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Abstract

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing global health threat with
more than two million infected people since its emergence in late 2019. Detailed knowledge of
the molecular biology of the infection is indispensable for understanding of the viral replication,
host responses, and disease progression. We provide gene expression profiles of SARS-CoV
and SARS-CoV-2 infections in three human cell lines (H1299, Caco-2 and Calu-3 cells), using
bulk and single-cell transcriptomics. Small RNA profiling showed strong expression of the
immunity and inflammation-associated microRNA miRNA-155 upon infection with both
viruses. SARS-CoV-2 elicited approximately two-fold higher stimulation of the interferon
response compared to SARS-CoV in the permissive human epithelial cell line Calu-3, and
induction of cytokines such as CXCL10 or IL6. Single cell RNA sequencing data showed that
canonical interferon stimulated genes such as IFIT2 or OAS2 were broadly induced, whereas
interferon beta (IFNB1) and lambda (IFNL1-4) were expressed only in a subset of infected
cells. In addition, temporal resolution of transcriptional responses suggested interferon
regulatory factors (IRFs) activities precede that of nuclear factor-«xB (NF-kB). Lastly, we
identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of
the HSP90 charperone activity by Tanespimycin/17-N-allylamino-17-demethoxygeldanamycin
(17-AAG) resulted in a reduction of viral replication, and of TNF and IL1B mRNA levels. In
summary, our study established in vitro cell culture models to study SARS-CoV-2 infection
and identified HSP90 protein as potential drug target for therapeutic intervention of SARS-
CoV-2 infection.
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Introduction

Diseases caused by coronaviruses (CoVs) range from asymptomatic and mild infections of the
upper respiratory tract to severe acute respiratory distress, when the lower respiratory tract is
infected. In addition to the six previously-known CoVs affecting humans, a novel CoV termed
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently emerged. The
novel SARS-CoV-2, which causes coronavirus disease 2019 (COVID-19), is still an ongoing
global health threat since the beginning of the outbreak in late 2019 and has, at the time of
writing this text, infected more than three million people worldwide [1]. The SARS-CoV-2 life
cycle initiates with the attachment of the virion to the cell surface and subsequent binding to
the angiotensin converting enzyme 2 (ACE2), followed by proteolytic cleavage and
internalization [2-4]. Non-structural proteins are then translated to form a replicase-
transcriptase complex (RTC), in which the full genomic RNA, as well as subgenomic RNAs
are generated within double membrane vesicles (DMV) [3-5]. Incoming viral RNA is detected
by sensors such as IFIH1 (interferon induced with helicase C domain 1; also known as MDAS)
and DDX58 (DExD/H-Box helicase 58; also known as RIG-I), which trigger the antiviral
response. This sensing and signaling is impaired by a range of viral factors, e.g. replication
within DMVs, RNA capping and methylation, or shortening of the poly-U tail on the minus
strand RNA [6, 7]. Furthermore, inhibition of IRF activity [8] and a delayed induction of
interferon-stimulated genes (ISGs) compared to Influenza virus infection or type I interferon
treatment itself [9] was observed in SARS-CoV infection. Importantly, accessory genes in the
SARS-CoV genome, like ORF6, may code for antagonists of interferon signaling [10].

Following production of subgenomic RNAs, during which a constant 5" leader is prepended by
a process called discontinuous transcription [11], the viral genes are translated either in the
cytoplasm (nucleocapsid protein, N), or at the endoplasmic reticulum (ER; envelope (E),
membrane (M), spike (S) and open reading frame 3 (ORF3) proteins) [12, 13]. The substantial
increase in ER translation causes ER stress, which triggers the unfolded protein response. This
is then in turn integrated with double stranded RNA sensing at the level of eukaryotic initiation
factor 2 alpha (elF2alpha) phosphorylation [14]. The ER stress response is likely attenuated by
the viral E protein [15, 16]. Accordingly, heat shock proteins (HSPs), which ameliorate ER
stress, have been described to be generally relevant in virus infections [17]. Furthermore, ER
stress induces autophagy, a cell recycling pathway which can be used by some viruses for

productive replication [18]. Finally, dysregulation of microRNA (miRNA) expression and
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subsequent alterations in gene expression patterns have also been reported to play a role in
infected cells [19, 20].

Comprehensive profilings of SARS-CoV-2-mediated gene expression perturbations are just
beginning. A recent in-depth analysis of the transcriptional response to SARS-CoV-2 in
comparison to other respiratory viruses in cells and animal models revealed a virus-specific
inflammatory response [21]. Of particular interest are methods such as single-cell RNA-
sequencing (scRNA-seq), which allow the characterization of heterogeneity over the course of
infection, which may be masked at the population level [22-27], but also small RNA
sequencing, which reveals miRNAs and other small RNAs [28, 29].

Here, we performed a comprehensive analysis of three human cell lines infected with SARS-
CoV or SARS-CoV-2, namely the gut cell line Caco-2, the lung cell lines Calu-3, and H1299.
We generated scRNA-seq, poly(A)" and total RNA transcriptomic data as well as small RNA
profiling in infection time courses for both viruses.

Efficiency and productivity of infection as well as the interferon response was remarkably
different between the cell lines. Interestingly, SARS-CoV-2 induced a two-fold higher
expression of interferon stimulated genes (ISGs) than SARS-CoV. In addition, we found strong
induction of miR-155 with both viruses, suggesting a role for this miRNA in the progression of
infection. The scRNA-seq data showed that, while canonical ISGs such as interferon induced
protein with tetratricopeptide repeats 1 and 2 (IFIT1/IFIT2) were broadly induced, interferon
beta (IFNB1) was expressed only in a subset of infected cells. Furthermore, the transcriptional
induction of nuclear factor-«B (NF-kB) targets could be temporally separated from the
interferon gene induction. Detailed investigations of cellular gene expression programs suggest
an involvement of the protein folding chaperone and autophagy regulator HSP90 in the viral
infection cycle. Inhibition of HSP90 by 17-N-allylamino-17-demethoxygeldanamycin (17-
AAG) resulted in reduced viral replication and TNF and IL1B mRNA levels. Overall, our study
provides a detailed picture of the gene expression changes in cell line models for CoVs and
particularly SARS-CoV-2, highlights the cell-type specificity of the transcriptional response to

infection, and identifies potential targets for therapeutic interventions.
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Results

Different permissiveness of SARS-CoV-2 infection in cell lines

To establish cell culture systems for studying SARS-CoV-2 replication and host cell responses,
we examined the epithelial lung cancer cell lines, H1299 and Calu-3, as well as the epithelial
colorectal adenocarcinoma cell line, Caco-2, which is frequently used as a coronavirus cell
culture model [30-32]. Transfection of poly-I:C RNA, resulted in induction of IFIT1, IFIT2 and
OAS2 (2'-5'-Oligoadenylate Synthetase 2) genes in Calu-3 and H1299 cells, indicating sensing
of cytoplasmic foreign RNA is active in these cell types. This response was not observed in
Caco-2 cells (Fig. STA), which only poorly expresses viral RNA receptor genes, [IFIHI/MDAS
and DDX58/RIG-I (Supplementary data 1).

For all cell lines, we performed a comprehensive analysis of transcriptome changes at different
time points post infection with SARS-CoV (Frankfurt strain) and SARS-CoV-2 (patient isolate
BetaCoV/Munich/BavPat1/2020|EPI_ISL 406862) at an MOI of 0.3 (Fig. 1A, Supplementary
Table 1). The percentages of viral transcripts in intracellular RNAs as determined by Poly(A)*
and RNA-seq sequencing were low in H1299 cells for both viruses in contrast to Caco-2 and
Calu-3 cells (Fig. 1C, Supplementary Table 2). Accordingly, the yield of infectious virus
particles was higher for the permissive cell lines Caco-2 and Calu-3 (Fig. S1A). The low
susceptibility of H1299 cells might be attributed, at least partially, to the low expression of the
SARS-CoV receptor ACE2, based on RNA-sequencing data and Western blot analysis (Fig.
1B).

By counting poly(A)* or total RNA-seq reads spanning the junction of the viral leader and its
downstream gene (82.6% of virus-mapping split reads), we accurately quantified the relative
amounts of subgenomic viral mRNAs [33, 34]. We observed a consistent hierarchy of gene
expression across time, mostly dominated by viral mRNAs encoding the M gene (Fig. 1D, Fig.
S1D), similar to a recent report for the alpha Human CoV-229E (HCoV-229E) [35]. At later
time points post infection, the relative amount of ORF7a generally increased (Figure S1E).
Notably, this approach failed to detect expression of leaders immediately adjoining ORF7b or
ORF10 (Supplementary Table 3).

By visual inspection, Caco-2 cells appear hardly affected by the infection; whereas, Calu-3
clearly show signs of impaired growth and cell death at 24 hours post infection (hpi),
particularly when infected with SARS-CoV-2 (Fig. S1F). Taken together, we show that the
three infected cell lines show distinct responses in respect to the course of SARS-CoV/-2

infection.
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SARS-CoV-2 infected Calu-3 cells show a strong induction of interferon-stimulated genes
Although the infection is comparable in Caco-2 and Calu-3 cells, judging based on the amount
of intracellular viral RNA and virion yield (see above), the host transcriptome responses were
markedly different (Fig. 2A, 2B). In case of the SARS-CoV-2-infected Caco-2 cells, an increase
in expression of a number of genes (activating transcription factor 3, ATF3; early growth
response 1, EGR1; immediate early response 3, IER3;) was detected that are typically activated
in response to ER stress. In contrast, Calu-3 cells showed a strong increase in expression of
ISGs such as the IFIT1, IFIT2, and interferon genes. This response was absent in Caco-2 cells
likely due to the reduced expression of pattern-recognition receptors, IFIH1 and DDXS58 that
activate transcription of target genes via interferon regulatory factors (IRF) and NF-«kB
signaling [36, 37], which supports similar results for SARS-CoV infection [38] (Supplementary
data 1).

When comparing the expression of ISGs in virus-infected Calu-3 cells, our data revealed that
the expression levels of ISGs were on average about twice as high for SARS-CoV-2 compared
to SARS-CoVinfected cells (Fig. 2C) at similar amounts of viral RNAs present in the cells (Fig.
1C, right panel). This difference in the extent of the ISG response may be of clinical relevance,
since cytokines [39] are among the induced ISGs (Fig. S2B), and their expression might be
connected with pathologies such as the acute respiratory distress syndrome (ARDS) in CoV
infections [40, 41].

Next, we compared the induction of ISG in SARS-CoV-2 between experiments, and with a
recently published gene expression study of normal human bronchial epithelial (NHBE) cells,
A549 cells with and without ACE2 expression, and Calu-3 cells upon infection with SARS-
CoV-2 [21] (Supplementary Table 2, Fig. S2B). Whereas infection of Calu-3 cells showed
strong reproducibility across experiments from our study (Fig. S2C) and across labs (Fig. S2D),
there were remarkable differences between the results of Calu-3 on one side and A549 cells and
NHBE cells on the other side, which both lack an induction of interferon beta/lambda genes

(Fig. S2EF).

Expression of ARRDC3 and TXNIP genes is induced independently of RNA sensing

To identify genes that might be altered independently of RNA sensor-triggered signal cascades,
we compared gene expression changes between the Caco-2 and Calu-3 cell lines at 12 hpi with
SARS-CoV-2 (Fig. 2D, Fig S2A). Two genes, arrestin-related domain-containing protein-3
(ARRDC3) and thioredoxin-interacting protein (TXNIP), stood out among the few that were
significantly dysregulated upon infection with either viruses. Both genes encode proteins that

are involved in regulation of signaling pathways [42]. ARRDC3 mediates G protein—coupled
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receptor lysosomal sorting and apoptosis-linked gene 2-interacting protein X (ALIX)
ubiquitination [43]. ALIX is a Lys63-specific polyubiquitin binding protein that functions in
retrovirus budding and Dengue virus propagation [44, 45]. TXNIP is involved in the regulation
of glucose and lipid metabolism [46], and has been shown to be involved in initiation and
perpetuation of NLRP3 (nucleotide-binding domain and leucine-rich repeat and pyrin domain
containing 3) inflammasome activation [47, 48].

To conclude, most gene expression changes in response to SARS-CoV-2 infection are likely
triggered by RNA sensors. However, there are a few exceptions, and the mechanism of

induction, and the function of these proteins during virus replication remains to be elucidated.

MicroRNA miR-155-3p is expressed in SARS-CoV and SARS-CoV-2 infected cells

In addition to assessing mRNA changes, we have also profiled small RNAs in the context of
Calu-3 infections. Both viruses trigger a close to 16-fold upregulation of miR-155-3p, the “star”
form, and an almost 3-fold upregulation of miR-155-5p (Fig. 3A, 3B, S3A). Importantly, the
primary miRNA precursor gene, miR-155 host gene (MIR155HG), was also upregulated in
polyA-seq and total RNA-seq data by about 10-fold, suggesting that the increase of two
miRNAs was primarily driven by transcription (Fig. S3B).

Interestingly, the miRNA profiling identified small RNAs mapping to vault RNA (VTRNA)
genes (Fig. 3C, S3C). The function of vtRNAs has not been fully elucidated, but the mature
VTRNAI1-1 was recently discovered as a negative regulator of autophagy [49]. VTRNA-
derived sRNAs can be processed by DICER and bound by Argonaute proteins [50, 51].

Single-cell RNA-sequencing of SARS-CoV- and SARS-CoV-2-infected Calu-3 cells shows
differences in interferon-stimulated gene expression

To assess gene expression changes on the level of individual infected Calu-3 cells, we
performed scRNA-seq at different time points post infection for both SARS viruses. At 4 hpi,
the number of cells bearing viral RNA was between 40% and 60% (Fig. S4A, supplementary
table S4). At 8 hpi and 12 hpi, all cells contained viral RNA. The distribution of viral load
(percentage of viral RNA per cell) was comparable for the two viruses, and showed the expected
increase from 4 hpi to the later time points after infection (Fig. S4B).

The analysis of scRNA-seq data showed that cellular transcriptomes grouped by infection and
type of virus (Fig. 4A, S4C). Two small groups made up of cells (cluster 13), derived from all
time points and primarily, but not only SARS-CoV-2 infected cells showed high expression of
the IFNBI1 (Fig. 4B, 4D, S4D, S4E, S4F). As described above, we observed RNA sensing-
independent expression of ARRDC3 in cells infected with either virus. ARRDC3, as well as
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the pro-apoptotic gene protein phosphatase 1 regulatory subunit 15A (PPP1R15A, also known
as growth arrest and DNA-damage-inducible 34; GADD34), which had previously been related
to ER stress [52], were highly expressed in the interferon gene expression cluster, but also in
cells with very high levels of SARS-CoV-2 RNA (cluster 11; Fig. 4B, S4G). The mechanism
leading to interferon expression in cluster 13 remains to be investigated.

In agreement with the bulk RNA-seq data, we observed a strong increase of expression of ISGs,
IFIT1 and IFIT2, in infected cells, and particularly those exposed to SARS-CoV-2 (Fig. 4D,
S4H). Likewise, MIR155HG, though poorly detected, resembled the expression pattern of
IFIT1 and IFIT2 genes (compare Fig. S41 with 4B, and S4J with 4C/S4H).

To relate host gene expression to the accumulation of viral RNAs, cells were ordered by
increasing amount of viral RNA, and arranged into bins of 50 cells. For each bin, the correlation
with viral RNA was calculated for both viruses, indicating a strong relationship for the amount
of viral RNA with ARRDC3 mRNAs (Fig. S5K). For selected genes, the expression level per
bin was plotted against the amount of viral RNA (Fig. 5E). For IFIT2, this result indicated an
likely off-on switch between 4 hpi and 8 hpi, with the expression levels being independent of
the amount of viral RNA. For ARRDC3 however, the mRNA transcript numbers correlated
well with the accumulation of viral RNA (R2 = 0.77). For the interferon beta gene IFNBI, a
certain amount of viral RNA appeared to be a prerequisite for the IFNB1 mRNA levels,
however beyond that threshold per-bin expression levels were rather variable. For SARS-CoV,
the IFIT2 switch could not be observed, and the accumulation of ARRDC3 mRNA started only
at higher levels of viral RNA (Fig. 4E).

In order to identify genes co-regulated with IFNB1, we performed a correlation analysis of cells
binned by increasing IFNB1 and ARRDC3 expression level (Fig. S4L). Using this approach
we found a putative co-regulation of the four interferon lambda genes (IFNL1-4), the
chemokine genes, C-X-C Motif Chemokine Ligand 9 (CXCL9) and C-C Motif Chemokine
Ligand 5 (CCL5), and the cholesterol-25-hydroxylase gene, CH25H. This enzyme, as well as
its product 25-hydroxycholesterol, have been shown to act against a range of viruses [53]. In
addition, two other genes were found in this group, the sodium voltage-gated channel alpha
subunit 3 gene (SCN3A) and the dual oxidase 1 gene (DUOX1) (Fig. S4M), which are poorly
expressed in cells outside cluster 13. Whereas SCN3A has previously not been described in the
context of virus infections, DUOX1 promotes the innate immune defense to pathogens via the
production of reactive oxygen species in mucosae [54].

For a better visualization of the effect of infection on cell clustering, we also analyzed the cells

without taking viral transcripts into account, confirming stronger alterations of the cellular
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transcriptome in SARS-CoV-2 compared to SARS-CoV infections (Fig. S4N). Of note, the

cells bearing interferon mRNAs clustered together independent of the virus.

RNA velocity reveals transient induction of interferon genes and temporal resolution of NF-kB
signaling

To better understand the nature of interferon gene induction in the context of CoV infection,
we performed RNA velocity, which uses sequencing reads originating from introns to measure
the amount of nascent mRNA [55]. This method applies additional filtering and embeddings,
leading to different two-dimensional projections. This analysis showed a trajectory from cells
expressing interferon and interferon-correlated genes to the cells with maximal amount of viral
RNA but not expressing interferon genes (Fig. 5SA, S5A, S5B). This finding suggests that
induction of interferon genes is short and transient during viral replication. We observed that
target genes of interferon regulatory factors (IRFs) such as IFIT2, IFIT1 or OAS2 [56] show
high intron counts in an intermediate state during the accumulation of viral RNA (Fig. 5B,
S5C), but this signal later decreases. At this time, however, NF-kB target genes such as
interleukin 6 (IL6), tumor necrosis factor (TNF) or NF-kB inhibitor alpha (NFKBIA) [57] had
still high intron counts (Fig. 5C, S5D). Taken together, this finding suggests that IRF-regulated
genes are transcribed before NF-kB target genes, with IRF activity ceasing late (Fig. 5D).
Interestingly, we also observed a minor increase in intronic counts for ACE2 transcripts in
SARS-CoV-2 infected cells (Fig. SSE, S5F), suggesting a transcriptional activation of the viral

receptor gene during infection, as observed recently [58].

Single-cell RNA-sequencing of SARS-CoV and SARS-CoV-2 infected H1299 reveals a potential
involvement of HSP9OAA1 in the progression of infection

As shown above, transcriptional changes in bulk and scRNA-seq data from Calu-3 infected
cells were dominated by the interferon response. In order to detect more subtle alterations in
the cellular transcriptomes, we applied the scRNA-seq likewise to SARS-CoV/-2 infected
H1299 cells, which are only partially permissive to the infection.

Despite the overall low amount of viral RNA in infected H1299 cells (Fig. 1C), the percentage
of cells bearing viral transcripts was remarkably high (Fig. S6A, supplementary table S4),
indicating that virions indeed are able to enter the cells. As seen in the bulk RNA-seq,
transcriptional changes were subtle, and cells thus do not group into discrete clusters (Fig. S6B,
S6C, S6D). When correlating individual genes with the amount of viral RNA over cells, we
found a positive correlation with HSP90 alpha family class A member 1 (HSP90AA1) with the
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amount of SARS-CoV-2 RNA, but not SARS-CoV (Fig. 6A). Upon closer inspection, we
observed higher expression of HSP9OAA1 mRNA and RNA velocity values in cells with
SARS-CoV-2 viral RNA compared to those without (Fig. 6B). We thus went back to the Calu-
3 data and found a similar HSP9OAA1 expression pattern in Calu-3 cells harvested at 4 hpi
(Fig. 6C-E).

Inhibition of HSP90 reduces viral yield

The involvement of HSP90OAA1, a highly-conserved molecular chaperone, in viral infections
has since a long time been discussed to be involved in the infection of a range of viruses [59].
In order to explore the effect of HSP90 on SARS-CoV-2 replication in Calu-3 cells, we applied
the HSP90 inhibitor 17-AAG to cells one hour after viral absorption and measured virus yield
and RNA in the supernatant after 16 hpi (Fig. 7A) and 8 hpi (Fig. 7B). For the 8hpi experiment,
also intracellular RNA was measured (Fig. 7B, bottom panel). At a concentration of 800 nM,
17-AAG reduced the viral yield to about 50%. In an additional experiment with similar
outcomes (Fig. 7C, 7D), we assessed changes in host cell mRNA expression of infected cells
to treatment with 17-AAG (Fig. 7E). Interestingly, whereas IFIT2 mRNA expression levels
were only slightly reduced in cells treated with the inhibitor 17-AAG, reduction in mRNA
levels for PPP1R15A and INFLI1, and particularly for IL1B and TNF, were much more
pronounced. This result could point to a complex regulation of these genes involving HSP90
activity. The treatment with 17-AAG had no apparent effect on cell viability and ISG induction
was tested using quantitative reverse transcription PCR (RT-qPCR) of selected genes (Fig.
S7A) and a cell viability assay (Fig. S7B).
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Discussion

We performed gene expression profiling of three different human cell lines infected with
SARS-CoV and SARS-CoV-2 at bulk and single-cell level. We show a particularly strong
induction of ISGs in Calu-3 cells, including cytokines, by SARS-CoV-2 in both bulk and
scRNA-seq experiments. For various CoVs, a range of mechanisms that interfere with
interferon signaling has been reported [60]. For SARS-CoV, it was shown that ORF6 inhibits
signal transducer and activator of transcription (STAT) signaling [61] and that IRF3 activity is
impaired [8]. Since RNA levels per cell (Fig. S4) and on the population level were comparable
(Fig. 1), it is tempting to speculate that such mechanisms could be less efficient in SARS-CoV-
2 compared to SARS-CoV. Indeed, cytokine production was described to be connected to
pathogenesis [21, 40, 41]. However, the extent to which observations in cell lines and other
models are reproducible in animal models and humans will require further investigations [62-
64].

By comparing cell lines, we distinguish genes induced independently of the RNA sensing
system, such as TXNIP and ARRDC3. Both genes are involved in signaling processes, and
further investigations into their role in SARS-CoV-2 infection is warranted.

Small RNA profiling showed a strong induction of miR-155 in the infected cells. This miRNA
has been associated with various virus infections [65-68]. miR-155-3p is also a well-known
regulator of immune cells, in particular T-cell differentiation [69, 70]. Involvement of this
miRNA in the regulation of innate immunity has also been reported [71]. Recently, miR-155-
S5p expression was shown to be induced in mice infected with influenza A virus [72].
Importantly, in this study, lung injury by ARDS was attenuated by deletion of miR-155, making
this miRNA a potential therapeutic target in the context of COVID-19. Its role in SARS-CoV-
2 infection and pathogenesis, whether it has a biological role in epithelial cells, and the potential
for therapeutic interventions, e.g. through antisense oligonucleotide approaches, remains to be
explored. The same holds true for the sSRNAs generated from vtRNAs, and for other non-coding
RNAs, which remain to be investigated in SARS-CoV-2 infection.

The scRNA-seq experiments provided a rich dataset to analyze host cell expression changes in
response to infection. Surprisingly, the percentage of cells containing viral RNA was much
higher than expected based on the MOI used for the infection experiments. This finding could
also be explained by spreading of the cell-to-cell fusions, facilitated by the S protein on the cell
surface [73]. Furthermore, the analysis of the sScRNA-seq data of infected Calu-3 cells indicated
a sequential activation of IRF and NF-kB target genes, and in particular, a putatively strong but

transient induction of interferon genes. This could be due to a relatively short time window
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during the progression of infection, in which both IRF and NF-kB activity is sufficiently high
to trigger interferon gene transcription [74, 75].

Concomitantly with the interferon induction, we observed a mild activation of ACE2
transcription in cells infected with SARS-CoV-2. Changes in ACE2 mRNA levels in the
context of interferon treatment and coronavirus infection have been described before [58, 76].
Whereas the transcriptional induction (RNA velocity) was detectable, changes in mature
mRNA levels were moderate in comparison to ISGs like IFIT1. Interestingly, SARS-CoV was
shown to downregulate ACE2 protein levels in Vero cells [77].

Coronaviruses induce ER stress and activate the unfolded protein response (UPR) in infected
cells [78, 79]. We observed transient induction of the stress-responsive heat shock protein gene
HSP90AAT1 [80], in the “slow-motion” infection model, H1299 cells, and 4hpi in Calu-3 cells.
HSP90 modulates UPR by stabilizing the ER stress sensor transmembrane kinases IRE1a [81].
Inhibition of the HSP90 has previously been shown to slow down the replication of several
viruses [59, 82, 83]. The reduction of SARS-CoV-2 growth by HSP90 inhibition was recently
proposed based on a computational analysis of patient RNA sequencing data [84]. Here, we
show that inhibition of HSP90 by 17-AAG at high nanomolar concentrations can reduce virus
replication in an in vitro infection model. Interestingly, IFIT2 mRNA levels seemed unaffected
by HSP90 inhibition, supporting the “on-off-switch” independent of the amount of viral RNA
observed in the scRNA-seq data. In addition, mRNA expression of the pro-inflammatory
cytokines TNF and IL1B, which are implied in the progression of COVID-19 [85], were
strongly reduced. Since 17-AAG can induce apoptosis in cancer cells, which was not observed
here for Calu-3 cells, the inhibitory effect of 17-AAG on viral replication needs to be expanded
to studies in primary tissue infection models. Since several inhibitors of HSP90 with higher
affinities have been in clinical development as anticancer agents [86] and advanced to phase 2
and 3 clinical trials, some of these compounds could be readily available to become part of a

therapeutic strategy for COVID-19.
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Figure legends

Fig. 1. A, Overview of experimental set up and collected datasets. Calu-3 cells turned out to be
the most suitable cell line. B, Expression values of the ACE2 mRNA in the polyA RNA-seq
mock samples (upper part) and protein expression assessed by Western blot analysis with
specific antibodies of indicated cell lines (lower part). H1299 cells showed neither mRNA nor
protein expression of ACE2. C, Viral read percentages of total reads of the respective cell lines
at different time points of infection. All cell lines show an induction as a function of time.
H1299 show the lowest percentage of viral reads. SARS-COV infected cells exhibit the highest
amount of viral reads. D, Heatmaps of canonical junction-spanning viral reads, averaged across

biological replicates per time point, expressed in TMM-normalized counts per million.

Fig. 2. A, MA plots of differentially expressed (DE) genes at the mRNA level of Calu-3 (12
hpi) and Caco-2 cells infected with SARS-CoV-2. X-axis depicts logl0 of mean counts
associated with a gene. Y-axis depicts mRNA log2 fold changes. Significant differentially
expressed genes (red dots) are defined as those with an absolute log2 fold change of greater
than 0.58 and an adjusted p-value > 0.05. Selected outliers are labeled. B, Gene Ontology (GO)
term enrichment for different comparisons. A sample of gene sets overrepresented significantly
in at least one comparison (hypergeometric test, adjusted p-value < 0.05). Dot size depicts the
percentage of gene set members classed as differentially expressed in one comparison. Gene
sets overrepresented significantly are displayed as solid dots. Dot colour represents the average
log2 fold change of mRNAs of a gene set in that comparison. Calu-3 cells exhibit a higher DE
than CaCo-2 cells challenged by infection. C, expression values (FPKM) of genes significantly
induced in cells infected with either viruses at 12 hpi in Calu-3 cells. D, Genes exhibiting
significant changes both cell lines are shown in red, log2-transformed fold changes of SARS-
CoV-2 infected cells at 12 hpi (Calu-3, horizontal axis) and 24 hpi (Caco-2, vertical axis). Genes
exhibiting significant changes in both cell lines are shown in red, significant changes only in
Calu-3 cells in light blue, only in Caco-2 cells in light green. All other genes are shown in grey.
Selected genes with significant fold changes are labeled.

Fig. 3. A, B, Scatterplots of miRNA mean expression versus log2-fold-changes testing for
significant differences compared to mock long after the infection with SARS-CoV (A), and
SARS-CoV-2 (B). miRNAs found differentially expressed are indicated in red. C, Coverage
plot of the vaultRNA gene VTRNAI-1 of replicate A and B at indicted times after infection
with or without SARS-CoV-2.
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Fig. 4. A, Based on scRNA-seq data cells are projected in two dimensions using Uniform
Manifold Approximation and Projection (UMAP). B, Same projection, but cells are colored by
SARS-CoV and SARS-CoV-2 viral transcript load. C, Distribution of expression values of
selected viral and mRNA transcripts per cluster. D, Coloring by expression levels of IFIT2 (left)
and IFNBI mRNAs (right).E, Horizontal axis for each panel represents relative, log2
transformed levels of SARS-CoV-2 RNA (left) or SARS-CoV (right) per bin. The vertical axes
in the panels represent relative, log2 transformed expression levels for the indicated gene per
bin. Every dot represents a bin containing 50 cells. The most prominent time point per bin is

indicated at the bottom.

Fig. 5. A, Cells were embedded into diffusion map space and by UMAP projected using 20
diffusion components into two-dimensional space. Areas of interest are marked. Arrows
represent trajectories based on RNA velocity. B, C, Projection as in A, but colored by mature
(left column) and intron-exon counts (right column) of IFIT2 (top) and IL6 (bottom). D,
Columns in the heatmap represent cells. Plotted are, from top to bottom, the amount of SARS-
CoV-2 viral RNA, the cluster ID, the harvesting time point, and intron counts for the indicated

genes. Cells (columns) are first sorted by cluster, then by increasing amount of viral RNA.

Fig. 6. A, Correlation of gene expression values with the amount of SARS-CoV RNA (y-axis)
and SARS-CoV-2 RNA (x-axis) in the H1299 scRNA-seq data. B, Distribution of HSP90AA 1
mRNA (left) and RNA velocity (right) values in mock and SARS-CoV samples, and, for SARS-
CoV-2 samples, split by cells with and without viral RNAs. C, As in A but for the Calu-3 4 hpi
samples. D, As in C but with RNA velocity instead of mature mRNA values. E, Distribution of
HSP90AA1 mRNA (left) and RNA velocity (right) values for mock, SARS-CoV and SARS-
CoV-2 samples in Calu-3 cells, split by cells with and without viral RNA.

Fig. 7. A, Infectious plaque forming units (PFU) (top) and viral RNA genome equivalents (GE)
(bottom) in supernatants of Calu-3 cells infected with SARS-CoV-2 with the indicated
treatment 16 hpi. After viral adsorption for one hour, cells were washed and supplied with
conditioned medium containing DMSO, as solvent control, or indicated concentrations of 17-
AAG. B, as in A but from an independent experiment analyzed at 8 hpi, and with additionally
intracellular viral RNA. C, as in A, but with virus and 17-AAG added simultaneously without

replacement of the inoculum. D, E, Intracellular expression of viral RNA and mRNA of selected
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genes from infection described in C. The 17-AAG treatment induces dose-dependent reduction

of SARS-CoV-2.

Supplementary Fig. S1. A, Responsiveness to RNA as tested by RT-qPCR of three ISGs upon
transfection of poly-1:C. B, growth kinetics of SARS-CoV and SARS-CoV-2 in the different
cell lines (MOI 0.01). C, Coverage across the viral genome merged across all datasets for total
RNA-seq, poly(A)+ RNA-seq, and small RNA-seq data. The top eight junctions supported by
split reads are plotted in “sashimi” style for the total RNA-seq. D and E, Heatmaps of canonical
junction-spanning reads, averaged across biological replicates per time point, expressed in
TMM-normalized counts per million (D), or relative counts per time point (E). ORF1ab levels
are estimated by counting contiguous reads mapping to the leader junction site. F, microscopy

images (phase contrast) of infected Caco-2 and Calu-3 cells.

Supplementary Fig. S2. A, Log?2 transformed fold changes of SARS-CoV infected cells at 12
hpi. Genes exhibiting, at least two-fold, significant changes in one of the two cell lines are
shown in dark grey. Genes significantly deregulated in the same direction in both cell lines are
shown in black, and labeled. All other genes are shown in light grey. B, Comparison of log2
transformed fold changes in Calu-3 in the two experiments from this study 12 hpi (series 1 and
series 2). C-E, Comparison of log2 transformed fold changes in Calu-3 from series 2 of this
study with various series of SARS-CoV-2 infected cells from Blanco-Melo et al. C, comparison
with Calu-3 cells (series 7). D, Comparison with NHBE cells 12 hpi (series 1). E, comparison
with A549 cells (series 2 and series 3 without, series 6 with ACE2 transduction).

Supplementary Fig. S3. A, Normalized counts (counts per million) of miR-155-3p (left panel)
and miR-155-5p (right panel), colored by replicate. B, Log10 miRNA-155 host gene transcripts
per million in samples measured by polyA- or total RNAseq. C, coverage plots of the three
vaultRNA genes VTRNAT1-2, VTRNA1-3, and VTRNA2-1.

Supplementary Figure S4. A, Percentages of cells bearing viral transcripts. B, Relative densities
of the percentage of viral transcripts per cell (logl0 transformed) for SARS-CoV (left) and
SARS-CoV-2 infected cells (right). C, Cells are projected in two dimensions using UMAP and
colored by time point, shaped by infection, and split by replicates. D, Two-dimensional
projection of cells colored by cluster. E, For each sample, the number of cells per cluster was

divided by the total number of cells from this sample. The contributions of these values to the
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composition of the clusters is displayed by a stacked bar plot. F, Heatmap of expression levels
of cluster markers. G, H, J, M, As in C but colored by expression values of the indicated genes.
I, Distribution of expression of the miR-155 host gene MIR155HG per cluster. K, Correlation
of gene expression values with the amount of SARS-CoV RNA (x-axis) and SARS-CoV-2
RNA (y-axis). L, Correlation of gene expression values with the amount of IFNB1 (x-axis) and
ARRDC3 (y-axis). N, Clustering of cells without viral transcripts, analogous to figure 4 and
S4C.

Supplementary Figure S5.

A-C, Projection as in Fig. 5A, colored by the indicated expression values. D, Heatmap with
intron TPM counts for selected genes, columns depict cells and are ordered by ascending
SARS-CoV-2 load per cluster. E, Upper panel as in A-C, lower panel barplot showing fraction

of cells containing intron reads from the ACE2 gene.

Supplementary Figure S6. A, Shows percentages of cells with virus. B-D, H1299 cells are
projected in two dimensions using Uniform Manifold Approximation and Projection (UMAP)

and colored as indicated.

Supplementary Figure S7. The cytotoxicity of the HSP90 inhibitor was measured by RT-PCR
of selected genes (A) and a cell viability assay (B). The activity of untreated cells was set as
100% and the cell viability with the indicated treatment is shown as fold induction over

untreated cells after 16 and 24 hpi.

Materials and Methods

Cell culture

Vero E6 (ATCC CRL-1586), Calu-3 (ATCC HTB-55), Calu-2 (ATCC HTB-37) and H1299
(ATCC CRL-5803) were cultivated in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% heat-inactivated fetal calf serum, 1% non-essential amino acids, 1%
L-glutamine and 1% sodium pyruvate (all Thermo Fisher Scientific) in a 5% CO; atmosphere

at 37 °C.
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Poly-I:C transfections

Transient transfection of eukaryotic cells was performed using X-tremeGENE™ siRNA
transfection reagent (Roche) according to the manufacturer’s instructions. Briefly, 2x10"5
cells/ml were grown in 6-well plates for 24 h and fresh DMEM without antibiotics was added.
OptiPRO SFM™ (Gibco) was supplemented with 0.25 pug poly(I:C) (Invivogen) and 0.75 pl
X-tremeGENE™ siRNA reagent, incubated for 15 min, and 100 pl transfection mix was added
to the cells.

RT-gPCR on intracellular RNA

RNA was isolated from Trizol using the RNA clean and concentrator kit (Zymo). The RNA
was reverse transcribed using maxima RT and subjected to qPCR as described [26]. Primers

used for qPCR are listed in supplementary table 5.

Viruses

SARS-CoV (Frankfurt strain, NCBI accession number AY310120) and SARS-CoV-2 (Patient
isolate 985, BetaCoV/Munich/BavPat1/2020/EPI ISL 406862) were used. For virus stock
production, virus was grown on Vero E6 cells and concentrated using Vivaspin® 20
concentrators (Sartorius Stedim Biotech). Virus stocks were stored at -80°C, diluted in OptiPro
serum-free medium supplemented with 0.5% gelatine (Sigma Aldrich) and phosphate-bufferd
saline (PBS, Thermo Fisher Scientific). Titer was defined by plaque titration assay. Cells
inoculated with cell culture supernatants from uninfected Vero cells mixed with OptiPro serum-
free medium supplemented with 0.5% gelatine and PBS, in accordance to virus stock
preparation, serves as mock infected controls. All infection experiments were carried out under
biosafety level three conditions with enhanced respiratory personal protection equipment.
Virus growth kinetics and plaque titration assay

24 h prior to infection, the different cell lines were seeded to 70% confluence. The cells were
washed once with PBS before virus (diluted in OptiPro serum-free medium) adsorption. After
incubation for 1 h at 37 °C, 5% CO2 the virus-containing supernatant was discarded and cells
were washed twice with PBS and supplied with DMEM as described above.

To determine the amount of infectious virus particles in the supernatant a plaque titration assay
was performed. For the assay Vero E6 cells were seeded to confluence and infected with serial
dilution of virus-containing cell culture supernatant diluted in OptiPro serum-free medium. One
hour after adsorption, supernatants were removed and cells overlaid with 2.4% Avicel (FMC
BioPolymers) mixed 1:1 in 2xDMEM. Three days post-infection the overlay was removed, and
cells were fixed in 6% formaldehyde and stained with a 0.2% crystal violet, 2% ethanol and
10% formaldehyde.
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Western Blot Analysis

The expression of human ACE-2 (hACE-2) was confirmed by Western blot analysis. For the
preparation of total cell lysate cells were washed with PBS and lysed in RIPA Lysis Buffer
(Thermo Fisher Scientific) supplied with 1% Protease Inhibitor Cocktail Set III (Merck
Chemicals). After an incubation of 30 min at 4 °C, cell debris were pelleted (10 min, 13,000 x g,
4 °C) and the supernatant transferred to a fresh reaction tube. For determining protein
concentration Thermo Scientific's Pierce™ BCA Protein Assay Kit, according to the
manufacturer’s instructions was used. The protein lysates were mixed with 4xNuPAGE LDS
Sample Buffer (Invitrogen) supplemented with 10% 2-mercaptoethanol (Roth). Protein lysates
were separated by size on a 12% sodium dodecyl sulfatepolyacrylamid (SDS) gel and blotted
onto a 0.2 um polyvinylidene difluoride (PVDF) membrane (Thermo Scientific) by semi-dry
blotting (BioRad). Primary detection of hACE-2 was done using a goat anti-hACE-2 antibody
(1:1,250; #AF933, R&D Systems), a horseradish peroxidase (HRP)-labeled donkey anti-goat
antibody (1:5,000, Dianova) and Super Signal West Femto Chemiluminescence Substrate
(Thermo Fisher Scientific). As loading control, samples were analyzed for B-actin expression
using a mouse anti-B-actin antibody (1:5,000, Sigma Aldrich) and a HRP-labeled goat anti-
mouse antibody (1:10,000, Sigma-Aldrich).

Infections for RNA sequencing experiments

Calu-3 cells and H1299 cells were seeded at a concentration of 6 x 10"5 cells/mL and
5 x 1074 cells/mL, respectively. 24 h post seeding cells were infected with SARS-CoV and
SARS-CoV-2 at an MOI of 0.33 or Vero cell supernatant mixed with Optipro serum-free
medium supplemented with 0.5 % gelatine and PBS as negative control. 4, 8, 12 and 24 hpi
samples were taken. For sequencing of total RNA the supernatant was removed and Trizol LS
Reagent (Thermo Fisher Scientific) was applied to the cell-layer and incubated for 1 min at
room temperature until the cells were lysed. The suspension was then transferred to a RNase
free reaction tube (Thermo Fisher Scientific) and stored at -80 °C.For scRNA-seq sample
preparation the cells were washed with pre-warmed PBS, detached with pre-warmed trypsin
for 3 min at 37 °C. The detached cells were transferred into a reaction tube (Eppendorf) and the
following steps were performed on ice. Cells were spinned down at 1000 x g for 2 min at 4 °C,
resuspended in PBS properly and passed through a 35 um blue snap cap cell strainer
(STEMCELL) and again pelletized The cell pellet was then resuspended in pre-chilled
methanol (Roth) and stored at -80 °C.
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RNA sequencing

Poly-A RNA sequencing

Poly-A RNA sequencing libraries were prepared using the NEBNext Ultra II Directional RNA
Library Prep Kit (NEB) according to the manufacturer’s protocols. Libraries were sequenced
on a NextSeq 500 device at 1x76 cycles.

Small RNA sequencing

100 ng of total RNA of each condition was used for small RNA library preparation. Library
preparation was performed using the SMARTer smRNA-Seq kit for Illumina from Clontech
according to manufacturer’s instruction. The small RNA libraries were pooled together with
19 % PhiX and sequenced on the NextSeq 500, 1 x 50 cycles.

Total RNA sequencing

1 pg of total RNA of each condition was used for total RNA library preparation. First, samples
were depleted of ribosomal RNA using the RiboCop rRNA Depletion Kit (Lexogen) according
to manufacturer’s instruction. Following, ribo-depleted samples were processed with the
TruSeq mRNA stranded kit from Illumina according to manufacturer’s instruction. The total
RNA libraries were sequenced on the HiSeq 4000, 2 x 76 cycles.

Viral RNA-seq analysis

Total and poly(A)" RNA-seq reads were mapped with STAR 2.7.3a to a combined genome
comprised of GRCh38 and GenBank MN908947 (SARS-CoV-2) or AY310120 (SARS-CoV)
using permissive parameters for noncanonical splicing [33, 91]. Viral genes were quantified by
taking the top eight noncanonical splice events called by STAR across all total RNA-seq
datasets according to the numbers of uniquely-mapping reads spanning the junction
(Supplemental Table 3). To estimate levels of ORF1ab, insertions, soft-clipping events and split
reads were filtered from virus-mapping reads, followed by intersection with positions 53-83 of
the virus using bedtools, requiring a minimum of 24 nucleotides overlap to reflect the
parameters STAR requires to call a noncanonical splice junction [92]. These counts were either
combined with a count matrix of the human genes quantified by STAR and TMM/CPM
normalized with edgeR (Figure S1D) or normalized by the total number of viral junction-
spanning reads per time point (Figure S1E) [93]. Coverage plots were made from merged
STAR-mapped BAM files, or from Bowtie-mapped small RNA-seq BAM files using ggsashimi
[94]. This workflow was implemented with custom Python scripts in a Snakemake pipeline

[95].
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microRNA analysis

Raw reads were preprocessed by trimming with cutadapt (version 2.9) in two passes, first
trimming 1) the [llumina TruSeq adaptor at the 3’ end and allowing for one mismatch,

i1) all 3’end bases with mean Phred score below 30 and iii) the three 5’end overhang nucleotides
associated with the template-switching Clontech library preparation protocol.

In the second pass, poly(A)-tails were trimmed. Trimmed reads were mapped using bowtie
(version 1.2.2) to a SARS genome consisting of the combined SARS-CoV and

SARS-CoV-2 genomes using the non-standard parameters (-q -n 1 -e 80 -1 18 -a -m 5 —best —
strata). Reads that did not align to the SARS-CoV genome were aligned to the

GRCh38 genome. The expression of known miRNAs (miRBase 22 annotation) was estimated
using mirdeep2 (version 2.0.0.7) and standard parameters.

The differential expression analysis used the limma [96] and edgeR [93] packages after
applying the voom transformation to the TMM-normalized count data produced by mirdeep2.
For the different viral infections we contrasted SARS-CoV2-24h — SARS-CoV-2-4h with
mock-24h - mock-4h in order to test for those miRNAs differentially expressed long after the
infection having removed any effects seen in mock as well.

Bulk RNA-sequencing analysis using DESeq2

Starting from count tables, RNA sequencing results were analysed on a per run basis comparing
infected samples to time matched mock experiments unless otherwise specified using DESeq2
[97] version 1.22.2. Genes with a maximum read count across samples of less than two were
filtered out. Differentially expressed genes were defined as genes with an absolute fold change
in mRNA abundance greater than 1.5 (log2 fold change of 0.58 - using DESeq?2 shrunken log2
fold changes) and an adjusted p-value of less than 0.05 (Benjamini-Hochberg corrected).

Gene ontology and KEGG enrichment analysis.

Genes whose mRNAs were found to be differentially expressed were subjected to gene set
overrepresentation analysis using the clusterProfiler package in R [98]. Specifically, gene sets
from Gene Ontology (Molecular Function, Biological Process, Cellular Component) and
KEGG pathways containing

Single-cell RNA-seq

Methanol-fixed cells were centrifuged at 2,000 x g for 5 min, rehydrated in 1 mL rehydration
buffer containing 0.01% PBS/BSA and 1:100 Superasein (Thermo Fisher), and resuspended in
400 pL rehydration buffer followed by passing through a 40 um cell strainer. Encapsulation

was done on the Nadia system (Dolomite biosystems) using the built-in standard procedure.
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For library preparation, we followed the version 1.8 of the manufacturer’s protocol, with adding
a second-strand synthesis step [99].

For the encapsulation, 75,000 cells in 250 pL rehydration buffer were used, with 250 pL of
lysis buffer (6% Ficoll PM-400, 0.2% Sarkosyl, 20 mM EDTA, 200 mM Tris pH 7.5, 50 mM
DTT) and 3 mL oil (Biorad #1864006). After encapsulation, beads were recovered from the
emulsion by washing with 2 x 30 mL 6 x saline sodium citrate buffer (diluted from Sigma
#S6639) buffer in a 5 um UberStrainer (pluriSelect). After another washing step in 1.5 mL
6 x SSC, cells were washed with 5 x reverse transcription (250 mM Tris pH 8, 375 mM KCl,
15 mM MgCl2, 50 mM DTT) buffer and resuspended in 200 pLL RT mix (50 mM Tris pH 8, 75
mM MgCI2, 3 mM MgCI2, 10 mM DTT, 4% Ficoll PM-400, 1 mM each dNTPs, 2.5 uM
Macosko TSO, 10 ul Maxima H- RT enzyme). Beads were incubated for 30 min at room
temperature and 90 min at 42 °C (all incubation steps on a rotator). After washing once with
TE/0.5% SDS and twice with TE/0.01% Tween, beads were incubated in 200 pL exonuclease
mix (10ul Exonuclease in 1xexonuclease buffer, NEB #M0293) for 45 min at 37 °C, again on
a rotator. After washing with once with TE/0.5% SDS and twice TE/0.01% Tween, beads were
incubated for 5 min in 0.1 M NaOH, washed with TE/0.01% Tween and TE, and incubated in
200 pl second strand mix (50 mM Tris pH 8, 75 mM MgCl2, 3 mM MgCl2, 10 mM DTT, 12%
PEG 8000, 1 mM each dNTPs, 10 uM dN-SMRT oligo, 5 ul Klenow enzyme NEB #M0212)
for 1 h at 37 °C. Beads were again washed in TE/0.01% Tween and stored overnight in
TE/0.01% Tween, then washed in TE and twice in water, and per sample eight PCR reactions
with 4,000 beads each in 50ul using 1uM SMART PCR primer (oligos in supplementary table
5) and the 2x Kapa HiFi Hotstart Ready mix (Roche #07958935001) were performed, with pre-
incubation for 3 minutes at 95 °C, then 4 cycles 98 °C/20s, 65°C/45s, 72 °C/3min, then 9 cycles
98 °C/20s, 67°C/20s, 72 °C/3min, then post-incubation for 3 minutes at 72 °C. The eight PCR
reaction were pooled in three clean-up reactions using Ampure XP beads. For each oft the three
sub-samples, a Nextera XT v2 (Illumina) reaction was performed with 600 pg DNA. In a 20ul
reaction, 10 pl tagment DNA buffer and 5 ul amplicon tagment mix were incubated for 5
minutes at 55 °C, and, after addition of 5 pl neutralization buffer for 5 minutes at room
temperature. Afterwards, 15 pl PCR master mix were added, 200 nM New-P5-SMART PCR
hybrid oligo, 200 nM index oligo in total 50 pl. The Nextera reactions were then again pooled,
purified using Ampure XP beads, and sequenced on a NovaSeq 6000 deviced with 21+71 cycles
using Read1CustomSeqB for read 1.
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Single-cell data processing

After trimming one nucleotide from the 3’ end of read one, count tables were generated using
the pigx scRNA-seq pipeline [100] version 1.1.4.

Single-cell data analysis

All analysis shown in figure 4-6 was done similar as described previously [26] using Seurat and

ggplot2 packages [101, 102].

HSP90 inhibitor experiments

The HSP9O0 inhibitor 17-AAG was purchased from Sigma () and dissolved in DMSO. Cells
were seeded and grown to subconfluence and infected with SARS-CoV-2 MOI 0.01 diluted in
OptiPro serum free medium. After 1 h virus adsorption the supernatant was removed and cells
were washed twice with PBS. DMEM containing dilutions of 17-AAG (200 nM, 400 nM,
800 nM, 2,000 nM) or DMSO as solving control. Samples for detection of viral RNA and
infectious particles in the supernatant as well as total RNA within the cells were taken 8, 16
and 24 hpi.

The cytotoxicity of the the HSP90 inhibitor was assured by cell viability assay using CellTiter-
Glo® Luminescent Cell Viability Assay according to manufacturer’s instruction (Promega).
The activity of untreated cells was set as 100% and cells were treated with different
concentrations of 17-AAG. The viability of cells was measured 16 and 24 h after treatment
using Mithras Luminescence microplate reader (Berthold).

RT-gPCR of viral RNA in the supernatant

The viral RNA from supernatant of infected cells was isolated using the NucleoSpin RNA virus
isolation kit (Macherey-Nagel) according to the manufacturer’s instructions. To determine the
amount of viral genome equivalents the previously published assay specific for both SARS-
CoV and SARS-CoV-2 Envelope gene [103] was used. Data analysis was done using
LightCycler Software 4.1 (Roche).

Data availability

Raw sequencing is available at the Gene Expression Omnibus database (GEO), identifier

GSE148729 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148729).

Supplementary data and supporting files such as scRNA-seq Seurat objects are available at

www.mdc-berlin.de/singlecell- SARSCoV2.
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Fig. 1. A, Viral read percentages
of total reads of the respective cell
lines at different time points of
infection. All cell lines show an
induction as a function of time.
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amount of viral reads. B,
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Fig. 2. A, MA plots of differentially expressed (DE) genes
at the mRNA level of Calu-3 (12 hpi) and Caco-2 cells
infected with SARS-CoV-2. X-axis depicts log10 of mean
counts associated with a gene. Y-axis depicts mMRNA log2
fold changes. Significant differentially expressed genes
(red dots) are defined as those with an absolute log2 fold
change of greater than 0.58 and an adjusted p-value >
0.05. Selected outliers are labeled. B, Gene Ontology
(GO) term enrichment for different comparisons. A sample
of gene sets overrepresented significantly in at least one
comparison (hypergeometric test, adjusted p-value <
0.05). Dot size depicts percentage of gene set members
classed as differentially expressed in one comparison.
Gene sets overrepresented significantly are displayed as
solid dots. Dot colour represents the average log2 fold
change of mRNAs of a gene set in that comparison.
Calu-3 cells exhibit a higher DE than CaCo-2 cells
challenged by infection. C, expression values (FPKM) of
genes significantly induced in cells infected with either
viruses at 12 hpi in Calu-3 cells. D, Genes exhibiting
significant changes both cell lines are shown in red,
log2-transformed fold changes of SARS-CoV-2 infected
cells at 12 hpi (Calu-3, horizontal axis) and 24 hpi (Caco-2,
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Fig. 5. A, Cells were embedded into diffusion map space and by UMAP projected using 20 diffusion components into two-dimensional space.
Areas of interest are marked. Arrows represent trajectories based on RNA velocity. B, C, Projection as in A, but colored by mature (left
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Fig. 6. A, Correlation of gene expression values with the amount of SARS-CoV RNA (y-axis) and SARS-CoV-2 RNA (x-axis) in the H1299
scRNA-seq data. B, Distribution of HSP9OAA1 mRNA (left) and RNA velocity (right) values in mock and SARS-CoV samples, and, for
SARS-CoV-2 samples, split by cells with and without viral RNAs. C, As in A but for the Calu-3 4 hpi samples. D, As in C but with RNA velocity
instead of mature mRNA values. E, Distribution of HSP90AA1 mRNA (left) and RNA velocity (right) values for mock, SARS-CoV and
SARS-CoV-2 samples, split by cells with and without viral RNA.
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Fig. 7. A, Infectious plaque forming units (PFU) (top) and viral RNA
genome equivalents (GE) (bottom) in supernatants of Calu-3 cells
infected with SARS-CoV-2 with the indicated treatment 16 hpi. After viral
adsorption for one hour, cells were washed and supplied with conditioned
medium containing DMSO, as solvent control, or indicated concentrations
of 17-AAG. B, as in A but from an independent experiment analyzed at 8
hpi, and with additionally intracellular viral RNA. C, as in A, but with virus
and 17-AAG added simultaneously without replacement of the inoculum.
D, E, Intracellular expression of viral RNA and mRNA of selected genes
from the samples in C. The 17-AAG treatment induces dose-dependent
reduction of SARS-CoV-2.


https://doi.org/10.1101/2020.05.05.079194
http://creativecommons.org/licenses/by-nc-nd/4.0/

