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Running Title (54 characters)

Comparison of 16S and WMS in the gut microbiome.

Importance (150 words)

The gut microbiome plays an important role in regulating human health and disease. 16S
rRNA gene sequencing (16S) and the whole-metagenome shotgun DNA sequencing
(WMS) are two approaches to describe the microbial community. 16S sequencing via any
amplicon sequencing-based method offers advantages over WMS in terms of precision
(specific gene targeting). Additionally, 16S has historically been less costly due to the
simplicity of library preparation and it does not require the same level read coverage as
WMS. In this study, we performed both sequencing methods on a single rectal swab
sample obtained from each cervical cancer patient prior to treatment. We showed that
these two methods provide comparable information for diversity, evenness, and richness
at higher taxonomic resolution, but are discrepant at a lower resolution. These
methodological findings provide valuable information for the design and interpretation of

future investigations of the role of the gut microbiome in cancer.

Key Words
16S rRNA gene sequencing, whole genome shotgun sequencing, gut microbiome,
cervical cancer

Tweet (optional: 256 words, please submit a Tweet that conveys the essential message

of your manuscript.) 16S may be sufficient for most initial studies of the gut microbiome
in cancer patients, but WMS may be required for analysis of lower level taxonomy.
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Abstract (250 words)

Purpose Next generation sequencing has progressed rapidly, characterizing microbial
communities beyond culture-based or biochemical techniques. 16S ribosomal RNA gene
sequencing (16S) produces reliable taxonomic classifications and relative abundances,
while shotgun metagenome sequencing (WMS) allows higher taxonomic and functional
resolution at greater cost. The purpose of this study was to determine if 16S and WMS
provide congruent information for our patient population from paired fecal microbiome
samples.

Methods Patients with locally advanced cervical cancers were enrolled on a prospective,
observational clinical trial with a rectal swab sample collected prior to chemoradiation.
Bacterial DNA was extracted from each sample and divided in two parts for 16S or WMS
sequencing. We used measures of diversity richness and evenness as comparators of

16S and WMS sequencing. Relative abundances of the most common taxa were also
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compared between both datasets. Both techniques were tested against baseline patient
demographics to assess associations identified with either or both methods.

Results Comparative indices were highly congruent between 16S and WMS. The most
abundant genera for 16S and WMS data did not overlap. Overlap was observed at the
Phylum level, as expected. However, relative abundances correlated poorly between the
two methodologies (all p>0.05). Hierarchical clustering of both sequencing analyses
identified overlapping enterotypes. Both approaches were in agreement with regard to
demographic variables.

Conclusion Diversity, evenness and richness are comparable when using 16S and WMS
techniques, however relative abundances of individual genera are not. Clinical
associations with diversity and evenness metrics were similarly identified with WMS or

16S.

Introduction

The gut microbiome is increasingly recognized as a critical determinant of health and
disease(l). The vast majority of microbiome analyses have utilized 16S rRNA gene
sequencing (16S) which uses variable regions of the 16S ribosomal RNA gene to assign
taxonomic classification and read abundance to calculate the relative frequency of the
organisms within a sample(2). 16S is a reliable method for identifying the relative
frequency of organisms but does not provide reliable functional information about the
genes encoded by these organisms(3). As a consequence, whole-metagenome

sequencing (WMS) data has been increasingly utilized with the goal of providing
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96 functional information about the organisms present. WMS analyzes large swaths of

97 genomic information, which confers several advantages over 16S. Most notably, WMS

98 allows for an increased depth and specificity of sequenced species as well as insights

99 into gene abundance and metabolic capacity(4). Since WMS yields genomic information
100 beyond the 16S rRNA gene, it also confers a better assessment of the true diversity of
101 the sample. Thus, WMS can be used to provide species level resolution, as well as
102 differences in presence of microbial genes, articulated pathways and metabolic
103  functions(4). Yet, a limitation of shotgun sequence data is the large number of sequence
104 reads which must be mapped to databases, which requires significant expertise to
105 balance classification accuracy with discarded reads. Now, it is possible to analyze 16S
106 and WMS microbiome data side-by-side to investigate bacterial communities as well as
107 the abundance of associated genes and metabolic pathways(5-10). Still, the extent to
108  which these two sequencing methods correlate with one another is a critical assumption,
109  which should be explored thoroughly.
110
111  Few studies have had the opportunity to compare previously observed 16S gene
112  associations with data from WMS on the same cohort of patients(2). By subjecting the
113 same sample to both sequencing methods, we aim to investigate the reliability, validity
114  and reproducibility of these different approaches. To do so we utilized baseline gut
115 microbiome analysis from patients receiving standard chemoradiation therapy for cervical
116 cancer in order to examine and compare 16S microbiome associations with WMS data
117 on a variety of clinical variables. We deployed commonly used alpha diversity metrics

118 (Inverse Simpson Diversity, Shannon Diversity, Camargo Evenness, Pielou Evenness,
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119 Observed Operational Taxonomic Units, and the Low Abundance Rarity Index) as well as
120 abundance measures, to draw comparisons between the two datasets. Additionally, we
121  submitted the datasets to unsupervised hierarchical clustering in order to assess if the
122  microbiome profiles associated together in a similar manner, as would be expected from
123  two datasets derived from a single sample source.
124
125 Methods

126  Study design and participants

127 We collected rectal swab samples from a cohort of 41 patients with newly diagnosed,
128 locally advanced cervical cancer undergoing treatment at The University of Texas MD
129  Anderson Cancer Center and Harris Health System Lyndon B. Johnson clinic. Patients
130  with previous pelvic radiation or treatment for cervical cancer were excluded. This study

131  was part of an IRB approved protocol (MDACC 2014-0543).

132 Patient population and treatment characteristics

133  Patients were enrolled in an IRB-approved (2014-0543) multi-institutional prospective
134  clinical trial at The University of Texas MD Anderson Cancer Center and the Harris Health
135  System, Lyndon B. Johnson General Hospital Oncology Clinic. Inclusion criteria were
136 newly diagnosed cervical cancer per the Federation of Gynecology and Obstetrics (FIGO)
137 2009 staging system, clinical stage IB1-IVA cancers, visible, exophytic tumor on
138  speculum examination with planned definitive treatment of intact cervical cancer with
139 external beam radiation therapy, cisplatin and brachytherapy. Patients with any previous

140  pelvic radiation therapy were excluded.
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141  Patients underwent standard-of-care pretreatment evaluation for disease staging,
142  including tumor biopsy to confirm diagnosis; pelvic magnetic resonance imaging (MRI)
143  and positron emission tomography/computed tomography (PET/CT); and standard
144  laboratory evaluations, including a complete blood cell count, measurement of
145  electrolytes, and evaluation of renal and liver function. Patients received pelvic radiation
146  therapy to a total dose of 4045 Gy delivered in daily fractions of 1.8 to 2 Gy over 4 to 5
147  weeks. Thereafter, patients received intracavitary brachytherapy with pulsed-dose-rate
148  or high-dose-rate treatments. Patients received cisplatin (40 mg/m2 weekly) during
149  external beam radiation therapy according to standard institutional protocol. Patients
150 underwent repeat MRI at the completion of external beam radiation therapy or at the
151 time of brachytherapy, as indicated by the extent of disease. Patients with no residual
152  tumor on repeat MRI were considered to be exceptional responders while those with
153  residual MRI tumor volumes <20% and >20% of initial volumes after 4 to 5 weeks after
154 initiation of RT were considered to be standard and poor responders, respectively.

155 Sample collection and seqguencing

156 Rectal swabs were collected in clinic at the time of rectal examination prior to treatment
157  using quick release matrix designed Isohelix swabs (Isohelix cat. SK-2S). We placed the
158 swabs in 400 pL of Lysis buffer and stored them at -80°C within 1 hour of sample
159 collection. One portion of each sample was sequenced using 16Sv4 rRNA sequencing
160 targeting the v4 region with primer 515F-806R(11), while another portion was sequenced
161 using WMS. 16S rRNA gene sequencing was performed through the Alkek Center for
162 Metagenomics and Microbiome Research (CMMR) at Baylor College of Medicine. 16S

163  rRNA gene sequencing methods were adapted from the methods developed for the Earth
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164  Microbiome Project(11). Briefly, bacterial genomic DNA was extracted using MO BIO
165 PowerSoil DNA Isolation Kit (MO BIO Laboratories). The 16S rDNA V4 region was
166 amplified by PCR and sequenced on the MiSeq platform (lllumina) using the 2x250 bp
167 paired-end protocol yielding pair-end reads that overlap almost completely. The primers
168 used for amplification contain adapters for MiSeq sequencing and single-end barcodes
169 allowing pooling and direct sequencing of PCR products. Then gene sequences were
170 clustered into OTUs at a similarity cutoff value of 97% using the UPARSE algorithm (12).
171  To generate taxonomies, OTUs were mapped to an optimized version of the SILVA rRNA
172  database containing the 16S v4 region and then rarefied at 6989 reads. A custom script
173  was used to construct an OTU table from the output files generated as described above
174  for downstream analyses. Here, OTUs were selected as a basis for further analysis
175 because this method is currently the most common approach to 16s analysis in the clinical
176  research setting.

177  For WMS data, genomic bacterial DNA (gDNA) extraction methods optimized to maximize
178 the yield of bacterial DNA from specimens while keeping background amplification to a
179  minimum were employed(13, 14). Metagenomic shotgun sequencing was performed on
180 extracted total gDNA on llumina sequencers using chemistries that yielded paired-end
181 reads. Sequencing reads were derived from raw BCL files which were retrieved from the
182 sequencer and called into fastqs by Casava v1.8.3 (lllumina). Then, paired-end reads
183 (fastg format) were filtered to remove lllumina PhiX sequences and trimmed for the
184  lllumina adapters by using bbduk in BBTools (version 38.34)(15). To remove host DNA
185 contamination, the trimmed reads were then mapped to a human reference sequence

186 database (hg38) by using Bowtie2 (version 2.3.5)(16). Taxonomic classification was


https://doi.org/10.1101/2020.05.05.080002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.080002; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Biegert et al 2020

187  performed through MetaPhlAn2(17). Also based on Bowtie2, we mapped the cleaned
188 (unmapped to host genome) reads to a marker gene database
189 (mpa_v295 CHOCOPhOIAn_ 201901, updated 11/11/2019) to get an individual relative
190 abundance table for each sample. Relative abundance tables for all samples were
191 merged and converted to a biom format (version 1.0)(18), which was then imported into
192 ATIMA (Agile Toolkit for Inclusive Microbial Analysis)(13) for statistical and diversity
193 analysis. Additionally, we obtained the functional annotation of the microbial community
194 by using HUMANNZ2(6).

195 Alpha Diversity Indices

196 We then analyzed data from both WMS and 16S using several alpha diversity metrics
197 provided in the Microbiome R package(19) (R version 3.6.2), in order to assess the
198 richness, divergence and evenness of the microbial communities within each patient
199 sample. We calculated several index measures from observed OTU counts for 16S data
200 and WMS data collected from MetaPhlAn2 analysis independently. The Shannon
201  Diversity (SD)(20) and Inverse Simpson Diversity (ISD)(21) indexes provide a measure
202  of the total amount of species within a given sample. The Camargo(22) and Pielou(23)
203 Evenness indices are designed to calculate the proportionality of individual species within
204  a sample population. A high degree of evenness would imply that the abundances of all
205 individuals are roughly the same, or in equal proportions. Finally, the richness of the
206  datasets was calculated using Observed operational taxonomic unit (OTU) counts and
207 the Low Abundance Rarity (LAR) Index measures. The Observed OTUs index provides

208 a count based on the presence of at least one read for a given species within a sample.
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209 The LAR index(19) instead characterizes the concentration of species which have low
210 abundance within the sample.
211

212 Comparative Statistical Analysis of 16S and WMS

213 Wethen paired each patient value from one dataset with its corresponding value for the
214  same patient in the other dataset. The amount of agreement between the two datasets,
215 in terms of alpha diversity measures, was then quantified using Spearman's rank
216  correlation coefficient (R or rho) with value of 1 indicating a perfect agreement, between
217  two sets of variables.

218 To assess the consistency in reporting microbial abundance between 16S and WMS, we
219 identified the most abundant taxa at the genus level for each sequencing method
220 independently. Then, we compiled a list of organisms on either of the lists. Thus, the next
221  set of comparisons were drawn using the total number of possible taxa identified by
222 taxonomic name at all phylogenetic levels (with the exception of species).

223 We also analyzed the datasets individually while considering patient demographic and
224  clinical characteristics. We analyzed six clinical variables to assess differences in
225 diversity, evenness, and richness between groups. Binary classifications were analyzed
226 using the independent t-test (Age, Smoking History, Histology) while multivariable
227  classifications were analyzed using One-Way ANOVA (Ethnicity, Node Level, FIGO
228 Stage). We also studied age and BMI as continuous variables in relation to Inverse
229  Simpson Diversity and Pielou evenness for both 16S and WMS datasets. Consensus
230 between the two datasets was defined as a p<=0.1 or >0.1. All analyses were conducted

231 using R version 3.6.2 and Microsoft Excel (2016).

10
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232  Hierarchical Clustering

233  To further explore the consistency of the two datasets, specifically the sample grouping
234  according to the putative taxa abundance profiles, we use unsupervised hierarchical
235 clustering of each OTU table by the cluster software with default settings(24). The data
236  used for clustering was limited by only using OTUs found in more than 14 samples. The

237  obtained heatmaps were visualized by the Java TreeView software(25).

238  Data Availability

239  Both 16S and WMS datasets will be available upon study completion and publication via
240 the database of Genotypes and Phenotypes (dbGaP). Similarly, proprietary code will be

241  available upon study completion and publication through GitHub.

242
243
244  Results

245  Taxonomic Composition and Abundance Using 16S and WMS

246  The number of putative taxa compiled in OTU tables was dramatically different between
247  the technologies, and included 984 OTUs in the 16S OTU table yet only 451 in the WMS
248 table. The WMS OTU table was not as sparse as the 16S table and had a different
249  abundance distribution frequency display, which was close to normal (Figure 1, panel 1).
250 The sparse 16S OTU table had significantly more rare low-abundance taxa; this feature
251 is evident from the frequency distribution (Figure 1, panel 2) and is well-characterized for

252  this type of dataset.

11
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253 The top 10 most abundant phyla and genera found in 16S and WMS are shown in Figure
254 2. There was better consensus between 16S and WMS datasets on the phyla level than
255  on the genus level (Figure 2). The most abundant phyla identified in both 16S and WMS
256 were Bacteroides, Firmicutes, Proteobacteria, Actinobacteria and Fusobacteria.
257 Interestingly, Verrucomicrobia were found to be highly abundant only by WMS.
258  Tenericutes were ranked third most abundant by 16S but had low abundance according
259 to WMS. There was a significant mid-level association (rho=0.69, p=0.03) between the
260 phyla abundances (Figure 2, panel 3). No significant associations between the
261  abundances were identified at other taxonomic levels.

262  None of the top abundant genera according to 16S were identified as the most abundant
263  genera according to WMS (Figure 2, panels 1 and 2). There was no overlap between the
264  top 10 most abundant genera in 16S and WMS. The top 10 genera in 16S or WMS are
265 listed in Table 1 with ranked relative abundances in each data set. Twelve genera were
266  present in either the top 10 of 16S or WMS and present at any rank level in the other data
267  set. Most genus level abundances correlated poorly between 16S and WMS (rho<0.15).
268 The only genus, with relative abundance correlated well between the data sets, was
269  Peptoniphilus (rho=0.68, p<0.01). The rest of the genera reported as the top 10 most
270 abundant in one dataset were not present in the other dataset, and thus no abundance
271  comparisons were made.

272  Consistent with the difference in frequency distribution of species abundances, the 16S
273 dataset included more putative species annotated at different taxonomic levels.
274  Furthermore, a high percentage of the taxa identified via 16S (58-67%) were not identified

275 by WMS, potentially as a result of using marker-gene classifiers. Conversely, most taxa

12
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276  found in the WMS table were also identified by 16S (Figure 3). This percentage decreased
277  at low taxonomic levels.
278

279 Diversity, Evenness, and Richness by 16S and WMS

280  To further investigate the varied microbial compositions and abundances of taxa at most
281  phylogenetic levels, we next explored the effects of different general characteristics of
282  species diversity within the gut microbiomes. Surprisingly, we found that most indices of
283  diversity, evenness, and richness showed significant correlation between

284  16S and WMS datasets (Figure 4). All of the diversity and richness measures were tightly
285  correlated between 16S and WMS (ISD rho=0.89, p<0.01; SD rho=0.90, p=<0.01;
286  Observed OTUs rho=0.76, p<0.01; LAR rho=0.72, p<0.001) (Figure 4). Evenness indices
287 had a weaker correlation between 16S and WMS (Camargo rho=0.41, p<0.01; Pielou
288  rho=0.84, p<0.01), which is not surprising considering there was greater similarity in taxa
289 abundances in the WMS dataset then in the 16S dataset (Figure 1). Despite significant
290 differences in the rare OTUs, low abundance rarity indexes also significantly correlated
291  between the datasets. The slope of the regression line of the association was also
292  consistent with a significantly greater number of rare low abundance species in the 16S
293 dataset than in WMS.

294

295 Association of Demographic Characteristics with diversity of microbiomes and specific

296 taxa
297 In our next step, we investigated whether the differences and similarities considered

298 above affected biological conclusions drawn from each dataset. Namely, we explored

13
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299 demographic variables (Supplementary Table 1) in association with gut microbiome
300 diversity and specific taxa using either the 16S or WMS dataset. When diversity,
301 evenness and richness indices were compared to baseline characteristics using both 16S
302 and WMS (Table 2), only age was associated with ISD in both WMS and 16S (p<0.1).
303  Age was associated with SD diversity (p=0.04), and Pielou evenness (p=0.01) using 16S,
304 but not WMS. Camargo evenness was associated with age only using WMS (p=0.008).
305 LAR richness was associated with BMI using WMS (p=0.05) but not 16S. Other baseline
306 demographic variables were not associated with diversity, evenness or richness using
307 any metric. Overall, there was consensus between methods (both p<=0.1 or >0.1) across
308 all demographics for ISD only. A positive correlation between age and gut diversity, and
309 between age and evenness was identified in both 16S (ISD; rho=0.37, p=0.02. Pielou;
310 rho=0.39, p=0.01) and WMS (ISD; rho=0.29, p=0.06. Pielou; rho=0.28, p=0.08) data
311 (Figure 5). Both datasets failed to find a difference between patient populations regarding
312 ethnicity, smoking status, tumor histology, nodal involvement, or FIGO Stage.

313 Wefurther explored specific taxa associated with the age of cervical cancer patients using
314 Linear Discriminant Analysis (LDA) Effect Size (LEfSe). The clinical variable of age, was
315 classified in three different ways: over vs under 50 years of age, over vs under the median
316 age (49 years), and finally the patients were split into three sections where the 14
317 youngest and 14 oldest patients were compared against each other, with middle age
318 group omitted (SFig. 1). We applied the one-against-all strategy with a threshold of 3 on
319 the logarithmic LDA score for discriminative features and a of 0.05 for factorial Kruskal-

320 Wallis test among classes. Regardless of the classification method used, the taxa

14
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321 identified as significantly enriched in older or younger patients was not consistent
322  between 16S and WMS datasets.
323

324  Grouping of cervical cancer patients in terms of putative species abundances

325 Unsupervised hierarchical clustering of samples based on the species abundances in
326 WMS and 16S (Figure 6) and OTU tables revealed 2 broad groups of patients in each
327 hierarchy with significant overlap among patients comprising each group (Fisher's Exact
328 Test p-value is 0.004) . Despite the significant differences in the number of genera

329 identified by 16S and WMS, the hierarchical clustering of OTUs was consistent between
330 datasets and revealed a set of OTUs enriched with Prevotella, Peptoniphilus, and

331 Porphyromonas. These genera were more abundant in both 16S and WMS Cluster 1,
332  but less abundant in 16S and WMS Cluster 2. Most notably, the grouping of patients in
333 Cluster 1 and 2 was associated with the BMI index of the patients (Fisher's Exact Test
334  p-value is 0.002 for WMS and 0.06 for 16S). There were significantly more patients with
335 BMkmedian (28.63) in Cluster 1 (WMS and 16S) than in Cluster 2 (both datasets).

336  There were 20 patients in the 16S Cluster 1 and 24 patients in the WMS Cluster 1.

337  Thirteen of which were in common between those clusters, and they were grouped

338 close to one another. Indicating a greater degree of similarity in terms of their OTU

339 abundance profiles.

340

341  Discussion

342  This study is limited by our analytic pipelines and available samples, but the results

343  suggest that 16S with OTU clustering provides a similar description of sample diversity
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344  and composition for gut microbiomes of cervical cancer patients versus WMS. This finding
345 is important, as it allows researchers to analyze a larger number of samples using 16S at
346  afraction of the costof WMS. Camargo evenness and skewness were the least correlated
347 indices between the two methodologies, which suggests that the sequencing methods
348  differ in terms of the proportionality of individual bacterial taxa. This might be improved
349 using a 16S analysis pipeline that uses amplicon sequence variants, such as QIME2, to
350 retain more reads. The Camargo index has low sensitivity for variation in species diversity
351 for sample sizes <3000, while the Pielou index is a sensitive assessment index for smaller
352 sample sizes (<1000). Thus, the Pielou evenness index is more appropriate in terms of
353 this sample size, and correlates well between the two datasets(20). With regards to rare
354 taxa (LAR), WMS provides more noise in a dataset by identifying individual genes, which
355 may be linked to unidentified bacterial species. 16S combined with OTU clustering can at
356 best provide information at the genus level with a high degree of confidence and relies on
357  97% similarity clustering at the OTU level. This difference is to be expected, and could be
358 exploited in specific analyses, such as searching for previously identified species or
359 particular gene functions. It is reassuring that there was significant consensus between
360 the methodologies on the higher order levels. Much of the focus in next generation
361 sequencing analysis is placed on the smallest taxonomic level available (i.e. the genus
362  or species level), but higher order taxa also provide valuable information.

363 Previous work has also posited a sizable amount of agreement between 16S and
364 WMS sequencing techniques at higher orders of taxa(2), consistent with these results.
365 16S and WMS have a significant degree of correlation; however, most of those studies

366 utlize data derived from samples collected in similar but not identical contexts. This
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367  project provides a unique opportunity in that both 16S and WMS sequencing datasets
368 were derived from a single sample collected from each patient and then bacterial DNA
369 was extracted for both methods. Using this high-quality information, we investigated the
370 correlation of these two datasets in terms of microbial composition abundance and alpha
371  diversity, to precisely determine how well these sequencing methods corroborated. Since
372 the two datasets are derived from the same samples, association with the clinical
373 variables should also result in the same conclusion regardless of the sequencing method
374  used, which was again confirmed. Age is perhaps the variable most strongly associated
375 with microbiome diversity, which was confirmed in both datasets in our study. It is also
376 important to note, hierarchical clustering analysis showed 9 (69%) out of 13 patients in
377  Clusterl were white, while only 8 (31%) of the 28 patients in the rest of the cohort were
378  white. In addition, 12 (92%) out of the 13 patients in Clusterl had a disease stage of 1 or
379 2, compared to 19 (68%) out of the 28 patients in the rest of the cohort.

380 An important limitation of the study that we focus solely on taxonomic
381 characteristics of the gut community. The major advantage of WMS is that it provides an
382  opportunity to assay functional diversity of the microbiome, a capability severely lacking
383 in 16S data. Tools such as PICRUSt(26) can infer metabolic profiles from 16S data, but
384  they cannot truly assemble functional pathways. Yet, the most fundamental drawback of
385 this study is due to the limitations of analytic pipelines used in each approach and the
386 databases available for both 16S and WMS data. Tools for analyzing 16s have been
387 developed and successfully deployed far longer than WMS analysis software, while the
388 WMS analysis pipelines and databases are continually being developed and shared. The

389 differences in alignment technigues and databases would account for a lot of the variation
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390 in taxa names herein. For example, by calculating OTUs we recapitulated a popular
391 method of alignment used in this field, but in doing so the data has been collapsed at the
392 cost of potential diversity information. Additionally, tools used for metagenomic analysis
393 vary based on technigues used such as distance metrics and clustering approaches(15).
394 Here, we used OTU clustering at 97% similarity using previously described methodology
395 from the Human Microbiome Project(13), but this data could be re-analyzed using QIME2
396 and amplicon sequence variant (ASV) calling(27) and result in variations in ASV vs. OTU
397 assignment that could affect the analysis. Amplicon sequence variant calling with DADA2
398 denoaising(28) may be a preferable system for WMS comparisons as the pipeline is more
399 similar to how WMS reads are treated. Another important consideration is that the
400 MetaPhlAn2 tool inherent in the Humann2 pipeline uses a relatively small fraction of the
401 data generated, whereas another non-marker gene based identifier such as QIME2,
402  Kraken 2(29) or the mothur software(30) will generate a larger and more varied, spread
403  of results. Still, MetaPhlAn2 outperformed IGGsearch(31) which was also deployed on
404 our WMS dataset, and it remains the most popular marker-gene based tool in the
405 metagenome field.

406 Another limitation to address, for this work and many others, is establishing a
407  confident rarefication cut off for analysis. Usually this cut off value would be validated by
408 utilizing a mock microbial community dataset to be analyzed alongside experimental data.
409 Here, we were unable to acquire complete mock communities as such information is
410 privileged and difficult to attain. However, the cut off value we used was selected because
411 it was consistently stringent across both 16S and WMS datasets while retaining as much

412 information as possible.
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413 All this is to say, variations in approaches to metagenome assembly pipelines
414  similarly could affect taxonomic assignment in 16S and WMS data. It is possible that a
415 particular sequence relevant to both datasets would be classified differently during
416  preprocessing, highlighting the necessity of universal reference databases and

417  sequencing alignment tools and protocol consensus.

418 Given this variability in sequencing and data processing pipelines, the use of
419 multiple techniques across different types of sequencing data is an excellent way to
420  confirm consistency in conclusions. However, limited resources (e.g. material from clinical
421 samples, bioinformatics support, time and finances) hamper the ability for this expansive
422  and in-depth microbiome profiling for all studies. Although WMS has been demonstrated
423  to confer significant advantages over 16S, this work suggests there is very little additional
424  taxonomic information identified from WMS that was not identified in 16S data. This can
425  vary depending on the context of analysis, for example method of sample collection (i.e.,
426  whole stool vs swabs) and determining the functional components of the microbiome in
427  question.(26, 32) It is even possible that extracting DNA from the same sample at two
428  different times, instead of splitting a single extraction as was done here, may yield slightly
429  different results. In our work, alpha diversity assessments such as overall diversity,
430 evenness and richness can provide meaningful, and more important, comparable
431 information (Figure 1) when obtained with either 16S or WMS. Furthermore, the two
432 datasets provided a high degree of consensus when these indices were subjected to
433  statistical analysis. This suggests that for studies where overall microbiome diversity,
434  richness and evenness are the goals of an analysis, 16S is more than sufficient to provide

435 this information. For basic taxonomic descriptions, there was a meaningful agreement on
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436 the phyla and higher taxa levels, suggesting that 16S is also sufficient in this setting for
437  hypothesis-generating data. Nonetheless, these two datasets did provide some
438 differences in taxonomic assignment, particularly on the genus level, and relative
439 abundances of individual taxonomies. This suggests that for studies where a broader

440  repertoire of potential species are needed, both techniques may be necessary.

441 In all, this evidence suggests that using 16S alone may be sufficient in the clinical
442  cancer research setting, where available patient material, time and money can be scarce.
443  Based on these findings, we suggest 16S for the gut microbiome of cancer patients for
444  initial diversity, richness and evenness metrics along with higher level taxonomic
445  classification. WMS can provide a large swath of detailed microbial information, albeit
446  with less sensitivity than 16S, and may be ideal when additional information on genus

447  and species level identification is needed or to confirm conclusions drawn from 16S data.

448
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Tables

Table 1. Comparisons of Top Ranked WMS and 16S Genera.

The top ten most abundant Genera identified in WMS or 16S (identified with *) are
shown next to their counterpart and the associated rank. Genera present in both lists
were correlated in terms of abundance using Spearman R. Resulting p values are
shown as not significant (ns), less than 0.1 (bold), or less than 0.05 (red). Genera

present in one dataset, but not the other (- ) could not be correlated.

Genus Name WMS Rank 16S RNA 6:3'::: A Spearman R p Value
Bacteroides 1* 12 0.29 0.0639
Prevotella 2* 70 0.21 ns
Parabacteroides 3* 88 0.09 ns
Porphyromonas 4* 126 -0.1 ns
Akkermansia 5* 129 0.18 ns
Alistipes 6* 13 -0.27 0.0828
Faecalibacterium 7* - - -
Campylobacter 8* 115 0.05 ns
Peptoniphilus 9* 56 0.68 1.14E-06
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Oscillibacter
Mycoplasma
Coprobacter
Jonquetella
Nocardioides
Lachnoanaerobaculum
Clostridium sensu stricto 1
Ruminococcaceae UCG 014
Selenomonas_4
Eubacterium coprostanoligenes group
Christensenellaceae R_7_group

10*
58
73
119

34
o*
7%
5*
1*
o
3*
4*
6*
g*
10*

0.12
0.24
0.22
-0.18

ns
ns
ns
ns
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604 Table 2. Correlation between WMS and 16sRNA in terms of Diversity, Evenness,

605 and Richness.

606 In this table, patient demographics and clinical assessments were collected and used as
607 classification criteria to investigate differences between these characteristics in terms of
608 alpha diversity measurements discussed earlier. Both datasets were analyzed using
609 either a parametric t-test [Smoking History (Yes/No), Histology

610 (Adenocarcinoma/Squamous Cell Carcinoma)], linear regression [Age and BMI], or

611 One-Way ANOVA [Ethnicity (White, Black, Hispanic, Other), Node Level (Common

612 lliac/External lliac/Internal lliac/None/Para-Aortic), FIGO Stage (IAl, IB1, IB2, IBI, lIA,
613 1B, B, IVA)]. The resulting p value measures are indicated on the table as being either
614  non-significant (ns), less than 0.1 (black) or less than 0.05 (red). Consensus between
615 both methods, whole-metagenome sequencing and 16sRNA sequencing, indicates the

616 validity of using either method for exploring that clinical variable.

617

618

619

620
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622

Diversity Evenness Richness
Clinical Variable |inverseSimpson| Shannon Camargo Pielou Observed OTUs LAR
WMS 16sRNA | WMS 16sRNA WMS 16sRNA | WMS 16sRNA WmMmS 16sRNA | WMS 16sRNA

Age 0.0631 0.0166| ns 0.0396 | 0.0077 ns ns 0.0111 ns ns ns ns

Ethnicity (W,B,H,0) ns ns ns ns ns ns ns ns ns ns ns ns

Smoking History (Y/N) ns ns ns ns ns ns ns ns ns ns ns ns

Histology (Adeno/Squam) ns ns ns ns ns ns ns ns ns ns ns ns

Node level ns ns ns ns ns ns ns ns 0.0748 ns ns ns

FIGO Stage ns ns ns ns ns ns ns ns ns ns ns ns

BMI ns ns ns ns ns ns ns ns ns ns 0.0468 ns
623
624
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Figure 1. Different distribution of putative taxa species abundance in WMS and in
16S OTU tables.

To display differences in abundances in terms of OTU frequencies, OTU counts were
log transformed and presented here as histograms. WMS (red) OTU identifiers
displayed reduced overall frequency compared to 16S (green), however the distribution

of species abundance showed a more normal distribution.
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635 Figure 2. Comparison of top 10 taxa at highest and lowest taxonomic levels for
636 WMS and 16sRNA.

637 The bar plots presented show the top ten most abundant taxa present in the WMS (red),
638 16sRNA (green) as identified at the Phylum and Genus levels of taxa. The two datasets
639 have a greater level of consensus in terms of microbial abundance at higher taxonomic

640 levels (eg. Phylum) than lower levels (eg. Genus).
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642  Figure 3. Comparison of number of overlapping taxa at each phylogenetic level
643 for WMS and 16S RNA.

644  The bar plots show the percentage of taxa present in WMS (red), and 16S (green)

645  which overlap in both lists. Across all levels, many of the WMS taxa identified were also

646 identified in the list of 16S taxa.
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648 Figure 4. Correlation between WMS and 16sRNA in terms of diversity, evenness,
649 and richness.

650 In this figure, each data point represents a single patient. Consensus between both

651 sequencing methods in terms of alpha diversity is calculated by a Spearman Correlation
652 (R). The slope of the correlation is represented by a red line, while the 95% confidence
653 interval is represented by a grey shaded area. The data derived from 16S sequencing
654  correlates well with the diversity assessmentvalues derived from WMS for diversity and
655 richness. The evenness measures suggest that the sequencing methods differ in terms

656  of the proportionality of individual bacterial taxa.
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Figure 5. Correlation between age and Inverse Simpson Diversity and Pielou
Evenness for 16S vs WMS.

The slope of the correlation is shown in red while the 95% confidence interval is indicted
by the grey shaded region. Spearman Correlation shows a weak association between
age and the Inverse Simpson Diversity Index value as well as the Pielou evenness

Index value, for both 16sRNA and WMS data.


https://doi.org/10.1101/2020.05.05.080002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.080002; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Biegert et al 2020

(A) WMS (B) 165

Ethnicity
Black

Hispanic
White

165 clusters 16S clusters 16S Cluster 1
WMS Cluster2  MLEFENESZAWMS clusters WMS clusters (1 ] Nornio
= TR AT LA L T e,
g%:r Median
Eunder Median

Stage
1
2
3 ord

Peptompht!us 54%:
T

Stage Stage -0.03

L I ‘ Ethnicity Ethnicity 0.00

Ly (R .
Age Age u 0:09

665 Figure 6. Unsupervised hierarchical clustering of samples in terms of putative

-0.09

664

666 species abundances identified by WMS and by 16S. To generate these heat maps,
667 only OTUs found in more than 14 samples were considered; 91 OTUs in 16S OTU table
668 and 103 in the WMS OUT table. Overlay between 16S and WMS sample Clusters are
669 shown at the bars above the heat map, while demographic data is presented at the

670  bottom.

671

672  Supplementary Information

673  Supplementary Table 1. Baseline patient demographic information

674  Patient demographic information was collected prior to initiation of standard treatment
675 and reported here. These demographics were used as patient categories for

676 downstream analysis of microbial diversity, evenness and richness. Ethnicity, History of
677 smoking, Tumor Histology, Node Level, and FIGO Stage were categorical clinical

678 variables while BMI was used as a continuous variable. Age was used both as a
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categorical variable (Over vs Under 50 years of Age; Over vs Under Median Age), and
as a continuous variable.
Variable Category N(%)
Under 50 22(53.66)
Age
Over 50 19(46.34)
B 4(9.76)
o H 19(46.34)
Ethnicity
0 1(2.44)
w 17(41.46)
History of smoking Yes 17(41.46)
No 24(58.54)
Adenocarcinoma 8(19.51)
Histology Adenosquamous 2(4.88)
Squamous Carcinoma 31(75.61)
Common lliac 6(14.63)
External lliac 15(36.58)
Node Level Internal lliac 4(9.76)
Para-Aortic 3(7.32)
None 13(31.71)
IA1 1(2.44)
IB1 1(2.44)
1B2 6(14.63)
FIGO Stage Bl 2(4.88)
A 2(4.88)
1B 19(46.34)
1B 7(17.07)
IVA 3(7.32)
Mean + SD Range
Age 49.98 +10.92 28 =72
BMI 28.92 £6.14 17.5 -46.7
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Supplementary Figure 1. LEfSe analysis performed using 3 methods of age

classification.

In order to elucidate differences in enriched taxa according to the age clinical variable,

patients were classified using three different metrics: A) Over vs under 50 years of age,
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687  B) Over vs under the median age of all patients, and C) the youngest third of patients
688 (14 individuals) vs the oldest third of patients (14 individuals) in the cohort. WMS and
689  16S datasets were submitted to LEfSe analysis separately, and the resulting bar charts

690 are shown here.

691
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Figure 1. Differentdistribution of putative taxa species abundance in WMS and in 165 OTU tables. To display differences
in abundancesin terms of OTU frequencies, OTU counts were log transformed and presented here as histograms. WMS
(red) OTU identifiers displayed reduced overall frequency compared to 16S (green), however the distribution of species
abundance showed a more normal distribution.


https://doi.org/10.1101/2020.05.05.080002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.080002; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2

Genus level m WMS m 165

Top 10 Abundantaccording to WMS Top 10 Abundantaccordingto 16S
2.5 2.5
2 2
15 15
.1 X
0.5
" I | °
0 -0.5 é‘ 2\‘\"“ {} \}!\ 40
) \ -5, 3
-0.5 NG & ¥ &5 _ a8 & g &£ F & O T & \\fb
é‘b S & S é\% .=$‘Q é\\} & .‘(‘\ & & & é’g & & & & &
& X & & & o xS > & = S S S S & & 4
oy & & &© & ka & R\ S N 5 4% &8 N &
& S (th\ v\;*- Ny &8 Q@Q‘ o &° é}o“ & F &
\(\
%G © & <@ & <

Phylum level = wus m16S

Log of Taxa Abundance

Top 10 Abundantaccording to WMS

4
3
2 I I I
1
. 0L 1

3 5 % ey <0
TN S S S S
_2%?_/ o <& o
-3
-4

Top 10 Abundantaccordingto 16S
3.5

2.5

15
| | I |
i 0

0.5 &

[

[y

Figure 2. Comparison of top 10 taxa at highest and lowest taxonomic levels for WMS and 16sRNA. The bar plots
presented show the top ten most abundanttaxa present in the WMS (red), 16sRNA (green) as identified at the Phylum
and Genus levels of taxa. The two datasets have a greater level of consensus in terms of microbial abundance at higher
taxonomic levels (eg. Phylum) than lower levels (eg. Genus).
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Figure 3. Comparison of number of overlapping taxa at each phylogenetic level for WMS and 165 RNA. The bar plots
show the percentage of taxa present in WMS (red), and 165 (green) which overlap in both lists. Across all levels, many of
the WMS taxa identified were also identified in the list of 16S taxa.
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Figure 4. Correlation between WMS and 16sRNA in terms of Diversity, Evenness, and Richness. In this figure,
each data point represents a single patient. Consensus between both sequencing methods in terms of alpha
diversity is calculated by a Spearman Correlation (R). The slope of the correlation is shown by a red line, while
the blue dotted line represents the ideal correlation (R=1) and the 95% confidence interval is represented by a
grey shaded area. The data derived from 16sRNA sequencing correlates well with the diversity assessment
values derived from whole-metagenome sequencing for diversity and richness. The evenness measures
suggest that the sequencing methods differ in terms of the proportionality of individual bacterial taxa.


https://doi.org/10.1101/2020.05.05.080002
http://creativecommons.org/licenses/by-nc-nd/4.0/

Index Value

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.05.080002; this version posted May 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 5

Inverse Simpson Diversity

r 3
16sRNA WMS
Spearman R = 0.37 , P = 1.66e-02 Spearman R = 0.29, P = 6.31e-02
201
10/
0.
Pielou Evenness
16sRNA WMS
s Spearman R= 0.39, P =1.11e-02 Spearman R = 0.28 , P = 7.79e-02
‘ °* o * ° . * . %
0.7 0.7 s o o0 o, .
2 g
0.6 0.6 .__.————_.'—f c . ’
g o® . =
0.5 g . o ®
= 05 e
0.4 .
L] | | L] | | |
30 40 50 60 70 30 40 50 60 70

v

Figure 5. Correlation between age and Inverse Simpson Diversity and Pielou Evenness for 16S rRNA vs

WMS. The slope of the correlation is shown in red while the 95% confidence interval is indicted by the
grey shaded region. Spearman Correlation shows a weak association between age and the Inverse

Simpson Diversity Index value as well as the Pielou evenness Index value, for both 16sRNA and WMS data
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Figure 6. Unsupervised hierarchical clustering of samplesin terms of putative species abundances
identified by WMS and by 16S. To generate these heat maps, only OTUs found in more than 14 samples
were considered; 91 OTUs in 16S OTU table and 103 in the WMS OUT table. Overlay between 16S and
WMS sample Clusters are shown at the bars above the heat map, while demographic data is presented at
the bottom.
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Genus Name WMS Rank 16S RNA GSaEITA Spearman R| p Value
Bacteroides 1* 12 0.29 0.0639
Prevotella 2" 70 0.21 ns
Parabacteroides 3* 88 0.09 ns
Porphyromonas 4* 126 -0.1 ns
Akkermansia 5* 129 0.18 ns
Alistipes 6* 13 -0.27 0.0828
Faecalibacterium 7" - - -
Campylobacter 8* 115 0.05 ns
Peptoniphilus 9* 56 0.68 1.14E-06
Oscillibacter 10* 34 0.12 ns
Mycoplasma 58 9* 0.24 ns
Coprobacter 73 7* 0.22 ns
Jonquetella 119 5* -0.18 ns
Nocardioides - 1* - -
Lachnoanaerobaculum - 2" - -
Clostridium sensu stricto 1 - 3* - -
Ruminococcaceae UCG_014 - 4* - -
Selenomonas_4 - 6* - -
Eubacterium coprostanoligenes ] g* ] ]
group
Christensenellaceae R 7 group - 10* - -
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Diversity Evenness Richness
Clinical Variable | inverse Simpson Shannon Camargo Pielou Observed OTUs LAR
WMS  16sRNA | WMS 16sRNA | WMS  16sRNA | WMS 16sRNA | WMS 16sRNA | WMS  16sRNA

Age 0.0631 0.0166| ns 0.0396|0.0077 ns ns 0.0111 ns ns ns ns
Ethnicity (W,B,H,0) ns ns ns ns ns ns ns ns ns ns ns ns
Smoking History (Y/N) ns ns ns ns ns ns ns ns ns ns ns ns
Histology (Adeno/Squam) ns ns ns ns ns ns ns ns ns ns ns ns
Node level ns ns ns ns ns ns ns ns 0.0748 ns ns ns
FIGO Stage ns ns ns ns ns ns ns ns ns ns ns ns
BMI ns ns ns ns ns ns ns ns ns ns 0.0468 ns
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