model bacteria, Gram-negative E. coli and Gram-55 

positive B. subtilis. We compare our findings with previously published genomic studies to unravel 56 

the relationships between POP-seq measurements, NAP binding, DNA compaction, and gene 57 

expression. First, we show that POP-seq footprint signals are highly correlated with transcription 58 

factor binding sites (TFBS) and can potentially be used to identify novel TFBS in E. coli with both 59 

high reproducibility and high resolution. The POP-seq signals were also found highly correlated with 60 

both H-NS in E. coli and Rok in B. subtilis, suggesting that silencing of AT-rich genes by the binding 61 

of specialized NAPs is widespread within Gram-negative and Gram-positive bacteria. Through the 62 

integration of POP-seq with HiC and RNA-seq data, we unravel the role of the silencing NAPs in the 63 

epigenetic control of fast-response AT-rich genes. Our results suggest NAPs that bind AT-rich 64 

regions are fundamentally required for both Gram-negative and Gram-positive bacteria, despite the 65 

lack of amino acid sequence homology among these NAPs. Overall, POP-seq can provide an 66 

extensive map of protein-DNA binding events and genome-to-phenome associations in a fast and 67 

cost-effective manner.  68 
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 69 

RESULTS 70 

POP-seq captures the open nucleoid of bacteria 71 

To study the accessibility state of chromatin in bacteria, we employed a hyperactive Tn5 transposase. 72 

We performed our studies with E. coli as it is the most profoundly studied bacterium with copious 73 

omics data readily available in the public domain. The nucleoids of E. coli cells were first fixed with 74 

1% formaldehyde to stabilize short-range DNA-protein interactions. The fixed cells were lysed and 75 

ions and small molecules, such as salts and sugars, were removed from the lysate by buffer exchange 76 

to eliminate any chance of modulating Tn5 activity. The lysate was diluted to 700 pg of DNA 77 

(equivalent to ~1,500 E. coli cells), after which the fixed nucleoid was fragmented by Tn5 78 

tagmentation and the resulting fragments were PCR-amplified to generate POP-seq sequencing 79 

libraries (Fig. 1a).  80 

In eukaryotes, the fragment length distribution obtained from open chromatin has several notable 81 

characteristics that offer insight into the underlying chromatin structure. First, fragments generated 82 

from open chromatin were shorter than those produced from more compact regions. Second, the 83 

distribution of longer fragments fell into defined periods that reflect multiples of constant-sized 84 

nucleosomes. The POP-seq fragment length distribution ragned from ~30 to ~500 bp and was skewed 85 

to the right towards longer fragments (Fig. 1b), similar to eukaryotic fragment length profile13. 86 

However, no fragment periods similar to the ones found in eukaryotes13, were observed. The absence 87 

of this periodicity can be explained by the nature of the prokaryotic nucleoid, which lacks fixed sized 88 

nucleosomes. Instead, the prokaryotic nucleoid is organized and maintained by an array of NAPs2,14, 89 

leading to protected DNA fragments varying in size. Notably, the length distribution of both 90 
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prokaryotes and eukaryotes had oscillations with a period of 10.5 bp, indicative of the helical pitch of 91 

DNA13,15. 92 

POP-seq experiments performed on biological replicates were highly correlated (Pearsons’s R=0.99, 93 

p-value<2.2e-16, using average coverage over 5 kb windows), consistent with the concept that binding 94 

of NAPs and TFs is both highly organized and rigorously regulated (Fig 1c). The frequency of the 95 

Tn5 tagmentation events and the intensity of the resulting signals were greater at promoter sites 96 

compared to coding regions (Fig. 1d). It is well-established that DNA-binding proteins occlude Tn5 97 

transposition at their sites of occupancy13, but the flanking regions are known to be hypersensitive to 98 

Tn513 or DNase I16. Therefore, it is not surprising that strong POP-seq signals were found in 99 

intergenic promoter regions, particularly because these signals overlapped with known TF or NAP 100 

binding sites curated in EcoCyc17 (Fig. 1e). Interestingly, we found intense Tn5 signals at intergenic 101 

regions where no TFs or NAPs have been reported to bind, suggesting that POP-seq could detect 102 

novel regulatory binding sites in E. coli (Fig. 1e).  103 

POP-seq recapitulates previous NAP findings in bacteria 104 

We found that AT-rich regions are hypersensitive to tagmentation by Tn5 (Fig. 2a). The broadly 105 

distributed POP-seq signal in these regions indicates that DNA binding events are occurring in a 106 

sequence-agnostic manner, highly reminiscent of the action of NAPs. In particular, H-NS is known 107 

for its strong tendency to bind to AT-rich regions18 (Fig. 2b). Genome-wide comparison of POP-seq 108 

signals with H-NS ChIP-seq signals revealed that the signals are highly correlated (Pearson’s 109 

correlation R=0.87, p-value<2.2 e-16 over 5-kb windows, Fig. 2c), suggesting that H-NS binding 110 

regions are hypersensitive to tagmentation by Tn5. Furthermore, POP-seq signals were enriched over 111 

broad-scale protein-rich domains (extensive protein occupancy domains, EPODs) previously 112 
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identified by Vora et al., 2009 (magenta boxes in Fig. 2d). Overall, these findings imply that H-NS 113 

does not entirely occlude Tn5 transposase accessibility and that DNA flanking the H-NS binding sites 114 

is hypersensitive to tagmentation. This is consistent with in vitro experiments in which DNA bound 115 

by H-NS was resistant to DNase I digestion, while DNA immediately flanking the H-NS binding 116 

regions was hypersensitive to DNase I19,20,21. 117 

POP-seq can identify transcription factor binding sites 118 

The majority of gene regulation takes place at the transcriptional level. Transcription factors 119 

recognize specific sequences in cis-regulatory elements embedded in promoter sites and modulate 120 

transcription either positively or negatively. Due to the poor conservation of NAPs and TFs, the 121 

understanding of the regulatory network underlying gene expression represents a major challenge in 122 

bacteria. As such, we wondered if POP-seq signals can provide in vivo maps of DNA-binding events 123 

over the entire genome.  124 

The median POP-seq signal over non-coding regions (including promoter sites) is higher than the 125 

median POP-seq signal over open reading frames (ORFs) by three-folds (Mann-Whitney p-value<2e-126 

16). Further, we found that these signals are more prominent over transcription start sites (TSSs) (Fig. 127 

2e), which is the center of transcriptional regulation. Our results imply that the nucleoid is more open 128 

at promoter sites, consistent with what is described in eukaryotes22, and that the signals could be 129 

originating from transcription factor-DNA binding events.  130 

Thus, we examined the Tn5 tagmentation sites (POP-seq footprints), in which we only scored the 9 131 

nucleotides covered by the Tn5 transposase for each aligned read. As a result, we generated two 132 

genome-wide alignment files for each experiment: one for the forward-strand sequencing reads and 133 

another for the reverse-strand sequencing reads. We tested if local depletions (footprints) in the two 134 
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alignment files could be used to identify active transcription factor binding sites (TFBS) (Fig. 2f). We 135 

found that POP-seq signals are five-fold higher in the vicinity of putative TFBS curated in EcoCyc 136 

relative to the rest of the genome (Student’s t-test, p-value<2.2e-16). Further, we built a supervised 137 

model to predict whether each genome position is likely to contain a TFBS. As H-NS is a major 138 

contributor of the total POP-seq signal, the retained model took into account both POP-seq and H-NS 139 

Chip-seq signals, as well as the presence or absence of a gene at each genome position as predictors 140 

of EcoCyc-annotated TFBS (see Methods). With a sensitivity of 71% and a specificity of 84%, our 141 

model demonstrated that POP-seq is capable of efficiently highlighting genomic regions most likely 142 

to harbor a TFBS. Altogether, our results demonstrate that POP-seq can determine overall TF binding 143 

dynamics in vivo. 144 

Next, we explored the POP-seq hypersensitive sites and tested if these can be used to determine 145 

TFBSs. We used the EcoCyc17 TFBS positions for each TF across the entire E. coli genome and 146 

explored the POP-seq signals that flanked the binding sites of each TF. Using the Wellington 147 

algorithm23, we found a sharp increase in the POP-seq signals flanking the center of many TFBSs 148 

tested (Fig. 2g), which diminished in positions distant from the TFBSs. The unfixed and naked DNA 149 

control showed no significant signals. These results demonstrate that POP-seq can reveal the 150 

positions of TFBSs with high accuracy. 151 

Highly accessible genes are readily adapted to growth conditions 152 

In order to gain insights into the functional importance of genome openness, we performed RAST 153 

functional annotation of the E. coli genome, and tested which functional subsystems are associated 154 

with low or high POP-seq signals. Our results show that the genes with the lowest POP-seq signal are 155 

involved in house-keeping metabolic functions, such as ribosomal proteins, respiratory complex I, 156 
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and electron transport complexes (Supplementary Table 1). On the contrary, genes with the highest 157 

POP-seq signal are involved in functions that require a fast adaptive response to changing growth 158 

conditions, such as alternative carbon source utilization pathways (e.g. xylose, D-ribose, D-allose, L-159 

fucose, D-gluconate and ketogluconates), core-oligosaccharide biosynthesis, adherence and motility 160 

(especially related to fimbriae expression), CRISPRs, periplasmic acid stress response, toxin-161 

antitoxin replicon stabilization systems, and general secretion pathways (Supplementary Table 2). 162 

Additionally, we observed that the 20 most Tn5-accessible subsystems present a significantly higher 163 

AT content and four-fold more H-NS binding than the 20 least-accessible ones (Mann-Whitney p-164 

values<2.10-16). Together, these data demonstrate that genes that require a fast and reversible 165 

response to changing growth conditions are AT-rich, regulated by NAPs (H-NS in this case), and 166 

highly accessible to Tn5. 167 

To validate the influence of bacterial growth condition on genome openness dynamics, we conducted 168 

POP-seq on E. coli grown in minimal medium (MM) containing ribose, xylose, or glucose. Principal 169 

component analysis (PCA) indicated that bacteria grown in MM+glucose or Luria-Bertani (LB) 170 

present similar POP-seq profiles, while remarkable differences were seen in MM+ribose or 171 

MM+xylose media (Fig. 3a). A global overview of the POP-seq signal measured in MM+glucose, 172 

ribose or xylose over the E. coli genome confirms the major differences between profiles, especially 173 

when comparing those obtained in presence (red lines Fig. 3b) or absence (green and blue lines Fig. 174 

3b) of glucose as the main carbon source. These results highlight that POP-seq signals are directly 175 

linked to structural changes in the bacterial nucleoid and occur in direct response to changes in 176 

environmental conditions.  177 

Moreover, comparative analysis allowed the identification of 13 RAST subsystems showing a 178 

significantly decreased POP-seq signal in both MM+xylose and ribose compared to glucose (DESeq2 179 
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p-values, FDR adjusted<0.05, Fig. 3c). Most of those subsystems are related to alternative sugar 180 

utilization pathways (Fig. 3c), suggesting a removal of NAPs transcription inhibition to adapt to the 181 

absence of glucose. These results show that POP-seq signals are directly linked to structural changes 182 

in the bacterial nucleoid, and occur in direct response to changes in environmental conditions. 183 

Therefore, POP-seq can link structural modifications of the nucleoid with function. 184 

The nucleoid openness is constrained by DNA compaction or transcription 185 

Inspection of high- and low-accessibility regions shows that AT-rich genes are generally silenced by 186 

H-NS and have high Tn5 accessibility, while highly transcribed genes are far less accessible (Fig. 187 

4a), as elongating RNA polymerase occludes H-NS (and Tn5) accessibility1. Therefore, it is possible 188 

that high transcription or highly compacted genomic regions negatively affect genome accessibility 189 

measured by POP-seq. To assess this possibility, we evaluated the global relationship between DNA 190 

compaction11, RNA expression24, and Tn5 accessibility (POP-seq). To enable direct comparison, the 191 

3-dimensional matrix of DNA-DNA contacts from a HiC experiment11 was flattened into a 1-192 

dimensional array. All datasets were Z-score normalized and the signals were lightly smoothed and 193 

binned into 928 equal regions (5 kb each, Supplementary figure 1). We observed a significant 194 

negative correlation between POP-seq and HiC signals (Pearson’s R=-0.44, p-value<0.01), showing 195 

that highly compacted regions are not likely to be accessible to Tn5.  196 

Next, we performed a hierarchical cluster analysis (HCA) of the 928 E. coli genomic bins according 197 

to the POP-seq, RNA-seq, and HiC signals. Three distinct clusters (C1-3) were identified (Fig. 4b). 198 

C1 (56% of the E. coli genome) represents genomic regions with low openness, high compaction and 199 

low transcription, C2 (5% of the genome) represents highly transcribed regions, and C3 (38% of the 200 
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genome) represents regions with high accessibility, low compaction and low transcription (p-value of 201 

Student’s t-test<0.05).  202 

Our data show that the organization of the genomic regions can be driven either by compaction (C1), 203 

transcription (C2), or openness (C3), in a mutually exclusive fashion (Fig. 4b). We show that 204 

transcriptionally active regions (C2) are enriched in housekeeping functions (RAST analysis, Fisher 205 

test p-value<0.05). The high correlation between POP-seq and H-NS ChIP-seq data suggests that the 206 

gene expression in the accessible regions is silenced by H-NS. The C3 regions are significantly 207 

associated with alternative sugar utilization pathways (Fisher test p-value<0.05). The compacted 208 

regions (C1) had no significant enrichment of any biological function. Our results reinforce the notion 209 

that the genome structure-function relationship is governed by compaction, transcription, and 210 

openness, and the latter appears to include highly dynamic and fast-responsive functions.   211 

POP-seq experiment of B. subtilis captures Rok transcriptional control 212 

We conducted POP-seq experiments in two biological replicates for B. subtilis to test the applicability 213 

of POP-seq across other bacterial phyla. The two POP-seq biological replicates were highly 214 

correlated (Pearson’s R=0.997, p-value<2.2e-16, 10-kb bins), confirming that, like E. coli, NAP and 215 

TF binding in B. subtilis is strictly regulated. We also observed that, as in E. coli, genes exhibiting the 216 

highest POP-seq signal are involved in fast-adaptive RAST functions (sporulation, sugar and amino 217 

acid utilization, multidrug resistance proteins), and the majority of less accessible genes were 218 

involved in housekeeping functions (translation initiation, cytochrome C and D, ribosomal proteins) 219 

(p-value of Mann-Whitney test, FDR adjusted<0.05). 220 

Despite having comparable GC content (50.8% for E. coli and 43.6 % for B. subtilis), the genome 221 

organization of E. coli and B. subtilis is remarkably different. Rok and SMC (structural maintenance 222 
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of chromosomes) play key roles in genome organization and are both among the best characterized 223 

NAPs in B. subtilis. Rok is a functional analogue of H-NS and ChIP-seq experiments have shown that 224 

Rok binds to AT-rich regions (Smits & Grossman 2010, Fig. 4c). The correlation between POP-seq 225 

and Rok ChIP-seq data was strongly significant (p-value<2.2-16). However, unlike in E. coli where H-226 

NS and POP-seq signals were highly correlated (Fig. 4c), the Rok ChIP-seq signals were only 227 

partially correlated with the POP-seq signals (Pearson’s R=0.44, 10-kb bins). 228 

The SMC complex is composed of Smc, ScpA and ScpB and is known to have a critical role in long-229 

range DNA compaction25. Therefore, we explored the contribution of SMC binding to the total POP-230 

seq signal by comparing our POP-seq data to previously published SMC ChIP-seq data25. We found 231 

that the POP-seq (and the majority of Rok ChIP-seq) signals are mutually exclusive to the SMC 232 

ChIP-seq signals (Fig. 4c), implying that SMC occupied regions are inaccessible to Tn5. Regions 233 

highly accessible to Tn5 that are neither occupied by Rok nor by SMC (Blue box Fig. 4c) raise the 234 

possibility of a hitherto unknown NAP that has binding properties reminiscent of Rok. 235 

B. subtilis and E. coli have three major openness clusters in common 236 

To further investigate the relationships between genome accessibility, compaction, and transcription, 237 

we performed HCA for 10-kb bins of the B. subtilis genome for the POP-seq, HiC, and RNA-seq 238 

datasets. Similar to E. coli, our results led to the identification of three major clusters C1, C2, and C3, 239 

characterized by high HiC, high RNA, or high POP-seq signals, respectively (p-value of pairwise 240 

Student’s t tests, FDR adjusted<0.05) (Fig. 4d), confirming that Tn5 accessibility is constrained by 241 

compaction or transcription in B. subtilis as well as in E. coli. 242 

Together, the results of HCA in B. subtilis show remarkable concordance with those obtained from E. 243 

coli (Fig. 4d), demonstrating the potential of POP-seq to study the open nucleoid of a wide range of 244 
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bacterial phyla. Moreover, our observations in both bacteria also suggest that POP-seq can reveal the 245 

epigenetic mechanisms controlling the transcription of AT-rich genes that are required for fast 246 

environmental and nutritional adaptations (Fig. 4e). Indeed, HCA identified three different genomic 247 

clusters driven either by compaction (C1), transcription (C2), or openness to NAP binding/silencing 248 

(C3) in a mutually exclusive manner.  249 

We suggest that in C1, the high level of compaction prevents both Tn5 accessibility and NAPs DNA 250 

binding, and occludes RNA transcription, suggesting a stable, condition-independent silencing of 251 

genes in those regions. Regions with active transcription (C2) are not accessible to Tn5 and are 252 

significantly enriched in housekeeping genes. Finally, highly accessible regions (C3) show a high AT 253 

content and H-NS/Rok binding, causing decreased transcriptional activity despite low compaction. 254 

These NAP-silenced genes are involved in fast-response functions and their expression level depends 255 

strongly on the growth condition, as shown by the differences between the POP profiles of E. coli 256 

grown in different culture media (Fig. 3).  257 

 258 

DISCUSSION  259 

DNA folding proteins participate in genome structure organization, thus influencing DNA 260 

compaction, transcription, and replication1. The in vivo monitoring of these proteins on a genome-261 

scale has so far been hindered by the lack of high throughput tools and the few tools currently 262 

available are laborious and limited to a handful of selected organisms. To address this technical gap, 263 

we developed POP-seq, which employs genome-wide Tn5 tagmentation to identify thousands of 264 

protein-DNA binding events in vivo. Integrating POP-seq with HiC and RNA-seq data showed that 265 

the E. coli and B. subtilis genomes are broadly organized into regions that are either compacted, 266 
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highly transcribed, or open to the AT-binding NAPs (H-NS and Rok). Moreover, the protein-DNA 267 

binding events detected by POP-seq can be used to determine TFBS as well as for monitoring the 268 

genome openness as a proxy for overall nucleoid structural changes. Thus, we argue that POP-seq 269 

provides an essential new perspective on the bacterial nucleoid that could lead to in-depth 270 

understanding of the interplay between genome structure, specific functions and the overall 271 

phenotype.  272 

Our results show a strong concordance between POP-seq signal and binding of important regulatory 273 

NAPs, as shown by the correlations between POP-seq, and H-NS in E. coli.  In B. subtilis, the 274 

binding of Rok explains a major proportion of the observed POP-seq signal, but there are many AT-275 

rich regions, which are accessible by Tn5, but are unoccupied by Rok and it is unclear whether there 276 

are other NAPs that bind to these regions. The genomic regions occupied by SMC are not accessible 277 

to Tn5 and DNA binding of both Rok and SMC seems to be mutually exclusive, hinting towards a 278 

novel functional role for Rok (and likely another unknown NAP) in constraining the genome-wide 279 

SMC binding regions.  280 

POP-seq quantifies the concerted effects of all NAPs and TFs in the cell growing in a given 281 

environment with high sensitivity. By comparing these signals at different growth conditions, we can 282 

readily detect changes in the nucleoid structure. Thus, we propose that POP-seq constitutes an 283 

accurate, high throughput and cost-effective method for the study of protein-DNA interactions. POP-284 

seq can be applied to identify active TF and NAP binding sites in vivo with high accuracy, thereby 285 

allowing a system-level understanding of the dynamics underlying gene regulatory networks. 286 

Functional analysis of the most- and least-accessible genes shows that the nucleoid structure is 287 

carefully controlled to achieve an optimal transcriptional profile. Moreover, multi-omics integration 288 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.07.082990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

of genome-wide POP-seq, ChIP-seq, HiC, and RNA-seq data provided insights regarding the 289 

interplay between genome accessibility, DNA compaction, and RNA transcription in control of gene 290 

expression and distinguishing phenotypes. This view is supported by the finding that E. coli genome 291 

accessibility is greatly modified after growth in the presence or absence of glucose as carbon source, 292 

with important decrease of POP-seq signal (likely due to the removal of H-NS binding) upon 293 

activation of alternative sugar utilization pathways. We thus demonstrate that POP-seq aids in 294 

unraveling epigenetic control of genes requiring a fast and reversible adaptation to the environment, 295 

by the competition between RNA polymerase and NAPs for DNA binding.  296 

In summary, POP-seq enables rapid elucidation of the openness of the prokaryotic chromatin, which 297 

is directly linked to its structure. POP-seq is independent of culture synchronization and provides 298 

high resolution mapping of protein-DNA events. Due to its simplicity and cost effectiveness, it can be 299 

implemented to study a plethora of bacterial species in high throughput to elucidate the structural 300 

changes in the chromatin and link them directly to phenotype.  301 

 302 

METHODS 303 

Bacterial strains and growth conditions 304 

E. coli K12 substrain MG1655 was grown in LB for most of the experiments. Other E. coli growth 305 

media used in this study is M9 MM supplemented with either glucose, xylose or ribose. B. subtilis 306 

PY79 was grown in rich CH medium26. All bacterial cultures were done at 37ºC with shaking and 307 

harvested at mid-log phase. 308 

 POP-seq Method 309 
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Bacterial cultures were grown to mid exponential phase (OD600 = 0.3-0.5) in Luria-Bertani medium at 310 

37ºC. Crosslinking was achieved by treatment with 1% formaldehyde for 20 minutes. Cells were 311 

pelleted by centrifugation and the cell pellets were lysed by grinding in liquid nitrogen or by bead 312 

bashing at 4ºC for 10 mins. 500 µL SET buffer (75 mM NaCl, 25 mM EDTA pH 8, 20 nM Tris-HCl 313 

pH 7.5) were used for grinding. Lysate was resuspended in 2x protease inhibitor solution (cOmplete 314 

mini, Roche) and centrifuged for 10 min at 14,000 rpm and 4ºC. 25 µL of supernatant was used for 315 

buffer exchange with Tris-EDTA (10 mM Tris, 1 mM EDTA, pH 8) with a 45 min incubation period 316 

at room temperature.  317 

Hi-sensitivity Qubit DNA kit (Thermo Fisher) was used to measure the DNA concentration directly 318 

from the lysate. 700 pg DNA were used as input for the illumina Nextera kit. After library 319 

preparation, AMPure beads were used to purify the library as recommended by the manufacturer. The 320 

libraries from all experiments were sequenced in either the Illumina HiSeqTM 4000 or MiSeqTM 321 

instruments at UCSD IGM genomics center. 100 bp-cycle kits or 150 bp-cycle kits were used to 322 

sequence the libraries. 323 

Data preparation for POP-seq versus HiC comparison 324 

The E. coli HiC contact matrices (GSM2870426_mat_BC110_CACT_wt_LB_37C.txt.gz and 325 

GSM2870427_mat_BC110_CACT_wt_LB_37C_rep1.txt) were both acquired from Lioy et al. 326 

(2018)11. The mean one-dimensional (1-D) structure of the E. coli genome was reconstructed from 327 

the 3-D contact data, GitHub repository 328 

https://github.com/koszullab/E_coli_analysis/blob/master/python_codes/comp_short.py11 accessed 329 

Nov. 13th 2019). The resulting 1-D HiC data had a total 928 bins. However, an intrinsic curvature, 330 

which hinders comparison with other datasets was seen. Accordingly, we corrected the HiC data by 331 
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local regression fitting model (Supplementary Fig. 1) on R version 3.4.4 (R Core Team, 2018). Each 332 

bin had RPM values summed over windows of 5000 nucleotides. The resulting dataset was z-score-333 

normalized and smoothed using the Signal.savgol_filter from the Scipy Python library with 334 

window_length of 11 for POP-seq and 7 for HiC (due to its lower resolution) and a polyorder of 3.  335 

The 2D matrices of  the B. subtilis HiC contact maps  (GSE68418, 336 

GSM1671399_01_Rudnerlab_HindIII_HiC_PY79.matrix.txt.gz and 337 

GSM1671400_02_Rudnerlab_HindIII_HiC_PY79_rep1.matrix.txt.gz) were acquired from Wang et 338 

al. (2015)10. The 3D mean matrix was flattened to a 1D array as in E. coli, without the need to correct 339 

for curvature. However, the resulting bins were only 404 bins, due to the 10-kb resolution of the 340 

original HiC dataset. The resulting dataset was z-score-normalized and smoothed using the 341 

Signal.savgol_filter from the Scipy Python library with window_length of 15 for POP-seq and 25 for 342 

HiC (due to its lower resolution) and a polyorder of 3. 343 

ChIP-seq and RNA-seq and data analysis and plotting 344 

The H-NS ChIP-seq sequencing files (ERR01957) were acquired from Kahramanoglou et al. 345 

(2011)18. The B. subtilis Rok ChIP-seq was acquired from Smits and Grossman (2010)6 346 

(GSE23199). The B. subtilis SMC ChIP-seq was acquired from Wang et al. (2017)25 (GSE85612). 347 

The E. coli RNA-seq data was acquired from Choi et al. (2019)24 (SRR8242101 and SRR8242105). 348 

The B. subtilis RNA-seq data was acquired from SRR2984942-3 under accession number 349 

PRJNA304431. Bowtie2 was used to align the sequencing reads using default parameters. The 350 

coverage was calculated with samtools mpileup and normalized in RPM (reads per million) and the 351 

resulting wig files were plotted using Integrated Genome Browser (IGB).  352 

Data analysis 353 
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In the general procedure, primers and adapter sequences were removed using trim_galore 354 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) in paired-end mode (--paired) 355 

with the quality cutoff (-q) set to 22 and -fastqc enabled. Next, reads were aligned to the reference 356 

genome using bowtie227. Wig files containing the number of mappings at each genome position were 357 

generated using the samtools mpileup command and normalized by reads per million (RPM). The 358 

resulting wig files were processed using in-house Python scripts. FeatureCounts28 was used to 359 

determine the number of fragments corresponding to each region of interest (features), which could 360 

be a gene or promoter. A minimum of 2/3 of each read must be within the gene in order for it to be 361 

assigned (--fracoverlap 0.66). DESeq229 was then used to determine the differential POP-seq and 362 

RNA-seq signals for each feature. Downstream analyses were performed using R version 3.6.1 (R 363 

Core Team, 2019). 364 

POP-seq footprinting 365 

In order to accurately determine the location of specific Tn5 transposition events so as to precisely 366 

pinpoint individual binding sites, mapped reads were trimmed to a 9 bases at the 5′ end which are 367 

normally covered by the Tn5 protein at the site of transposition13. Trimming and alignment were 368 

performed as in the general case using trim_galore and bowtie2.   369 

Statistical analyses 370 

Statistical analyses were performed using R version 3.6.1 (R Core Team, 2019). All statistical tests 371 

were considered significant if the p-value was below 0.05, after False Discovery Rate (FDR) 372 

adjustment in case of multiple testing30. A logistic regression supervised model was built to predict 373 

the likelihood of each nucleotide to be at the vicinity of a TFBS according to POP-seq measurements. 374 

For each nucleotide, the dependent variable was coded 1 if the corresponding genome position was 375 
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referenced as a TFBS in EcoCyc17, 0 if not. Explanatory variables were selected by stepwise bottom-376 

up selection according to the Akaike Information Criterion31, and included POP-seq and H-NS ChIP-377 

seq signals, as well as the presence/absence of a gene in every genome position. The logistic 378 

regression returns a value in the interval [0, 1] and the best threshold for setting the prediction to 1 379 

(event) or 0 (no event) for each genome position was calculated by analysis of the receiver operating 380 

characteristic (ROC) curve. The logistic model was built using the R package MASS and ROC curve 381 

analysis was performed using the pROc package. 382 

 383 
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 474 

Figure 1. Overview of the POP-seq procedure and quality control checks of the data. (a) 475 

Summary of the major steps of the POP-seq method. The library generation takes ~2 hours. (b) 476 

Distribution of the aligned fragment sizes. The subpeaks (spikes) are separated by ~10 bp. (c) 477 

Correlation between two replicates of E. coli POP-seq. Each point represents the mean z-scored RPM 478 

coverage over a 5-kb window. The experiment is highly reproducible with R2=0.99 (p-value<2.2e-479 

16). (d) Number of Tn5 tagmentation sites (top pie chart) and intensity of Tn5 tagmentation (bottom 480 
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pie chart) found in the coding and the intergenic regions. The data is normalized by the total lengths 481 

of both regions. (e) Examples of POP-seq tagmentation sites. Most of the tagmentation events are 482 

present in intergenic regions. The blue spikes superimpose over experimentally verified TFBSs (small 483 

blue bars on top) from EcoCyc17. The red spikes could represent potentially novel TFBS 484 

 485 

Figure 2. POP-seq recapitulates known TFs and NAPs binding regions. (a) Genome-wide 486 

correlation between POP-seq and AT% content datasets. (b) Genome-wide correlation between H-NS 487 

and AT%. (c) Genome-wide correlation between POP-seq and H-NS. The data in (a-c) were summed 488 

over 5 kb windows, z-score normalized and plotted. R represents Pearson’s correlation coefficient. 489 

(d) Agreement between POP-seq and protein occupancy domains (EPODs, Magenta boxes) reported 490 

by Vora et al. 2009. AT-rich regions are occupied by H-NS and are also accessible by Tn5 (POP-491 

seq). The POP-seq footprint (FP) track is comprised of the 9-bp region between the two strand-492 

transfer events catalyzed by each tagmenting transposase, which are by necessity occupied during 493 

tagmentation. It is therefore a more localized measure of accessibility to Tn5 than full-length reads. 494 

(e) Aggregated enrichment of the POP-seq signal over E. coli TSSs (top). The signal around each 495 

TSS (+/- 1 kb) was calculated and used to construct a heatmap in which the TSS-proximal regions are 496 

sorted by average signal strength (bottom). (f) Examples of PurR, TyrR, and TrpR TFBS from 497 

EcoCyc detected by POP-seq footprints. The binding sites are flanked by strong POP-seq signals on 498 

both positive and negative strands. (g) Cumulative footprinting signals for major TFs in E. coli. The 499 

Wellington algorithm23 was used to calculate the signals flanking the corresponding EcoCyc TFBSs. 500 

The control footprints over naked DNA shows no significant signals. 501 

 502 
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Figure 3. Differential POP-seq profiles of E. coli after growth in various culture media. (a) 503 

Principal Component Analysis of the mean POP-seq signal at every E. coli genome position. The 504 

overall POP signals are highly similar in MM+glucose or LB, medium while alternative carbon 505 

sources (ribose and xylose) induce major modifications. (b) Genome-wide POP-seq signal profiles of 506 

E. coli grown in MM with glucose, xylose, and ribose. The signals were smoothed using 100 kb 507 

windows. Glucose signals are significantly higher downstream of the 3 Mbp position (c) Heatmap 508 

showing all the RAST subsystems with a significantly lowered average POP-seq signal in both 509 

MM+ribose and MM+xylose compared to MM+glucose (DESeq analysis). The POP-seq values are 510 

normalized as percent values for each subsystem. Most of those subsystems are related to alternative 511 

sugar/carbon sources utilization pathways. 512 

 513 

Figure 4. Relationship between transcription, nucleoid compaction, and Tn5 accessibility. 514 

(a) Comparison between the GC content, RNA-seq, H-NS Chip-seq, and POP-seq signals over 515 

a section of the E. coli genome. Actively transcribed genes (grey arrows highlighted with 516 

magenta boxes) show low POP-seq signal. Untranscribed genes show high H-NS binding and 517 

high POP-seq signals. (b) Heatmap and hierarchical clustering agglomeration (HCA) (Ward 518 

agglomeration on Euclidean distances) of 5 kb bins of the E. coli genome according to HiC, 519 

RNA-seq, and POP-seq signals. The three genomic clusters, C1, C2, and C3, are significantly 520 

enriched in HiC, RNA, or POP-seq signals, respectively. (c) Comparison between GC content, 521 

RNA-seq, Smc, and Rok Chip-seq and POP-seq signals over a section of the B. subtilis 522 

genome. Genes with high AT content show high Rok Chip-seq and POP-seq signals. SMC 523 

occupied regions are not accessible by Tn5 (magenta boxes and grey genes). Some regions are 524 

hypersensitive to Tn5 but the DNA binding protein is unknown (blue boxes and blue genes). 525 
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(d) Heatmap and HCA of the 10 kb bins of the B. subtilis genome. Similar to E. coli (b), C1, 526 

C2, and C3 clusters are found, with significantly enriched HiC, RNA, or POP-seq signals, 527 

respectively. (e) Schematic view of the H-NS / Rok epigenetic control of the E. coli / B. 528 

subtilis genome highlighted by POP-seq experiment. Cluster 1 (C1) is characterized by a high 529 

genome compaction making it not accessible to neither Tn5 (low POP) nor RNA polymerase 530 

(low RNA-seq). Cluster 2 (C2) refers to regions with active transcription, contains mostly 531 

house-keeping genes, and the RNA-polymerase activity hinders Tn5 accessibility (low POP). 532 

Cluster 3 (C3) demonstrates a high POP and H-NS/Rok binding, which hinders RNA 533 

polymerase transcription. The H-NS regulated genes are involved in fast-responsive functions 534 

and depend strongly of the growth conditions.  535 

 536 
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Figure 1 548 
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Figure 2 555 
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Figure 3 557 
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Figure 4 566 
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 568 

SUPPLEMENTARY DATA 569 

 570 

Supplementary figure 1.  Smoothing of HiC data using a local regression fitting. We used a local regression model (blue line) of 571 

the raw HiC data (grey line) to calculate smoothed HiC values (black line). 572 

 573 

Supplementary table 1. Top 20 subsystems with the most significantly higher POP signal     574 

Subsystem mean signal in subsystem mean signal out of 

subsystem 

p-value p-value 

(adjusted) 

LOS core 

oligosaccharid

e biosynthesis 

26.01 4.40 0.00 0.00 

The usher 

protein HtrE 

31.08 4.46 0.00 0.00 
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fimbrial 

cluster 

CRISPRs 16.38 4.52 0.00 0.01 

Mediator of 

hyperadheren

ce YidE in 

Enterobacteria 

and its 

conserved 

region 

9.30 4.54 0.00 0.02 

Orphan 

regulatory 

proteins 

7.54 4.53 0.00 0.02 

Periplasmic 

Acid Stress 

Response in 

Enterobacteria 

52.86 4.46 0.00 0.03 

D-gluconate 

and 

ketogluconate

s metabolism 

9.03 4.53 0.00 0.03 

D-allose 

utilization 

11.44 4.53 0.00 0.05 

General 

Secretion 

Pathway 

6.40 4.55 0.00 0.05 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.07.082990doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.07.082990
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

The fimbrial 

Sfm cluster 

23.00 4.52 0.00 0.05 

Xylose 

utilization 

11.12 4.53 0.00 0.06 

Biofilm 

Adhesin 

Biosynthesis 

10.72 4.54 0.00 0.06 

Curli 

production 

12.71 4.53 0.00 0.07 

L-fucose 

utilization 

7.18 4.55 0.00 0.07 

A toxin-

antitoxin 

module 

cotranscribed 

with DinB 

23.88 4.53 0.00 0.07 

Lysine 

degradation 

18.18 4.53 0.00 0.07 

D-ribose 

utilization 

8.74 4.54 0.00 0.07 

The fimbrial 

Stf cluster 

9.34 4.54 0.01 0.08 

Unknown 

carbohydrate 

utilization 

(cluster Ydj) 

7.52 4.54 0.01 0.09 
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L-rhamnose 

utilization 

8.12 4.54 0.01 0.09 

 575 

Supplementary table 2. Top 20 subsystems with the most significantly lower POP signal     576 

Subsystem mean signal in subsystem mean signal out of 

subsystem 

p-value p-value 

(adjusted) 

Ribosome 

LSU bacterial 

1.85 4.59 0.00 0.00 

Ribosome 

SSU bacterial 

0.84 4.59 0.00 0.00 

Respiratory 

Complex I 

0.89 4.58 0.00 0.00 

Na(+)-

translocating 

NADH-

quinone 

oxidoreductas

e and rnf-like 

group of 

electron 

transport 

complexes 

0.97 4.57 0.00 0.01 

Alkylphospho

nate 

utilization 

1.96 4.57 0.00 0.06 

Ethanolamine 2.23 4.57 0.00 0.06 
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utilization 

Mycobacteriu

m virulence 

operon 

involved in 

protein 

synthesis 

(LSU 

ribosomal 

proteins) 

0.28 4.56 0.00 0.06 

Histidine 

Biosynthesis 

1.38 4.57 0.00 0.06 

Thiamin 

biosynthesis 

1.79 4.57 0.00 0.06 

Osmoprotecta

nt ABC 

transporter 

YehZYXW of 

Enterobacteria

les 

1.29 4.56 0.01 0.09 

De Novo 

Purine 

Biosynthesis 

1.80 4.57 0.01 0.13 

Fatty Acid 

Biosynthesis 

FASII 

2.22 4.57 0.02 0.17 

tRNA 0.40 4.56 0.02 0.17 
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aminoacylatio

n, Phe 

Transcription 

initiation, 

bacterial 

sigma factors 

1.85 4.57 0.02 0.20 

Bacterial 

Cytoskeleton 

2.06 4.57 0.03 0.22 

The 

mdtABCD 

multidrug 

resistance 

cluster 

1.46 4.56 0.03 0.22 

KDO2-Lipid 

A 

biosynthesis 

2.34 4.57 0.03 0.22 

TCA Cycle 1.87 4.56 0.03 0.22 

Biogenesis of 

c-type 

cytochromes 

2.65 4.56 0.03 0.22 

RuvABC plus 

a hypothetical 

1.22 4.56 0.03 0.24 
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