

1 **Chromatin profiling reveals reorganization of lysine specific
2 demethylase 1 by an oncogenic fusion protein**

3 Emily R. Theisen^{1*}, Julia Selich-Anderson¹, Kyle R. Miller¹, Jason M. Tanner², Cenny Taslim¹, Kathleen I.
4 Pishas^{1,3}, Sunil Sharma⁴, Stephen L. Lessnick^{1,5}

5 ¹ Center for Childhood Cancer and Blood Diseases, The Abigail Wexner Research Institute at Nationwide
6 Children's Hospital, Columbus, OH, 43205, USA

7 ² Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA

8 ³ Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, AUS

9 ⁴ Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute (TGen),
10 Phoenix, AZ, 85004 USA

11 ⁵ Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, The Ohio State University,
12 Columbus, OH, 43210, USA

13 * To whom correspondence should be addressed. Tel: +1 (614) 355 2995; Fax: +1 (614) 355 2927; Email:
14 emily.theisen@nationwidechildrens.org ORCID iD: <https://orcid.org/0000-0003-2923-1198>

15 **Keywords:** Chromatin, LSD1, Epigenetics, EWS/FLI, Super-enhancers, Ewing sarcoma,

16 **Logistics:** This manuscript contains 6 figures, 14 supplementary figures, 21 supplementary tables, and
17 66 references.

18

19 **ABSTRACT:**

20 Pediatric cancers commonly harbor quiet mutational landscapes and are instead characterized by single
21 driver events such as the mutation of critical chromatin regulators, expression of oncohistones, or
22 expression of oncogenic fusion proteins. These events ultimately promote malignancy through disruption
23 of normal gene regulation and development. The driver protein in Ewing sarcoma, EWS/FLI, is an
24 oncogenic fusion and transcription factor that reshapes the enhancer landscape, resulting in widespread
25 transcriptional dysregulation. Lysine-specific demethylase 1 (LSD1) is a critical functional partner for
26 EWS/FLI as inhibition of LSD1 reverses the transcriptional activity of EWS/FLI. However, how LSD1
27 participates in fusion-directed epigenomic regulation and aberrant gene activation is unknown. We now
28 show EWS/FLI causes dynamic rearrangement of LSD1 and we uncover a role for LSD1 in gene
29 activation through colocalization at EWS/FLI binding sites throughout the genome. LSD1 is integral to the
30 establishment of Ewing sarcoma super-enhancers at GGAA-microsatellites, which ubiquitously overlap
31 non-microsatellite loci bound by EWS/FLI. Together, we show that EWS/FLI induces widespread changes
32 to LSD1 distribution in a process that impacts the enhancer landscape throughout the genome.

33

34 **INTRODUCTION**

35 Ewing sarcoma is an aggressive bone-associated malignancy characterized by the expression of a
36 translocation-derived fusion oncoprotein, most commonly EWS/FLI.¹⁻⁴ The N-terminal portion of the
37 protein is derived from the *EWSR1* gene and comprises a low-complexity intrinsically disordered domain
38 which recruits transcriptional co-regulators.⁵⁻⁹ The C-terminal FLI portion of the protein is derived from the
39 *FLI1* gene, which encodes an ETS-family transcription factor.² EWS/FLI contains the ETS DNA-binding
40 domain (DBD) of FLI and functions as an aberrant transcription factor and chromatin regulator, driving
41 global changes in the epigenetic landscape and gene expression, leading to oncogenesis.^{5,8-11}

42 EWS/FLI binds at loci containing the canonical ETS binding motif, 5'-ACCGGAAGTG-3', with high
43 affinity.¹² Additionally, the disordered EWS domain confers novel DNA binding properties to the FLI DBD,
44 such that EWS/FLI preferentially binds stretches of repetitive elements with greater than 7 GGAA motifs,
45 called GGAA-microsatellites (GGAA-μsats).¹²⁻¹⁴ Binding of EWS/FLI to GGAA-μsats often results in
46 aberrant activation of nearby genes.^{5,8,13} This occurs through EWS-mediated recruitment of transcriptional
47 and chromatin regulators, like RNA polymerase II¹⁵ and BAF complexes⁵, and *de novo* assembly of
48 enhancers.^{5,8} Some GGAA-μsats are associated with gene repression, through mechanisms not well
49 understood.¹⁶ The factors which determine whether an EWS/FLI target is activated or repressed, at both
50 high affinity (HA) sites and GGAA-μsats, are poorly defined.

51 Disrupting EWS/FLI-mediated gene regulation through direct targeting of EWS/FLI is not yet clinically
52 feasible. As an alternative approach, we previously demonstrated that treatment with the lysine-specific
53 demethylase 1 (LSD1) inhibitor SP2509 reverses the transcriptional activity of EWS/FLI, and the related
54 EWS/ERG fusion, impairing tumor cell growth and viability.¹⁷ Prior studies suggested that LSD1 was
55 recruited to EWS/FLI-repressed genes as part of the NuRD-LSD1 complex which interacts with the EWS
56 domain.⁹ Having also unexpectedly found that pharmacological blockade of LSD1 disrupts EWS/FLI-
57 mediated gene activation, we predicted that LSD1 recruitment by EWS/FLI is required for chromatin
58 regulation at upregulated targets throughout the genome. Thus, the transcriptional consequences of
59 LSD1 inhibition would recapitulate those of EWS/FLI depletion.

60 LSD1, also known as *KDM1A*, was the first enzyme discovered that demethylates histone lysine
61 residues.¹⁸ The flavin adenine dinucleotide (FAD) cofactor-mediated chemistry limits LSD1 to
62 demethylation of mono- and dimethylated lysines.¹⁸ Histone H3 lysine 4 (H3K4) is the main substrate for
63 LSD1¹⁸, though LSD1-mediated demethylation of histone H3 lysine 9 (H3K9)¹⁹ and non-histone proteins,
64 such as p53²⁰ and DNMT1²¹, have been reported. LSD1 lacks a DNA-binding domain, and depends upon
65 interacting with other proteins, commonly RCOR1 (CoREST) and histone deacetylases (HDACs), for
66 recruitment to nucleosomes targeted for demethylation.²² LSD1 is essential for stem cell function,
67 enhancer decommissioning during differentiation, and transcriptional regulation through modulation of
68 histone lysine methylation levels.²³ In cancer, LSD1 has been recently described to contribute to aberrant

69 enhancer silencing and transcriptional regulation^{24–26}, and overexpression of LSD1 is reported in a wide
70 variety of hematological and solid malignancies^{27–31}, including Ewing sarcoma.^{32,33} Elevated expression
71 correlates with aggressive tumor biology and poor prognosis.^{30,34,35}

72 Given that the clinical analog of SP2509, seclidemstat, is now undergoing clinical investigation in Ewing
73 sarcoma (NCT03600649), we wanted to decipher the functional relationship between EWS/FLI and
74 LSD1. In particular, addressing the role for LSD1 in EWS/FLI-mediated gene activation, whether LSD1
75 contributes to *de novo* enhancer formation, and how EWS/FLI impacts LSD1 genomic localization. In this
76 study we used genomic methods in multiple Ewing sarcoma cell lines, as well as in a specific cell line,
77 A673, either with wildtype expression of EWS/FLI, with EWS/FLI knocked down as a model for a Ewing
78 sarcoma precursor cell, or with EWS/FLI depletion rescued with ectopic expression of the wildtype fusion.
79 By pairing these studies with our previously published transcriptomic data³⁶, we evaluated how EWS/FLI
80 impacts LSD1 function in Ewing sarcoma.

81

82 **RESULTS**

83 **EWS/FLI and LSD1 colocalize throughout the genome**

84 Previous investigation of LSD1 inhibition in Ewing sarcoma, both pharmacological blockade¹⁷ and RNAi-
85 mediated depletion³⁴, suggested that the LSD1 function is critical for EWS/FLI-mediated gene regulation.
86 We therefore used genomic localization studies to ask whether LSD1 colocalized with EWS/FLI at both
87 activated and repressed targets in Ewing sarcoma cells. In A673 cells, we detected 42673 EWS/FLI
88 peaks and 15202 LSD1 peaks. 12058 LSD1 peaks (79.3%, p=0) were colocalized with EWS/FLI (Figure
89 1A-C). Overall LSD1 genomic distribution (Figure 1D) was similar to LSD1 distribution when colocalized
90 with EWS/FLI (Supplementary Figure 1A), with a majority of peaks residing in the promoter, intronic, or
91 intergenic regions.

92 These patterns of significant EWS/FLI-LSD1 overlap and LSD1 distribution were consistently observed
93 across additional Ewing sarcoma cell lines: EWS-502, SK-N-MC, and TC-71 (Supplementary Figure 1B-
94 G). We further identified 10300 common EWS/FLI peaks and 6470 common LSD1 peaks that were
95 present in all cell lines (Supplementary Figure 2A-B). Of these 6470 LSD1 peaks, 3973 (61.4%, p=0)
96 showed colocalization with EWS/FLI in all of the tested cell lines, and these displayed a stronger
97 promoter-proximal distribution (Figures 1E, Supplementary Figure 2C-D). Given the large number of
98 EWS/FLI peaks detected here, likely due to the sensitive methodology used for the localization analysis,
99 we re-analyzed the EWS/FLI-LSD1 overlap and distribution in all cell lines using only those peaks with >
100 8-fold-change in enrichment over background. The resulting overlap and distribution analyses were
101 similar as those described above (Supplementary Figures 3A-E, 4A-E). This set of peaks meeting the
102 higher stringency cutoff was used for all further analyses described below.

103 Prior studies demonstrated that blockade of LSD1 with the reversible LSD1 inhibitor, SP2509, impaired
104 both EWS/FLI-mediated activation and repression.¹⁷ In light of this finding we note that LSD1 coincided
105 with EWS/FLI peaks at both activated and repressed target genes in A673 cells (Figure 1B-C,
106 Supplementary Figure 5A-B), suggesting a functional relationship. This was consistently observed in all
107 the assayed cell lines (Supplementary Figure 5C-E). To further explore the function of EWS/FLI-LSD1
108 colocalization in gene regulation, we next used Gene Set Enrichment Analysis (GSEA)³⁷ to evaluate the
109 functional relationship of genes near EWS/FLI-LSD1 co-peaks with either EWS/FLI- or LSD1-mediated
110 gene regulation, previously defined using RNAi-mediated depletion. Genes with EWS/FLI and LSD1
111 colocalized within 1 kb of transcription start site (TSS) were functionally associated with EWS/FLI-
112 mediated gene activation in all tested cell lines (Supplementary Figure 6A-C). We also found an
113 association between EWS/FLI-LSD1 colocalization and LSD1-mediated gene activation across the tested
114 cell lines (Supplementary Figure 6D-F). The functional association with both EWS/FLI and LSD1 function
115 was likewise observed for common EWS/FLI-LSD1 co-peaks (Supplementary Figure 6G-H). These
116 findings further support a role for LSD1 in EWS/FLI-mediated transcriptional activation in Ewing sarcoma.

117 We next asked whether EWS/FLI-LSD1 colocalized peaks were also associated with an EWS/FLI-
118 mediated gain of activating histone marks. We examined the levels of H3K27ac, H3K4me1, H3K4me2,
119 and H3K4me3 at loci with EWS/FLI and LSD1 colocalization in A673 cells (wildtype levels of EWS/FLI
120 expression) or cells with EWS/FLI knockdown (EFKD cells). EWS/FLI-LSD1 colocalization was highly
121 associated with increased H3K27ac, consistent with the establishment of a chromatin state which
122 enhances gene activation (Figure 1H-I). Modest increases of uncertain significance were observed for
123 H3K4 mono- and dimethylation, suggesting that LSD1 may not demethylate H3K4 as its primary activity
124 at EWS/FLI-bound loci (Supplementary Figure 7A-B).

125 **LSD1 is enriched at both GGAA-microsatellites and non-microsatellites**

126 EWS/FLI-mediated gene activation is often modeled as a function of *de novo* enhancer formation
127 following EWS/FLI binding at GGAA- μ sats, both proximal and distal to target genes.^{5,8,38} This process
128 involves recruitment of co-activators such as p300⁸ and BAF⁵ by the EWS domain. Given that LSD1-
129 bound regions more strongly associated with gene activation and that inhibition of LSD1 downregulates
130 EWS/FLI-activated genes, we hypothesized that LSD1 would localize to at GGAA- μ sats as part of the co-
131 activating machinery assembled by EWS/FLI. We split EWS/FLI-bound loci into GGAA- μ sats and non-
132 microsatellites (“non- μ sats”) and evaluated EWS/FLI and LSD1 binding at both (Figure 2A,
133 Supplementary Figure 8A-C). While the EWS/FLI binding was stronger at GGAA- μ sats than non- μ sats,
134 we were surprised that LSD1 was enriched at both GGAA- μ sats and non- μ sats. The heights of the peaks
135 in the profile plots in Figure 2A and Supplementary Figure 8A-C suggest the amounts of LSD1
136 colocalized relative to EWS/FLI may be higher at non- μ sat loci and LSD1 binding overlapped a majority of
137 EWS/FLI-bound non- μ sat regions in all cell lines. The results of HOMER motif analysis for LSD1 further
138 reflected a bias toward localization of LSD1 at non- μ sats, as the consensus ETS motif consistently
139 ranked as the most enriched sequence under LSD1 peaks, albeit with GGAA- μ sats as the second highest
140 (Figure 2B, Supplementary Figure 8D). These data suggest LSD1 recruitment occurs in a manner distinct
141 from BAF and p300 recruitment as these factors are primarily associated with GGAA- μ sat-bound
142 EWS/FLI.

143 **Non-microsatellites play a role in Ewing sarcoma super-enhancers**

144 That LSD1 functions to promote gene activation from both non- μ sat and GGAA- μ sat loci across the
145 genome is consistent with the previous observation that LSD1 inhibition reverses significant portions of
146 EWS/FLI-mediated transcriptional activity.¹⁷ We were, however, intrigued by the observations that
147 EWS/FLI-LSD1 sites tended to associate more strongly with non- μ sats, as GGAA- μ sats are among the
148 most EWS/FLI-responsive elements in Ewing sarcoma. It was unclear how this mechanism fit the model
149 wherein gene activation in Ewing sarcoma is primarily driven by EWS/FLI-mediated changes to the
150 enhancer landscape, through *de novo* deposition of H3K27ac and recruitment of chromatin remodelers to
151 GGAA- μ sats.

152 To further understand the role of LSD1 in EWS/FLI-mediated gene activation, we analyzed the genome-
153 wide relationship between EWS/FLI, LSD1, and the enhancer landscape in A673 cells in more detail.
154 First, we assessed the relationship between super-enhancers (SEs) and EWS/FLI. Using H3K27ac signal
155 overlapping with H3K4me1 signal to define enhancer regions, the Ranked Ordering of Super-Enhancers
156 (ROSE) algorithm^{39,40} identified 833 SEs in A673 cells (Figure 3A, Supplementary Figure 9A;
157 Supplementary Tables 1-2). Previous reports suggest *de novo* enhancers at GGAA- μ sats constitute the
158 majority of SEs in A673 cells⁴¹; we were thus surprised our analysis showed only 20% of SEs overlapped
159 with an EWS/FLI-bound GGAA- μ sat (Figure 3A). Instead, the majority (62%) of SEs harbored non- μ sat-
160 bound EWS/FLI including 45% that had no GGAA- μ sat-bound EWS/FLI and 17% that had both non- μ sat-
161 and GGAA- μ sat-bound EWS/FLI (Figure 3A). Genes nearest to SEs showed higher levels of expression
162 compared to those near typical enhancers (TEs) ($p<0.001$; Figure 3B), as expected. Taken together,
163 these data suggest that establishment of super-enhancers at GGAA- μ sats may be enhanced through
164 additional EWS/FLI binding at non- μ sat sites.

165 *De novo* establishment of enhancers at GGAA- μ sats is unique to Ewing sarcoma, due to the altered
166 binding specificity conferred to the FLI DBD in the fusion.^{12,42} Because of the observation that SEs in
167 Ewing sarcoma cells contained both GGAA- μ sats and non- μ sats, we next investigated how the type of
168 EWS/FLI binding site (or sites) contained within a SE determined the stability of that SE in the absence of
169 EWS/FLI. Following EWS/FLI-depletion (Supplementary Figure 9B-C), 315 (38%) of all SEs collapsed
170 and 700 new SEs were established in EFKD cells (Figure 3C, Supplementary Figure 9D; Supplementary
171 Tables 3-4). Of the 315 SEs which collapsed 234 (74%) were reconstituted in cells rescued with ectopic
172 EWS/FLI expression (wtEF cells) (Figure 3C). Rescue also resulted in 493 (70%) of the 700 EFKD-
173 specific SEs collapsing (Figure 3C, Supplementary Figure 9E; Supplementary Tables 5-6). SEs which
174 contained any GGAA- μ sat were less stable in EFKD cells (46% persist) than SEs either overlapping only
175 a non- μ sat EWS/FLI site or containing no EWS/FLI binding (non- μ sat only: 67% persist, no EWS/FLI:
176 64% persist, Figure 3D). This was true for both GGAA- μ sat-containing SEs which overlapped a non- μ sat
177 ("both"; 49% persist, Figure 3D) and those that did not (" μ sat"; 30% persist, Figure 3D). These data
178 suggest GGAA- μ sat-associated SEs are more dependent on EWS/FLI-binding and are more likely to
179 collapse when EWS/FLI is depleted compared to non- μ sat-associated SEs.

180 Consistent with these data, genes nearest to SEs containing an EWS/FLI-bound GGAA- μ sat were
181 upregulated by EWS/FLI as compared to those near SEs lacking a GGAA- μ sat, which were slightly
182 downregulated (Figure 3E). These data suggest that the transcriptional machinery may preferentially
183 accumulate at SE loci bound by EWS/FLI at GGAA- μ sats, effectively sequestering these complexes away
184 from other SEs and leading to a reduction of transcription levels where SEs do not contain a GGAA- μ sat.

185 **LSD1 enhances the establishment of super-enhancers by EWS/FLI**

186 Having observed that many Ewing sarcoma SEs also contain non- μ sat sites, we next asked whether
187 LSD1 was also present in these SEs, and whether the LSD1 harbored in SEs might be colocalized with,
188 or bind independently from, EWS/FLI. In other non-Ewing sarcoma contexts, LSD1 is enriched at SEs⁴³,
189 though its function is unclear. LSD1 is also implicated in genome-wide maintenance of primed
190 enhancers.⁴⁴ We found 95% of A673 SEs overlapped an LSD1 peak. There were 64% of SEs overlapping
191 a locus with colocalized EWS/FLI and LSD1, while 31% of SEs were overlapping an LSD1 peak without
192 any colocalized EWS/FLI (Figure 3F, Supplementary Table 2).

193 To determine the functional relationship between LSD1, EWS/FLI, and SEs in A673 cells, we analyzed
194 SEs based on their EWS/FLI and LSD1 binding status. SEs possessing an EWS/FLI-LSD1 coincident
195 peak had significantly higher H3K27ac scores than SEs containing either non-overlapping EWS/FLI
196 and/or LSD1 peaks ($p<0.01$), or neither EWS/FLI nor LSD1 ($p<0.01$; Figure 3G). While there was no
197 significant difference in base expression of the nearest gene (Supplementary Figure 9F), those SEs
198 which lacked EWS/FLI-LSD1 co-peaks showed decreased gene expression in the presence of EWS/FLI
199 (Figure 3H). That the highest levels of H3K27ac were seen at SEs where EWS/FLI and LSD1 are
200 colocalized, and that genes near SEs which lack this colocalization tend to be downregulated by
201 EWS/FLI, suggests that the cooperation between EWS/FLI and LSD1 promotes deposition of H3K27ac
202 and may lead to preferential accumulation of transcriptional machinery.

203 Having focused primarily on SEs in A673s cells, we next asked whether these relationships between
204 EWS/FLI, LSD1, and histone H3K27ac deposition was a common feature across Ewing sarcoma cell
205 lines. We found that a majority of SEs overlapped non- μ sat-bound EWS/FLI, either with or without overlap
206 of a GGAA- μ sat in A673, EWS-502, and SK-N-MC cells (Supplementary Figure 10A-C). TC71 cells had
207 fewer SEs overlapping EWS/FLI, but most of those TC71 SEs with EWS/FLI binding were also
208 overlapping a non- μ sat. (Supplementary Figure 10D). A significant portion of SEs overlapping EWS/FLI
209 also overlapped with LSD1 binding (Supplementary Figure 10E-H) and H3K27ac deposition was highest
210 at those SEs with EWS/FLI-LSD1 colocalization (Supplementary Figure 10I-L) across all cell lines.

211 Other studies have suggested LSD1 acts genome-wide to maintain active and primed enhancers, and it is
212 proposed that LSD1 does this by functioning as a repressor and preventing over-activation.⁴⁴ In order to
213 clarify whether LSD1 at EWS/FLI-activated enhancers was simply part of this repressive maintenance
214 function, or instead whether LSD1 promoted enhancer activity, we used GSEA to ask how LSD1
215 regulated genes near SEs with colocalized EWS/FLI and LSD1. We found that these genes were
216 functionally associated with LSD1-mediated gene activation across all cell lines (Supplementary Figure
217 11A-D), suggesting that LSD1 is not functioning as a repressor at the enhancers associated with these
218 genes. Together, these results show LSD1 colocalized at EWS/FLI-bound non- μ sat loci correlates with
219 increased H3K27ac deposition. This occurs regardless of whether the SE also overlaps an EWS/FLI-
220 bound GGAA- μ sat. A model for this will be more fully described in the Discussion section below.

221 **EWS/FLI causes dynamic reorganization of LSD1 genome-wide**

222 Functional association of EWS/FLI with LSD1 could occur through 1) active redistribution of LSD1 caused
223 by EWS/FLI or 2) binding of EWS/FLI at loci preloaded by LSD1 in a precursor cell. To determine which
224 of these mechanisms operates in Ewing sarcoma, we evaluated LSD1 occupancy in either parental A673
225 cells or EFKD cells. We additionally included EFKD cells rescued with ectopic expression of EWS/FLI,
226 wtEF cells. Panels show specific examples at *LMO2* and *SERPINE1* where EWS/FLI depletion drives
227 reversible changes in LSD1 binding in Figure 4A-B and Supplementary Figure 12. Globally, LSD1 was
228 bound at 40262 loci in A673 cells, 33085 loci in EFKD cells, and 39659 loci in wtEF cells (Figure 4C). We
229 observed 16698 LSD1 peaks present in A673 cells that collapse in EFKD cells, 9197 of which are
230 rescued in wtEF cells (Figure 4C). Of the 10151 loci which gain LSD1 peaks following EWS/FLI depletion,
231 7459 loci lose LSD1 binding upon rescue with ectopic EWS/FLI expression. Notably, while we initially
232 observed 21950 LSD1-bound loci were “stable” across the tested conditions, a closer inspection revealed
233 more dynamism within these stable peaks than we had appreciated. Of these “stable” peaks, 5687 show
234 increased LSD1 binding in A673 as compared to EFKD, and 9271 show greater binding in EFKD cells as
235 compared to A673, further supporting that EWS/FLI expression results in genome-wide reorganization of
236 LSD1 (Figure 4D).

237 Considering the widespread redistribution of LSD1, we next asked whether LSD1 colocalizes with
238 EWS/FLI at new sites in the genome, or if EWS/FLI instead binds at loci which already possess LSD1.
239 Venn diagram analysis showed most LSD1 peaks present in A673 cells were also present in EFKD cells
240 (Figure 4C). Of the EWS/FLI-LSD1 colocalized peaks, 54% show increased LSD1 binding in A673 cells,
241 with LSD1 binding at a new locus with EWS/FLI 30% of the time, while another 24% show increased
242 LSD1 binding with EWS/FLI expression (Figure 4E). These data suggest both that LSD1 is recruited to
243 new sites and that EWS/FLI binds at sites already bound by LSD1. At these latter sites, we speculate that
244 LSD1 may interact with other ETS factors when EWS/FLI is absent and that EWS/FLI may displace these
245 ETS factors, as has been previously suggested,⁸ and hijack LSD1 activity.

246 **LSD1 binds at activating “super-clusters”**

247 We were struck by the visual clustering of LSD1 peaks in cells with depleted EWS/FLI expression, as
248 shown in Figure 4A and 4B. Because clustering of chromatin regulatory proteins, including LSD1, is
249 reported at SEs, we investigated the relationship between LSD1 “super-clusters” (SCs) and SEs in EFKD
250 cells. The ROSE algorithm identified 970, 1287, and 1325 LSD1 SCs in A673, EFKD, and wtEF cells,
251 respectively (Figure 5A, Supplementary Tables 15-20). These are regions with the highest levels of LSD1
252 binding throughout the genome, as defined by a function of rank and LSD1 signal (Figure 5B-C,
253 Supplementary Figure 13A). Reflecting global LSD1 binding, we observed EWS/FLI-driven dynamism in
254 the genome-wide distribution of LSD1 SCs. There were 426 LSD1 SCs present in A673 cells that
255 collapse in EFKD cells, 269 of which are rescued in wtEF cells (Figure 5A). Of the 753 loci which gain

256 LSD1 clusters following EWS/FLI depletion, 498 loci lose LSD1 binding upon rescue. LSD1 clusters are
257 stable regardless of EWS/FLI status at 486 loci.

258 Due to notable overlaps between LSD1 SCs and SEs at individual loci, such as those shown at *CCND1*
259 (Figure 5D), *DUSP6* (Supplementary Figure 13B), *ETS1* (Supplementary Figure 13C), and *TGFB1*
260 (Supplementary Figure 13D), we initially considered whether LSD1 SCs simply represented SEs.
261 However, only 320 A673 SCs (33%) and 482 EFKD SCs (37%), and 510 wtEF SCs (38%) overlapped
262 with SEs in their respective cells (Figure 5E-G), instead suggesting a heretofore unappreciated
263 chromatin-associated LSD1-organizational structure. GSEA revealed that LSD1 SCs were associated
264 with both LSD1-mediated gene activation (NES=1.990, p<0.001; Figure 5H) and EWS/FLI-mediated gene
265 activation (NES=2.358, p<0.001; Figure 5I) in A673 cells, consistent with prior observations that LSD1
266 plays a role in EWS/FLI-mediated activation. In contrast, in EFKD cells, LSD1 SCs were strongly
267 associated with genes that are repressed by EWS/FLI and thus become activated in the knockdown
268 condition (NES=-2.526, p<0.001; Figure 5J), again supporting a role for LSD1 in gene activation, even in
269 the absence of EWS/FLI. Most of the genes in the leading edge of this latter GSEA have SCs that
270 collapse with wildtype levels of EWS/FLI (Figure 5K). We speculate that LSD1 SCs are associated with
271 gene activation in a Ewing sarcoma precursor cell, and that during the process of Ewing sarcoma
272 development these activating LSD1 SCs collapse and expression of nearby genes is downregulated. In
273 Ewing sarcoma cells new LSD1 SCs are formed.

274 Although the overlap of LSD1 SCs with SEs in EFKD cells was partial, we found an overwhelming
275 majority (95.6%) of SEs in these cells overlapped at least one LSD1 peak (Figure 5L, Supplementary
276 table 19). This was similar to our prior observations of SEs in A673 cells (Figure 3F). 39.9% of super-
277 enhancers overlapped an LSD1 SC, while 55.7% overlapped a “monopeak” (LSD1 bound in an individual
278 peak, not as part of a cluster). A similar distribution was seen for SEs in A673 and wtEF cells
279 (Supplementary Figure 14A-B). In all conditions, those SEs overlapping an LSD1 SC had greater
280 H3K27ac scores than those with only a monopeak, or no LSD1 (Figure 5M, Supplementary Figure 14C-
281 D), suggesting a functional role for the factors that recruit LSD1 in promoting the establishment of
282 enhancers. No significant difference was observed in basal expression of SE-associated genes based on
283 LSD1 binding status (Supplementary Figure 14E-G), but genes near EFKD SEs containing an LSD1 SC
284 showed greater downregulation with EWS/FLI expression than genes near SEs without an LSD1 SC
285 (Figure 5N). In cells expressing EWS/FLI, EWS/FLI-mediated regulation of SE-associated genes showed
286 no such dependency on LSD1 configuration within the SE (Supplementary Figure 14H-I). Interestingly, of
287 the 251 SEs that both 1) are unique to EFKD and 2) overlap an LSD1 SC, 196 (78%) have SCs that are
288 also unique to EFKD cells (Supplementary Figure 14J), indicating a concurrent collapse of both the LSD1
289 SC and the SE upon EWS/FLI expression. Taken together, these data support a second novel model for
290 EWS/FLI-mediated repression via aberrant enhancer regulation: EWS/FLI-induced LSD1 SC collapse
291 prevents priming and maintenance of enhancers active in the Ewing sarcoma precursor cell. Moreover,

292 once EWS/FLI is introduced to the cell, the primacy of EWS/FLI-mediated transcriptional regulation
293 overtakes that of LSD1-SCs in the determination of gene expression.

294

295 **DISCUSSION**

296 The close phenotypic overlap between LSD1 inhibition (with SP2509) and EWS/FLI depletion in A673 (or
297 EWS/ERG depletion in TTC-466 cells) suggested that LSD1 is closely linked to the genome-wide activity
298 of oncogenic fusions in Ewing sarcoma.¹⁷ Prior studies suggested that LSD1 is part of a NuRD-LSD1
299 complex hijacked by EWS/FLI to repress tumor suppressors, but how LSD1 was involved in EWS/FLI-
300 mediated gene activation was unclear.⁹ To understand this relationship, we used genomic approaches to
301 probe LSD1 distribution and function in four Ewing sarcoma cell lines, and a model of the Ewing sarcoma
302 precursor cell with diminished EWS/FLI expression, EFKD, complemented with rescue using ectopic
303 EWS/FLI expression, wtEF. Though EFKD cells are an imperfect precursor model, we believe they are
304 both conceptually and technically useful in that they are a system which tolerates EWS/FLI (re-
305)introduction. Importantly, following EWS/FLI depletion, they continue to proliferate¹⁰, enabling the
306 requisite large numbers of cells needed for chromatin-level analyses.

307 We found that LSD1 is broadly important for gene activation, functioning at enhancers in both Ewing
308 sarcoma and precursor cells, and that EWS/FLI drives dynamic genome-wide reorganization of LSD1.
309 Functional interaction between EWS/FLI and LSD1, particularly at non- μ sats sites, is critical to restructure
310 the enhancer landscape in Ewing sarcoma cells as modeled in Figure 6. Here, we build on previous
311 studies that show *de novo* enhancer formation at EWS/FLI-bound GGAA- μ sats and found that these
312 enhancers almost always also involve an EWS/FLI-bound HA site (Figure 6A Panel i). LSD1 is frequently
313 recruited to these collaborating loci and the presence of LSD1 augments enhancer formation, resulting in
314 increased H3K27ac deposition. Panel ii depicts enhancers which are solely driven by HA sites. In
315 precursor cells, these are likely bound by other ETS transcription factors and LSD1. In Ewing sarcoma
316 cells, it is probable that EWS/FLI hijacks these sites through displacement of the endogenous ETS factor
317 while retaining LSD1 binding.

318 The dynamic reorganization of LSD1 SCs is shown in Panel iii. In precursor cells, LSD1 SCs promote
319 nearby enhancer formation and gene activation. Expression of EWS/FLI disrupts these loci, causing
320 collapse of LSD1 SCs and the associated super-enhancers, leading to downregulation of nearby genes.
321 EWS/FLI thus engages distinct mechanisms to alter the function of LSD1-containing complexes: 1)
322 through direct recruitment of the NuRD-LSD1 complex previously described⁹ and 2) through
323 reorganization of LSD1 and LSD1 SCs.

324 This model is compelling because it enhances our understanding of aberrant epigenomic regulation
325 driven by EWS/FLI. Our results suggest that EWS/FLI-bound GGAA- μ sats may depend upon another
326 EWS/FLI binding event at a non- μ sat to target the enhancer activity. Recruitment of LSD1 to these non-
327 μ sat sites further augments EWS/FLI-mediated enhancer formation, and this occurs even in the absence
328 of GGAA- μ sats. These findings unite important observations regarding the involvement of both GGAA-
329 μ sats and LSD1 in EWS/FLI-mediated gene activation. We further identified two novel mechanisms for

330 gene downregulation by EWS/FLI, and both are intricately linked to altered enhancer function. First, there
331 exist some SEs which show decreased transcriptional activity with EWS/FLI expression. These SEs
332 frequently do not overlap either colocalized EWS/FLI-LSD1 or a GGAA- μ sat, suggesting that
333 transcriptional machinery preferentially accumulates at SEs where EWS/FLI both binds a GGAA- μ sat and
334 is colocalized with LSD1, while transcriptional machinery is depleted at other SEs lacking EWS/FLI
335 binding. Second, EWS/FLI-induced collapse of LSD1 SCs leads to decreased enhancer priming. Despite
336 the strong transcriptional activation capacity of the EWS domain, expression of EWS/FLI results in a
337 greater number of genes repressed than activated, and these two mechanisms likely contribute to this
338 process.

339 LSD1 is important for enhancer decommissioning during differentiation²³ and LSD1 constructs fused to
340 transcription activator-like effector (TALE-LSD1) or enzymatically dead Cas9 (dCas9-LSD1) show that
341 LSD1 silences enhancers and promoters when targeted to specific genomic loci.^{45,46} More recent studies
342 highlight a role for LSD1 involvement in enhancer silencing by lineage-specific transcription factors like
343 GFI1 in acute myeloid leukemia²⁵ and medulloblastoma⁴⁷, or BCL6 in diffuse large B-cell lymphoma.²⁴ In
344 these cases, inhibition of LSD1 with derivatives of tranylcypromine restores enhancer function and
345 disrupts oncogenic gene regulation. However, we observed LSD1 to be largely associated with gene
346 activation in Ewing sarcoma. Indeed, knockdown of LSD1 results in the downregulation of activated
347 genes nearby,³⁴ indicating that LSD1 is not functioning to suppress over-activation, but is instead critically
348 important to maintain gene activation. How EWS/FLI enforces an activating role for LSD1 is unknown, but
349 the activity observed is similar to LSD1 activity in prostate cancer. In prostate cancer LSD1 activates
350 oncogenic gene transcription independently from its enzymatic function.^{48,49} Interestingly, both Ewing
351 sarcoma and prostate cancer show sensitivity to reversible LSD1 inhibition with SP2509, but not other
352 classes of irreversible LSD1 inhibitors related to tranylcypromine.^{34,49} This suggests that different
353 functions of LSD1 may be differentially targeted by different classes of LSD1 inhibitors. The specific
354 mechanistic role LSD1 is playing here, whether non-enzymatic or through demethylation of targets other
355 than H3K4, is not yet known and remains an important area of future study.

356 In conclusion, EWS/FLI interacts with LSD1 to mediate genome-wide epigenetic and transcriptional
357 changes in Ewing sarcoma. EWS/FLI induces a dynamic reorganization of LSD1 that acts in concert with
358 EWS/FLI activity at GGAA- μ sats to reshape the enhancer landscape. The involvement of widespread
359 localization of LSD1 at EWS/FLI-bound non- μ sats suggests that EWS/FLI-mediated chromatin regulation
360 in Ewing sarcoma requires widespread activity at loci beyond GGAA- μ sats. The mechanisms which drive
361 this non- μ sat-mediated regulation are poorly understood and represent critical facets of EWS/FLI function
362 to explore. We also show that LSD1 binds chromatin in a “clustered” configuration. While a similar binding
363 pattern has been observed for LSD1 enriched at SEs, we found an imperfect overlap between LSD1
364 clusters and SEs. This study suggests that understanding how these clusters form and function, and how

365 perturbations occur in disease, could provide clues on how to better target LSD1 function in Ewing
366 sarcoma patients, as well as in other malignancies.

367

368 **MATERIALS AND METHODS**

369 **Key Resources**

370 Key resources required for this protocol are listed in Supplementary Table 21.

371 **Cell Lines**

372 All cell lines included are tested for mycoplasma annually and sent for STR profiling every two years.

373 All cell lines recently tested negative for mycoplasma and were most recently authenticated by STR

374 profiling in 2018. We should note that we have used the SK-N-MC and A673 lines. These were

375 previously misidentified as neuroblastoma and rhabdomyosarcoma lines, respectively, but actually

376 contain the EWS/FLI fusion and are Ewing sarcoma cell lines.

377 All Ewing sarcoma cells were cultured at 37°C, 5% CO₂. A673 and SK-N-MC cells were cultured in

378 DMEM (Corning Cellgro 10-013-CV) containing 10% fetal bovine serum (FBS, Gibco 16000-044),

379 penicillin/streptomycin/glutamine (PSQ, Gibco 10378-016), and sodium pyruvate (Gibco 11360-070).

380 EWS-502 and TC71 cells were cultured in RPMI (Corning Cellgro 15-040-CV) containing 10% FBS for

381 TC71 cells and 15% FBS for EWS-502 cells, as well as P/S/Q. A673 cells are derived from the tumor of a

382 14-year old Japanese female, contain a type I EWS/FLI fusion, have mutant *TP53* (Q119fs) and wildtype

383 *STAG2*. EWS-502 cells are derived from a Ewing sarcoma patient of unspecified sex and age, and have

384 mutant *TP53* (C135F) and *STAG2* loss. SK-N-MC cells are derived from the tumor of a 12-year old

385 female, have truncated *TP53*, and wildtype *STAG2*. TC71 cells are derived from the tumor of a 22-year

386 old male, have mutated *TP53* (R213*), and have wildtype *STAG2*.

387 HEK293-EBNA cells were grown at 37°C, 5% CO₂ in DMEM supplemented with 10% FBS,

388 penicillin/streptomycin/glutamine, and 0.3 mg/mL geneticin (Gibco 10131-027). These cells are derived

389 from the kidney of a healthy aborted fetus, presumed female. Cells were originally transformed by

390 culturing with sheared adenovirus 5.

391 **Retrovirus Production**

392 To generate retroviruses of the previously reported constructs for iLuc and iEF-2 shRNAs, as well as

393 cDNA for 3XFLAG-Δ22 and 3XFLAG-EWS/FLI¹⁰, HEK293-EBNA cells were co-transfected with retroviral

394 expression plasmids, vesicular stomatitis virus G glycoprotein (VSV-G) and gag/pol packaging plasmids

395 using Mirus Bio Transit-LT1. Following 48 hours virus-containing supernatant was collected and filtered.

396 Retrovirally infected A673 cells were selected in 2 µg/mL puromycin (Sigma P8833) for a minimum of 72

397 hours. For rescued cells, infection occurred after 72 hours of puro selection and cells were double

398 selected for 7 additional days in puro with 100 µg/mL hygromycin B.

399 **Immunoblotting**

400 For validation of protein knockdown, samples were run on 4-15% Mini-PROTEAN TGX precast gels
401 (BioRad) using 90V for 15 minutes and 120 V for 50 minutes. Proteins were blotted to nitrocellulose
402 membranes using semi-dry transfer with the Bjerrum Schaffer-Nielsen buffer at 15 V for 60 minutes.
403 Membranes were blocked at 4°C overnight in Odyssey Blocking Buffer PBS (LI-COR), and incubated with
404 primary antibody overnight at 4°C. Primary antibodies used for immunoblotting were: anti-FLI (Abcam
405 ab15289), anti-H3 (Cell Signaling Technology #4499 - D1H2), anti-Lamin B1 (Abcam ab16048), and anti-
406 FLAG M2 (Sigma F3165). For validation of protein depletion with knockdown, FLI, total H3, Lamin, and
407 FLAG blots were incubated with IRDye secondary antibodies (LI-COR) and developed on the Odyssey.

408 **Chromatin Immunoprecipitation and Sequencing (ChIP-seq)**

409 For performing chromatin immunoprecipitation, A673 cells were seeded in 15-cm dishes. Cells were
410 removed by scraping in plain media and pelleted at 1200 rpm for 5 min. Pellets were resuspended in
411 room temperature cell lysis buffer (20 mM HEPES-KOH, pH 8.0; 1 mM EDTA; 0.5 mM EGTA; 140 mM
412 NaCl; 10% glycerol; 0.5% NP-40; 0.25% Triton X-100; protease inhibitor) and incubated on ice for 5 min
413 before nuclei were pelleted at 1200 rpm for 5 min. Nuclei were washed once in 1 mL MNase digestion
414 buffer (20 mM Tris-Cl, pH 7.4; 5 mM MgCl₂; 1 mM CaCl₂; 0.1% Triton X-100, protease inhibitor) and
415 resuspended in MNase digestion buffer. 50 U (10 µL of 5 U/µL) MNase were added and nuclei were
416 incubated at 37°C for 30 minutes with gentle inversion every 10 minutes. Digestion was stopped by the
417 addition of chilled 100 µL 0.5M EDTA followed by a 5-minute incubation on ice. Nuclei were cleared with
418 a spin at 13000 rpm for 10 minutes and the resulting supernatant (chromatin) was transferred to a new
419 tube. Chromatin concentration was quantified by Nanodrop and 100 µg of chromatin was used for each
420 immunoprecipitation, diluted to equal volumes in dilution buffer (20 mM Tris-Cl, pH 7.4; 2 mM EDTA; 50
421 mM NaCl; 0.25% Triton X-100; 20 mg/mL BSA; protease inhibitor) with 50 µL of 0.5M EDTA. Chromatin
422 was added to antibody coated magnetic Dynabeads for 16-20 hours at 4°C. Antibodies used for ChIP
423 were: anti-H3K4me1 (ab8895), anti-H3K4me2 (ab32356), and anti-H3K4me3 (ab8580). Beads were
424 washed with ChIP wash buffers containing 0.1% SDS and 150 mM NaCl, 150 mM NaCl, and 250 mM
425 LiCl. ChIP DNA was eluted with fresh elution buffer, RNase and Proteinase K treated and decrosslinked
426 overnight at 65°C. DNA was then purified with phenol-chloroform using the Qiagen MaXtract extraction kit
427 as per manufacturer's instructions. DNA was quantified by Qubit and validated for enrichment by qPCR
428 using specific primers. Following validation, libraries were generated for sequencing using the NEBnext
429 kit according to manufacturer's instructions and submitted for deep sequencing on the Illumina HiSeq
430 4000 platform (Nationwide Children's Hospital Institute for Genomic Medicine). Native histone ChIPs were
431 performed three times, with a non-specific IgG negative control.

432 **Cleavage Under Targets and Release Using Nuclease (CUT&RUN) and Cleavage Under Targets
433 and Tagmentation (CUT&Tag)**

434 *Cell Preparation*

435 CUT&RUN and CUT&Tag were performed as described^{53,54} with slight modifications. BioMag® Plus
436 Concanavalin A-coated magnetic beads (Bangs Laboratories, BP531; 10 µl beads per condition) were
437 washed twice with Binding buffer (20 mM HEPES-KOH pH 7.9, 10 mM KCl, 1 mM CaCl₂, 1 mM MnCl₂) in
438 preparation for CUT&RUN/CUT&Tag. 500,000 cells (CUT&RUN) and 250,000 cells (CUT&Tag) per
439 condition were washed twice with Wash Buffer (20 mM HEPES-NaOH pH 7.5, 150 mM NaCl, 0.5 mM
440 Spermidine, Protease Inhibitor) and rotated with prepared beads for 10 minutes at room temperature. The
441 supernatant was cleared and removed using a magnet stand. The beads were resuspended in 100 µL
442 Antibody Buffer (20 mM HEPES-NaOH pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.02% Digitonin
443 [CUT&RUN] or 0.05% digitonin [CUT&Tag], 2 mM EDTA, Protease Inhibitor) and antibodies (FLI 7.3
444 mouse, Santa Cruz; H3K27ac rabbit, Abcam ab4729; Rabbit anti-mouse IgG, Abcam ab46540; LSD1
445 rabbit, Abcam ab17721) were added at a dilution of 1:100. Samples were rotated overnight at 4°C. The
446 samples were cleared on a magnet stand and beads were washed with Dig-wash buffer (20 mM HEPES-
447 NaOH pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 0.02% Digitonin [CUT&RUN] or 0.05% digitonin
448 [CUT&Tag]).

449 *CUT&RUN (FLI, LSD1, H3K27ac, and Rb IgG)*

450 Beads that were incubated with FLI 7.3 mouse antibody were resuspended in 100 µL Dig-wash buffer and
451 incubated with rabbit anti-mouse secondary antibody (Abcam, ab46540) at a dilution of 1:100 on a rotator
452 for 1 hour at 4°C. All other samples didn't require a secondary antibody step. After another wash with Dig-
453 wash buffer, beads were resuspended in 100 µL Dig-wash buffer and Protein A-MNase fusion protein
454 (generously provided by the Henikoff lab) was added to a final concentration of 700 ng/mL. Samples were
455 rotated for 1 hour at 4°C. After 2 washes with Dig-wash buffer, beads were resuspended in 100 µL Dig-
456 wash buffer and placed in ice water to equilibrate to 0°C. CaCl₂ was added to a final concentration of 2
457 mM under gentle vortexing and samples were incubated for 45 minutes (H3K27ac) or 2 hours (FLI, LSD1)
458 at 0°C. Reactions were stopped by adding 100 µl 2XSTOP buffer (340 mM NaCl, 20 mM EDTA, 4 mM
459 EGTA, 0.02% Digitonin, 0.05 mg/mL RNase A, 0.05 mg/mL Glycogen containing 2 pg/mL heterologous
460 Yeast Spike-in DNA) and incubated at 37°C for 10 minutes to release the CUT&RUN fragments. Beads
461 were pelleted by centrifugation at 16,000 x g and 4°C for 5 minutes and supernatants containing
462 CUT&RUN fragments were transferred to new tubes. SDS was added to a final concentration of 0.1%
463 and Proteinase K to a final concentration of 0.25 µg/µL followed by an incubation at 70°C for 10 minutes.
464 DNA from all supernatants was purified using Phenol/Chloroform extraction and ethanol precipitation.

465 The library prep was performed using the KAPA Hyper Prep Kit (KAPA Biosystems, KK8502) in
466 combination with the KAPA Dual-Indexed Adapter Kit (KAPA Biosystems, #KK8722) with several
467 modifications. 50 µL of CUT&RUN sample were used for the End repair and A-tailing step. A 1.5 µM
468 adapter stock was used for the adapter ligation reaction with a 20-minute incubation step at 20°C. After
469 the recommended post-ligation cleanup, the DNA was eluted in 53 µL elution buffer and a second
470 cleanup was performed using 50 µL of eluted DNA and 65 µL Agencourt AMPure XP magnetic beads

471 (Beckman Coulter, A63880). The DNA was eluted with 25 μ L elution buffer and 20 μ L were used for the
472 library amplification. To favor small fragments, the amplification was performed using a combined
473 Annealing/Extension step at 60°C for 10 seconds and 13 cycles. 50 μ L of the amplified library and 57.5
474 μ L AMPure beads (1.15X) were used for the first post-amplification cleanup. After eluting the DNA with
475 53 μ L, a second post-amplification cleanup step was performed using 50 μ L eluted DNA and 62.5 μ L
476 AMPure beads (1.25X). The final library was eluted from the beads with 35 μ L elution buffer. 2 x 150 bp
477 paired-end sequencing was performed using the Illumina HiSeq4000 system (Nationwide Children's
478 Hospital Institute for Genomic Medicine). Two independent replicates were performed for each sample,
479 with one replicate consisting of cells prepped from viral infection to sequencing.

480 **CUT&Tag (LSD1, H3K27ac, and Rb IgG)**

481 Beads were resuspended in 100 μ L Dig-wash buffer and incubated with guinea pig anti-rabbit IgG
482 (Antibodies-Online ABIN101961) at a dilution of 1:100 on a rotator for 1 hour at 4°C. After 3 washes with
483 Dig-wash buffer, beads were resuspended in 100 μ L Dig-300 buffer (20 mM HEPES-NaOH pH 7.5, 300
484 mM NaCl, 0.5 mM Spermidine, 0.01% Digitonin) with a 1:250 dilution of Protein A-Tn5 transposase fusion
485 protein (generously provided by the Henikoff lab). Samples were rotated for 1 hour at room temperature.
486 After 3 washes with Dig-300 buffer, beads were resuspended in 300 μ L Tagmentation buffer (Dig-300
487 buffer with 10 mM MgCl₂) and incubated for 1 hour at 37°C. Tagmentation was stopped by adding 10 μ L
488 0.5M EDTA, 3 μ L 10% SDS, and 2.5 μ L 20 mg/mL Proteinase K to each sample, vortexing 5 s, and
489 incubating for 1 hour at 50°C. DNA from samples was directly extracted using phenol-chloroform with
490 ethanol precipitation. Once ethanol-precipitated pellets were dry, pellets were resuspended in 30 μ L 10
491 mM Tris-Cl, pH 8 with 1 mM EDTA and 1/400 RNase A and incubated at 37°C for 10 min.

492 Libraries were amplified using primers as previously described.⁵⁵ 21 μ L of DNA, and 2 μ L each of primer
493 (10 μ M) were added to 25 μ L of NEBNext HiFi 2X PCR master mix and libraries were amplified as
494 follows: 72°C for 5 min, 98°C for 30 s, 15 cycles of 98°C for 10 s and 63°C for 10 s, 72°C for 1 min. After
495 the amplification a cleanup was performed by adding 55 μ L Agencourt AMPure XP magnetic beads
496 (Beckman Coulter, A63880) to the PCR reactions, incubating 15 minutes, and washing twice with 400 μ L
497 80% ethanol, and eluting DNA with 25 μ L Tris-Cl, pH 8. 2 x 150 bp paired-end sequencing was performed
498 using the Illumina HiSeq4000 system (Nationwide Children's Hospital Institute for Genomic Medicine).
499 Two independent replicates were performed for each sample, with one replicate consisting of cells
500 prepped from viral infection to sequencing.

501 **Bioinformatic analyses**

502 For all samples the quality of raw fastq samples was evaluated using FastQC.⁵⁶ Trim Galore!⁵⁷ was then
503 used to trim both ChIP-seq, CUT&RUN, and CUT&Tag reads for adapter sequences and quality.
504 Trimmed reads were aligned to the human genome build hg19/GRCh37 using bowtie2. ChIP-seq reads
505 were aligned with the following parameters (default end-to-end alignment): bowtie2 --no-unal --no-mixed -

506 -no-discordant --no-dovetail --phred 33 --q --l 10 --X 1000 --threads 16. CUT&RUN reads were aligned
507 with the following parameters: bowtie2 --no-unal --no-mixed --no-discordant --dovetail --phred 33 --q --l 10
508 --X 1000 --threads 16. Output SAM files were converted to BAM files, sorted, and indexed using
509 samtools.⁵⁸ Pybedtools⁵⁹ was used to convert BAM files to BED files. To generate bigwig files for
510 visualization, we first converted BED files to spike-in normalized (CUT&RUN and CUT&Tag) or read-
511 count normalized (ChIP-seq) Bedgraph files. We then used the UCSC utility bedGraphToBigWig to
512 generate BigWig files. Replicate samples were verified for high levels (> 0.9 for transcription factors and
513 >0.85 for histone marks) of inter-sample correlation using the UCSC utility wigCorrelate. For CUT&RUN
514 and ChIP-seq, EWS/FLI, LSD1, H3K4me2, and H3K4me3, peaks were called using the default settings of
515 MACS2 callpeak.⁶⁰ For H3K4me1, peaks were called using the --broad setting of callpeak. H3K27ac
516 peaks were called using csaw⁶¹ using a window of 150 bp, spacing of 50 bp, background signal binned
517 into 2000 bp windows, and a 3-fold increase threshold over global background and an FDR of < 0.05. For
518 CUT&Tag samples (LSD1, H3K27ac and Rb) peaks were called for each sample using the default
519 settings of MACS2 without a control file specified. Then MACS2 bdgdiff with --d1 and --d2 flags used to
520 specify spike-in factors was used to find regions of each sample (LSD1, H3K27ac) with greater signal
521 than Rb, as well as to compare samples in A673, EFKD, and wtEF cells directly. Tracks were generated
522 in the Integrated Genome Browser. ChIPPeakAnno⁶² was used to analyze genomic distribution of peaks
523 and, in concert with bedtools⁶³, genome-wide overlaps between groups. HOMER⁶⁴ was used to determine
524 enriched motifs associated with different peaks utilizing the findMotifsGenome.pl script. GSEA^{37,65} was
525 used to analyze functional association between peak-associated genes and EWS/FLI or LSD1 function.
526 deepTools⁶⁶ computeMatrix, plotProfile, and plotHeatmap were used to generate profile and heatmap
527 figures for different groups of binding profiles. Ranked order of super-enhancers (ROSE)^{39,40} was used to
528 identify super-enhancers and super-clusters.

529 **Quantification and Statistical Analysis**

530 Significance of experimental results was carried out using unpaired t-test for comparing two groups or
531 one-way ANOVA (with multiple comparisons) for comparing three or more groups as appropriate.
532 Significance was determined as a p < 0.05. These statistical tests were performed using GraphPad Prism
533 8. For GSEA significance was determined using a normalized enrichment score (NES). A result was
534 significant if |NES| > 1.5. HOMER, MACS2 and csaw statistical defaults were used and are described
535 elsewhere.^{60,61,64} For Venn diagram overlaps, p-values were determined using ChIPPeakAnno
536 findOverlapOfPeaks.

537 **Data and Pipeline Availability**

538 Raw data, bigwigs, and peak calling results are available under the GEO accession: GSE144688
539 The quality, trimming, and alignment pipelines for single-end ChIP, CUT&RUN, CUT&Tag are available in
540 Singularity containers and can be downloaded from Singularity Hub.

541 single-end ChIP: shub://ertheisen/southkaibab_centos:hg19v1.centos

542 CUT&RUN and CUT&Tag: shub://ertheisen/hohriver_centos:hg19v2.centos

543 Alternatively, the recipe files are available at <https://github.com/ertheisen?tab=repositories>.

544

545 **ACKNOWLEDGMENT**

546 We thank Dr. Ranajeet Saund for technical assistance. This research was supported in part by the High
547 Performance Computing Facility at the Abigail Wexner Research Institute at Nationwide Children's
548 Hospital.

549

550 **FUNDING**

551 This work was supported by the National Institutes of Health National Cancer Institute under U54
552 CA231641 (to S.L.L.) and R01 CA183776 (to S.L.L.); Pelotonia under a Postdoctoral Fellowship (to
553 E.R.T]; Alex's Lemonade Stand Foundation under a Young Investigator Award (to E.R.T.); and the
554 National Health and Medical Research Council CJ Martin Overseas Biomedical Fellowship under
555 APP1111032 to (K.I.P.).

556

557 **CONFLICT OF INTEREST**

558 S.L.L. declares a conflict of interest as a member of the advisory board for and an equity holder of
559 Salarius Pharmaceuticals. S.S. is a founder and equity holder of Salarius Pharmaceuticals. S.L.L. is also
560 a listed inventor on United States Patent No. US 7,939,253 B2, "Methods and compositions for the
561 diagnosis and treatment of Ewing's Sarcoma," and United States Patent No. US 8,557,532, "Diagnosis
562 and treatment of drug-resistant Ewing's sarcoma." This does not alter our adherence to Epigenetics
563 policies on sharing data and materials.

564

565

566

567 **REFERENCES**

- 568 1. Birmingham, Z., Hashibe, M., Spector, L. & Schiffman, J. D. The Epidemiology of Sarcoma. *Clin. Sarcoma Res.* **2**, 14 (2012).
- 569 2. Delattre, O. *et al.* Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. *Nature* **359**, 162–165 (1992).
- 570 3. Turc-Carel, C., Philip, I., Berger, M. P., Philip, T. & Lenoir, G. M. Chromosome study of Ewing's sarcoma (ES) cell lines. Consistency of a reciprocal translocation t(11;22)(q24;q12). *Cancer Genet. Cytogenet.* **12**, 1–19 (1984).
- 571 4. Turc-Carel, C. *et al.* Chromosomes in Ewing's sarcoma. I. An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). *Cancer Genet. Cytogenet.* **32**, 229–238 (1988).
- 572 5. Boulay, G. *et al.* Cancer-Specific Retargeting of BAF Complexes by a Prion-like Domain. *Cell* **171**, 163–178.e19 (2017).
- 573 6. May, W. A. *et al.* Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. *Proc. Natl. Acad. Sci. U. S. A.* **90**, 5752–5756 (1993).
- 574 7. May, W. A. *et al.* The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. *Mol. Cell. Biol.* **13**, 7393–7398 (1993).
- 575 8. Riggi, N. *et al.* EWS-FLI1 Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma. *Cancer Cell* **26**, 668–681 (2014).
- 576 9. Sankar, S. *et al.* Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. *Oncogene* **32**, 5089–5100 (2013).
- 577 10. Smith, R. *et al.* Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. *Cancer Cell* **9**, 405–416 (2006).
- 578 11. Tomazou, E. M. *et al.* Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1. *Cell Rep.* **10**, 1082–1095 (2015).
- 579 12. Gangwal, K., Close, D., Enriquez, C. A., Hill, C. P. & Lessnick, S. L. Emergent Properties of EWS/FLI Regulation via GGAA Microsatellites in Ewing's Sarcoma. *Genes Cancer* **1**, 177–187 (2010).
- 580 13. Gangwal, K. *et al.* Microsatellites as EWS/FLI response elements in Ewing's sarcoma. *Proc. Natl. Acad. Sci.* **105**, 10149–10154 (2008).
- 581 14. Guillon, N. *et al.* The Oncogenic EWS-FLI1 Protein Binds In Vivo GGAA Microsatellite Sequences with Potential Transcriptional Activation Function. *PLoS ONE* **4**, e4932 (2009).
- 582 15. Kwon, I. *et al.* Phosphorylation-Regulated Binding of RNA Polymerase II to Fibrous Polymers of Low-Complexity Domains. *Cell* **155**, 1049–1060 (2013).
- 583 16. Theisen, E. R. *et al.* Transcriptomic analysis functionally maps the intrinsically disordered domain of EWS/FLI and reveals novel transcriptional dependencies for oncogenesis. *Genes Cancer* **10**, 21–38 (2019).
- 584 17. Sankar, S. *et al.* Reversible LSD1 Inhibition Interferes with Global EWS/ETS Transcriptional Activity and Impedes Ewing Sarcoma Tumor Growth. *Clin. Cancer Res.* **20**, 4584–4597 (2014).

606 18. Shi, Y. *et al.* Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. *Cell*
607 **119**, 941–953 (2004).

608 19. Metzger, E. *et al.* LSD1 demethylates repressive histone marks to promote androgen-receptor-
609 dependent transcription. *Nature* **437**, 436–439 (2005).

610 20. Huang, J. *et al.* p53 is regulated by the lysine demethylase LSD1. *Nature* **449**, 105–108 (2007).

611 21. Wang, J. *et al.* The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA
612 methylation. *Nat. Genet.* **41**, 125–129 (2009).

613 22. Yang, M. *et al.* Structural Basis for CoREST-Dependent Demethylation of Nucleosomes by the
614 Human LSD1 Histone Demethylase. *Mol. Cell* **23**, 377–387 (2006).

615 23. Whyte, W. A. *et al.* Enhancer decommissioning by LSD1 during embryonic stem cell differentiation.
616 *Nature* **482**, 221–225 (2012).

617 24. Hatzi, K. *et al.* Histone demethylase LSD1 is required for germinal center formation and BCL6-driven
618 lymphomagenesis. *Nat. Immunol.* **20**, 86 (2019).

619 25. Maiques-Diaz, A. *et al.* Enhancer Activation by Pharmacologic Displacement of LSD1 from GFI1
620 Induces Differentiation in Acute Myeloid Leukemia. *Cell Rep.* **22**, 3641–3659 (2018).

621 26. Sugino, N. *et al.* A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex
622 karyotype by attenuating leukemia programs via activating super-enhancers. *Leukemia* **31**, 2303–
623 2314 (2017).

624 27. Harris, W. J. *et al.* The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9
625 leukemia stem cells. *Cancer Cell* **21**, 473–487 (2012).

626 28. Hayami, S. *et al.* Overexpression of LSD1 contributes to human carcinogenesis through chromatin
627 regulation in various cancers. *Int. J. Cancer* **128**, 574–586 (2011).

628 29. Kahl, P. *et al.* Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a
629 half LIM domain protein 2 predict risk of prostate cancer recurrence. *Cancer Res.* **66**, 11341–11347
630 (2006).

631 30. Lim, S. *et al.* Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast
632 cancers and a biomarker predicting aggressive biology. *Carcinogenesis* **31**, 512–520 (2010).

633 31. Schulte, J. H. *et al.* Lysine-specific demethylase 1 is strongly expressed in poorly differentiated
634 neuroblastoma: implications for therapy. *Cancer Res.* **69**, 2065–2071 (2009).

635 32. Bennani-Baiti, I. M., Machado, I., Llombart-Bosch, A. & Kovar, H. Lysine-specific demethylase 1
636 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma,
637 Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. *Hum. Pathol.* **43**, 1300–1307 (2012).

638 33. Schildhaus, H.-U. *et al.* Lysine-specific demethylase 1 is highly expressed in solitary fibrous tumors,
639 synovial sarcomas, rhabdomyosarcomas, desmoplastic small round cell tumors, and malignant
640 peripheral nerve sheath tumors. *Hum. Pathol.* **42**, 1667–1675 (2011).

641 34. Pishas, K. I. *et al.* Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages
642 the Endoplasmic Reticulum Stress Response. *Mol. Cancer Ther.* **17**, 1902–1916 (2018).

643 35. Zhao, Z.-K. *et al.* Overexpression of lysine specific demethylase 1 predicts worse prognosis in
644 primary hepatocellular carcinoma patients. *World J. Gastroenterol.* **18**, 6651–6656 (2012).

645 36. Sankar, S. *et al.* EWS and RE1-Silencing Transcription Factor Inhibit Neuronal Phenotype
646 Development and Oncogenic Transformation in Ewing Sarcoma. *Genes Cancer* **4**, 213–223 (2013).

647 37. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting
648 genome-wide expression profiles. *Proc. Natl. Acad. Sci.* **102**, 15545–15550 (2005).

649 38. Boulay, G. *et al.* Epigenome editing of microsatellite repeats defines tumor-specific enhancer
650 functions and dependencies. *Genes Dev.* (2018) doi:10.1101/gad.315192.118.

651 39. Lovén, J. *et al.* Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers. *Cell* **153**,
652 320–334 (2013).

653 40. Whyte, W. A. *et al.* Master Transcription Factors and Mediator Establish Super-Enhancers at Key
654 Cell Identity Genes. *Cell* **153**, 307–319 (2013).

655 41. Kennedy, A. L. *et al.* Functional, chemical genomic, and super-enhancer screening identify sensitivity
656 to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma. *Oncotarget* **6**, 30178–30193 (2015).

657 42. Johnson, K. M. *et al.* Role for the EWS domain of EWS/FLI in binding GGAA-microsatellites required
658 for Ewing sarcoma anchorage independent growth. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 9870–9875
659 (2017).

660 43. Hnisz, D. *et al.* Super-Enhancers in the Control of Cell Identity and Disease. *Cell* **155**, 934–947
661 (2013).

662 44. Agarwal, S. *et al.* LSD1/KDM1A Maintains Genome-wide Homeostasis of Transcriptional Enhancers.
663 *bioRxiv* 146357 (2017) doi:10.1101/146357.

664 45. Kearns, N. A. *et al.* Functional annotation of native enhancers with a Cas9-histone demethylase
665 fusion. *Nat. Methods* **12**, 401–403 (2015).

666 46. Mendenhall, E. M. *et al.* Locus-specific editing of histone modifications at endogenous enhancers.
667 *Nat. Biotechnol.* **31**, 1133–1136 (2013).

668 47. Lee, C. *et al.* Lsd1 as a therapeutic target in Gfi1-activated medulloblastoma. *Nat. Commun.* **10**, 332
669 (2019).

670 48. Cai, C. *et al.* Lysine-Specific Demethylase 1 Has Dual Functions as a Major Regulator of Androgen
671 Receptor Transcriptional Activity. *Cell Rep.* **9**, 1618–1627 (2014).

672 49. Sehrawat, A. *et al.* LSD1 activates a lethal prostate cancer gene network independently of its
673 demethylase function. *Proc. Natl. Acad. Sci. U. S. A.* **115**, E4179–E4188 (2018).

674 50. Melot, T. *et al.* Production and characterization of mouse monoclonal antibodies to wild-type and
675 oncogenic FLI-1 proteins. *Hybridoma* **16**, 457–464 (1997).

676 51. Lessnick, S. L., Dacwag, C. S. & Golub, T. R. The Ewing's sarcoma oncoprotein EWS/FLI induces a
677 p53-dependent growth arrest in primary human fibroblasts. *Cancer Cell* **1**, 393–401 (2002).

678 52. Sankar, S. *et al.* A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular
679 Adhesion in Ewing Sarcoma. *Mol. Cell. Biol.* **33**, 4448–4460 (2013).

680 53. Kaya-Okur, H. S. *et al.* CUT&Tag for efficient epigenomic profiling of small samples and single cells.
681 *Nat. Commun.* **10**, 1–10 (2019).

682 54. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of
683 DNA binding sites. *eLife* **6**, (2017).

684 55. Buenrostro, J. D. *et al.* Single-cell chromatin accessibility reveals principles of regulatory variation.
685 *Nature* **523**, 486–490 (2015).

686 56. Andrews, S. *FastQC: a quality control tool for high throughput sequence data*.

687 57. Krueger, F. *Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality*
688 *and adapter trimming to FastQ files*.

689 58. *Tools (written in C using htllib) for manipulating next-generation sequencing data: samtools/samtools*. (samtools, 2019).

691 59. Dale, R. K., Pedersen, B. S. & Quinlan, A. R. Pybedtools: a flexible Python library for manipulating
692 genomic datasets and annotations. *Bioinformatics* **27**, 3423–3424 (2011).

693 60. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. *Nat.*
694 *Protoc.* **7**, (2012).

695 61. Lun, A. T. L. & Smyth, G. K. csaw: a Bioconductor package for differential binding analysis of ChIP-
696 seq data using sliding windows. *Nucleic Acids Res.* **44**, e45 (2016).

697 62. Zhu, L. J. *et al.* ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data.
698 *BMC Bioinformatics* **11**, 237 (2010).

699 63. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
700 *Bioinformatics* **26**, 841–842 (2010).

701 64. Heinz, S. *et al.* Simple Combinations of Lineage-Determining Transcription Factors Prime cis-
702 Regulatory Elements Required for Macrophage and B Cell Identities. *Mol. Cell* **38**, 576–589 (2010).

703 65. Mootha, V. K. *et al.* PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately
704 downregulated in human diabetes. *Nat. Genet.* **34**, 267 (2003).

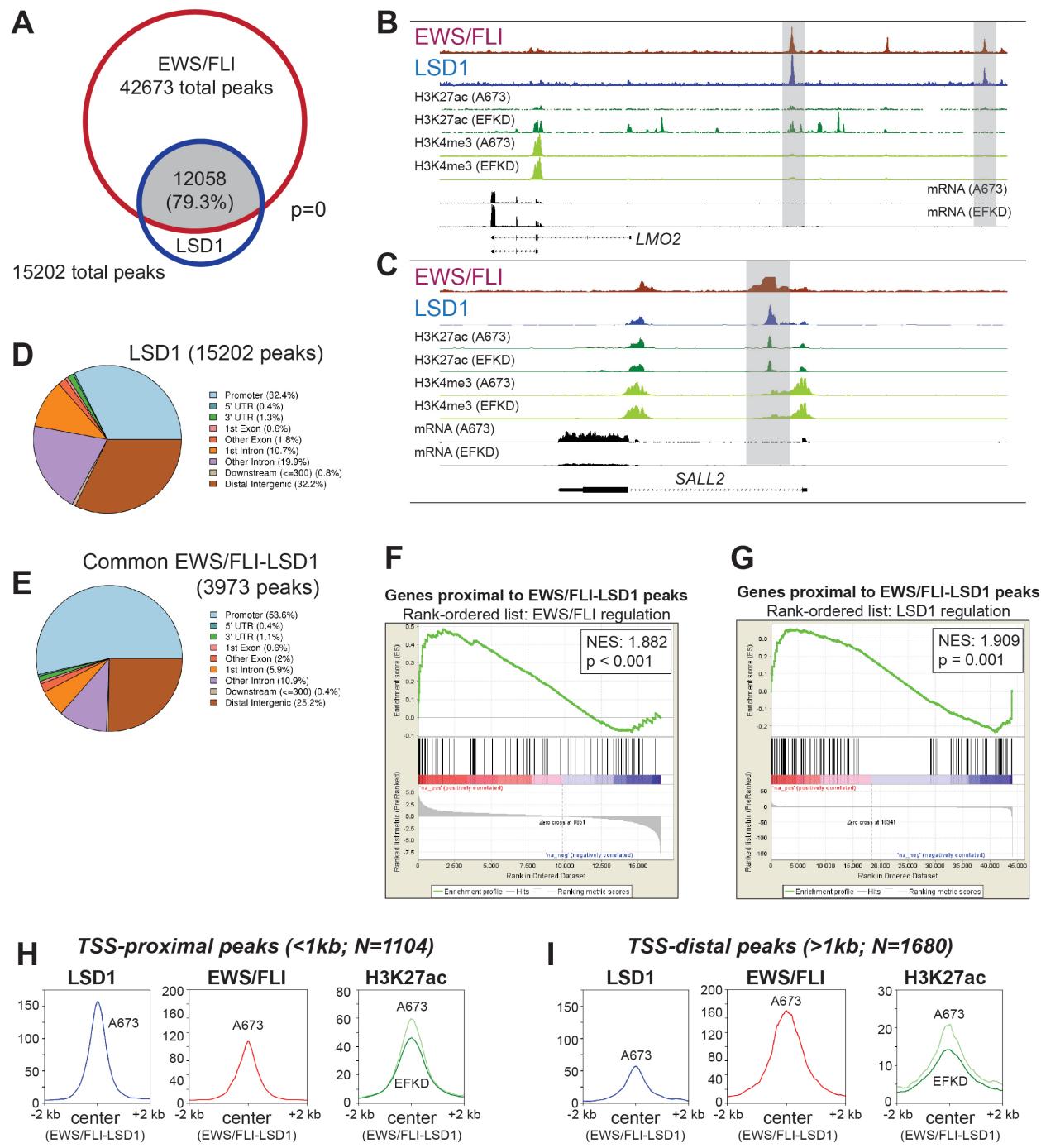
705 66. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data analysis.
706 *Nucleic Acids Res.* **44**, W160–W165 (2016).

707

708

709

710 **TABLES AND FIGURES**

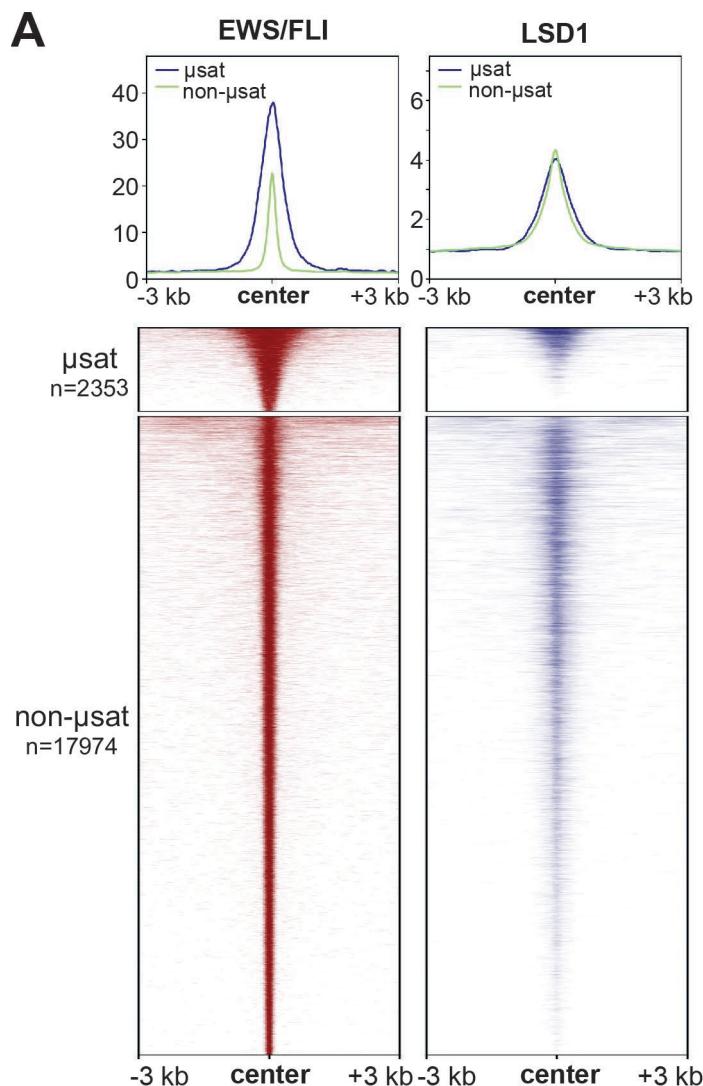

711 **Figure 1. EWS/FLI colocalization with LSD1 is associated with gene activation**

712 A) Venn diagram of EWS/FLI and LSD1 peaks as determined by ChIPPeakAnno; p-value calculated by
713 ChIPPeakAnno. B,C) IGB tracks showing coincidence of EWS/FLI and LSD1 near (B) *LMO2* and (C)
714 *SALL2*. Tracks also show H3K27ac, H3K4me3, and mRNA in the A673 and EFKD conditions. D,E)
715 Genomic distributions of (D) LSD1 peaks in A673 cells and (E) EWS/FLI-LSD1 coincident peaks that are
716 common across all tested cell lines. F,G) GSEA results using promoter-proximal EWS/FLI-LSD1
717 coincident peaks (<5kb to TSS) as the test set (N = 102) and (F) EWS/FLI gene regulation or (G) LSD1
718 gene regulation as the rank-ordered dataset. NES=normalized enrichment score. |NES|>1.5 is significant.
719 H,I) Profile plots for signal intensity of LSD1, EWS/FLI, and H3K27ac within 2 kb of EWS/FLI-LSD1
720 coincident peaks in either A673 cells or EFKD cells as specified. Profile plots are separated into those
721 proximal to (H) or distal to (I) TSS. See also Supplementary Figures 1-7.

722

723

724 **Figure 1**

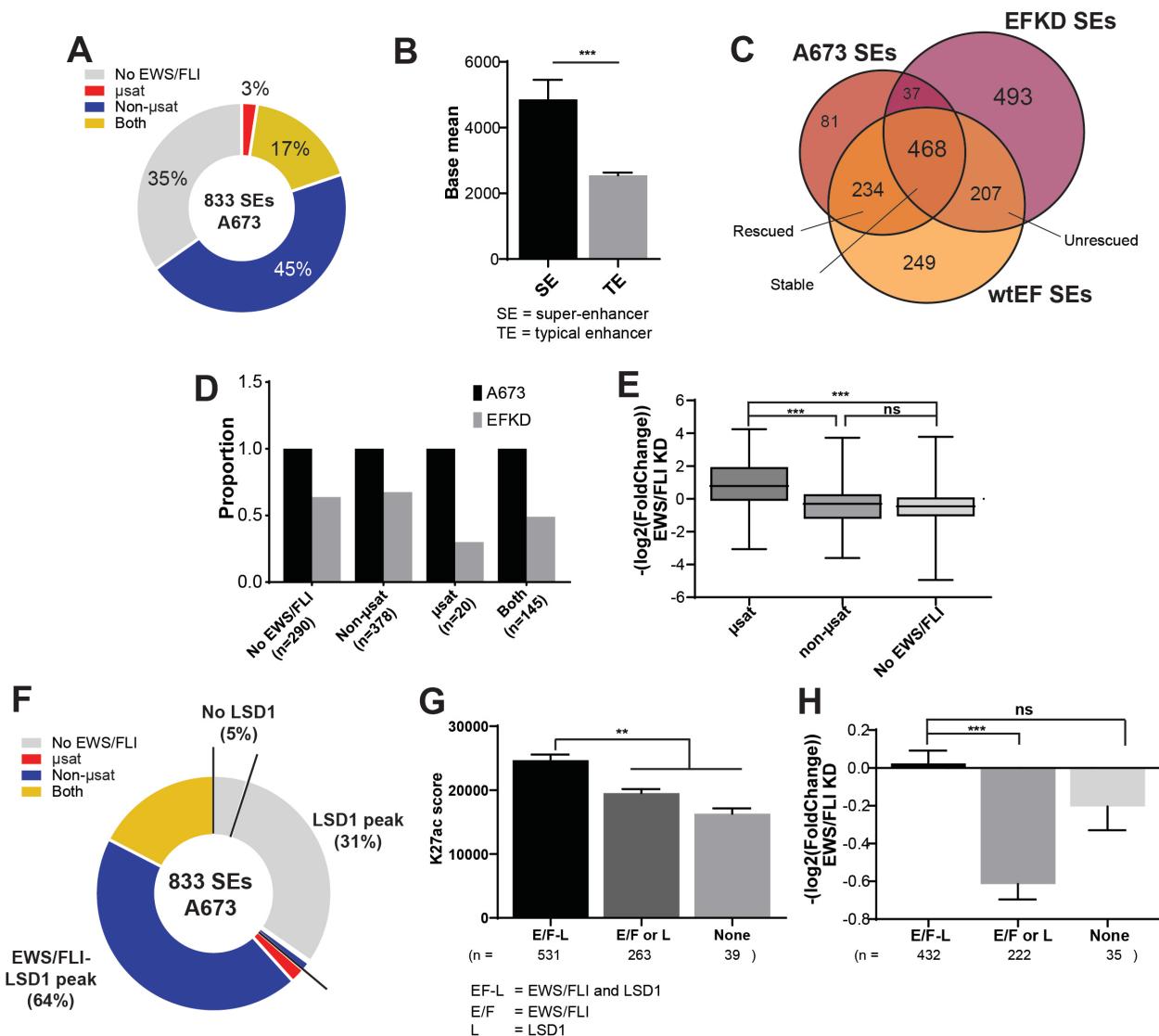

725

726 **Figure 2. LSD1 is enriched at EWS/FLI binding motifs**

727 A) Profile plots and heatmaps of EWS/FLI (red) and LSD1 (blue) within 3 kb of EWS/FLI peaks. GGAA-
728 microsatellite (μ sat) peaks are represented in profile with a blue line and are the top panel in the
729 heatmap. Non-microsatellite (non- μ sat) peaks are represented in profile with a green line and are the
730 bottom panel in the heatmap. B) Top ranked result from HOMER *de novo* motif enrichment analysis with
731 significance value. See also Supplementary Figure 8.

732

733 **Figure 2**


734

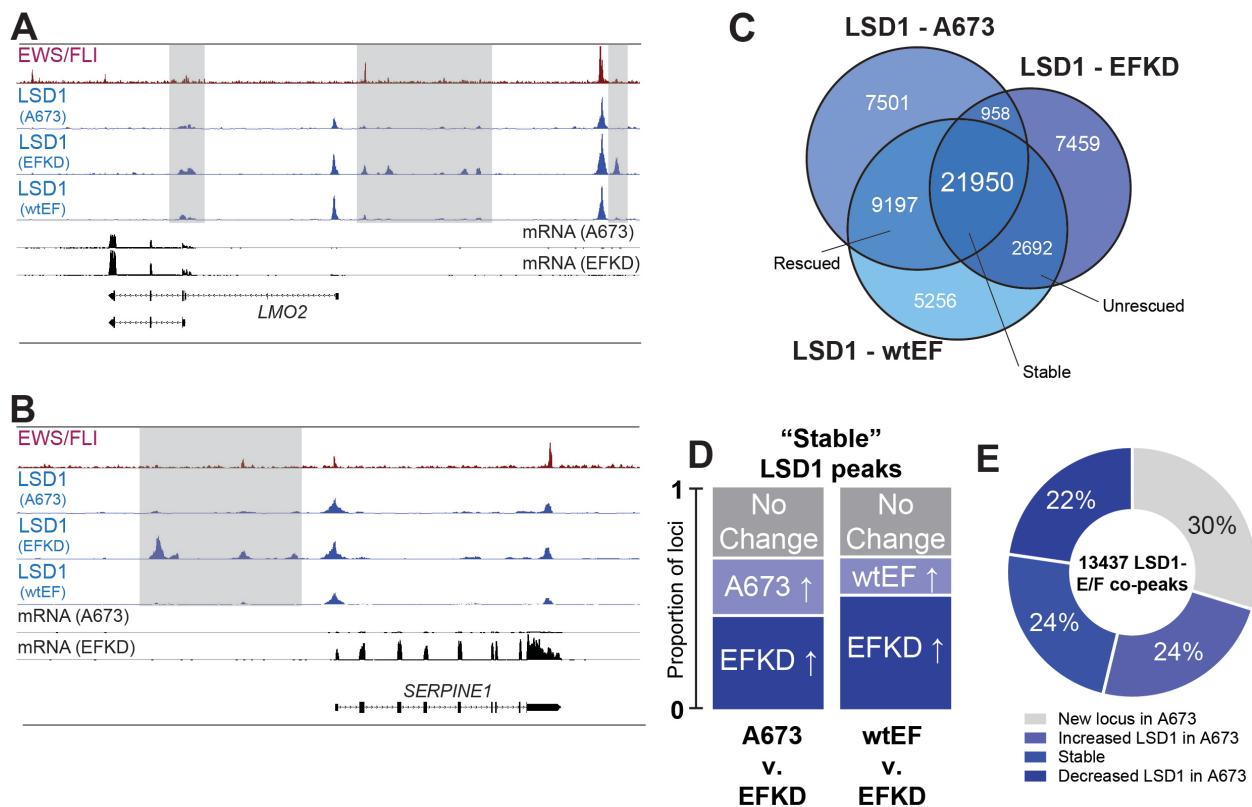
735 **Figure 3. Super-enhancers in A673 cells are associated with both EWS/FLI and LSD1**

736 A) Pie chart distribution of super-enhancers (SEs) in A673 cells by type of overlapped EWS/FLI-bound
737 motif. B) Base mean expression for genes associated with super- (N=615) and typical (N=6958)
738 enhancers in A673 cells. Mean and SD are shown and p-values were determined using an unpaired t-
739 test. ***p<0.001. C) Venn diagram of SEs in A673, EFKD, and wtEF cells as determined by
740 ChIPPeakAnno. D) Proportions of SEs present in A673 and EFKD cells sorted by the type of EWS/FLI-
741 bound motif overlapped by the SE. E) EWS/FLI-mediated differential expression for genes associated
742 with SEs in A673 cells sorted by the type of EWS/FLI-bound motif overlapped by the SE. Mean and SD
743 are shown and p-values were determined using one-way ANOVA with multiple comparison testing
744 (**p<0.001, **p<0.01, *p<0.05.) F) Pie chart distribution of SEs by type of EWS/FLI and LSD1 overlap.
745 G,H) (G) H3K27ac score calculated from the ROSE algorithm and (H) EWS/FLI-mediated differential
746 expression of nearby genes for SEs in A673 cells plotted by type of overlap with EWS/FLI and LSD1. EF-
747 L=EWS/FLI and LSD1 coincident peak, E/F=EWS/FLI only, L=LSD1 only. Mean and SD are shown. N for
748 differential expression and base mean is lower for those K27ac scores because not all genes near SEs
749 were detected by RNA-seq. P-values were determined using one-way ANOVA with multiple comparison
750 testing (**p<0.001, **p<0.01, *p<0.05.) See also Supplementary Figures 9-11 and Supplementary Tables
751 1-14.

752

753 **Figure 3**

754


755 **Figure 4. EWS/FLI alters the genome-wide occupancy of LSD1**

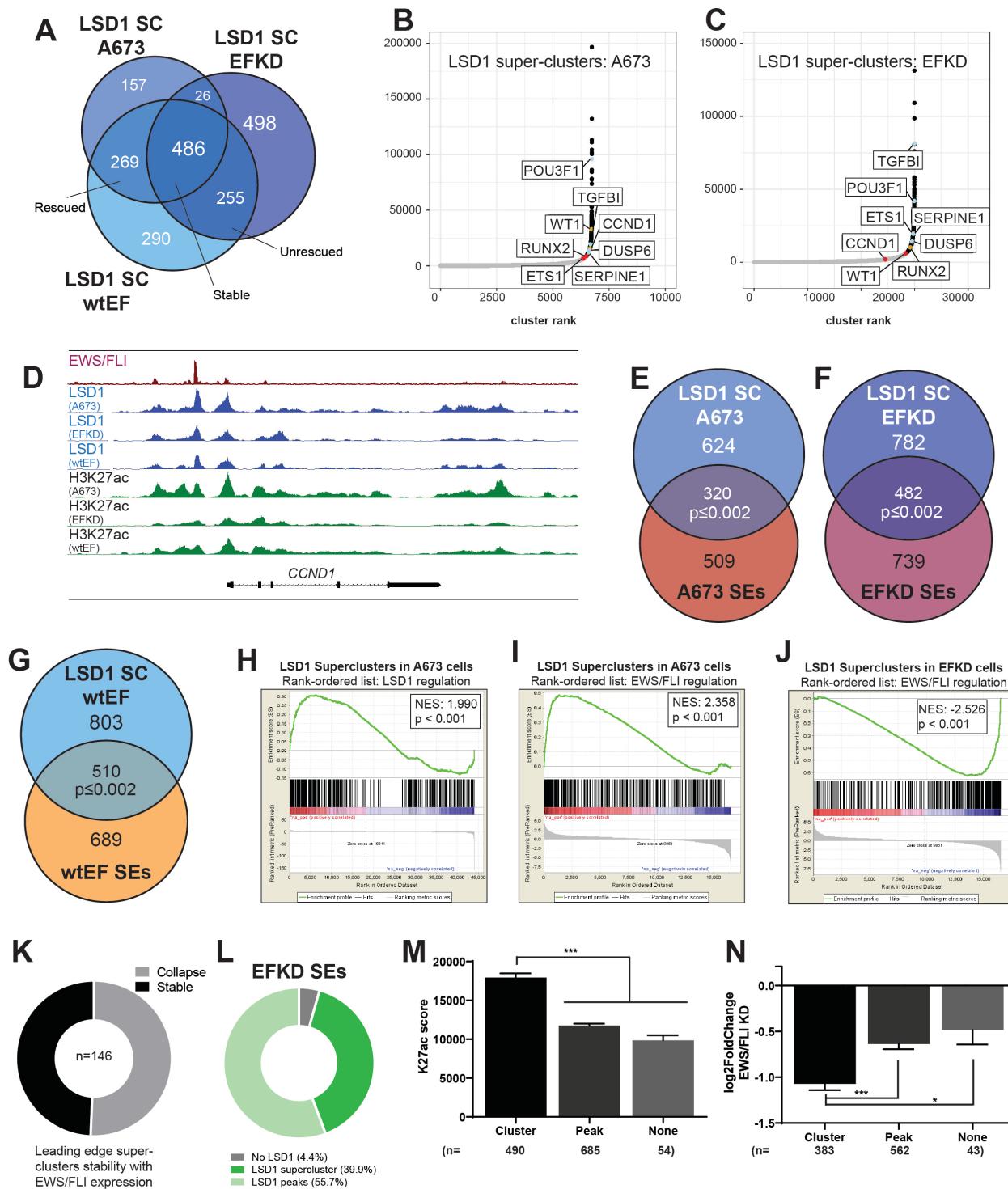
756 A,B) IGB tracks showing EWS/FLI and LSD1 near (A) *LMO2* and (B) *SERPINE1*. Tracks show LSD1 in
757 A673, EFKD, and wtEF cells and mRNA in the A673 and EFKD conditions. C) Venn diagram of LSD1
758 peaks in A673, EFKD, and wtEF cells as determined by ChIPPeakAnno. D) Bar charts showing the
759 dynamics of relative proportions of “stable” LSD1 peaks (detected in A673, EFKD and wtEF). E) Pie chart
760 distribution showing proportion of EWS/FLI-LSD1 coincident peaks with LSD1 binding dynamics as
761 compared to LSD1 localization in EFKD cells. See also Supplementary Figure 12.

762

763

764 **Figure 4**

765

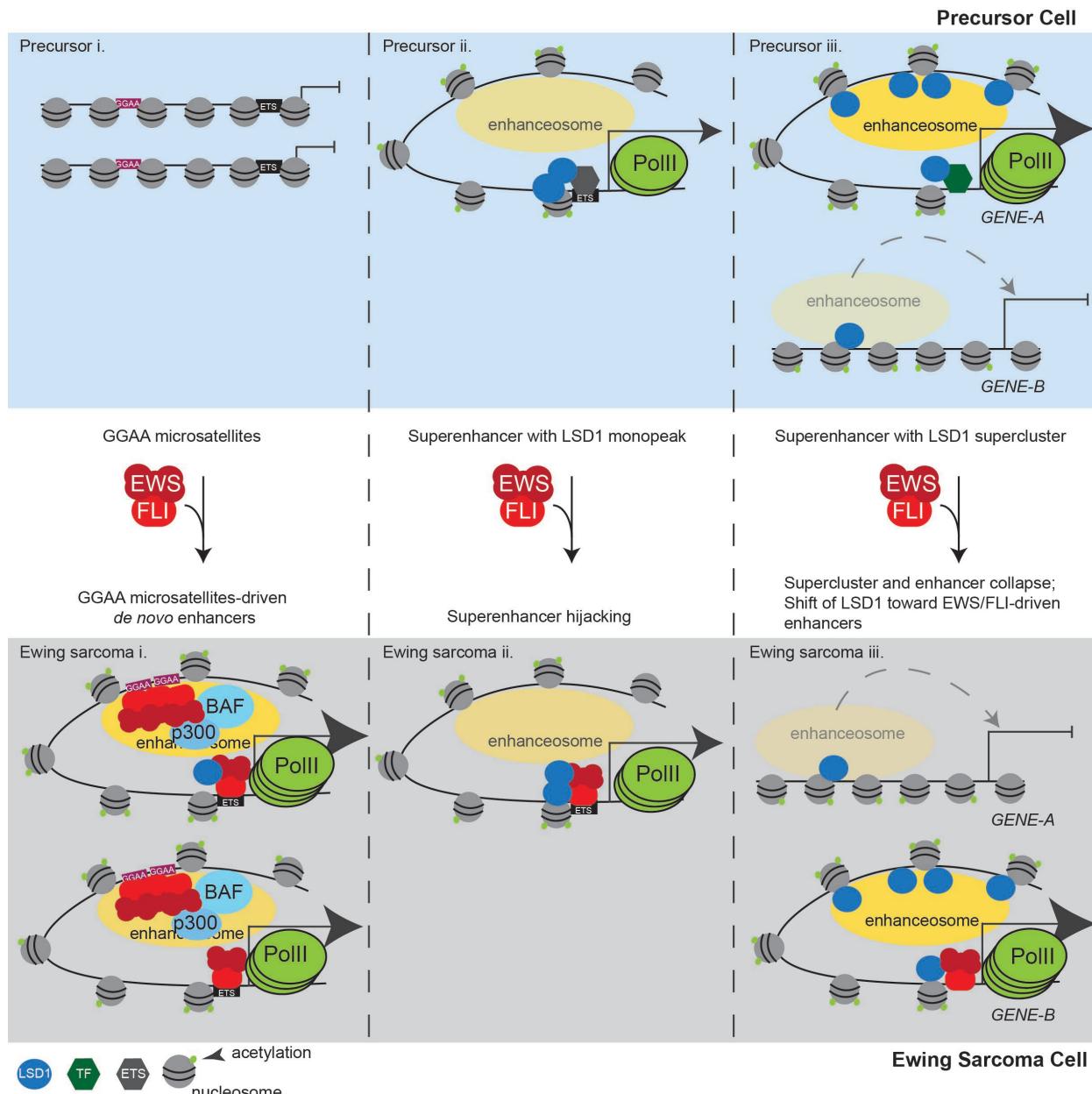

766 **Figure 5. LSD1 binds in super-clusters that are disrupted by EWS/FLI**

767 A) Venn diagram of LSD1 SCs in A673, EFKD, and wtEF cells B,C) Plotted output of the ROSE analysis
768 for LSD1 superclusters (SCs) in (B) A673 and (C) EFKD cells. D) IGB tracks showing coincidence of
769 EWS/FLI, LSD1, and H3K27ac in a SE and LSD1 SC near CCND1. Tracks show LSD1 and H3K27ac in
770 A673, EFKD, and wtEF conditions. E-G) Venn diagrams of SEs and LSD1 SCs in (E) A673 cells, (F)
771 EFKD cells, and (G) wtEF cells. Overlaps and p-values were determined by ChIPPeakAnno. H-J) GSEA
772 results using genes near (H,I) LSD1 SCs in A673 cells (N=427) or (J) EFKD cells (N=500) as the test set
773 and either LSD1 gene regulation in A673 cells (H) or EWS/FLI gene regulation (I,J) as the rank-ordered
774 dataset. NES=normalized enrichment score. $|NES| > 1.5$ is significant. K) Pie chart distribution showing the
775 number of leading edge LSD1 SCs (from J) that collapse in A673 cells. L) Pie chart distribution showing
776 the overlap of SEs in EFKD cells with different types of LSD1-binding. M,N) (M) H3K27ac score
777 calculated from the ROSE algorithm and (N) EWS/FLI-mediated differential expression of genes near SEs
778 in EFKD cells plotted by type of overlap with LSD1. Mean and SD are shown. N for (N) is lower than (M)
779 because not all genes near SEs were detected by RNA-seq. p-values were determined using one-way
780 ANOVA with multiple comparison testing (**p<0.001, **p<0.01, *p< 0.05.) See also Supplementary
781 Figures 13-14 and Supplementary Tables 2, 4, 6, and 15-20.

782

783

784 **Figure 5**



786 **Figure 6. LSD1 is tightly linked to the shifting enhancer landscape in Ewing sarcoma**

787 A) Model figure showing how EWS/FLI remodels the enhancer landscape and the role of LSD1 in this
788 remodeling. The top panels depict enhancer states found in a precursor cell and the bottom panels
789 represent a Ewing sarcoma cell. Panel (i) shows chromatin remodeling which results in de novo enhancer
790 formation at GGAA- μ sats. Panel (ii) shows chromatin remodeling which occurs at enhancers bound by
791 LSD1 with another ETS family member in precursor cells. These enhancers are hijacked by EWS/FLI.
792 Panel (iii) shows supercluster and enhancer collapse which occurs at enhancers with LSD1 superclusters
793 in precursor cells with establishment of an LSD1-decorated supercluster driven by EWS/FLI. The number
794 of PolII molecules by any gene correlates to the level of transcription from those genes.

795

796 **Figure 6**

797

798

799 **SUPPLEMENTAL FIGURES**

800 **Supplementary Figure 1**

801 A) Genomic distributions of EWS/FLI-LSD1 coincident peaks in A673 cells. B-D) Venn diagram of
802 EWS/FLI and LSD1 peaks in (B) EWS-502, (C) SK-N-MC, and (D) TC71 cells as determined by
803 ChIPPeakAnno; p-value calculated by ChIPPeakAnno. E-G) Genomic distributions of LSD1 peaks and
804 EWS/FLI-LSD1 coincident peaks in (E) EWS-502, (F) SK-N-MC, and (G) TC71 cells.

805

806 **Supplementary Figure 2**

807 A,B) Venn diagram of (A) EWS/FLI and (B) LSD1 peaks in all cell lines tested as determined by
808 ChIPPeakAnno. C) Venn diagram of EWS/FLI and LSD1 peaks common across all cell lines as
809 determined by ChIPPeakAnno. D) Genomic distributions of LSD1 peaks common across cell lines.

810

811 **Supplementary Figure 3**

812 A-E) Venn diagram of EWS/FLI and LSD1 peaks that pass an 8-fold enrichment cutoff in (A) A673 cells,
813 (B) EWS-502 cells, (C) SK-N-MC cells, and (D) TC71 cells as determined by ChIPPeakAnno; p-value
814 calculated by ChIPPeakAnno. (E) shows the overlap between common EWS/FLI and common LSD1
815 peaks.

816

817 **Supplementary Figure 4**

818 A-E) Genomic distributions of LSD1 peaks and EWS/FLI-LSD1 coincident peaks which pass an 8-fold
819 enrichment in (A) A673, (B) EWS-502, (C) SK-N-MC, and (D) TC71 cells. (E) depicts genomic distribution
820 of peaks common across cell lines.

821

822 **Supplementary Figure 5**

823 A,B) IGB tracks showing coincidence of EWS/FLI and LSD1 near EWS/FLI-repressed gene *DUSP6* (A)
824 and EWS/FLI-activated gene *HES1* (B). Tracks also show H3K27ac, H3K4me3, and mRNA in the A673
825 and EWS/FLI-depleted (EFKD) conditions. C-E) Genomic tracks showing localization of LSD1 and
826 EWS/FLI near (C) *LMO2*, (D) *SALL2*, and (E) *DUSP6* in all tested cell lines.

827

828 **Supplementary Figure 6**

829 A-H) GSEA results using promoter-proximal EWS/FLI-LSD1 coincident peaks (<5kb to TSS) in different
830 cell lines (A-F) or common to all cell lines (G,H) as the test and (A-C,G) EWS/FLI gene regulation or (D-
831 F,H) LSD1 gene regulation as the rank-ordered dataset. NES=normalized enrichment score. |NES|>1.5 is
832 significant. EWS-502: n=164. SK-N-MC: n=182. TC71: n=87. Common: n=123

833

834 **Supplementary Figure 7**

835 A,B) Profile plots for signal intensity of H3K4me1, H3K4me2, and H3K4me3 within 3 kb of EWS/FLI-LSD1
836 coincident peaks in either A673 cells or EFKD as specified. Profile plots are separated into those regions
837 either proximal to (A, n=1104) or distal to (B, n=1680) TSS.

838

839 **Supplementary Figure 8**

840 A-C) Profile plots and heatmaps of EWS/FLI (red) and LSD1 (blue) within 3 kb of EWS/FLI peaks in (A)
841 EWS-502, (B) SK-N-MC, and (C) TC71 cells. GGAA-microsatellite (μsat) peaks are represented in profile
842 with a blue line and are the top panel in the heatmap. Non-microsatellite (non-μsat) peaks are
843 represented in profile with a green line and are the bottom panel in the heatmap. D) Top two ranked
844 results from HOMER *de novo* motif enrichment analysis in different cells with significance value.

845

846 **Supplementary Figure 9; related to Supplementary Tables 1-6**

847 A) Plotted output of the ROSE analysis for super-enhancers in A673 cells. B,C) Western blot validation of
848 EWS/FLI KD in EFKD cells and rescue with 3XFLAG-EWS/FLI in wtEF cells in (B) replicate 1 and (C)
849 replicate 2. Ectopic EWS/FLI was introduced following RNAi-mediated depletion of EWS/FLI using iEF-2
850 or an iLuc (negative control) construct. D,E) Plotted output of the ROSE analysis for super-enhancers in
851 (D) EFKD and (E) wtEF cells. F) Base mean expression of genes associated with super-enhancers in
852 A673 cells separated by the type of overlap with EWS/FLI and LSD1. E/F-L = EWS/FLI and LSD1, EF =
853 EWS/FLI only, L = LSD1 only, or None. Mean and SD are shown and P-values were determined using
854 one-way ANOVA with multiple comparison testing. No significant differences were detected.

855

856 **Supplementary Figure 10; related to Supplementary Tables 7-14**

857 A-D) Pie chart distribution of super-enhancers (SEs) in (A) A673, (B) EWS-502, (C) SK-N-MC, and (D)
858 TC71 cells (CUT&RUN) by type of overlapped EWS/FLI-bound motif. E-H) Pie chart distribution of SEs in
859 (E) A673, (F) EWS-502, (G) SK-N-MC, and (H) TC71 cells (CUT&RUN) by type of EWS/FLI and LSD1
860 overlap. I-L) H3K27ac score calculated from the ROSE algorithm for SEs in (I) A673, (J) EWS-502, (K)
861 SK-N-MC, and (L) TC71 cells (CUT&RUN) plotted by type of overlap with EWS/FLI and LSD1. E/F-
862 L=EWS/FLI and LSD1 coincident peak, EF=EWS/FLI only, L=LSD1 only. Mean and SD are shown and p-
863 values were determined using one-way ANOVA with multiple comparison testing (**p<0.001, **p<0.01,
864 *p<0.05.) N for differential expression is lower for those K27ac scores because not all genes near SEs
865 were detected by RNA-seq.

866

867 **Supplementary Figure 11; related to Supplementary Tables 8, 10, 12, 14**

868 A-D) GSEA results using genes near SEs with an EWS/FLI-LSD1 coincident peak in (A) A673 cells
869 (CUT&RUN, n=319), (B) EWS-502 cells (n=545), (C) SK-N-MC cells (n=491), and (D) TC71 cells (n=251)
870 as the test set and LSD1 gene regulation in A673 cells as the rank-ordered dataset. NES = normalized
871 enrichment score. |NES| > 1.5 is significant.

872

873 **Supplementary Figure 12**

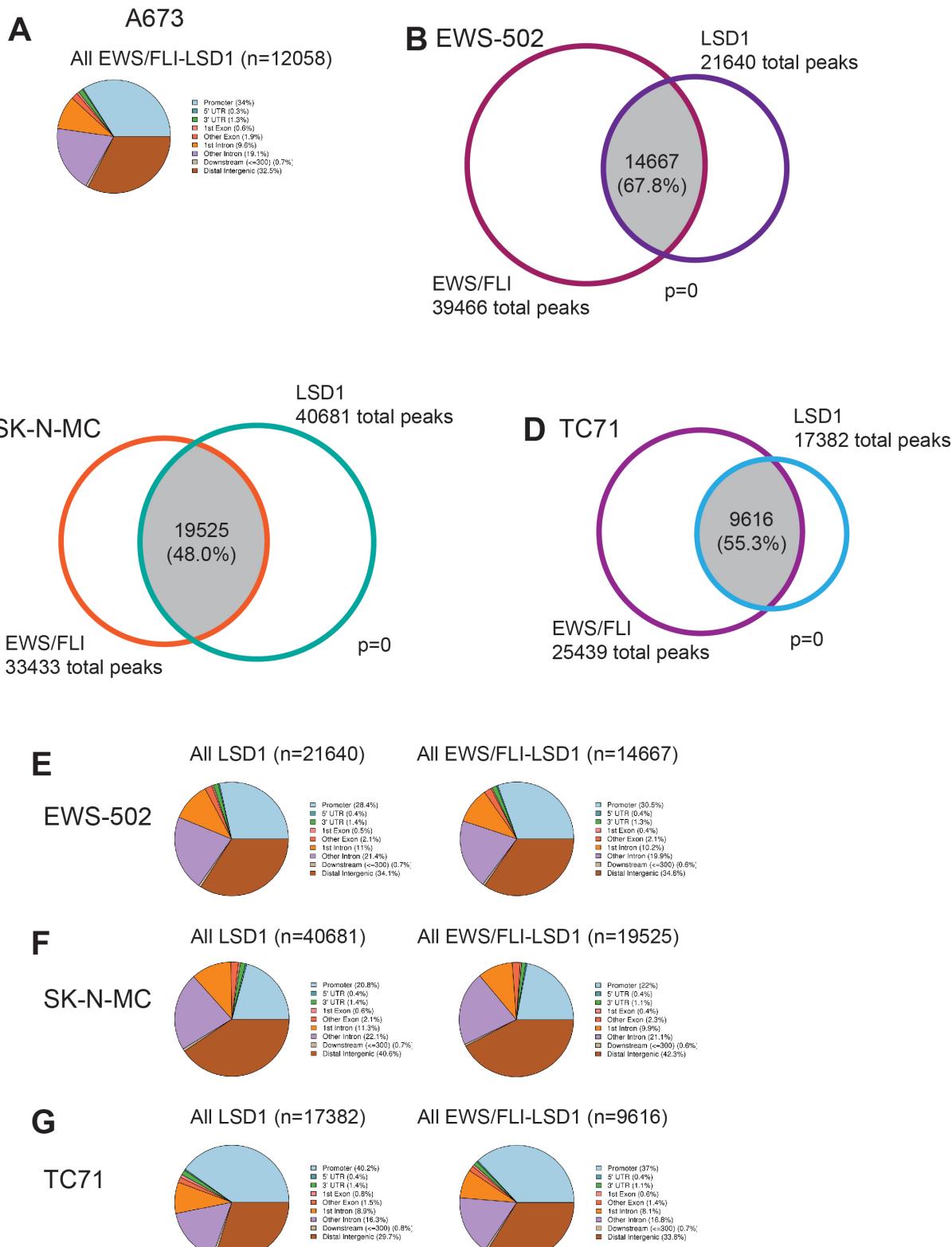
874 IGB tracks showing EWS/FLI and LSD1 near *SERPINE1*, *AP1S1*, *VGF*, and *NAT16*. Tracks show the
875 sensitivity of CUT&Tag to detect changes in LSD1 levels between A673, EFKD, and wtEF cells, with a
876 region over *SERPINE1* showing increased LSD1 with EWS/FLI depletion, and another region near *VGF*
877 showing decreased LSD1 with EWS/FLI depletion.

878

879 **Supplementary Figure 13; related to Supplementary Tables 1-6, 15-20**

880 A) Plotted output of the ROSE analysis for LSD1 superclusters (SCs) in wtEF cells. B-D) IGB tracks
881 showing coincidence of EWS/FLI, LSD1, and H3K27ac in a super-enhancer and LSD1 super-cluster near
882 *DUSP6* (B), *ETS1* (C), and *TGFB1* (D). Tracks show LSD1 and H3K27ac in A673, EFKD, and wtEF
883 conditions. In (C) the super-enhancer and super-cluster are only present in EFKD cells.

884

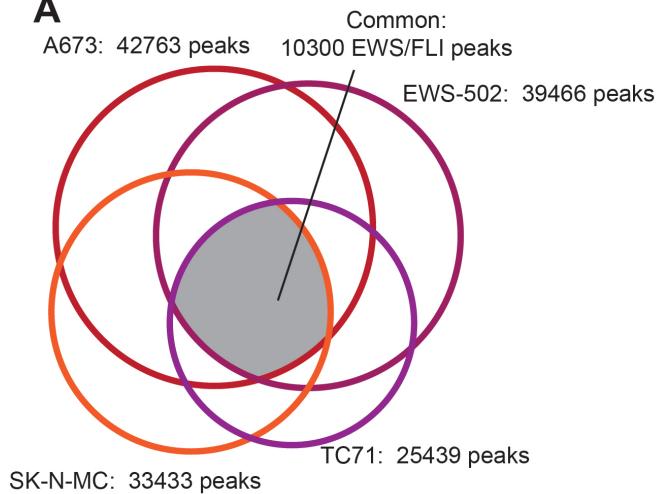

885 **Supplementary Figure 14; related to Supplementary Tables 2, 4, and 6**

886 A,B) Pie chart distribution showing the overlap of SEs in (A) A673 and (B) wtEF cells with different types
887 of LSD1-binding. C,D) H3K27ac score calculated from the ROSE algorithm for (C) A673 and (D) wtEF
888 cells plotted by type of overlap with LSD1. E-G) Base mean expression of genes associated with super-
889 enhancers in (E) A673, (F) EFKD, and (G) wtEF cells separated by the type of overlap with LSD1. H,I)
890 EWS/FLI-mediated differential expression of genes near SEs in (H) A673 and (I) wtEF cells plotted by
891 type of overlap with LSD1. Mean and SD are shown and p-values were determined using one-way
892 ANOVA with multiple comparison testing (**p<0.001, **p<0.01, *p< 0.05). N for differential expression
893 and base mean is lower for those K27ac scores because not all genes near SEs were detected by RNA-
894 seq. J) Pie chart distribution showing the number of LSD1 SCs in LSD1 SC-containing SEs unique to
895 EFKD cells that collapse with EWS/FLI expression.

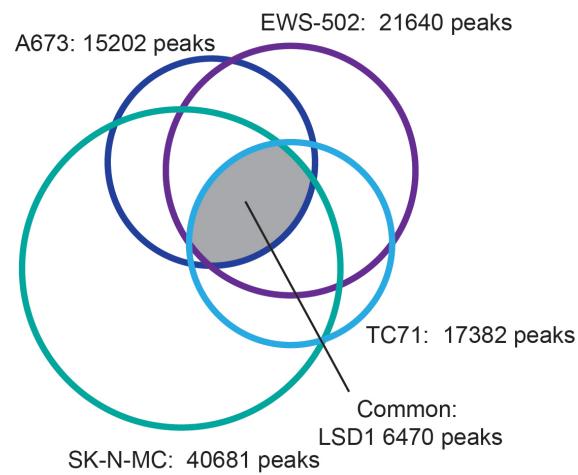
896

897

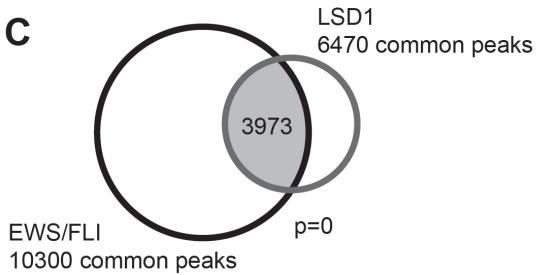
Supplementary Figure 1

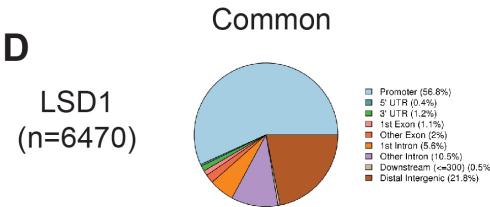

898

899


900

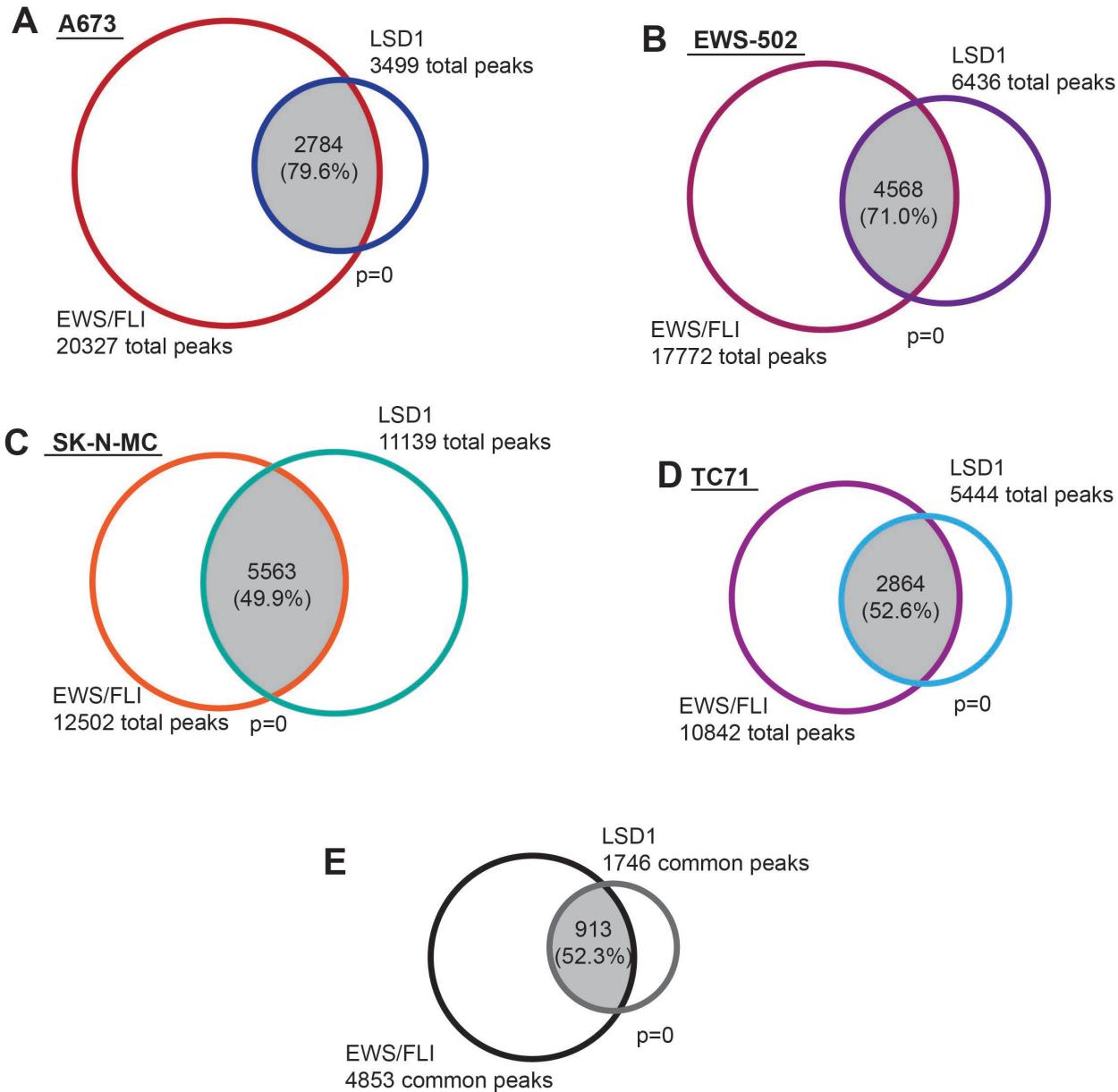
Supplementary Figure 2


A


B

C

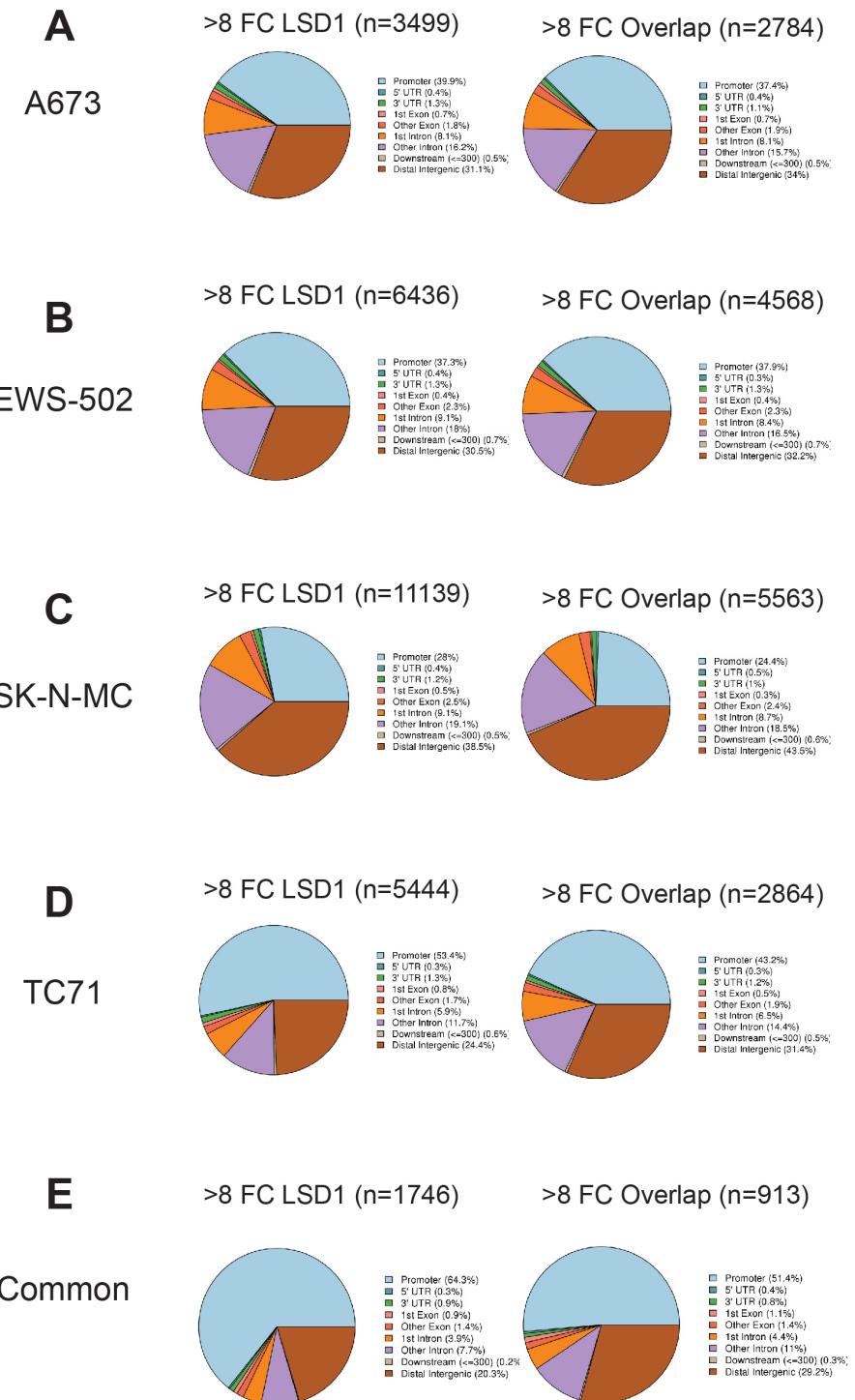
D

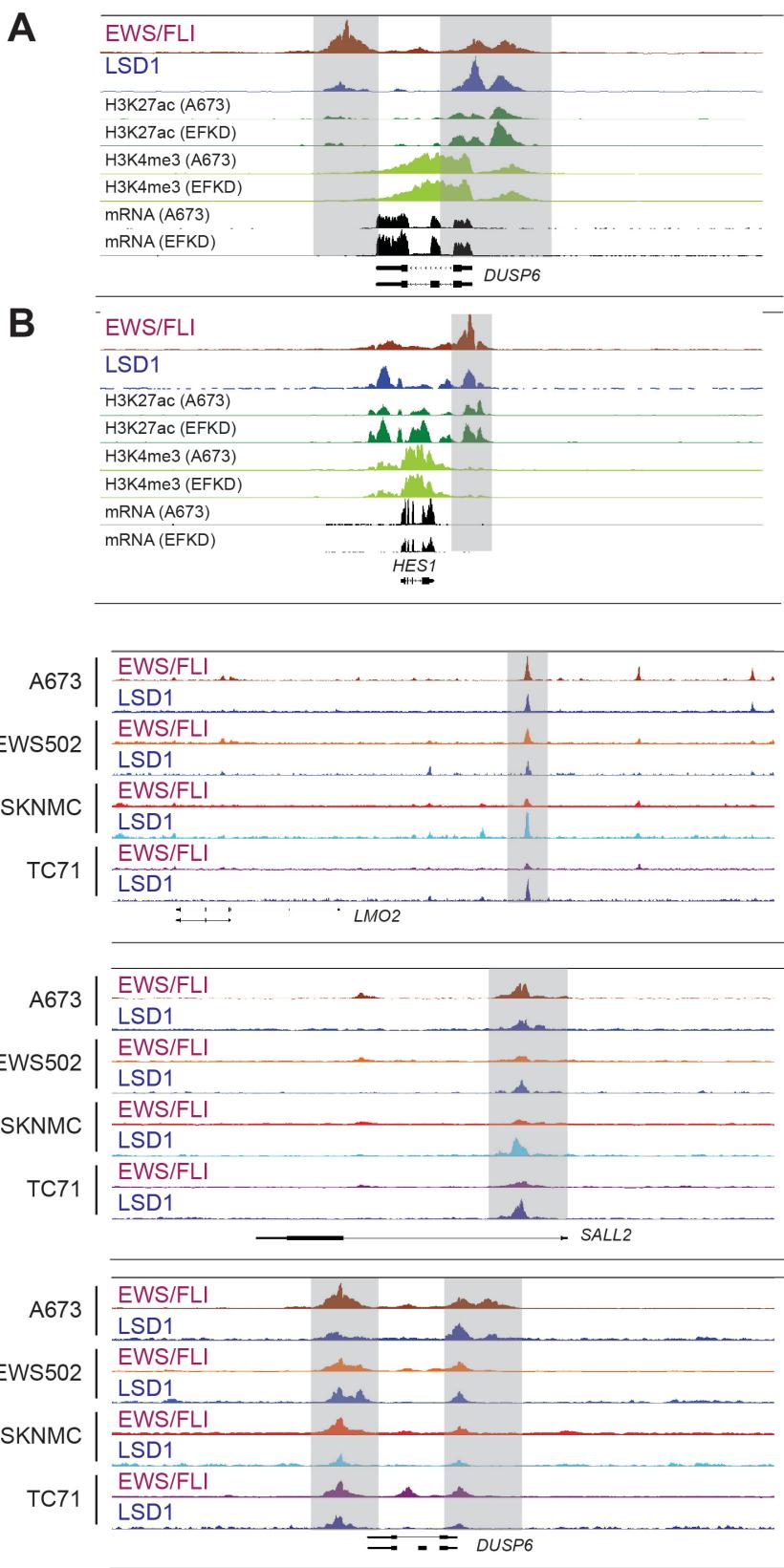

901

902

903

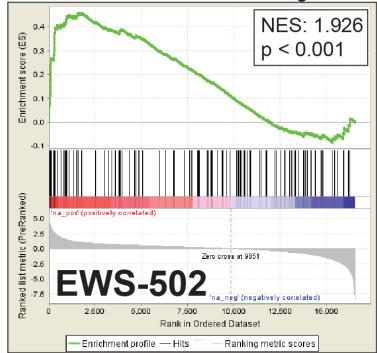
Supplementary Figure 3


Peaks with >8FC enrichment over background

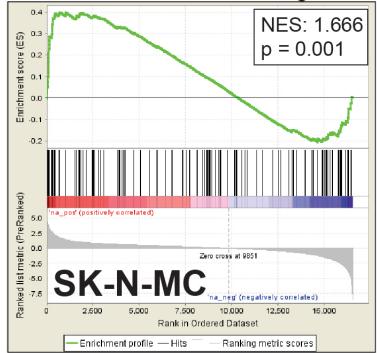

904

905

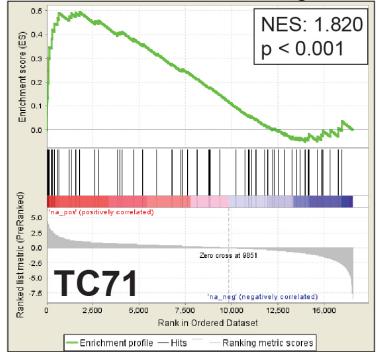
Supplementary Figure 4

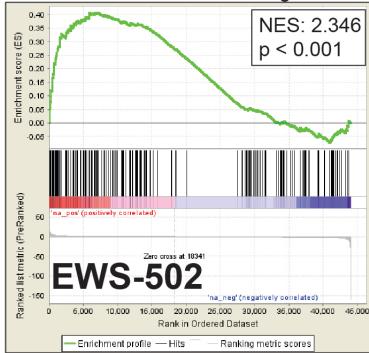


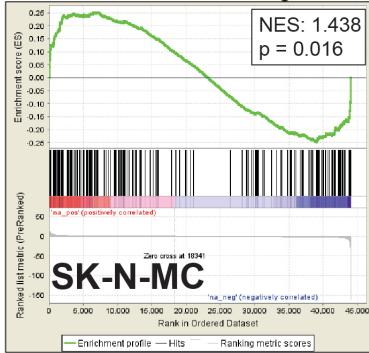
Supplementary Figure 5

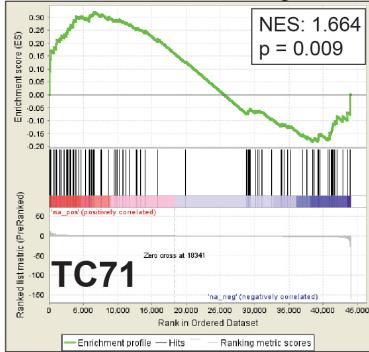


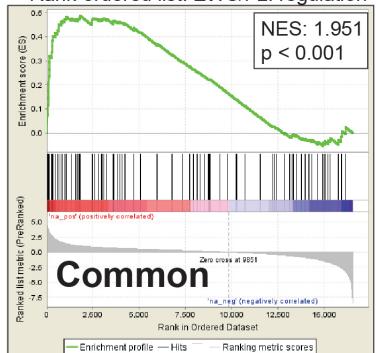
Supplementary Figure 6

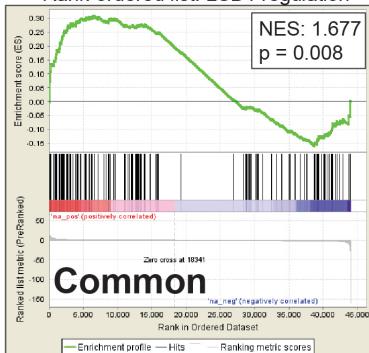

A Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: EWS/FLI regulation

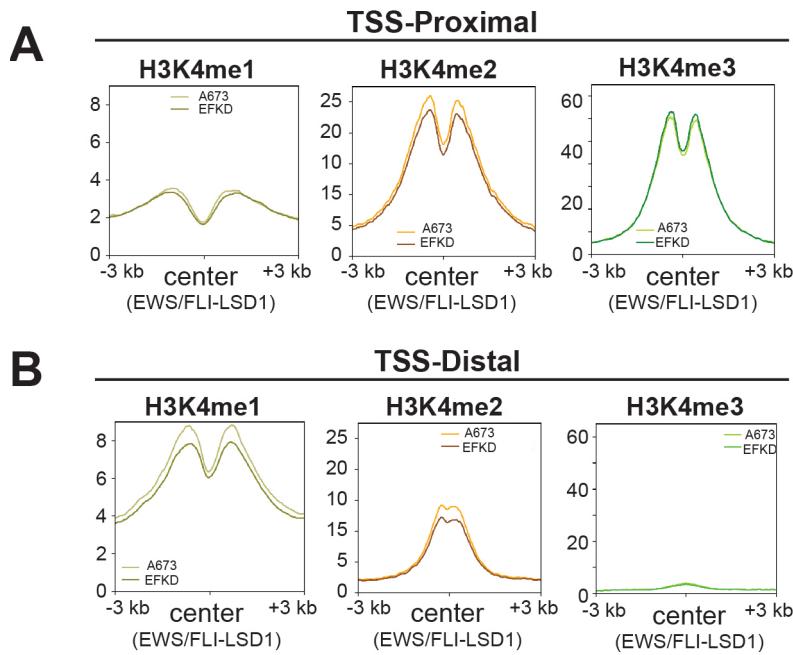

B Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: EWS/FLI regulation

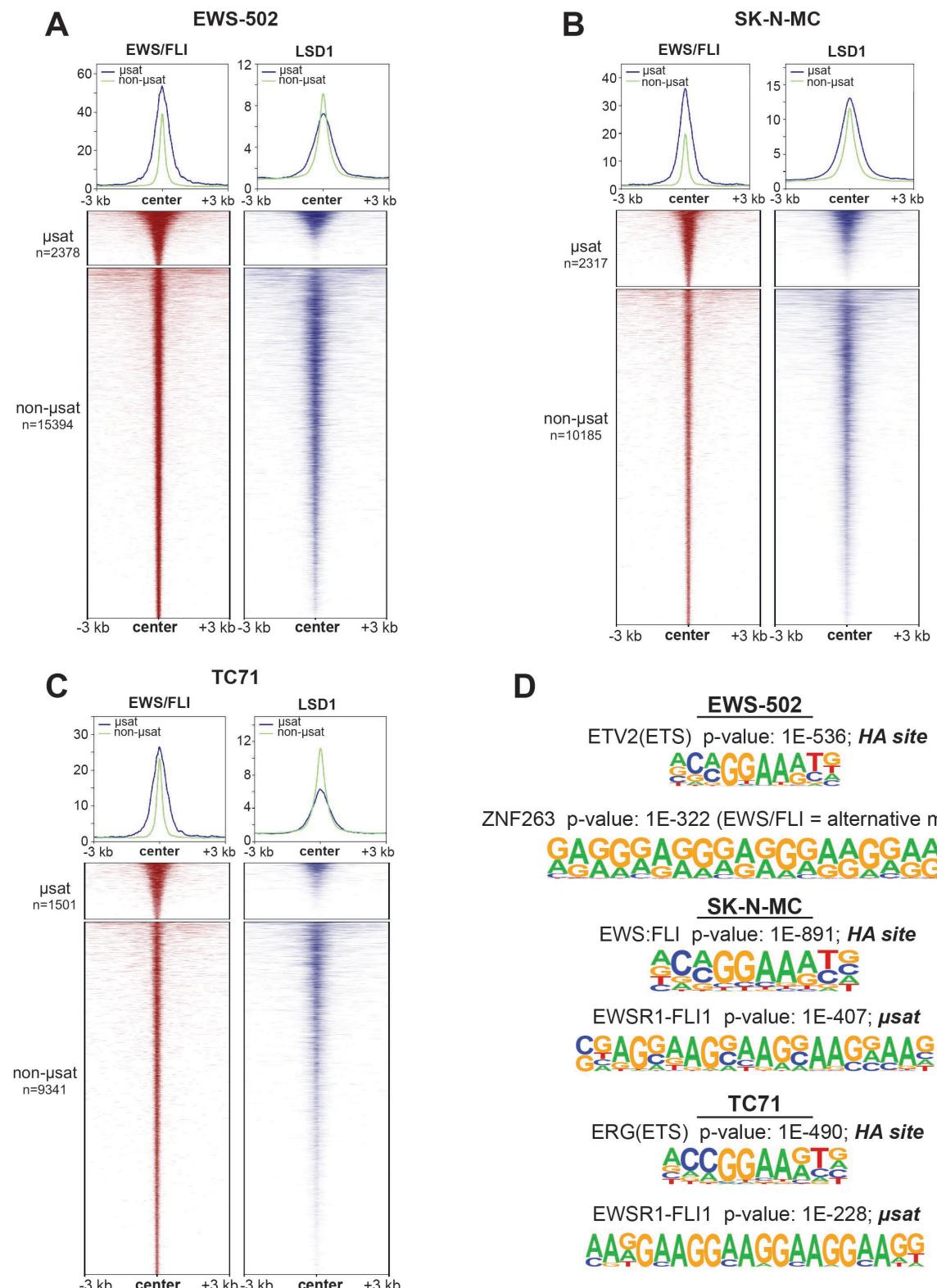

C Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: EWS/FLI regulation

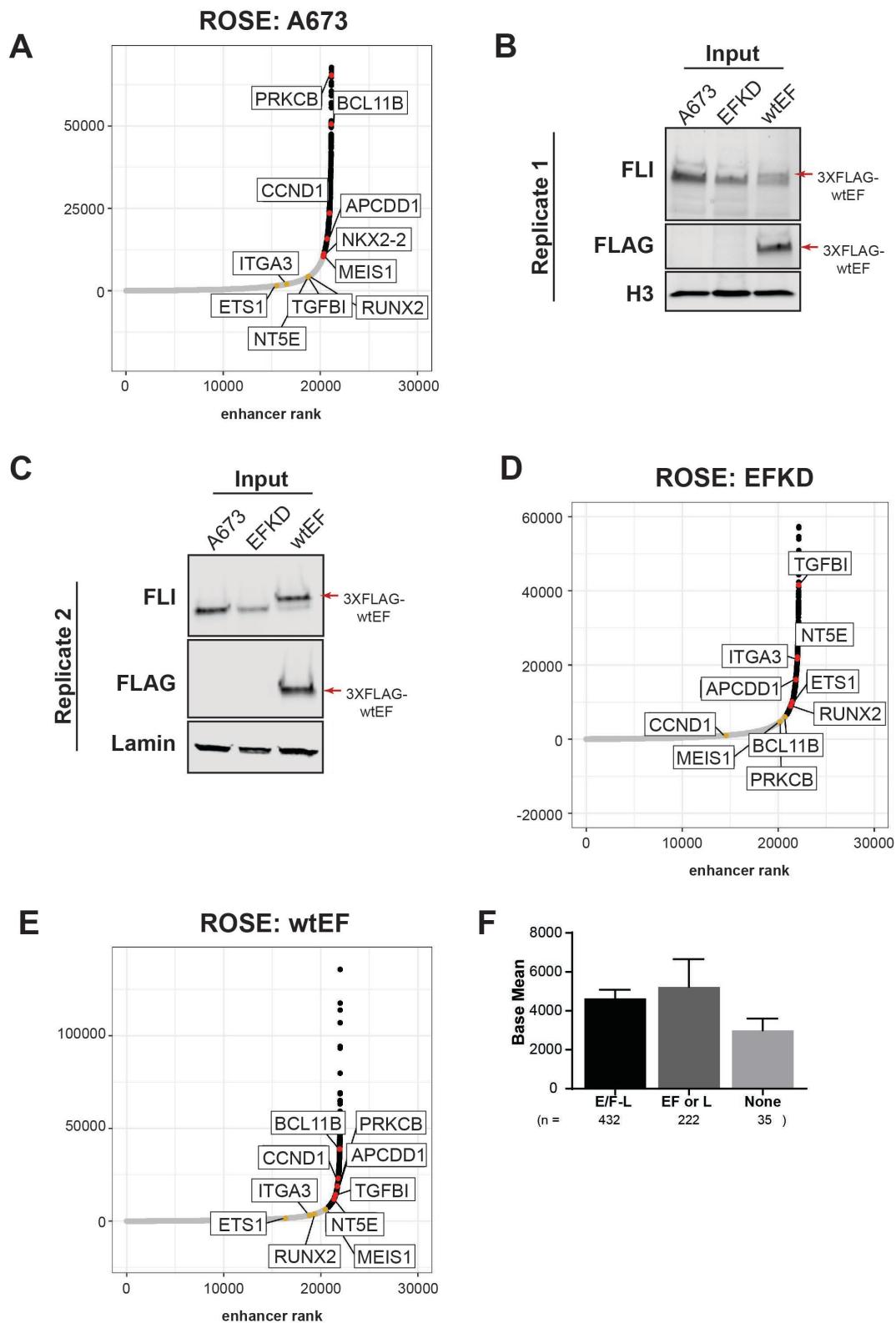

D Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: LSD1 regulation

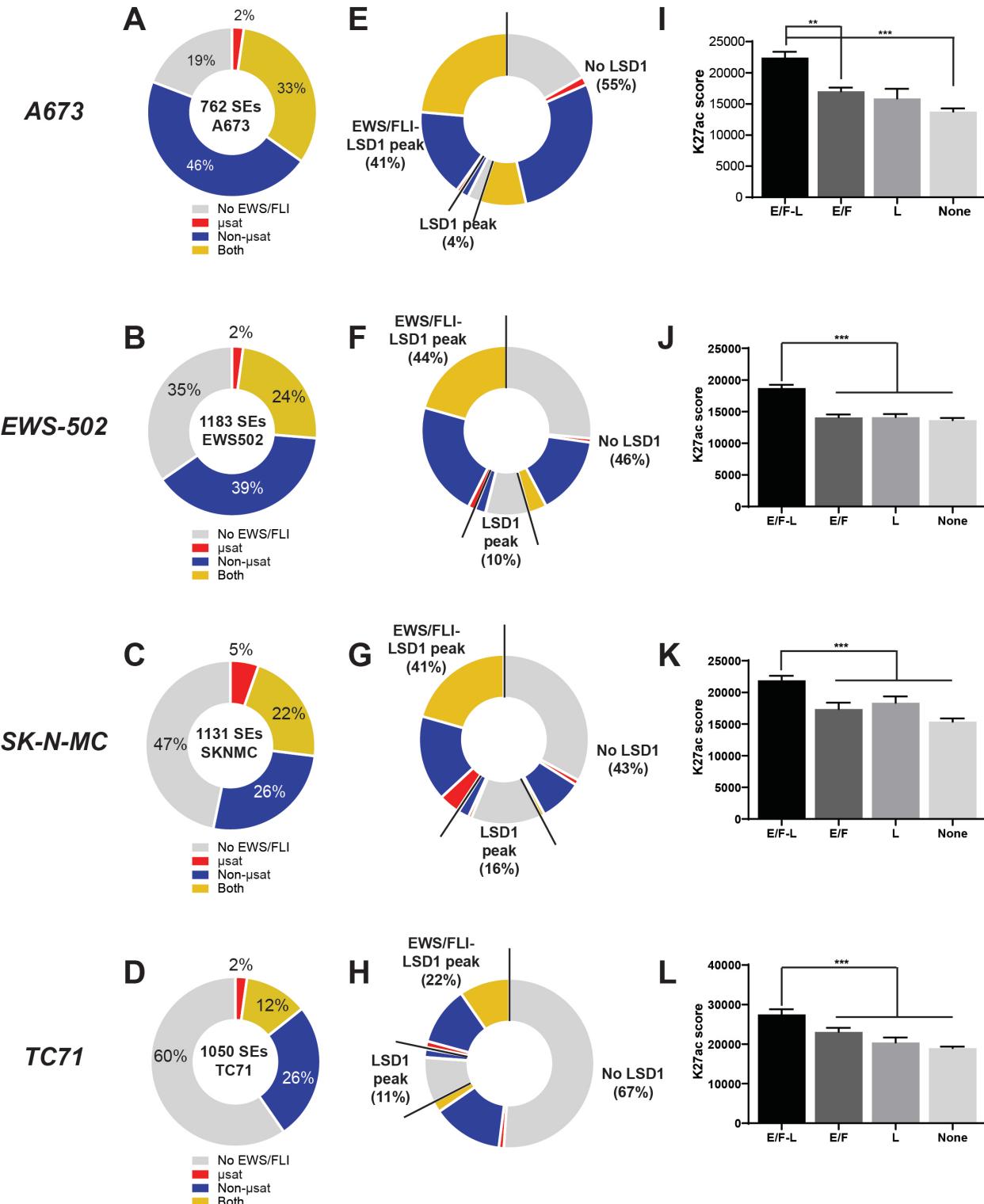

E Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: LSD1 regulation


F Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: LSD1 regulation


G Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: EWS/FLI regulation

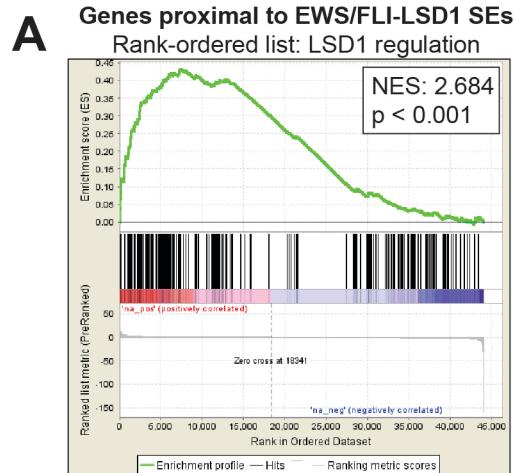

H Genes proximal to EWS/FLI-LSD1 peaks
Rank-ordered list: LSD1 regulation


Supplementary Figure 7

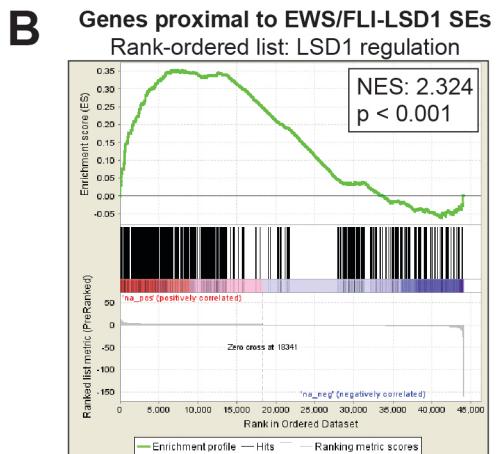

Supplementary Figure 8

Supplementary Figure 9; related to Supplementary Tables 1-6

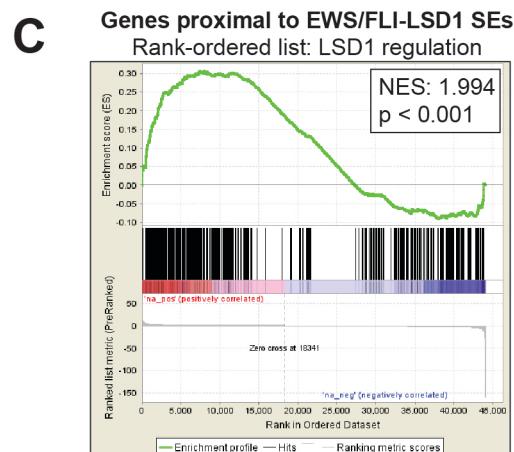
Supplementary Figure 10; related to Supplementary Tables 7-14

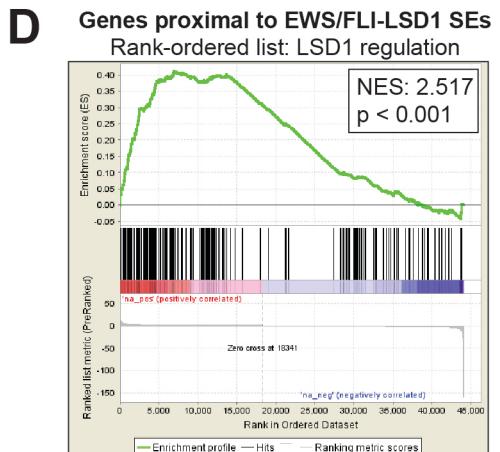


918

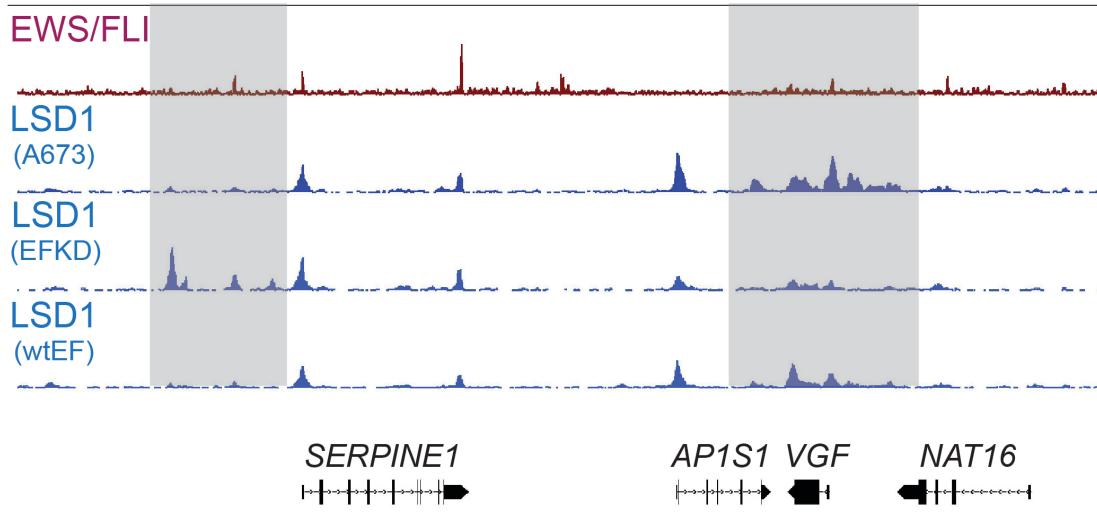

919

Supplementary Figure 11; related to Supplementary Tables 8, 10, 12, and 14.


A673

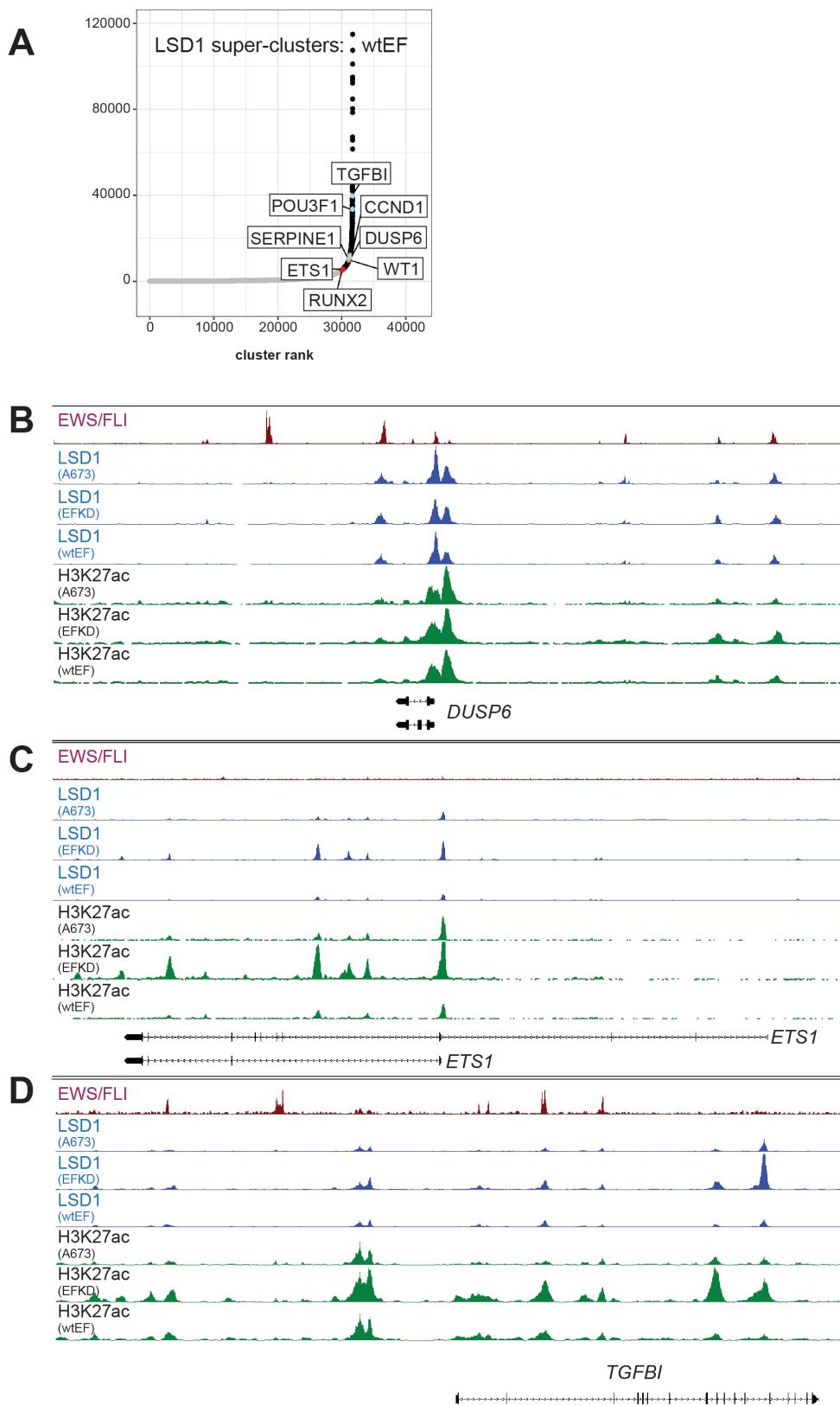

EWS-502

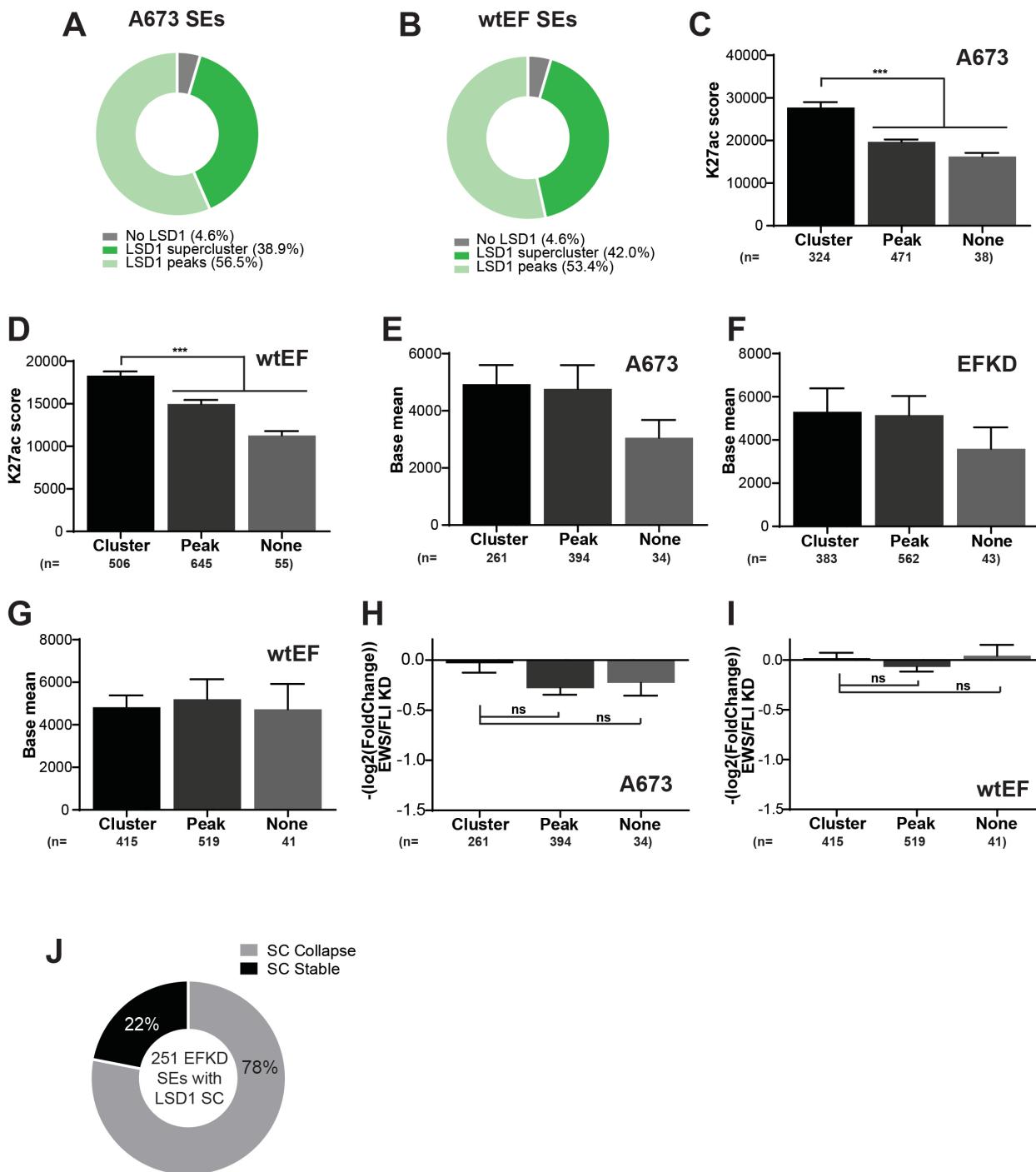
SK-N-MC


TC71

920

921


Supplementary Figure 12


922

923

Supplementary Figure 13; related to Supplementary Tables 15-20

Supplementary Figure 14; related to Supplementary Tables 2, 4, and 6.

926

927

928 **SUPPLEMENTARY FILES**

929 **Supplementary_File_1.xlsx**

930 Contains Supplementary Tables 1-20.

931 Supplementary Tables 1-2: 1) Results of the ROSE analysis for superenhancers in A673 cells and 2)
932 annotated A673 superenhancers. The K27ac data used was generated by CUT&Tag.

933 Supplementary Tables 3-4: 3) Results of the ROSE analysis for superenhancers in EFKD cells and 4)
934 annotated EFKD superenhancers. The K27ac data used was generated by CUT&Tag.

935 Supplementary Tables 5-6: 5) Results of the ROSE analysis for superenhancers in wtEF cells and 6)
936 annotated wtEF superenhancers. The K27ac data used was generated by CUT&Tag.

937 Supplementary Tables 7-8: 7) Results of the ROSE analysis for superenhancers in A673 cells and 8)
938 annotated A673 superenhancers. The K27ac data used was generated by CUT&RUN.

939 Supplementary Tables 9-10: 9) Results of the ROSE analysis for superenhancers in EWS-502 cells and
940 10) annotated EWS-502 superenhancers. The K27ac data used was generated by CUT&RUN.

941 Supplementary Tables 11-12: 11) Results of the ROSE analysis for superenhancers in SK-N-MC cells
942 and 12) annotated SK-N-MC superenhancers. The K27ac data used was generated by CUT&RUN.

943 Supplementary Tables 13-14: 13) Results of the ROSE analysis for superenhancers in TC71 cells and
944 14) annotated TC71 superenhancers. The K27ac data used was generated by CUT&RUN.

945 Supplementary Tables 15-16: 15) Results of the ROSE analysis for LSD1 superclusters in A673 cells and
946 16) annotated A673 LSD1 superclusters. The LSD1 data used was generated by CUT&Tag.

947 Supplementary Tables 17-18: 17) Results of the ROSE analysis for LSD1 superclusters in EFKD cells
948 and 18) annotated EFKD LSD1 superclusters. The LSD1 data used was generated by CUT&Tag.

949 Supplementary Tables 19-20: 19) Results of the ROSE analysis for LSD1 superclusters in wtEF cells and
950 20) annotated wtEF LSD1 superclusters. The LSD1 data used was generated by CUT&Tag.

951

952 **Supplementary_Table_21.xlsx**

953 Contains a list of key resources for the work performed in this report.

954