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Running Title (54 characters) 24 

Comparison of 16S and WMS in the gut microbiome. 25 

 26 

Importance (150 words) 27 

The gut microbiome plays an important role in regulating human health and disease. 16S 28 

rRNA gene sequencing (16S) and the whole-metagenome shotgun DNA sequencing 29 

(WMS) are two approaches to describe the microbial community. 16S sequencing via any 30 

amplicon sequencing-based method offers advantages over WMS in terms of precision 31 

(specific gene targeting). Additionally, 16S has historically been less costly due to the 32 

simplicity of library preparation and it does not require the same level read coverage as 33 

WMS. In this study, we performed both sequencing methods on a single rectal swab 34 

sample obtained from each cervical cancer patient prior to treatment. We showed that 35 

these two methods provide comparable information for diversity, evenness, and richness 36 

at higher taxonomic resolution, but are discrepant at a lower resolution. These 37 

methodological findings provide valuable information for the design and interpretation of 38 

future investigations of the role of the gut microbiome in cancer. 39 

 40 

Key Words 41 

16S rRNA gene sequencing, whole genome shotgun sequencing, gut microbiome, 42 

cervical cancer 43 

 44 

Tweet (optional: 256 words, please submit a Tweet that conveys the essential message 45 

of your manuscript.) 16S may be sufficient for most initial studies of the gut microbiome 46 

in cancer patients, but WMS may be required for analysis of lower level taxonomy. 47 
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 59 

Abstract (250 words) 60 

Purpose Next generation sequencing has progressed rapidly, characterizing microbial 61 

communities beyond culture-based or biochemical techniques. 16S ribosomal RNA gene 62 

sequencing (16S) produces reliable taxonomic classifications and relative abundances, 63 

while shotgun metagenome sequencing (WMS) allows higher taxonomic and functional 64 

resolution at greater cost. The purpose of this study was to determine if 16S and WMS 65 

provide congruent information for our patient population from paired fecal microbiome 66 

samples.  67 

Methods Patients with locally advanced cervical cancers were enrolled on a prospective, 68 

observational clinical trial with a rectal swab sample collected prior to chemoradiation. 69 

Bacterial DNA was extracted from each sample and divided in two parts for 16S or WMS 70 

sequencing. We used measures of diversity richness and evenness as comparators of 71 

16S and WMS sequencing. Relative abundances of the  most common taxa were also 72 
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compared between both datasets. Both techniques were tested against baseline patient 73 

demographics to assess associations identified with either or both methods.  74 

Results Comparative indices were highly congruent between 16S and WMS. The most 75 

abundant genera for 16S and WMS data did not overlap. Overlap was observed at the 76 

Phylum level, as expected. However, relative abundances correlated poorly between the 77 

two methodologies (all p>0.05). Hierarchical clustering of both sequencing analyses 78 

identified overlapping enterotypes. Both approaches were in agreement with regard to 79 

demographic variables. 80 

Conclusion Diversity, evenness and richness are comparable when using 16S and WMS 81 

techniques, however relative abundances of individual genera are not. Clinical 82 

associations with diversity and evenness metrics were similarly identified with WMS or 83 

16S.  84 

 85 

 86 

Introduction 87 

The gut microbiome is increasingly recognized as a critical determinant of health and 88 

disease(1). The vast majority of microbiome analyses have utilized 16S rRNA gene 89 

sequencing (16S) which uses variable regions of the 16S ribosomal RNA gene to assign 90 

taxonomic classification and read abundance to calculate the relative frequency of the 91 

organisms within a sample(2). 16S is a reliable method for identifying the relative 92 

frequency of organisms but does not provide reliable functional information about the 93 

genes encoded by these organisms(3). As a consequence, whole-metagenome 94 

sequencing (WMS) data has been increasingly utilized with the goal of providing 95 
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functional information about the organisms present. WMS analyzes large swaths of 96 

genomic information, which confers several advantages over 16S. Most notably, WMS 97 

allows for an increased depth and specificity of sequenced species as well as insights 98 

into gene abundance and metabolic capacity(4). Since WMS yields genomic information 99 

beyond the 16S rRNA gene, it also confers a better assessment of the true diversity of 100 

the sample. Thus, WMS can be used to provide species level resolution, as well as 101 

differences in presence of microbial genes, articulated pathways and metabolic 102 

functions(4). Yet, a limitation of shotgun sequence data is the large number of sequence 103 

reads which must be mapped to databases, which requires significant expertise to 104 

balance classification accuracy with discarded reads. Now, it is possible to analyze 16S 105 

and WMS microbiome data side-by-side to investigate bacterial communities as well as 106 

the abundance of associated genes and metabolic pathways(5–10). Still, the extent to 107 

which these two sequencing methods correlate with one another is a critical assumption, 108 

which should be explored thoroughly. 109 

 110 

Few studies have had the opportunity to compare previously observed 16S gene 111 

associations with data from WMS on the same cohort of patients(2). By subjecting the 112 

same sample to both sequencing methods, we aim to investigate the reliability, validity 113 

and reproducibility of these different approaches. To do so we utilized baseline gut 114 

microbiome analysis from patients receiving standard chemoradiation therapy for cervical 115 

cancer in order to examine and compare 16S microbiome associations with WMS data 116 

on a variety of clinical variables. We deployed commonly used alpha diversity metrics 117 

(Inverse Simpson Diversity, Shannon Diversity, Camargo Evenness, Pielou Evenness, 118 
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Observed Operational Taxonomic Units, and the Low Abundance Rarity Index) as well as 119 

abundance measures, to draw comparisons between the two datasets. Additionally, we 120 

submitted the datasets to unsupervised hierarchical clustering in order to assess if the 121 

microbiome profiles associated together in a similar manner, as would be expected from 122 

two datasets derived from a single sample source. 123 

 124 

Methods  125 

Study design and participants 126 

We collected rectal swab samples from a cohort of 41 patients with newly diagnosed, 127 

locally advanced cervical cancer undergoing treatment at The University of Texas MD 128 

Anderson Cancer Center and Harris Health System Lyndon B. Johnson clinic. Patients 129 

with previous pelvic radiation or treatment for cervical cancer were excluded. This study 130 

was part of an IRB approved protocol (MDACC 2014-0543).  131 

Patient population and treatment characteristics 132 

Patients were enrolled in an IRB-approved (2014-0543) multi-institutional prospective 133 

clinical trial at The University of Texas MD Anderson Cancer Center and the Harris Health 134 

System, Lyndon B. Johnson General Hospital Oncology Clinic. Inclusion criteria were 135 

newly diagnosed cervical cancer per the Federation of Gynecology and Obstetrics (FIGO) 136 

2009 staging system, clinical stage IB1-IVA cancers, visible, exophytic tumor on 137 

speculum examination with planned definitive treatment of intact cervical cancer with 138 

external beam radiation therapy, cisplatin and brachytherapy. Patients with any previous 139 

pelvic radiation therapy were excluded. 140 
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Patients underwent standard-of-care pretreatment evaluation for disease staging, 141 

including tumor biopsy to confirm diagnosis; pelvic magnetic resonance imaging (MRI) 142 

and positron emission tomography/computed tomography (PET/CT); and standard 143 

laboratory evaluations, including a complete blood cell count, measurement of 144 

electrolytes, and evaluation of renal and liver function. Patients received pelvic radiation 145 

therapy to a total dose of 40‒45 Gy delivered in daily fractions of 1.8 to 2 Gy over 4 to 5 146 

weeks. Thereafter, patients received intracavitary brachytherapy with pulsed-dose-rate 147 

or high-dose-rate treatments. Patients received cisplatin (40 mg/m2 weekly) during 148 

external beam radiation therapy according to standard institutional protocol. Patients 149 

underwent repeat MRI at the completion of external beam radiation therapy or at the 150 

time of brachytherapy, as indicated by the extent of disease. Patients with no residual 151 

tumor on repeat MRI were considered to be exceptional responders while those with 152 

residual MRI tumor volumes ≤20% and >20% of initial volumes after 4 to 5 weeks after 153 

initiation of RT were considered to be standard and poor responders, respectively. 154 

Sample collection and sequencing  155 

Rectal swabs were collected in clinic at the time of rectal examination prior to treatment 156 

using quick release matrix designed Isohelix swabs (Isohelix cat. SK-2S). We placed the 157 

swabs in 400 μL of Lysis buffer and stored them at -80°C within 1 hour of sample 158 

collection. One portion of each sample was sequenced using 16Sv4 rRNA sequencing 159 

targeting the v4 region with primer 515F-806R(11), while another portion was sequenced 160 

using WMS. 16S rRNA gene sequencing was performed through the Alkek Center for 161 

Metagenomics and Microbiome Research (CMMR) at Baylor College of Medicine. 16S 162 

rRNA gene sequencing methods were adapted from the methods developed for the Earth 163 
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Microbiome Project(11). Briefly, bacterial genomic DNA was extracted using MO BIO 164 

PowerSoil DNA Isolation Kit (MO BIO Laboratories). The 16S rDNA V4 region was 165 

amplified by PCR and sequenced on the MiSeq platform (Illumina) using the 2x250 bp 166 

paired-end protocol yielding pair-end reads that overlap almost completely. The primers 167 

used for amplification contain adapters for MiSeq sequencing and single-end barcodes 168 

allowing pooling and direct sequencing of PCR products. Then gene sequences were 169 

clustered into OTUs at a similarity cutoff value of 97% using the UPARSE algorithm (12). 170 

To generate taxonomies, OTUs were mapped to an optimized version of the SILVA rRNA 171 

database containing the 16S v4 region and then rarefied at 6989 reads. A custom script 172 

was used to construct an OTU table from the output files generated as described above 173 

for downstream analyses. Here, OTUs were selected as a basis for further analysis 174 

because this method is currently the most common approach to 16s analysis in the clinical 175 

research setting. 176 

For WMS data, genomic bacterial DNA (gDNA) extraction methods optimized to maximize 177 

the yield of bacterial DNA from specimens while keeping background amplification to a 178 

minimum were employed(13, 14). Metagenomic shotgun sequencing was performed on 179 

extracted total gDNA on Illumina sequencers using chemistries that yielded paired-end 180 

reads. Sequencing reads were derived from raw BCL files which were retrieved from the 181 

sequencer and called into fastqs by Casava v1.8.3 (Illumina). Then, paired-end reads 182 

(fastq format) were filtered to remove Illumina PhiX sequences and trimmed for the 183 

Illumina adapters by using bbduk in BBTools (version 38.34)(15). To remove host DNA 184 

contamination, the trimmed reads were then mapped to a human reference sequence 185 

database (hg38) by using Bowtie2 (version 2.3.5)(16). Taxonomic classification was 186 
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performed through MetaPhlAn2(17). Also based on Bowtie2, we mapped the cleaned 187 

(unmapped to host genome) reads to a marker gene database 188 

(mpa_v295_CHOCOPhlAn_201901, updated 11/11/2019) to get an individual relative 189 

abundance table for each sample. Relative abundance tables for all samples were 190 

merged and converted to a biom format (version 1.0)(18), which was then imported into 191 

ATIMA (Agile Toolkit for Inclusive Microbial Analysis)(13) for statistical and diversity 192 

analysis. Additionally, we obtained the functional annotation of the microbial community 193 

by using HUMAnN2(6).  194 

Alpha Diversity Indices  195 

We then analyzed data from both WMS and 16S using several alpha diversity metrics 196 

provided in the Microbiome R package(19) (R version 3.6.2), in order to assess the 197 

richness, divergence and evenness of the microbial communities within each patient 198 

sample. We calculated several index measures from observed OTU counts for 16S data 199 

and WMS data collected from MetaPhlAn2 analysis independently. The Shannon 200 

Diversity (SD)(20) and Inverse Simpson Diversity (ISD)(21) indexes provide a measure 201 

of the total amount of species within a given sample. The Camargo(22) and Pielou(23) 202 

Evenness indices are designed to calculate the proportionality of individual species within 203 

a sample population. A high degree of evenness would imply that the abundances of all 204 

individuals are roughly the same, or in equal proportions. Finally, the richness of the 205 

datasets was calculated using Observed operational taxonomic unit (OTU) counts and 206 

the Low Abundance Rarity (LAR) Index measures. The Observed OTUs index provides 207 

a count based on the presence of at least one read for a given species within a sample. 208 
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The LAR index(19) instead characterizes the concentration of species which have low 209 

abundance within the sample. 210 

  211 

Comparative Statistical Analysis of 16S and WMS 212 

We then paired each patient value from one dataset with its corresponding value for the 213 

same patient in the other dataset. The amount of agreement between the two datasets, 214 

in terms of alpha diversity measures, was then quantified using Spearman's rank 215 

correlation coefficient (R or rho) with value of 1 indicating a perfect agreement, between 216 

two sets of variables.  217 

To assess the consistency in reporting microbial abundance between 16S and WMS, we 218 

identified the most abundant taxa at the genus level for each sequencing method 219 

independently. Then, we compiled a list of organisms on either of the lists. Thus, the next 220 

set of comparisons were drawn using the total number of possible taxa identified by 221 

taxonomic name at all phylogenetic levels (with the exception of species).  222 

We also analyzed the datasets individually while considering patient demographic and 223 

clinical characteristics. We analyzed six clinical variables to assess differences in 224 

diversity, evenness, and richness between groups. Binary classifications were analyzed 225 

using the independent t-test (Age, Smoking History, Histology) while multivariable 226 

classifications were analyzed using One-Way ANOVA (Ethnicity, Node Level, FIGO 227 

Stage). We also studied age and BMI as continuous variables in relation to Inverse 228 

Simpson Diversity and Pielou evenness for both 16S and WMS datasets. Consensus 229 

between the two datasets was defined as a p<=0.1 or >0.1. All analyses were conducted 230 

using R version 3.6.2 and Microsoft Excel (2016). 231 
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Hierarchical Clustering 232 

To further explore the consistency of the two datasets, specifically the sample grouping 233 

according to the putative taxa abundance profiles, we use unsupervised hierarchical 234 

clustering of each OTU table by the cluster software with default settings(24). The data 235 

used for clustering was limited by only using OTUs found in more than 14 samples. The 236 

obtained heatmaps were visualized by the Java TreeView software(25). 237 

Data Availability 238 

Both 16S and WMS datasets will be available upon study completion and publication via 239 

the database of Genotypes and Phenotypes (dbGaP). Similarly, proprietary code will be 240 

available upon study completion and publication through GitHub. 241 

 242 

 243 

Results 244 

Taxonomic Composition and Abundance Using 16S and WMS 245 

The number of putative taxa compiled in OTU tables was dramatically different between 246 

the technologies, and included 984 OTUs in the 16S OTU table yet only 451 in the WMS 247 

table. The WMS OTU table was not as sparse as the 16S table and had a different 248 

abundance distribution frequency display, which was close to normal (Figure 1, panel 1). 249 

The sparse 16S OTU table had significantly more rare low-abundance taxa; this feature 250 

is evident from the frequency distribution (Figure 1, panel 2) and is well-characterized for 251 

this type of dataset. 252 
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The top 10 most abundant phyla and genera found in 16S and WMS are shown in Figure 253 

2. There was better consensus between 16S and WMS datasets on the phyla level than 254 

on the genus level (Figure 2). The most abundant phyla identified in both 16S and WMS 255 

were Bacteroides, Firmicutes, Proteobacteria, Actinobacteria and Fusobacteria. 256 

Interestingly, Verrucomicrobia were found to be highly abundant only by WMS. 257 

Tenericutes were ranked third most abundant by 16S but had low abundance according 258 

to WMS. There was a significant mid-level association (rho=0.69, p=0.03) between the 259 

phyla abundances (Figure 2, panel 3). No significant associations between the 260 

abundances were identified at other taxonomic levels. 261 

None of the top abundant genera according to 16S were identified as the most abundant 262 

genera according to WMS (Figure 2, panels 1 and 2). There was no overlap between the 263 

top 10 most abundant genera in 16S and WMS. The top 10 genera in 16S or WMS are 264 

listed in Table 1 with ranked relative abundances in each data set. Twelve genera were 265 

present in either the top 10 of 16S or WMS and present at any rank level in the other data 266 

set. Most genus level abundances correlated poorly between 16S and WMS (rho<0.15). 267 

The only genus, with relative abundance correlated well between the data sets, was 268 

Peptoniphilus (rho=0.68, p<0.01). The rest of the genera reported as the top 10 most 269 

abundant in one dataset were not present in the other dataset, and thus no abundance 270 

comparisons were made. 271 

Consistent with the difference in frequency distribution of species abundances, the 16S 272 

dataset included more putative species annotated at different taxonomic levels. 273 

Furthermore, a high percentage of the taxa identified via 16S (58-67%) were not identified 274 

by WMS, potentially as a result of using marker-gene classifiers. Conversely, most taxa 275 
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found in the WMS table were also identified by 16S (Figure 3). This percentage decreased 276 

at low taxonomic levels. 277 

 278 

Diversity, Evenness, and Richness by 16S and WMS  279 

To further investigate the varied microbial compositions and abundances of taxa at most 280 

phylogenetic levels, we next explored the effects of different general characteristics of 281 

species diversity within the gut microbiomes. Surprisingly, we found that most indices of 282 

diversity, evenness, and richness showed significant correlation between 283 

16S and WMS datasets (Figure 4). All of the diversity and richness measures were tightly 284 

correlated between 16S and WMS (ISD rho=0.89, p<0.01; SD rho=0.90, p=<0.01; 285 

Observed OTUs rho=0.76, p<0.01; LAR rho=0.72, p<0.001) (Figure 4). Evenness indices 286 

had a weaker correlation between 16S and WMS (Camargo rho=0.41, p<0.01; Pielou 287 

rho=0.84, p<0.01), which is not surprising considering there was greater similarity in taxa 288 

abundances in the WMS dataset then in the 16S dataset (Figure 1). Despite significant 289 

differences in the rare OTUs, low abundance rarity indexes also significantly correlated 290 

between the datasets. The slope of the regression line of the association was also 291 

consistent with a significantly greater number of rare low abundance species in the 16S 292 

dataset than in WMS. 293 

 294 

Association of Demographic Characteristics with diversity of microbiomes and specific 295 

taxa 296 

In our next step, we investigated whether the differences and similarities considered 297 

above affected biological conclusions drawn from each dataset. Namely, we explored 298 
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demographic variables (Supplementary Table 1) in association with gut microbiome 299 

diversity and specific taxa using either the 16S or WMS dataset. When diversity, 300 

evenness and richness indices were compared to baseline characteristics using both 16S 301 

and WMS (Table 2), only age was associated with ISD in both WMS and 16S (p<0.1). 302 

Age was associated with SD diversity (p=0.04), and Pielou evenness (p=0.01) using 16S, 303 

but not WMS. Camargo evenness was associated with age only using WMS (p=0.008). 304 

LAR richness was associated with BMI using WMS (p=0.05) but not 16S. Other baseline 305 

demographic variables were not associated with diversity, evenness or richness using 306 

any metric. Overall, there was consensus between methods (both p<=0.1 or >0.1) across 307 

all demographics for ISD only. A positive correlation between age and gut diversity, and 308 

between age and evenness was identified in both 16S (ISD; rho=0.37, p=0.02. Pielou; 309 

rho=0.39, p=0.01) and WMS (ISD; rho=0.29, p=0.06. Pielou; rho=0.28, p=0.08) data 310 

(Figure 5). Both datasets failed to find a difference between patient populations regarding 311 

ethnicity, smoking status, tumor histology, nodal involvement, or FIGO Stage.  312 

We further explored specific taxa associated with the age of cervical cancer patients using 313 

Linear Discriminant Analysis (LDA) Effect Size (LEfSe). The clinical variable of age, was 314 

classified in three different ways: over vs under 50 years of age, over vs under the median 315 

age (49 years), and finally the patients were split into three sections where the 14 316 

youngest and 14 oldest patients were compared against each other, with middle age 317 

group omitted (SFig. 1). We applied the one-against-all strategy with a threshold of 3 on 318 

the logarithmic LDA score for discriminative features and α of 0.05 for factorial Kruskal-319 

Wallis test among classes. Regardless of the classification method used, the taxa 320 
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identified as significantly enriched in older or younger patients was not consistent 321 

between 16S and WMS datasets. 322 

 323 

Grouping of cervical cancer patients in terms of putative species abundances 324 

Unsupervised hierarchical clustering of samples based on the species abundances in 325 

WMS and 16S (Figure 6) and OTU tables revealed 2 broad groups of patients in each 326 

hierarchy with significant overlap among patients comprising each group (Fisher's Exact 327 

Test p-value is 0.004) . Despite the significant differences in the number of genera 328 

identified by 16S and WMS, the hierarchical clustering of OTUs was consistent between 329 

datasets and revealed a set of OTUs enriched with Prevotella, Peptoniphilus, and 330 

Porphyromonas. These genera were more abundant in both 16S and WMS Cluster 1, 331 

but less abundant in 16S and WMS Cluster 2. Most notably, the grouping of patients in 332 

Cluster 1 and 2 was associated with the BMI index of the patients (Fisher's Exact Test 333 

p-value is 0.002 for WMS and 0.06 for 16S). There were significantly more patients with 334 

BMI<median (28.63) in Cluster 1 (WMS and 16S) than in Cluster 2 (both datasets). 335 

There were 20 patients in the 16S Cluster 1 and 24 patients in the WMS Cluster 1. 336 

Thirteen of which were in common between those clusters, and they were grouped 337 

close to one another. Indicating a greater degree of similarity in terms of their OTU 338 

abundance profiles.  339 

 340 

Discussion 341 

This study is limited by our analytic pipelines and available samples, but the results 342 

suggest that 16S with OTU clustering provides a similar description of sample diversity 343 
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and composition for gut microbiomes of cervical cancer patients versus WMS. This finding 344 

is important, as it allows researchers to analyze a larger number of samples using 16S at 345 

a fraction of the cost of WMS. Camargo evenness and skewness were the least correlated 346 

indices between the two methodologies, which suggests that the sequencing methods 347 

differ in terms of the proportionality of individual bacterial taxa. This might be improved 348 

using a 16S analysis pipeline that uses amplicon sequence variants, such as QIIME2, to 349 

retain more reads. The Camargo index has low sensitivity for variation in species diversity 350 

for sample sizes <3000, while the Pielou index is a sensitive assessment index for smaller 351 

sample sizes (<1000). Thus, the Pielou evenness index is more appropriate in terms of 352 

this sample size, and correlates well between the two datasets(20). With regards to rare 353 

taxa (LAR), WMS provides more noise in a dataset by identifying individual genes, which 354 

may be linked to unidentified bacterial species. 16S combined with OTU clustering can at 355 

best provide information at the genus level with a high degree of confidence and relies on 356 

97% similarity clustering at the OTU level. This difference is to be expected, and could be 357 

exploited in specific analyses, such as searching for previously identified species or 358 

particular gene functions. It is reassuring that there was significant consensus between 359 

the methodologies on the higher order levels. Much of the focus in next generation 360 

sequencing analysis is placed on the smallest taxonomic level available (i.e. the genus 361 

or species level), but higher order taxa also provide valuable information.  362 

Previous work has also posited a sizable amount of agreement between 16S and 363 

WMS sequencing techniques at higher orders of taxa(2), consistent with these results. 364 

16S and WMS have a significant degree of correlation; however, most of those studies 365 

utilize data derived from samples collected in similar but not identical contexts. This 366 
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project provides a unique opportunity in that both 16S and WMS sequencing datasets 367 

were derived from a single sample collected from each patient and then bacterial DNA 368 

was extracted for both methods. Using this high-quality information, we investigated the 369 

correlation of these two datasets in terms of microbial composition abundance and alpha 370 

diversity, to precisely determine how well these sequencing methods corroborated. Since 371 

the two datasets are derived from the same samples, association with the clinical 372 

variables should also result in the same conclusion regardless of the sequencing method 373 

used, which was again confirmed. Age is perhaps the variable most strongly associated 374 

with microbiome diversity, which was confirmed in both datasets in our study. It is also 375 

important to note, hierarchical clustering analysis showed 9 (69%) out of 13 patients in 376 

Cluster1 were white, while only 8 (31%) of the 28 patients in the rest of the cohort were 377 

white. In addition, 12 (92%) out of the 13 patients in Cluster1 had a disease stage of 1 or 378 

2, compared to 19 (68%) out of the 28 patients in the rest of the cohort. 379 

An important limitation of the study that we focus solely on taxonomic 380 

characteristics of the gut community. The major advantage of WMS is that it provides an 381 

opportunity to assay functional diversity of the microbiome, a capability severely lacking 382 

in 16S data. Tools such as PICRUSt(26) can infer metabolic profiles from 16S data, but 383 

they cannot truly assemble functional pathways. Yet, the most fundamental drawback of 384 

this study is due to the limitations of analytic pipelines used in each approach and the 385 

databases available for both 16S and WMS data. Tools for analyzing 16s have been 386 

developed and successfully deployed far longer than WMS analysis software, while the 387 

WMS analysis pipelines and databases are continually being developed and shared. The 388 

differences in alignment techniques and databases would account for a lot of the variation 389 
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in taxa names herein. For example, by calculating OTUs we recapitulated a popular 390 

method of alignment used in this field, but in doing so the data has been collapsed at the 391 

cost of potential diversity information. Additionally, tools used for metagenomic analysis 392 

vary based on techniques used such as distance metrics and clustering approaches(15). 393 

Here, we used OTU clustering at 97% similarity using previously described methodology 394 

from the Human Microbiome Project(13), but this data could be re-analyzed using QIIME2 395 

and amplicon sequence variant (ASV) calling(27) and result in variations in ASV vs. OTU 396 

assignment that could affect the analysis. Amplicon sequence variant calling with DADA2 397 

denoising(28) may be a preferable system for WMS comparisons as the pipeline is more 398 

similar to how WMS reads are treated. Another important consideration is that the 399 

MetaPhlAn2 tool inherent in the Humann2 pipeline uses a relatively small fraction of the 400 

data generated, whereas another non-marker gene based identifier such as QIIME2, 401 

Kraken 2(29) or the mothur software(30) will generate a larger and more varied, spread 402 

of results. Still, MetaPhlAn2 outperformed IGGsearch(31) which was also deployed on 403 

our WMS dataset, and it remains the most popular marker-gene based tool in the 404 

metagenome field.  405 

Another limitation to address, for this work and many others, is establishing a 406 

confident rarefication cut off for analysis. Usually this cut off value would be validated by 407 

utilizing a mock microbial community dataset to be analyzed alongside experimental data. 408 

Here, we were unable to acquire complete mock communities as such information is 409 

privileged and difficult to attain. However, the cut off value we used was selected because 410 

it was consistently stringent across both 16S and WMS datasets while retaining as much 411 

information as possible. 412 
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All this is to say, variations in approaches to metagenome assembly pipelines 413 

similarly could affect taxonomic assignment in 16S and WMS data. It is possible that a 414 

particular sequence relevant to both datasets would be classified differently during 415 

preprocessing, highlighting the necessity of universal reference databases and 416 

sequencing alignment tools and protocol consensus. 417 

Given this variability in sequencing and data processing pipelines, the use of 418 

multiple techniques across different types of sequencing data is an excellent way to 419 

confirm consistency in conclusions. However, limited resources (e.g. material from clinical 420 

samples, bioinformatics support, time and finances) hamper the ability for this expansive 421 

and in-depth microbiome profiling for all studies. Although WMS has been demonstrated 422 

to confer significant advantages over 16S, this work suggests there is very little additional 423 

taxonomic information identified from WMS that was not identified in 16S data. This can 424 

vary depending on the context of analysis, for example method of sample collection (i.e., 425 

whole stool vs swabs) and determining the functional components of the microbiome in 426 

question.(26, 32) It is even possible that extracting DNA from the same sample at two 427 

different times, instead of splitting a single extraction as was done here, may yield slightly 428 

different results. In our work, alpha diversity assessments such as overall diversity, 429 

evenness and richness can provide meaningful, and more important, comparable 430 

information (Figure 1) when obtained with either 16S or WMS. Furthermore, the two 431 

datasets provided a high degree of consensus when these indices were subjected to 432 

statistical analysis. This suggests that for studies where overall microbiome diversity, 433 

richness and evenness are the goals of an analysis, 16S is more than sufficient to provide 434 

this information. For basic taxonomic descriptions, there was a meaningful agreement on 435 
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the phyla and higher taxa levels, suggesting that 16S is also sufficient in this setting for 436 

hypothesis-generating data. Nonetheless, these two datasets did provide some 437 

differences in taxonomic assignment, particularly on the genus level, and relative 438 

abundances of individual taxonomies. This suggests that for studies where a broader 439 

repertoire of potential species are needed, both techniques may be necessary.  440 

In all, this evidence suggests that using 16S alone may be sufficient in the clinical 441 

cancer research setting, where available patient material, time and money can be scarce. 442 

Based on these findings, we suggest 16S for the gut microbiome of cancer patients for 443 

initial diversity, richness and evenness metrics along with higher level taxonomic 444 

classification. WMS can provide a large swath of detailed microbial information, albeit 445 

with less sensitivity than 16S, and may be ideal when additional information on genus 446 

and species level identification is needed or to confirm conclusions drawn from 16S data.  447 

 448 
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Tables 596 

Table 1. Comparisons of Top Ranked WMS and 16S Genera.  597 

The top ten most abundant Genera identified in WMS or 16S (identified with *) are 598 

shown next to their counterpart and the associated rank. Genera present in both lists 599 

were correlated in terms of abundance using Spearman R. Resulting p values are 600 

shown as not significant (ns), less than 0.1 (bold), or less than 0.05 (red). Genera 601 

present in one dataset, but not the other ( - ) could not be correlated. 602 

Genus Name WMS Rank 
16S RNA 

Rank 
Spearman R p Value 

Bacteroides 1* 12 0.29 0.0639 

Prevotella 2* 70 0.21 ns 

Parabacteroides 3* 88 0.09 ns 

Porphyromonas 4* 126 -0.1 ns 

Akkermansia 5* 129 0.18 ns 

Alistipes 6* 13 -0.27 0.0828 

Faecalibacterium 7* - - - 

Campylobacter 8* 115 0.05 ns 

Peptoniphilus 9* 56 0.68 1.14E-06 
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Oscillibacter 10* 34 0.12 ns 

Mycoplasma 58 9* 0.24 ns 

Coprobacter 73 7* 0.22 ns 

Jonquetella 119 5* -0.18 ns 

Nocardioides - 1* - - 

Lachnoanaerobaculum - 2* - - 

Clostridium sensu stricto 1 - 3* - - 

Ruminococcaceae UCG_014 - 4* - - 

Selenomonas_4 - 6* - - 

Eubacterium coprostanoligenes group - 8* - - 

Christensenellaceae R_7_group - 10* - - 

603 
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Table 2. Correlation between WMS and 16sRNA in terms of Diversity, Evenness, 604 

and Richness.  605 

In this table, patient demographics and clinical assessments were collected and used as 606 

classification criteria to investigate differences between these characteristics in terms of 607 

alpha diversity measurements discussed earlier. Both datasets were analyzed using 608 

either a parametric t-test [Smoking History (Yes/No), Histology 609 

(Adenocarcinoma/Squamous Cell Carcinoma)], linear regression [Age and BMI], or 610 

One-Way ANOVA [Ethnicity (White, Black, Hispanic, Other), Node Level (Common 611 

Iliac/External Iliac/Internal Iliac/None/Para-Aortic), FIGO Stage (IA1, IB1, IB2, IBI, IIA, 612 

IIB, IIIB, IVA)]. The resulting p value measures are indicated on the table as being either 613 

non-significant (ns), less than 0.1 (black) or less than 0.05 (red). Consensus between 614 

both methods, whole-metagenome sequencing and 16sRNA sequencing, indicates the 615 

validity of using either method for exploring that clinical variable. 616 

 617 

 618 

 619 

 620 

 621 
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 622 

 623 

 624 

 625 

Clinical Variable 

Diversity Evenness Richness 

Inverse Simpson Shannon Camargo Pielou Observed OTUs LAR 

WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA 

Age 0.0631 0.0166 ns 0.0396 0.0077 ns ns 0.0111 ns ns ns ns 

Ethnicity (W,B,H,O) ns ns ns ns ns ns ns ns ns ns ns ns 

Smoking History (Y/N) ns ns ns ns ns ns ns ns ns ns ns ns 

Histology (Adeno/Squam) ns ns ns ns ns ns ns ns ns ns ns ns 

Node level ns ns ns ns ns ns ns ns 0.0748 ns ns ns 

FIGO Stage ns ns ns ns ns ns ns ns ns ns ns ns 

BMI ns ns ns ns ns ns ns ns ns ns 0.0468 ns 
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Figures 626 

 627 

Figure 1. Different distribution of putative taxa species abundance in WMS and in 628 

16S OTU tables.  629 

To display differences in abundances in terms of OTU frequencies, OTU counts were 630 

log transformed and presented here as histograms. WMS (red) OTU identifiers 631 

displayed reduced overall frequency compared to 16S (green), however the distribution 632 

of species abundance showed a more normal distribution.  633 
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634 

Figure 2. Comparison of top 10 taxa at highest and lowest taxonomic levels for 635 

WMS and 16sRNA.  636 

The bar plots presented show the top ten most abundant taxa present in the WMS (red), 637 

16sRNA (green) as identified at the Phylum and Genus levels of taxa. The two datasets 638 

have a greater level of consensus in terms of microbial abundance at higher taxonomic 639 

levels (eg. Phylum) than lower levels (eg. Genus). 640 
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641 

Figure 3. Comparison of number of overlapping taxa at each phylogenetic level 642 

for WMS and 16S RNA.  643 

The bar plots show the percentage of taxa present in WMS (red), and 16S (green) 644 

which overlap in both lists. Across all levels, many of the WMS taxa identified were also 645 

identified in the list of 16S taxa.  646 
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647 

Figure 4. Correlation between WMS and 16sRNA in terms of diversity, evenness, 648 

and richness. 649 

In this figure, each data point represents a single patient. Consensus between both 650 

sequencing methods in terms of alpha diversity is calculated by a Spearman Correlation 651 

(R). The slope of the correlation is represented by a red line, while the 95% confidence 652 

interval is represented by a grey shaded area. The data derived from 16S sequencing 653 

correlates well with the diversity assessment values derived from WMS for diversity and 654 

richness. The evenness measures suggest that the sequencing methods differ in terms 655 

of the proportionality of individual bacterial taxa.  656 
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657 

Figure 5. Correlation between age and Inverse Simpson Diversity and Pielou 658 

Evenness for 16S vs WMS.  659 

The slope of the correlation is shown in red while the 95% confidence interval is indicted 660 

by the grey shaded region. Spearman Correlation shows a weak association between 661 

age and the Inverse Simpson Diversity Index value as well as the Pielou evenness 662 

Index value, for both 16sRNA and WMS data.  663 
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664 

Figure 6. Unsupervised hierarchical clustering of samples in terms of putative 665 

species abundances identified by WMS and by 16S. To generate these heat maps, 666 

only OTUs found in more than 14 samples were considered; 91 OTUs in 16S OTU table 667 

and 103 in the WMS OUT table. Overlay between 16S and WMS sample Clusters are 668 

shown at the bars above the heat map, while demographic data is presented at the 669 

bottom. 670 

 671 

Supplementary Information 672 

Supplementary Table 1. Baseline patient demographic information 673 

Patient demographic information was collected prior to initiation of standard treatment 674 

and reported here. These demographics were used as patient categories for 675 

downstream analysis of microbial diversity, evenness and richness. Ethnicity, History of 676 

smoking, Tumor Histology, Node Level, and FIGO Stage were categorical clinical 677 

variables while BMI was used as a continuous variable. Age was used both as a 678 
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categorical variable (Over vs Under 50 years of Age; Over vs Under Median Age), and 679 

as a continuous variable. 680 

Variable Category  N(%) 

Age 
Under 50 22(53.66) 

Over 50  19(46.34) 

Ethnicity 

B 4(9.76) 

H 19(46.34) 

O 1(2.44) 

W 17(41.46) 

History of smoking 
Yes 17(41.46) 

No 24(58.54) 

Histology 

Adenocarcinoma 8(19.51) 

Adenosquamous 2(4.88) 

Squamous Carcinoma 31(75.61) 

Node Level 

Common Iliac 6(14.63) 

External Iliac 15(36.58) 

Internal Iliac 4(9.76) 

Para-Aortic 3(7.32) 

None 13(31.71) 

FIGO Stage 

IA1 1(2.44) 

IB1 1(2.44) 

IB2 6(14.63) 

IBI 2(4.88) 

IIA 2(4.88) 

IIB 19(46.34) 

IIIB 7(17.07) 

IVA 3(7.32) 

 Mean ± SD Range 

Age 49.98 ±10.92 28 – 72  

BMI 28.92 ± 6.14 17.5 – 46.7 

 681 
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 682 

Supplementary Figure 1. LEfSe analysis performed using 3 methods of age 683 

classification. 684 

In order to elucidate differences in enriched taxa according to the age clinical variable, 685 

patients were classified using three different metrics: A) Over vs under 50 years of age, 686 
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B) Over vs under the median age of all patients, and C) the youngest third of patients 687 

(14 individuals) vs the oldest third of patients (14 individuals) in the cohort. WMS and 688 

16S datasets were submitted to LEfSe analysis separately, and the resulting bar charts 689 

are shown here. 690 

 691 
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Genus Name WMS Rank 

16S RNA 
Rank 

Spearman R p Value 

Bacteroides 1* 12 0.29 0.0639 

Prevotella 2* 70 0.21 ns 

Parabacteroides 3* 88 0.09 ns 

Porphyromonas 4* 126 -0.1 ns 

Akkermansia 5* 129 0.18 ns 

Alistipes 6* 13 -0.27 0.0828 

Faecalibacterium 7* - - - 

Campylobacter 8* 115 0.05 ns 

Peptoniphilus 9* 56 0.68 1.14E-06 

Oscillibacter 10* 34 0.12 ns 

Mycoplasma 58 9* 0.24 ns 

Coprobacter 73 7* 0.22 ns 

Jonquetella 119 5* -0.18 ns 

Nocardioides - 1* - - 

Lachnoanaerobaculum - 2* - - 

Clostridium sensu stricto 1 - 3* - - 

Ruminococcaceae UCG_014 - 4* - - 

Selenomonas_4 - 6* - - 

Eubacterium coprostanoligenes 
group 

- 8* - - 

Christensenellaceae R_7_group - 10* - - 
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Clinical Variable 

Diversity Evenness Richness 

Inverse Simpson Shannon Camargo Pielou Observed OTUs LAR 

WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16sRNA 

Age 0.0631 0.0166 ns 0.0396 0.0077 ns ns 0.0111 ns ns ns ns 

Ethnicity (W,B,H,O) ns ns ns ns ns ns ns ns ns ns ns ns 

Smoking History (Y/N) ns ns ns ns ns ns ns ns ns ns ns ns 

Histology (Adeno/Squam) ns ns ns ns ns ns ns ns ns ns ns ns 

Node level ns ns ns ns ns ns ns ns 0.0748 ns ns ns 

FIGO Stage ns ns ns ns ns ns ns ns ns ns ns ns 

BMI ns ns ns ns ns ns ns ns ns ns 0.0468 ns 
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