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ABSTRACT 

Complex neural dynamics in the prefrontal cortex contribute to context-dependent decisions and 

attentional competition. To analyze these dynamics, we apply demixed principal component analysis 

to activity of a primate prefrontal cell sample recorded in a cued target detection task. The results 

track dynamics of cue and object coding, feeding into movements along a target present-absent 

decision axis in a low-dimensional subspace of population activity. For a single stimulus, object and 

cue coding are seen mainly in the contralateral hemisphere. Later, a developing decision code in both 

hemispheres may reflect interhemispheric communication. With a target in one hemifield and a 

competing distractor in the other, each hemisphere initially encodes the contralateral object, but 

finally, decision coding is dominated by the task-relevant target. Tracking complex neural events in a 

low-dimensional activity subspace illuminates information flow towards task-appropriate behavior, 

unravelling mechanisms of prefrontal computation. 
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INTRODUCTION 

Flexible and adaptive processing of information is a hallmark of goal-directed behavior. With a 

constantly changing environment, varying task demands determine how input information will be 

processed and selected, with a key role played by the prefrontal cortex1–5. In non-human primates, 

responses of individual neurons are tuned to multiple task variables including cues, stimuli, categorical 

information, and decisions6–9. Time-resolved measures of activity across the neural population are 

increasingly used to demonstrate how current context shapes prefrontal activity. Population activity 

moves within a high-dimensional state space with dynamic shifts in coding of behaviorally-relevant 

information10,11. Similar flexible and adaptive coding has been observed in the human frontal cortex 

using neuroimaging, with representation of behaviorally-relevant task events such as cues, stimulus 

information, categorical distinctions, and responses12–20. 

In a complex and rich environment that contains a tremendous amount of information, and with 

limited attentional resources, it is essential to prioritize and select information that is currently 

relevant to behavior. Several studies provided evidence for attentional signals and prioritization of 

information in the prefrontal cortex21–25. The prefrontal cortex is thought to exert attentional 

modulations on downstream areas such as the visual cortex. In the early visual cortex, a neuron’s 

response to a relevant stimulus and an irrelevant stimulus presented simultaneously often resembles 

response to the relevant stimulus alone26–29. This evidence suggests that objects compete for 

representation at the neural level, and that this competition is biased in favor of the target object30. 

Similar attentional modulation of neural responses has been demonstrated in many regions along the 

processing hierarchy, including the superior colliculus and the frontal eye field31,32. 

In a recent study from our group, Kadohisa et al.33 asked how prefrontal population activity in non-

human primates develops when items compete for attention. In a cued target detection task, a cue at 

the start of each trial indicated the target object to be detected in a subsequent choice display. 

Importantly, some displays contained two items presented in opposite hemifields, and for these 

displays, measures of population activity showed intriguing dynamics. Initially, responses were 

dominated by the item presented contralaterally to the recorded hemisphere, but later activity 

approached response to the most relevant item (target) presented alone. Critically, dominance by the 

target was achieved more slowly when the distractor was itself a target on other trials, consistent with 

long-established behavioral findings showing that such distractors are hard to ignore34.  

While these results provide initial insight into prefrontal dynamics during attentional selection, the 

neural process underlying competition and decision is potentially much more detailed and rich. In such 

a task, cue and object information are combined to form a final decision for each stimulus in the 
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display10,11. Here, we disentangle coding of cue, object and decision and track their development in 

both single-stimulus and competing-stimulus displays. We use a recently developed dimensionality 

reduction technique, demixed principal component analysis (dPCA)35, to construct a task-related low-

dimensional subspace using the same cued target detection task data set used by Kadohisa et al.33. 

Our results show how coding of cue, object and decision are related in the prefrontal cell population. 

Importantly, the subspace allows us to not only track dynamic shifts in representation across the state 

space (e.g.., when object and decision information emerge), but also to identify what was represented 

for each stimulus. We provide a detailed characterization of computation within the task-related state 

space and across the two hemispheres while competition is resolved, and propose a prefrontal 

mechanism of attentional competition.  

 

RESULTS 

In this task (Figure 1) two objects were associated with one cue each, and therefore could serve as 

either targets (T) or distractors (D) in the choice display. A third object was not associated with any 

cue, and was therefore a neutral (N) stimulus that could never be a target. In single-stimulus displays, 

choice objects appeared either to the right or left of a central fixation dot, i.e., contralateral or 

ipsilateral to the recorded hemisphere. To test for attentional competition, two-stimulus displays 

contained one stimulus in each hemifield, with combinations of target and neutral objects (T + N, low 

competition), target and distractor objects (T + D, high competition), and distractor and neutral 

objects (D + N, target absent trials). When the target was present, the animal was rewarded for a 

saccade to its location, made on receipt of a go signal presented shortly after display offset. When the 

target was absent, reward was given for maintained fixation. We tracked the dynamics of cue, object 

and decision information within the task-related subspace and how it evolves when two items 

compete for attention. 

Performance in the task was overall high, as previously described for this data set33. For single-stimulus 

displays, accuracy levels were high for target and neutral trials (84.1% and 85.3%, respectively). The 

relatively high difficulty level for distractor trials (which may be targets on other trials) was evident in 

a much lower accuracy (59.6%). Most (72.2%) of the errors in distractor trials were a saccade to the 

stimulus location following the go signal, further confirming the difficulty of ignoring distractors. 

Accuracy levels were similar for T + D and T + N displays (76% and 76.6%, respectively), but while many 

errors in the T + D displays were saccades to the distractor location (59.2%), the most common error 

for T + N displays was to keep fixation(79.1%). Accuracy levels for the D + N displays were slightly lower 

(66.5%), as expected when targets are absent in visual search. 
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Neurons were recorded during performance of the task on the lateral frontal surface across three 

hemispheres of the two monkeys. Recording locations (Figure 1B) were in dorsal and ventral regions 

of the posterior lateral prefrontal cortex, around the posterior third of the principal sulcus. Activity 

from 461 neurons was recorded, and the analysis included data from 337 neurons that had a minimum 

of four trials per condition for all conditions (Monkey A: N = 140 right, N = 71 left; monkey B: N = 126 

right). The average number of trials per condition was 14.5. 

 

 

Figure 1: Task and recording locations. A: Task. Each trial began with fixation on a central dot, 
followed by a cue (500 ms). After a delay (variable delay 1, see Methods for details), a choice display 
appeared (500 ms) with either one or two stimuli. For each animal, two cues were associated with one 
target object each based on previous training. Cues and choice objects for one animal are illustrated 
in the inset on the right. Depending on the preceding cue, the animals had to make a decision whether 
a target (the associated object) appeared in the choice display (target present trial) or not (target 
absent trial). Following another delay (variable delay 2, see Methods for details), the color of the 
fixation dot was changed to green, indicating the go signal. On target present trials, animals made a 
saccade to the target location and were then rewarded with a drop of liquid for a successful trial. On 
target absent trials, animals had to hold fixation during the response interval and were rewarded at 
the end of a wait period. Choice display objects could be the object associated with the preceding cue 
(target), the object that was associated with the other cue (distractor), or a third object that was not 
associated with any cue (neutral). Stimuli could appear either to the right or left of the fixation dot 
(i.e., contralateral or ipsilateral to the recorded hemisphere). Two-stimulus displays were target + 
distractor (T + D), target + neutral (T + N) and distractor + neutral (D + N). B: Approximate recording 
locations in the right hemisphere. For one animal, additional recordings were made in a similar region 
of the left hemisphere. ps: principal sulcus; sar: superior arcuate sulcus; iar: inferior arcuate sulcus. 
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Heterogeneous responses and mixed selectivity of prefrontal units 

Activity of single units was heterogeneous and mixed with diverse selectivity for cue, object and 

decision. Figure 2 shows examples of five single units tuned to one or more task variables at varying 

levels, with diverse dynamics over the course of a trial. These profiles of activity at the single unit level 

are in line with previous reports of mixed selectivity of individual prefrontal neurons6–9. Mixed 

selectivity and distributed coding of information have been shown to be critical for the wide variety 

of task-related computations performed in the prefrontal cortex8. 
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Figure 2: Mixed selectivity and heterogeneous response profiles of single prefrontal cells. Examples 
of five units (one in each row) and their selectively to object, decision and cue (left, middle and right 
column, respectively). Peri-stimulus time histograms show average responses across trials for each of 
the objects, decisions and cues based on the four single-stimulus contralateral target and distractor 
conditions. Single trial raster plots are at the top of each panel. Single cells showed a variety of 
responses to task-relevant variables, some with selectivity to just one variable (object, decision and 
cue for units shown in 1st, 2nd and 3rd rows, respectively), and some with mixed selectivity to more 
than one variable (object and decision in 4th row, and all three variables in 5th row). Gray vertical lines 
indicate stimulus onset (0 ms) and offset (500 ms). p values above each panel indicate selectivity to 
each task variable as computed by a two-way ANOVA (main effects for object and decision, interaction 
for cue, based on trial data averaged across all time points from 200 ms before to 600 ms after display 
onset). Unit ID is shown above each panel on the right. 

 

Low-dimensional state space captures coding of task-relevant variables across the neural 

population 

To reveal the underlying task-related representational space, distributed population activity across 

neurons can be used, unravelling the complex nature of prefrontal cortex activity. Of particular 

interest is a low-dimensional subspace that can identify population-level representations and their 

coding of task-relevant variables. To reveal such a subspace, we used demixed PCA (dPCA)35, a recently 

developed technique that both decomposes the population activity into components that capture the 

majority of the variance in the data as well as separates them in respect to task variables such as object 

and decision. We applied dPCA to construct the low-dimensionality subspace comprised of the three 

task variables (cue, object identity, and decision), using four single-stimulus conditions that cross these 

variables: cue1-object1-T, cue2-object2-T, cue2-object1-D, cue1-object2-D. For the dPCA, trial data 

for these four conditions could be grouped according to object identity (object 1 or 2), decision (T or 

D) and cue (cue 1 or 2, the interaction of object and decision) to allow the extraction of the relevant 

components. The analysis focused on the choice display phase of the trial; subspaces were constructed 

based on trial data from 200 ms before choice display onset until 600 ms after that (100 ms post choice 

display offset), during which period the animals fixated throughout. Because strong hemifield effects 

have been previously demonstrated in the prefrontal cortex27,33,36–39, we constructed separate 

subspaces for contralateral and ipsilateral stimulus displays. Each hemifield subspace was constructed 

using a split-half approach (separation of odd and even trials) to allow for cross-validated data 

projection (see below). The variance explained by each dPCA component was related primarily to one 

task variable only, confirming that the contributions of the cue, object and decision were well 

separated in the subspaces. Each of the first 20 dPCA components was associated with the task 

variable that explained most of its variance, with some components capturing variable-independent 
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variance driven mostly by the time course of activity during the choice display, not specifically 

associated with any of the task variables. The first variable-associated component of each of the three 

task-relevant variables (cue, object and decision) captured a large proportion of the variance related 

to this variable: it explained on average 2.14 times more variance than the second component 

associated with this variable and accounted on average for 39% of the variance explained by this 

variable across the first 20 dPCA components. We therefore constructed, for each hemifield and data-

half, a three-dimensional compressed subspace with axes comprised of the first object, decision and 

cue components. To investigate the temporal trajectory of information coding for each of the task 

variables, we projected population responses onto each axis of the subspace. To avoid over-fitting, 

data from each half of the trials were projected onto the subspace of the other half, and projections 

were averaged across halves.  

For the object axis, cross-validated projections for the four critical single-stimulus conditions (cue1-

object1-T, cue2-object2-T, cue2-object1-D, cue1-object2-D) are shown in Figure 3A. Top left and 

bottom right panels show projections of contralateral and ipsilateral stimuli onto the component for 

their own hemispace, while bottom left and top right panels show cross-projections of each stimulus 

onto the component extracted for the opposite hemispace. For contralateral stimuli (top left), there 

was clear separation of object 1 and object 2 for both target and distractor conditions, as expected 

for a component designed to maximize this separation. Beyond this expected separation, the object 

component reveals the temporal progression of object information coding, with significant coding 

starting from around 50 ms post stimulus onset and a peak around 140 ms which then drops and 

remains sustained throughout the trial. Object coding was much weaker for ipsilateral stimuli (Figure 

3A, bottom right), with significant coding from around 100 ms until just after 340 ms, but without the 

clear peak shown by contralateral stimuli. As expected given relatively little object information for 

ipsilateral stimuli, both cross-projections (bottom left, top right) also showed only weak separation of 

the two object identities. 

For these same single-stimulus displays, a strikingly different temporal trajectory was observed for 

decision coding (Figure 4A). For both contralateral (top left) and ipsilateral (bottom right) stimuli, 

projections onto their own subspace showed gradual development of the target-distractor distinction, 

beginning around 100 ms and 250 ms, respectively, and increasing over time. Cross-projections of 

each stimulus onto the subspace for the opposite hemifield (bottom left, top right) also showed 

significant decision information. Responses were weaker than the decision responses in the same-

hemifield subspaces, suggesting partial but not complete overlap of decision coding on the two sides. 
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Figure 3: Object information for single-stimulus and low competition conditions. A: Projections on 
the dPCA object axis for single target (T) and distractor (D) stimuli. Population activity relative to choice 
display onset is projected onto the first object component of each hemifield subspace, with positive 
firing rates indicating a representation of object 1, and negative firing rates indicating object 2. 
Projections are plotted for stimuli presented in either contralateral or ipsilateral hemifield (left and 
right column, respectively), with projections in both the contralateral and ipsilateral subspaces (top 
and bottom row, respectively). Cross-validated responses are shown as averages of the two halves of 
the data (odd and even trials), each projected onto the subspace of the other half of the data. Gray 
vertical lines indicate stimulus onset (0 ms) and offset (500 ms). Horizontal line at the bottom indicates 
significant difference between object 1 and object 2, averaged across target and distractor. 
Significance is determined using a permutation approach with cluster-based correction across time 
points. B: Object information for low competition conditions with an added neutral (N) stimulus (T + 
N and D + N). Horizontal lines at the bottom indicate significant difference between object 1 and object 
2 for T + N (dark gray) and D + N (light gray). 
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Figure 4: Decision information for single-stimulus and low competition conditions. A: Projections on 
the dPCA decision axis for single target (T) and distractor (D) stimuli. Population activity relative to 
choice display onset is projected onto the first decision component of each hemifield subspace, with 
positive firing rates indicating ‘target present’, and negative firing rates indicating ‘target absent’. 
Projections are plotted for stimuli presented in either contralateral or ipsilateral hemifield (left and 
right column, respectively), with projections in both the contralateral and ipsilateral subspaces (top 
and bottom row, respectively). Cross-validated responses are shown as averages of the two halves of 
the data (odd and even trials), each projected onto the subspace of the other half of the data. Gray 
vertical lines indicate stimulus onset (0 ms) and offset (500 ms). Horizontal line at the bottom indicates 
significant difference between ‘target present’ and ‘target absent’, averaged across objects 1 and 2. 
Significance is determined using a permutation approach with cluster-based correction across time. 
B: Object information for low competition conditions with an added neutral (N) stimulus (T + N and D 
+ N). Gray horizontal line at the bottom indicates significant difference between T + N vs. D + N 
conditions. 
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Lastly, projections onto the cue axis revealed some weak cue coding (Figure 5A). Cue information was 

strongest for a contralateral stimulus projected onto its own subspace, beginning around stimulus 

onset. As the cue was the same whether the subsequent stimulus was contralateral or ipsilateral, and 

was known before stimulus onset, a tentative interpretation is reinstatement of a cue signal as a 

contralateral stimulus is processed. For ipsilateral stimuli, there were weak hints of cue coding in 

either subspace, though this was only significant for a brief period around stimulus onset, and only for 

the ipsilateral subspace. 
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Figure 5: Cue information for single-stimulus and low competition conditions. A: Projections on the 
dPCA cue axis for single target (T) and distractor (D) stimuli. Population activity relative to choice 
display onset is projected onto the first cue component of each hemifield subspace, with positive firing 
rates indicating a representation of cue 1, and negative firing rates indicating cue 2. Projections are 
plotted for stimuli presented in either contralateral or ipsilateral hemifield (left and right column, 
respectively), with projections in both the contralateral and ipsilateral subspaces (top and bottom 
row, respectively). Cross-validated responses are shown as averages of the two halves of the data (odd 
and even trials), each projected onto the subspace of the other half of the data. Gray vertical lines 
indicate stimulus onset (0 ms) and offset (500 ms). Horizontal line at the bottom indicates significant 
difference between cue 1 and cue 2, averaged across objects 1 and 2. Significance is determined using 
a permutation approach with cluster-based correction across time points. B: Cue information for low 
competition conditions with an added neutral (N) stimulus. 

 

Altogether, the single-stimulus data show that task-relevant information is captured by low-

dimensional subspaces, with distinct temporal profiles for the representation of object, decision and 

cue. Most prominently, an early phase of strong object coding along with weak cue coding is 

dominated by the contralateral stimulus. In contrast, a gradual build-up of the decision state is seen 

for both contralateral and ipsilateral stimuli, with partial overlap of decision coding for stimuli on the 

two sides. 

 

Stimulus and decision information in attentional competition 

We next used the same subspaces (derived from single-stimulus trials) to investigate context-

dependent coding across the neural population when items compete for attention. For comparability 

with the analyses of single-stimulus data, we again divided trials into two halves, projected data for 

each half onto the single-stimulus subspace derived from the other half, and averaged the results. 

Data were analyzed separately for low competition (target/distractor + neutral, T/D + N) and high 

competition (target + distractor, T + D) displays. 

Results for low-competition displays are shown in Figures 3B, 4B and 5B. Comparison with results for 

a single T/D stimulus (Figures 3A, 4A, 5A) suggests only modest effects of the added N. For object 

coding (Figure 3B), there was again strong discrimination only for a contralateral stimulus (target or 

distractor) projected onto the contralateral hemispace, with separate statistical tests for T + N and D 

+ N displays showing similar coding for targets and distractors. In this case, indeed, ipsilateral coding 

was not significant at any time point (Figure 3B, bottom right). Decision coding was again seen for 

both contralateral and ipsilateral stimuli (Figure 4B), with a suggestion of delayed onset compared to 

single-stimulus displays, in particular for a contralateral T/D stimulus on the contralateral subspace. 
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Cue coding again was weak, with only scattered points of significance for an ipsilateral T/D stimulus in 

the ipsilateral subspace (Figure 5B). Statistical comparisons between single-stimulus and low-

competition displays (see Methods) showed no significant differences in either object, decision, or cue 

coding, for either contralateral or ipsilateral T/D stimuli, projected onto contralateral or ipsilateral 

subspaces. 

In the high-competition conditions, a target and distractor appeared in the same display (T + D). For 

these displays, responses on object, decision and cue axes of contralateral and ipsilateral subspaces 

are shown in Figure 6.  

For object coding (Figure 6A), responses to the four possible T + D displays (solid lines) are shown 

along with responses to a single contralateral stimulus (dotted lines, copied from Figure 3A) for 

comparison. In the contralateral subspace, responses to T + D resembled responses just to the object 

in the contralateral field, when this was presented alone. The most striking exception was that, when 

the contralateral object was a distractor (Figure 6A, solid green and pink), its object-selective response 

was short-lived, significant only around 100-180 ms from display onset (Figure 6A, pale grey line), 

suggesting a rapid shut-off of object coding for a contralateral D. Statistical comparison of object 

discrimination in single-stimulus and T + D displays suggested a brief difference at around 200 ms, 

significant (p < 0.001) for individual time points but not surviving cluster correction. In the ipsilateral 

subspace there was only a hint of object coding, in line with the weak ipsilateral object coding when 

these objects were presented alone (Figure 3A).  

For decision coding (Figure 6B), responses to T + D displays are shown along with responses to a single 

contralateral or ipsilateral target (dotted lines, copied from Figure 4A) for comparison. In the 

contralateral subspace, responses to the T + D display closely followed those for its single target, 

contralateral or ipsilateral, when this was presented alone. Thus, unlike responses on the object 

dimension, activity on the decision dimension was driven by the target stimulus, whose presence 

determined the required response. In the ipsilateral subspace, results were very different. When the 

T + D display contained an ipsilateral T (Figure 6B, solid green and pink), the activity indicating a ‘target 

present’ decision was delayed and weakened compared with activity for that same ipsilateral T 

presented alone (Figure 6B; dotted green and pink; significant difference between single-stimulus and 

T + D displays shown by pale blue line). Thus population activity indicating an ipsilateral target was 

significantly suppressed by the presence of a competing, contralateral distractor. 

For the cue dimension (Figure 6C), finally, responses on T + D trials again suggested only weak and 

occasional cue discrimination, resembling that seen in single-stimulus displays (Figure 5A), with a brief 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.06.080325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080325
http://creativecommons.org/licenses/by/4.0/


Page 14 of 32 
 

difference between single-stimulus and T + D displays on the contralateral subspace around 120-190 

ms (Figure 6C, blue line). 
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Figure 6: Stimulus, decision and cue coding for high competition conditions (target + distractor, T + 
D). A: Object coding. For comparison, projections of single T/D presented contralaterally (copied from 
Figure 3A) are plotted as dotted lines. Dark and light gray significance lines at the bottom indicate 
significant object coding, based on the identity of the contralateral object, for the averaged contra T 
+ ipsi D, and contra D + ipsi T displays, respectively. Statistical comparison between single-stimulus 
and high-competition displays showed no significant difference in coding the identity of the 
contralateral object, whether this was T (cyan, purple) or D (green, pink). B: Decision coding. For 
comparison, projections of a single T presented contralaterally or ipsilaterally (copied from Figure 4A) 
are plotted as dotted lines. There was no difference in decision coding between single-stimulus and 
high-competition displays when targets were contralateral. Light blue horizontal line at the bottom 
indicates significant difference in decision coding between single-stimulus and high-competition 
displays when targets were ipsilateral. C: Cue coding. Gray horizontal line at the bottom indicates 
significant cue coding. There was no difference in cue coding between single- and two-stimulus 
displays. All other details as in Figures 3-5. 

 

Coding along the stimulus and decision dimensions, in which strong coding was observed, is shown as 

trajectories in the state space in Figure 7. The same projections from Figures 3, 4 and 6 are shown, 

from choice display onset (black circles) to 600 ms post display onset (red diamonds), for the 

contralateral (top) and ipsilateral (bottom) subspaces separately. For single-stimulus displays (Figure 

7A, same data as in Figures 3A and 4A, top left and bottom right panels), object coding is strong for a 

contralateral stimulus projected onto the contralateral subspace (top), with an early peak that later 

decreases, while coding along the decision axis gradually develops. Object coding is weak for an 

ipsilateral stimulus projected onto the ipsilateral subspace (bottom), with movement along the 

decision axis similar to the contralateral stimulus/subspace. For low competition (Figure 7B, same data 

as in Figures 3B and 4B, top left and bottom right panels) trajectories are highly similar to those of the 

single-stimulus conditions, showing little effect of an added neutral stimulus on coding. Coding when 

competition is high (Figure 7C, same data as in Figure 6A, 6B) shows large movement along the object 

dimension in the contralateral subspace (top), dominated by the contralateral stimulus. In this 

subspace, the decision trajectories all move towards the ‘target present’ state, with coding similar to 

when the targets are presented alone (contralateral target similar to a single contralateral target as in 

Figure 7A, top; ipsilateral target similar to a single ipsilateral target as in Figure 4A, not shown in Figure 

7A). The interrupted coding in the ipsilateral subspace (bottom) when competition is high is seen in 

the limited movement in the state space for all displays, in particular along the decision axis for an 

ipsilateral target (green and pink) compared to a single ipsilateral target (cyan and purple in Figure 7A, 

bottom). 
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Figure 7: Dynamics of the neural state space. A: Single-stimulus displays. Population activity is 
projected onto the object and decision components for contralateral (top) and ipsilateral (bottom) 
stimuli, each projected onto their own subspace. Data are the same as in Figures 3A and 4A, top left 
and bottom right panels, shown here as trajectories in the state space. Cross-validated trajectories are 
shown as averages of the two halves of the data projected onto the subspace of the other half of the 
data. Responses are smoothed by a ±25 ms window and are shown from stimulus onset (black circle) 
to 600 ms post stimulus onset (red diamond). Scale for stimulus and decision responses shows 
normalized firing rate (sp/s). B: Low competition. Data are the same as in Figures 3B and 4B, top left 
and bottom right panels. C: High competition. Data are the same as in Figure 6A and 6B. 

 

Distributed, mixed and independent task-related representations 

The neuronal weights associated with each axis of a subspace reflect the strength of contribution of 

each neuron’s activity to the overall population coding, as well as its preference depending on the sign 

(e.g., object 1 or 2 for object coding). For each axis, the distribution of weights across neurons was 

unimodal and centered around 0 (Figure 8A), demonstrating that coding of task-relevant variables was 

distributed with varying levels of contributions across neurons, rather than driven by a small sub-

population. Weights on each axis were correlated across contralateral and ipsilateral subspaces 

(Figure 8A), with the largest correlation for the decision component where coding was relatively strong 

in both contralateral and ipsilateral subspaces. Correlations were significant, however, even for object 

and cue, despite weak coding of object in the ipsilateral subspace and cue in both subspaces. These 

correlations demonstrate that the representations in the two hemispaces are related. Finally, a key 
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question is whether coding across the neural population of different task variables is driven by 

separate sub-populations of neurons, or whether computation is done within the same neural circuit 

for all task-relevant variables. We addressed this question by correlating the rectified neuronal 

weights of pairs of task variables (Figure 8B). Weights were rectified in order to consider the 

magnitude of contribution of each neuron rather than its preference (e.g to object 1 or 2). Correlations 

were generally low, except for a positive correlation between decision and object weights in the 

ipsilateral subspace. The result shows the dominance of mixed selectivity, with a neuron’s 

contribution to coding of each task variable rather independent of its contribution to others. 

 

 

Figure 8: Distributed, mixed and independent task-related representations across the neuronal 
population. A: Relationship of weights in contralateral and ipsilateral subspaces for each task variable 
(subspace axis). Each dot is one neuron. Pearson correlation coefficient, p value and a regression line 
are indicated within each plot. Histograms at top (contralateral subspace) and right (ipsilateral 
subspace) show weight distribution across neurons, with y axis scale on the top right. B: Rectified 
weights of individual neurons for each pair of axes, for the contralateral (top) and ipsilateral (bottom) 
subspaces. Absolute weights are plotted to show strength of selectivity regardless of preference. 
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Spearman’s rank correlation coefficient and p value are indicated within each plot. For all plots, 
weights of each neuron and axis are averaged across the subspaces derived from the two halves of 
the data. 

 

Reliability 

We constructed the low-dimensional subspaces by using a split-half cross-validated approach. To 

investigate the reliability of representations, we correlated weights derived from each half of the data 

(Figure 9). Reliabilities were highly significant, particularly for the components that showed strong 

coding: the decision variable in both hemifields (r = 0.43 and r = 0.53 for contralateral and ipsilateral 

subspaces, respectively, both p < 0.000001) and the object variable in the contralateral subspace (r = 

0.49, p < 0.000001). Even for other variables, however, these data confirm some stability in coding in 

each subspace. 

 

 

Figure 9: Reliability of coding in each subspace. For each task variable (subspace axis), plots show 
correlation between weights derived from separate halves of the data. Each dot is one neuron. 
Pearson correlation coefficient, p value and a regression line are indicated within each plot. 
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DISCUSSION 

In this study we investigated prefrontal coding during a context-dependent decision making task while 

items compete for attention. We used a data set from our previous work where we showed how 

activity in a prefrontal cell population shifts from dominance by a contralateral stimulus to dominance 

by a behaviorally relevant target item33. Here, we use dPCA to construct a task-related low-

dimensional subspace and examine separate coding of cue, object and decision and their dynamics 

throughout the course of a trial while competition resolves. 

Our results demonstrate variable temporal profiles for coding of cue, object and decision in the 

prefrontal cortex, and suggest that communication between hemispheres plays an integral role in 

attentional control. We illustrate the task-related subspace and flow of information within and 

between hemispheres in the model in Figure 10. In the task-related subspaces for single stimulus 

displays (Figure 10A), coding along the cue and object axes (top) as well as the decision axes (bottom) 

is shown for the two hemispheres relative to the stimulus presentation hemifield. While we recorded 

activity in a single hemisphere for contralateral and ipsilateral stimuli, in the model, findings are re-

cast to show inferred activity in each hemisphere for a single stimulus. Arrows between top and 

bottom sections show movements along the decision axis (bottom) following from activity at different 

loci within the object-cue subspace (top). Extension to an example high-competition display is shown 

in Figure 10B. 

For a single stimulus (Figure 10A), object coding in the contralateral hemisphere rose to a peak around 

150 ms from display onset, followed by sustained coding throughout the rest of the trial. Cue coding 

in this hemisphere was weak, but followed a generally similar time course. Figure 10A illustrates the 

locus of activity in the object-cue subspace for the relatively stable period from 150 ms onwards, with 

colored dots for the four single-stimulus conditions in our task. Integrated object and cue information 

then drives coding along the decision axis (solid colored arrows) towards the correct behavioral 

decision, either ‘target present’ or ‘target absent’ (dark and pale gray arrows, respectively), with a 

gradually increasing strength of coding. These coding patterns reflect context-dependent computation 

in the prefrontal circuit dominated by the contralateral stimulus, in line with previous reports10,11,33,38. 
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Figure 10: A model for attentional competition in prefrontal cortex. A. Single-stimulus displays. The 
task subspace for cue and object axes (top) and the decision axis (bottom) is shown for the two 
hemispheres relative to the stimulus presentation hemifield. Each colored dot shows representation 
of object and cue information for each of the four single-stimulus conditions. Shortly after stimulus 
onset, strong coding emerges in the hemisphere contralateral to the stimulus. Only weak object and 
cue coding are seen in the ipsilateral hemisphere. Integrated object and cue information then drives 
coding along the decision axis, mainly in the contralateral hemisphere (colored solid arrows), and only 
weakly in the ipsilateral hemisphere (colored dotted arrows). Coding along the decision axis moves 
towards the behavioral decision (dark and pale gray arrows beside decision axis), and as it develops is 
quickly transferred between hemispheres (pale gray arrows between the decision axes). B. 
Attentional competition. The task subspaces are shown for competition of a target (T) and distractor 
(D), with arrangement similar to the single-stimulus displays. For simplicity, within each hemisphere, 
partially-overlapping decision axes for contralateral and ipsilateral stimuli are collapsed into one (see 
Discussion). In this example trial, cue 1 sets object 1 as target and object 2 as distractor (red circles). 
Subspaces in each hemisphere are shown relative to the contralateral stimulus, with colored arrows 
showing active paths of influences driven by this example stimulus. Initially, object coding in each 
hemisphere is driven by the contralateral stimulus (top). Integration of cue and object then tries to 
drive the decision state in each hemisphere towards the corresponding behavioral decision (cyan and 
pink arrows). As the decision state approaches ‘target present’ in one hemisphere, however, this 
suppresses representation of the distractor object in the opposite hemisphere (zigzag arrow). 
Suppression may be direct or indirect (see Discussion). Finally, the ‘target present’ decision from the 
hemisphere contralateral to the target is transferred to the other hemisphere, though only slowly and 
weakly owing to that hemisphere’s initial processing of the distractor. 

 

In contrast, in the ipsilateral hemisphere there was only weak object and cue coding, as illustrated 

with the four colored dots close to the center of the two axes in Figure 10A (top right). Object coding 

for a single ipsilateral stimulus, although weak, was sustained for a time window similar to the peak 

of coding for a contralateral stimulus, consistent with our previous report for the same dataset where 
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a small proportion of cells were selective for an ipsilateral object identity38. Importantly, despite the 

weak object and cue coding on the ipsilateral hemisphere, which can have only limited effect on the 

decision (dotted colored arrows), a strong decision state developed, similar in strength and dynamics 

to the one on the contralateral hemisphere. Given weak object and cue information in the ipsilateral 

hemisphere, a likely mechanism to drive a strong decision trajectory is cross-hemisphere transfer of 

decision information from the opposite hemisphere (pale gray bi-directional arrows between the 

decision axes). Bi-directional exchange of decision information between the hemispheres then further 

reinforces the development of a coherent decision state in both hemispheres, either ‘target present’ 

or ‘target absent’. 

Within each hemisphere, moderate but highly significant correlations between contralateral and 

ipsilateral dPCA weights (Figure 8A) revealed some overlapping, though not identical, coding of each 

task variable for contralateral and ipsilateral stimuli. The same point is reflected in the cross-subspace 

projections (top right and bottom left plots in figures 3-5). Especially important is the decision axis, 

which in each hemisphere showed strong coding for both contralateral and ipsilateral stimuli. Partial 

overlap of the two axes suggests an integrated ‘target present’ or ‘target absent’ decision. Partial 

separation likely reflects the different responses (saccade directions) required for contralateral and 

ipsilateral stimuli. Mostly negligible weight correlations across different task variables (Figure 8B) 

demonstrate mixed selectively of prefrontal neurons8, such that a neuron’s contribution to any one 

representational axis was largely independent of its contribution to others. Notably absent were 

negative correlations, which might be expected if dedicated neural populations coded object and cue, 

then feeding into a further dedicated population for decision. Instead, overlapping populations could 

contribute to coding each task variable40, as would be expected, for example, in a recurrent 

network10,41. 

A primary focus in this study was the dynamics within the task-related state space when items 

compete for attention. The importance of levels of competition to behavioural outcome is well 

established in human visual search experiments34,42. Items that are not currently targets but have been 

frequently experienced as targets throughout learning history impose a large conflict and compete 

strongly with target items for attention. In contrast, less conflict is evoked by items that can always be 

ignored. A similar manipulation of competition was applied in our study, with distractor objects 

strongly competing for attention, and therefore expected to introduce a substantial effect on coding 

within the state space, and neutral items posing only little competition with potentially little effect on 

coding. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.06.080325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080325
http://creativecommons.org/licenses/by/4.0/


Page 22 of 32 
 

Indeed, adding a low-competition neutral item to a target or distractor had very little effect on coding 

of object, decision and cue information. One striking effect, however, is that object coding in the 

ipsilateral hemisphere – already weak for a single stimulus – was now completely eliminated by the 

accompanying neutral item in the opposite hemifield (Figure 3). Despite the absence of object coding 

in the ipsilateral hemisphere, strong decision coding still developed (Figure 4). This finding adds weight 

to our proposal that the decision is first computed in the contralateral hemisphere, then 

communicated from one hemisphere to the other. 

A different picture was observed for displays containing both a target and distractor, when attentional 

competition was high. Movements in the representational space for this case are illustrated in Figure 

10B, for an example display with cue 1 followed by a target in one hemisphere and a distractor in the 

other. Note that, within each hemisphere, there are potential movements along two decision axes, 

one for the contralateral and one for the ipsilateral stimulus, but given the partial overlap of these 

two axes, here for simplicity they have been collapsed into one. Figure 10B shows arrows just for the 

active paths, i.e., those driven by the particular combination of stimuli present in the example display. 

The results show that, in each hemisphere, object coding was dominated by the contralateral stimulus, 

either a target or distractor (Figure 6A). Given the connections inferred for the single stimulus case 

(Figure 10A), these two separate object representations should attempt to drive decision coding in 

the two hemispheres in opposite directions (cyan and pink arrows). For the hemisphere contralateral 

to the target, decision activity evolved as expected (Figure 6B), but for the hemisphere contralateral 

to the distractor, a very different picture emerged. First, the data suggest a rapid shut-off of the 

distractor object representation (Figure 6A). Then decision coding moves, not towards the ‘target 

absent’ decision, but slowly and weakly towards the (task-appropriate) ‘target present’ decision. To 

achieve this outcome, Figure 10B shows suppression from the ‘target present’ end of the decision axis 

in one hemisphere to the object representation in the opposite hemisphere (zigzag arrow). As this 

suppression develops, object representation is lost in the hemisphere contralateral to the distractor, 

leaving the ‘target present’ decision to be transferred from the opposite hemisphere. Though the 

zigzag arrow in Figure 10B suggests direct interaction between the two frontal lobes, this is only one 

possible way for the ‘target present’ decision in one hemisphere to suppress object information in the 

other. A different possibility would be for detection of the task-relevant target to feed back to earlier 

cortical levels, biasing competition to this target and suppressing the accompanying visual 

representation of the distractor. In either case, as the logic of the task requires, the object that should 

control the decision comes finally to dominate neural activity of both hemispheres along the decision 

axis, though in the hemisphere contralateral to the distractor, this dominance is achieved only slowly 

and incompletely, presumably reflecting a remaining influence from initial distractor processing. 
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These results match and further strengthen the findings reported by Kadohisa et al.33, where 

representation in the high-dimensional space for an ipsilateral target remained unaffected when a 

contralateral neutral item was added, but showed a large divergence when a contralateral distractor 

was added. They are also consistent with attentional competition in visual areas, where early sensory-

driven responses are followed by responses dominated by the most behaviorally relevant 

stimulus27,43). While we focus here on competition for visual attention, similar principles of cross-

hemisphere exchange of information would likely play a central role in prefrontal coding for goal-

directed behavioral decisions more generally. 

To conclude, dimensionality reduction techniques such as dPCA offer a window to unraveling detailed 

mechanisms of computation in the prefrontal cortex. The compressed task-related subspace of 

population coding allows for tracking dynamic shifts in representation along relevant dimensions and 

how they jointly contribute to the overall coding in the state space. Our results highlight integration 

of cue and stimulus information while a focused attentional state develops, with distinct temporal 

profiles of coding for these task variables, as well as communication between hemispheres as key for 

context-dependent processing of competing items. The results suggest a comprehensive and detailed 

account of information coding in the prefrontal cortex while decisions unfold and attentional 

competition resolves. 
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METHODS 

Subjects 

Subjects were two male rhesus monkeys (Macaca mulatta) weighing 11 (monkey A) and 10 kg 

(monkey B). All the experimental procedures were conducted in accordance with the Animals 

(Scientific Procedures) Act 1986 of the UK. All the procedures were in compliance with the guidelines 

of the European Community for the care and use of laboratory animals (EUVD, European Union 

directive 86/609/EEC) and were licensed by a Home Office Project License obtained after review by 

Oxford University’s Animal Care and Ethical Review committee. 

Task 

A cued target detection task was used (Figure 1A). Based on training prior to recording, two cues (cue 

1, cue 2) were associated with one target object each (object 1, object 2), and a third neutral object 

(object 3) was not associated with any cue. Figure 1A shows the cue-target pairs for monkey A; 

different items were used for monkey B. A red dot at the center of the screen marked the start of a 

trial; the monkey was required to fixate throughout the trial until the saccadic response at the end 

(fixation window: 5° x 5° for monkey A, 4° x 4° for monkey B). Following fixation for 1,000 ms, a cue 

stimulus (2° x 2°) was presented at the center of the screen for 500 ms, indicating the target for the 

current trial, followed by a randomly varying delay (400-600 ms for monkey A and 400-800 ms for 

monkey B). Next, a choice display was presented (500 ms), including either a single object or two 

objects. Objects (2° x 2°) were always centered on the horizontal meridian. In single-stimulus displays, 

the object was presented 6° to the left or right of fixation, determined randomly. The position of the 

objects was therefore either contralateral or ipsilateral hemifield to the recorded hemisphere. The 

object could be either a target (T) if associated with the preceding cue, a distractor (D) if associated 

with the other cue, or a neutral stimulus (N) if not associated with any cue and therefore never a target 

(object 3). Two-stimulus displays consisted of target and distractor (T + D), target and neutral (T + N), 

or distractor and neutral (D + N). Objects were presented 6° to the left and right of fixation, and the 

right-left or left-right configuration was randomly determined. To avoid response bias, the frequencies 

of the choice display types were adjusted to include a target object in half of all single-stimulus and 

half of all two-stimulus displays. The frequencies of the main display types were otherwise the same. 

A trial was terminated without reward if there was a premature saccadic response outside the fixation 

window during the trial, and these trials were excluded from the analysis. 

The choice display was followed by an additional delay period (randomly varying, 100-150 ms for 

monkey A, 300-500 ms for monkey B). The fixation dot then turned green, indicating the response 
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interval. For trials that included a target in the display (target present), the monkey had to saccade to 

the remembered T location (target window: 6° x 6° for monkey A, 3.5° x 3.5° for monkey B) and was 

rewarded immediately for a correct saccade with a drop of liquid. For trials that did not include a 

target in the display (target absent), the monkey had to fixate for the whole response interval (1,000 

ms) and was then rewarded either for a further saccade (monkey A) or immediately (monkey B). 

For monkey A, cues varied randomly between trials in some sessions, while other sessions included 

alternating short blocks of fixed cues (15-20 trials per block). Physiological data were very similar in 

the two cases and were combined. For monkey B, cues always varied randomly between trials. 

Overall, the task included six main choice display types (three single-stimulus and three two-stimulus 

displays), and a total of 24 conditions defined by combinations of cue, display type and hemifield. Four 

neutral-only conditions were not included in the analysis, along with a small number of D + D trials 

present in some sessions. 

Recordings 

Each monkey was implanted with a custom-designed titanium head holder and recording chamber(s) 

(Max Planck Institute for Biological Cybernetics), fixed on the skull with stainless steel screws. 

Chambers were placed over the lateral prefrontal cortex of the left (AP = 25.3, ML = -20.0; AP, anterior-

posterior; ML, medio-lateral) and right (AP = 31.5, ML = 22.5) hemispheres for monkey A and the right 

hemisphere (AP = 30.0, ML = 24.0) for monkey B. Recording locations for each animal are shown in 

Figure 1B. Under each chamber, a craniotomy was made for physiological recording. All surgical 

procedures were aseptic and carried out under general anesthesia. We used arrays of tungsten 

microelectrodes (FHC) mounted on a grid (Crist Instrument) with 1 mm spacing between adjacent 

locations inside the recording chamber. The electrodes were independently controlled by a hydraulic, 

digitally controlled microdrive (Electrodes Drive, NAN for monkey A; Multidrive 8 Channel System, FHC 

for monkey B). Neural activity was amplified, filtered, and stored for offline cluster separation and 

analysis with the Plexon MAP system (Plexon). Eye position was sampled using an infrared eye tracking 

system (120 Hz, ASL for monkey A; 60 Hz, Iscan for monkey B) and stored for offline analysis. Data 

were recorded over a total of 140 daily sessions. Before starting the task, microelectrodes were 

advanced until neuronal activity could be isolated. Neurons were not preselected for task-related 

responses. At the end of the experiments, animals were deeply anaesthetized with barbiturate and 

then perfused through the heart with heparinized saline followed by 10% formaldehyde in saline. The 

brains were removed for histology and recording locations were confirmed on dorsal and ventral 

frontal convexities and within the principal sulcus. 
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Data and analysis 

Only data from successfully completed trials were analyzed, and only units with a minimum of four 

trials in each condition were included in the analysis. All statistical analyses were conducted using 

MATLAB (MathWorks). We used customized code for the analysis and the demixed PCA toolbox35 to 

construct the low-dimensionality subspaces. 

For all analyses, spike data of each unit were first smoothed with a Gaussian kernel of SD=20 ms, 

cutoffs ±1.5 SD. The analysis focused on the choice display epoch of a trial where cue and stimulus 

information are combined to reach a decision. We therefore used data from each trial from -200 ms 

to 600 ms from choice display onset, throughout which the animals kept fixation. Data for each neuron 

were normalized across all trials, time points and conditions by subtracting the mean and dividing by 

SD prior to any analysis. 

Task-relevant low-dimensional neural state space 

The demixed principal component analysis (dPCA) is described in detail in Kobak et al.35. Briefly, it 

decomposes the high dimensional space of population activity into a small number of task-related 

components while minimizing the error between the reconstructed signal and average activity for 

each level of the different task variables. The resulting compressed subspace both captures the 

majority of variance in the data, as well as keeps the task-related components demixed, such that 

each component captures variance that is related mostly to one task variable only and the levels of 

this variable are separable to allow decodability. 

We constructed subspaces based on the single-stimulus T and D displays. Since population activity in 

the prefrontal cortex is highly affected by hemifield27,33,36–39, we constructed separate subspaces for 

the contralateral and ipsilateral hemifields. We extracted separate components for object identity 

[(cue 1, object 1 + cue 2, object 1) – (cue 1, object 2 + cue 2, object 2)], decision [(cue 1, object 1 + cue 

2, object 2) – (cue 1, object 2 + cue 2, object 1)] and cue ((cue 1, object 1 + cue 1, object 2) – (cue 2, 

object 1 + cue 2, object 1))). We used the first component of each task variable, which explains the 

largest amount of variance (see Results). Calculation of explained variance by each of the dPCA 

components was conducted using the dPCA toolbox and is described in detail in Kobak et al.35. Briefly, 

explained variance was computed in a standard way as the fraction of variance explained in peri-

stimulus time histograms (PSTHs), subtracting the unexplained variance (difference between the 

PSTHs and the reconstructed signal) from the total variance of the PSTHs and dividing by the total. 

Using the PSTHs rather than single trial data was required because data were sequentially recorded in 
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sessions over different days. The explained variance was further decomposed into the contribution of 

the different task variables by using the marginalized PSTH across these variables. 

Population coding of task-relevant information 

To investigate the temporal trajectories of representations of task-relevant information, we projected 

the data onto the compressed subspaces. To ensure the generalizability of the compressed subspaces 

and avoid over-fitting, we employed a split-half cross-validation approach. We split the data for each 

neuron and condition into two halves (odd and even trials). Within each half, data for each condition 

were averaged across trials in 1 ms bins to create a PSTH. We then computed separate subspaces for 

each half, and projected data from each half onto the subspace constructed from the other half. 

Results from these two cross-validated projections were then averaged. Signs of neuronal weights for 

each component were reversed when required to ensure that all the four subspaces (two halves, two 

hemifields) were compatible. 

Statistical analyses  

To measure coding of task-relevant information across the subspace, we subtracted the averaged 

projections of one level of each task variable on the corresponding component from the averaged 

projections of the other level. For example, for object information, the average projection of object 2 

(across the two cues/decisions) on the object component was subtracted from the average projections 

of object 1 (across the two cues/decision). Similar measures were obtained for decision information 

(T present – T absent) and cue information (cue 1 – cue 2). Information was computed for each time 

point (1 ms bins) and averaged across subspaces for the two halves of the data. 

We then used permutation analysis to determine statistical significance of these information 

measures, with cluster size correction for multiple comparisons across time points. For each 

comparison, a null distribution was generated by permuting condition labels for the trials within each 

half of the data (odd and even trials) then repeating exactly the same procedure as the main test: 

computing PSTHs, projecting the PSTHs onto the relevant component in the other half subspace, 

computing the difference using the appropriate contrast to measure coding and averaging across 

halves. This was repeated 1000 times. To estimate the distribution of cluster sizes expected by chance, 

we used a leave-one-iteration out approach. For each iteration, we marked time points at which the 

measured difference was greater than the value in all remaining iterations, then selected the cluster 

with the maximal number of such time points. To establish significance in the real data, we first 

marked time points at which the measured difference in the real data was greater than the values in 

all the permuted data (i.e., α = 0.001, one-tailed) and considered as significant only clusters larger 
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than all maximum clusters in the permuted data (i.e., α = 0.001, one-tailed). Permutation analysis to 

compare information in two-stimulus and single-stimulus displays was done in a similar way, 

permuting condition labels between the appropriate conditions for each comparison. Because the 

subspaces and statistical tests were done using split-half cross-validation, comparisons between any 

two or more conditions were not prone to biases depending on whether they were used to construct 

the subspace (i.e., single-stimulus displays) or not (i.e., two-stimulus displays). 

Correlations of neuronal weights 

We used correlations across the neural population to test for dependence between neuronal dPCA 

encoder weights between subspaces and axes. For dependence between axes (objects, decision, and 

cue), we averaged the components weights across the subspaces of the two halves of the data, 

rectified them, and correlated all three possible pairs of axes using Spearman’s rank correlation, for 

each hemifield subspace separately. The weights were rectified because the measure of interest for 

this analysis is the relative contribution of each neuron as reflected in the absolute weight, rather than 

its preference as reflected in the sign (e.g., preference for object 1 or object 2). To test for the 

dependence of representations across the contralateral and ipsilateral subspaces, for each subspace 

we averaged weights from the two halves of the data, and Pearson-correlated them across the two 

hemifields. Similarly, to test for the reliability of each set of neuronal weights within a subspace, we 

used Pearson’s correlation between weights extracted from the two independent halves of the data.  

 

DATA AVAILABILITY 

The raw neuronal data that support the findings in this study will be made freely available for 

download at a public repository upon publication. 

 

CODE AVAILABILITY 

The custom MATLAB analysis scripts that support the findings in this study will be made freely 

available for download at a public repository upon publication. The code for the dPCA toolbox is freely 

available for download35. 
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