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Abstract:

Bariatric surgery improves both insulin sensitivity and secretion in type 2 diabetes. However,
these changes are difficult to monitor directly and independently. In particular, the degree and
the time course over which surgery impacts 3 cell function, versus mass, have been difficult
to establish. In this study, we investigated the effect of bariatric surgery on 3 cell function in
vivo by imaging Ca?* dynamics prospectively and at the single cell level in islets engrafted into
the anterior eye chamber. Islets expressing GCaMP6f selectively in the B cell were
transplanted into obese male hyperglycaemic mice that were then subjected to either vertical
sleeve gastrectomy (VSG) or sham surgery. Imaged in vivo in the eye, VSG improved
coordinated Ca?* activity, with 90% of islets observed exhibiting enhanced Ca?* wave activity
ten weeks post-surgery, while islet wave activity in sham animals fell to zero discernible
coordinated islet Ca?* activity at the same time point. Correspondingly, VSG mice displayed
significantly improved glucose tolerance and insulin secretion. Circulating fasting levels of
GLP-1 were also increased after surgery, potentially contributing to improved B cell
performance. We thus demonstrate that bariatric surgery leads to time-dependent increases
in individual B cell function and intra-islet connectivity, together driving increased insulin
secretion and diabetes remission, in a weight-loss independent fashion.

Significance Statement:

Used widely to treat obesity, bariatric surgery also relieves the symptoms of type 2 diabetes.
The mechanisms involved in diabetes remission are still contested, with increased insulin
sensitivity and elevated insulin secretion from pancreatic B cells both implicated. Whilst the
speed of remission — usually within a few days — argues for improvements in  cell function
rather than increases in mass, a direct demonstration of changes at the level of individual 3
cells or islets has been elusive. Here, we combine vertical sleeve gastrectomy with intravital
imaging of islets engrafted into the mouse anterior eye chamber to reveal that surgery causes
a time-dependent improvement in glucose-induced Ca?* dynamics and B cell - B cell
connectivity, both of which likely underlie increased insulin release.
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Introduction

An estimated 30 million individuals in the US (9.4 % of the population) have diabetes (1), with
~90% of cases thought to be Type 2 Diabetes (T2D), while in the United Kingdom it is
predicted that by 2025 more than five million people will be diagnosed with the disease (2). In
response to this epidemic, an abundance of pharmacological, dietary, exercise and
behavioural interventions have been deployed but often focus on T2D management rather
than long-term disease resolution (3, 4). Several clinical trials have now reported that bariatric
surgery, a group of gastrointestinal procedures originally developed to aid weight loss,
improves long-term glycaemia more effectively than caloric restriction or medical intervention
(5-7).

Numerous studies (8-12) have attempted to unravel the mechanisms through which blood
glucose control is improved post-operatively. One hypothesis to explain post-bariatric T2D
remission is that it results from the increased release of incretins from the gut, such as the
gastrointestinal insulin-stimulating hormone Glucagon-like Peptide 1 (GLP-1), as upregulated
postprandial levels have been reported following bariatric surgery (13-15). Preclinical and
clinical data have shown that bariatric surgery improves both hepatic and peripheral insulin
sensitivity, as well as increases in insulin secretion (16-19). However, the exact mechanisms
through which surgery impacts the B cell, including the identity of all the extra-pancreatic
signals involved, and the relative importance of changes in B cell function and mass, have
remained elusive. Nonetheless, the rapid (hours-days) reversal of diabetes in human subjects
treated with bariatric surgery (20, 21) has provided powerful evidence that an improvement of
B cell function plays an important, and possibly the dominant, role in increasing pancreatic
insulin output.

A critical limitation in investigating B cell function in living humans or preclinical models is that,
in the absence of robust in vivo imaging technologies (22), function must rely mainly on indirect
measurements of circulating insulin or C-peptide. These approaches preclude any quantitation
of changes over time, a detailed examination of function at the level of single 8 cells, or the
connections between them. The latter has become an important issue since we (23) and
others (24) have reported that weaker intercellular connections, and the loss of highly
connected cells, that can often initiate Ca?* waves (sometimes referred to as “hubs”), underlie
the loss of insulin secretion observed in response to challenges associated with diabetes
gluco(lipo)toxicity, low inflammation level, etc. (23, 25, 26). However, untangling these
functional changes from alterations in 8 cell mass in vivo is challenging, since the latter can
only reliably be determined post-mortem via pancreatic biopsies, and thus at a single time
point.

In an effort to overcome these limitations, the present study aimed to investigate the effect of
Vertical Sleeve Gastrectomy (VSG) on pancreatic 3 cell function in mice, by transplanting
“reporter” islets in the anterior chamber of the eye. This approach was established by Berggren
and colleagues (27) and has recently been developed by ourselves (26) to assess coordinated
islet behaviour in vivo. Importantly, this technique has allowed us to image Ca?" dynamics
recursively, in the same islet, over time and with near single cell resolution, following surgery.
We show that VSG increases B cell Ca? dynamics within eight weeks post-surgery when
compared to pre-operative baseline and a sham operated group. Moreover, we demonstrate
that VSG increases the number and strength of § to B cell connections at ten weeks after
surgery. These changes were associated with increased fasting levels of GLP-1, suggesting
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that enhanced incretin production may contribute to postoperative improvements in 3 cell
performance.

Results

Vertical Sleeve Gastrectomy improves glucose tolerance

Our experimental protocol is summarized in Figure 1A. In brief, mice were placed on a high
fat high sucrose diet (HFHSD), at eight weeks of age, eight weeks before sham or vertical
sleeve gastrectomy (VSG) surgery (week 0). This protocol led to fasting hyperglycaemia,
indicative of B cell decompensation and defective insulin secretion, as expected (28).
Ins1Cre:GCaMPf islets were isolated from donor mice and transplanted at week (-4).
Baseline islet Ca?* dynamics were imaged at week (-1).

VSG-treated mice experienced a larger decrease in body weight versus sham-operated
animals, that was statistically significant until week 8 (week 7 av. Sham 42.9 + 4.3g, av. VSG
34 + 2.4¢g, p>0.05), (Fig. 1B). Vertical sleeve gastrectomy significantly increased the glucose
clearance rate (p<0.01 at 15, 30, 60 and 90 min.) as assessed by oral glucose tolerance test
(OGTT) at post-operative week 8 (Fig. 1C) and intraperitoneal glucose tolerance test (IPGTT)
four and ten weeks post operatively (p<0.01 at min. 30, 60, 90 min, Fig. 1D, 1E respectively).
Strikingly, in all tolerance tests performed on VSG-treated mice, glucose peaked at 15 min.
post glucose injection (3g/kg) and dropped to baseline levels within 60 min. by week eight,
and near baseline levels at week ten. In contrast, in sham-operated mice, glucose peaked at
30 min. and did not fully recover within the first 2 h of measurement.

Vertical Sleeve Gastrectomy improves insulin secretion and sensitivity but does not increase
B cell mass

In order to understand the marked increase in the rate of glucose clearance in mice that had
undergone VSG, we measured insulin secretion in vivo as a response to an IP glucose load
(3g/kg). Insulin secretion was increased significantly in VSG versus sham mice as early as
four weeks post operatively (Fig. 1F, with the observed peak at 15 min. almost three-fold
higher compared to sham mice (p<0.05). VSG mice were also significantly more insulin
sensitive when compared to sham mice, as assessed by intraperitoneal insulin tolerance test
(ITT, 1.5U/kg) (p<0.01, Fig. 1 G). However, pancreatic 3 cell mass was not increased in the
VSG group relative to sham controls (Supp. Fig. 1A, 2). Notably, the ratio of a to § cell mass
was significantly higher in the VSG group, yet a cell mass was not significantly increased
(Supp Fig. 1B, C, 2).

Vertical Sleeve Gastrectomy enhances GLP-1 secretion

To assess whether enhanced incretin release may contribute to the euglycemic effect of VSG
we observed during IPGTT and OGTT, we measured plasma GLP-1 levels during fasting and
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15 min. following an orally administered glucose load (3g/kg) (Fig. 1C). Fasting GLP-1 was
significantly higher in the VSG group, when compared to sham (Fig. 1H). Moreover, whilst
glucose failed to increase GLP-1 levels significantly in the sham group, a highly significant
increase in response to glucose gavage was observed in VSG-treated animals (Fig. 1H).
Significantly lower glucose levels were apparent in VSG-treated versus sham-treated mice,
both fasting and following glucose gavage (Fig. 11).

B cell Ca* dynamics are enhanced following Vertical Sleeve Gastrectomy

In order to explore changes in B cell function after surgery, we monitored intracellular Ca?*
changes prospectively and in the same islets by confocal imaging of the anterior eye chamber
(26, 27). Ca?* increases, measured at ambient blood glucose concentrations in the range
12.5+0.7 mmol/L for both VSG-treated and sham mice, which occurred at a single or multiple
site across the islet but did not advance across the islet, were defined as “oscillations”.
Increases that had a defined site of origin but did not spread across the full width of the imaged
plane, were defined as “partial” waves (Fig. 2Bi, Supp. Mov. 1D). Those increases spreading
across the whole islet were termed “waves” (Fig. 2Ai, 2Bii Supp. Mov. 1A, E). If the latter wave
type was recurrent, we defined the behaviour as a “super wave” (Fig 2Biii, Supp. Mov. 1F).
As illustrated in Fig. 2A, when imaged 0, 4 and 10 weeks after surgery, islets in sham-operated
animals displayed a progressive loss of Ca?* dynamics, as defined by the frequency and type
of waves. Thus, when imaged at 0 weeks (Fig. 2Ai), wave behaviour (beginning at the bottom
right; red area) area moved rapidly across the areas identified in yellow and blue. Comparable
behaviour was seen at 4 weeks, with a similar site of origin of the wave (Fig. 2Aii) but was lost
at 10 weeks post sham surgery, even though there was no significant weight difference
between the two groups (Fig. 2Aiii, Supp. Mov. 1C).

In contrast, islets implanted into mice subject to VSG displayed sustained or gradually
improving Ca** dynamics following surgery. Thus, the islet shown in Fig. 2Bi initially showed
partial wave activity but progressed to full wave activity by week 4 (Fig. 2Bii, Supp. Mov. 1D)
and to super wave by week 10 (Fig. 2Biii, Supp. Mov. 1F). A similar progression was seen for
eight islets in three separate mice subjected to VSG (Fig. 3A, Supp. Fig. 3), whilst in six islets
in three sham-operated mice a decline in behaviour was apparent after surgery (Fig. 3A).
Remarkably, almost all islets transplanted into VSG animals displayed either wave or
superwave behaviour by week eight, even if VSG-treated animals did not display further
weight loss. This is significantly higher when compared to sham mice at the same timepoint
(p=0.02) (Fig. 3A). By week 10, the activity of all sham-transplanted islets dropped to almost
zero (p=0.004) (Fig. 3A). Mean wave front velocity, a measure of the speed of the wave
calculated by distance (um) divided by time (sec), across the islet was not different between
groups at any time point explored. Similarly, no differences were apparent between wave
velocities for the different wave types in either VSG or sham operated (Fig. 3B).

Vertical Sleeve Gastrectomy maintains the number and strength of 8 cell — 3 cell connections

Coordinated activity of B cells is a feature of the healthy islet, and is likely to be important for
the regulation of pulsatile insulin secretion (29). As shown in Fig. 4A and B, Pearson
correlation analysis revealed no differences in apparent connectivity at week O (prior to
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surgery), whereas a progressive decline in connectivity was observed in the sham group. The
number of connected cells (Fig. 4B), or the mean connectivity strength (R) (Fig. 4C, D)
remained relatively constant in the VSG group, such that by week 10 these islets displayed
significantly greater connectivity than the sham group (Fig. 4B). In summary, glucose-related
Ca?* signalling in VSG mice was characterized by higher magnitude and higher sensitivity to
glucose when compared with sham mice, suggesting changes in glucose metabolism in the
islets following VSG.

Discussion

Using an intravital imaging approach developed in recent years to monitor islet function in vivo
(26, 27), we provide here evidence that VSG causes a dramatic improvement in 8 cell Ca?*
dynamics, a useful assay of normal cellular function and proxy for insulin secretion (22, 30,
31). The use of such an approach addresses the challenges in dissecting the relative
importance of the actions of bariatric surgery in changes observed in: (a) pancreatic insulin
output versus peripheral insulin sensitivity, (b) B cell function versus mass, and (c) the time
courses of changes, post-surgery.

Critically, we demonstrate that at similar, stimulatory glucose concentrations, islet Ca?*
dynamics and connectivity are dramatically increased in VSG versus sham-operated animals.
Our data provide the first evidence we are aware of that alterations in 8 cell function occur
both at the level of individual cells and across the islet ensemble after surgery, and are thus
likely to play a pivotal role in improving insulin output. Changes in both (3 cell identity, reflecting
altered gene expression (32-34), and in coordinated B cell activity across the islet, are
important features of T2D (25, 35). The normalization of either thus presents an attractive
therapeutic route towards improving insulin secretion in this disease. Importantly, whilst
several studies have demonstrated changes in islet gene expression in rodent models related
to hyperglycaemia and diabetes progression, such as obese diabetic (ZDF) rats and HFHSD
mice (36, 37), few have examined the potential for reversing these changes as a therapeutic
strategy (37, 38).

Central to the present study has been the use of VSG in obese mice as a model of human
bariatric surgery (39, 40). Roux-en-Y Gastric Bypass (RYGB) and VSG are routinely deployed
as an approach to treat human obesity, and both cause similar rates of T2D remission within
the first post-operative year in man (41). In mice, VSG leads to initial rapid weight loss followed
by a weight regain, unlike RYGB, but sustains improved glucose tolerance while offering a
more tractable approach, with lower mortality (42, 43). Importantly, our study had a ten-week
post-operative follow up and, by week eight, there was no significant weight difference
between sham and VSG group. This allowed us to separate marked improvements in insulin
secretion from significant weight loss without the need to pair-feed the sham group (43).
Moreover, it corresponds with our previous findings in lean VSG-treated mice that
demonstrated no weight difference when compared to sham mice at four weeks post-
operatively, yet displayed improved glucose tolerance and corresponding insulin secretion
curves during an IPGTT (44). Insulin tolerance tests at week eight demonstrated that VSG
mice had improved insulin sensitivity, an effect previously attributed in humans to rapid and
significant enhancement of post-operative hepatic insulin clearance (45). It has recently been
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suggested that, in animal models of surgery, hepatic insulin clearance is related to peripheral,
rather than hepatic, insulin sensitivity (46).

Accelerated glucose clearance in VSG-treated animals was accompanied by increased insulin
secretion in response to glucose at 15 and 30 min., consistent with previous studies using
VSG models (39, 47, 48). The fact that the insulin response to IPGTT was equally robust
suggests that this effect is not solely due to an increased spike in blood glucose associated
with elevated gastric emptying rates and upregulated glucose absorption, as has been
previously postulated (9, 49). Increased insulin secretion in the face of lower plasma glucose
demonstrates enhanced (8 cell glucose sensitivity, consistent with cell-autonomous changes
in islet function, alterations in circulating levels of other regulators of secretion, or an increase
in B cell number. Analysis of the endogenous pancreatic 3 cell mass showed no increase in
VSG versus sham-operated mice, pointing to a functional change rather than a change in
endogenous [ cell mass, as underlying increased insulin output. Moreover, and though this
could not be quantitated accurately due to the lack of focal distances stacking data, we saw
no evidence for a change in the 8 cell mass of islets engrafted into the eye. This is in line with
previous findings demonstrating that there is no islet hyperplasia or increased 8 cell turnover
following bariatric surgery in humans or rats with obesity (50, 51). These findings contrast
other studies that have reported -over similar times scales- increasing (52-54) or decreasing
(48, 55) B cell mass differences, which may reflect pre-operative metabolic state or other
factors.

Given many reports of increased GLP-1 release after bariatric surgery in both humans (56)
and rodents (42, 57), here we explored levels of both circulating fasting and post-glucose
gavage GLP-1 levels. Importantly, the peak in GLP-1 following oral gavage did not differ
between sham and VSG mice, indicating that an enhanced insulinotropic effect of the incretin
is unlikely to explain dramatic increase in insulin secretion observed. Furthermore, enhanced
insulin secretion was seen in mice treated with VSG even during IPGTT, where the stimulation
of GLP-1 secretion is negligible.

Interestingly, VSG-treated mice did display significantly higher circulating GLP-1 levels under
basal (fasting) conditions. Apart from increasing glucose-stimulated insulin secretion and
enhancing insulin gene transcription (58, 59), GLP-1 also inhibits 3 cell apoptosis in animal
models of diabetes (60, 61). Thus, although the underlying mechanisms remain unclear,
increased basal GLP-1 levels might provide a partial explanation for the enhanced responses
to glucose and the euglycemic effects observed after surgery. A number of studies have
shown that, in post-operative patients with T2D, GLP-1 receptor (GLP-1R) blockade with the
GLP-1R antagonist Exendin-(9-39) causes significant reduction of insulin secretion when
compared to a control group with lower GLP-1 levels, indicating an effect on 8 cell function
(62, 63). Nonetheless, other studies have demonstrated that blocking GLP-1R in bariatric
patients impairs glucose tolerance but not to a greater degree than before surgery, or when
compared to non-operated patients (64, 65). Furthermore, Ye and colleagues found that
pharmacological or genetic blockade or elimination of GLP-1R signaling in rats or mice,
respectively, had no impact on the ability of RYGB to lower body weight (66, 67). Taken
together, these earlier data suggest that GLP-1 signaling may not be the main mediator of
T2D remission but is likely to contribute (68). Changes in the levels of other circulating factors
are thus likely to be involved in the apparent increase in B cell function. Lowered levels of
circulating lipids (69), inflammatory cytokines (70), bile acids (71), glucocorticoids (72) or
microbiome-derived products (73) are potential candidates.
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An important aspect of the present study has been to examine, at the cellular level, the
functional connectivity between (3 cells before and after VSG or sham surgery. The percentage
of significantly-connected cell pairs and correlation coefficient decreased substantially in the
sham group at week ten, while in the VSG group these parameters remained stable for the
duration of the study. We would note that hub/follower behaviour (i.e. the existence of a “power
law” in the degree of connectedness) (23) was not readily apparent in the present study. More
rapid acquisition rates are likely to be needed to reveal such a hierarchy. Furthermore, we
note that wave-like behaviour is more often apparent in the islet in vivo using GCaMP6f as the
Ca?* sensor (26) than in some of our own and others’ earlier studies (23, 25) using entrapped,
synthetic Ca?* probes. Nonetheless, clusters of apparent “leader” B cells, corresponding to
the point at which a rise in Ca?* was first observed at the beginning of a wave, were easily
identified in many cases (e.g. Fig. 2A), and these have previously been reported (23) to
correspond to the hub cell population. Interestingly, the origin of the waves was similar within
a given islet assayed several weeks apart, indicating that the cells which initiate them (leaders)
represent a stable population, at least over the time frame (< 10 weeks) studied here.

Taken together, our results indicate that bariatric surgery improves glycaemic control at least
partially by maintaining: (a) functional B cell identity and (b) coordinated activity across the
islet. A possible explanation for our data may be that the improvement in islet function follows
the improvement in glycaemia. However, since insulin sensitivity was barely altered by VSG,
it is unclear whether extrapancreatic events could be the drivers for improved islet function
and insulin output.

Although the surgical model used provides us with novel information on B cell activity via
continuous monitoring, there are undoubtedly limitations in the use of islets engrafted into the
ACE. These include potential differences between the vascularization and innervation at this
site compared to pancreatic in situ islets (74). Our findings on ACE-engrafted islet reactivation
following VSG are however in line with previous results focusing on pancreatic islets isolated
postmortem. Thus, Douros et al (43) performed Ca?* imaging in vitro in mouse islets
postmortem and showed that the percentage of islets displaying Ca?* oscillations in response
to glucose was enhanced 2.2-fold in the VSG group, indicating increased islet glucose
sensitivity after surgery. In addition, VSG altered the islet transcriptome, affecting genes
involved in insulin secretion and Ca?" signaling (43). However, these earlier studies were
cross-sectional in nature, and as such did not explore the apparent reactivation in vivo of
individual islets and 8 cells in the living animal, as described here.

In conclusion, our findings provide further evidence for the protective effect of bariatric surgery
in T2D, irrespective of weight loss, and demonstrate direct effects on B-cell function and
coordination in the living animal. Future challenges are to understand more fully the
mechanisms through which these changes are affected at the paracrine, endocrine and
cellular levels.

Methods:

Animals - All animal procedures undertaken were approved by the British Home Office under
the UK Animal (Scientific Procedures) Act 1986 (Project License PPL PAO3F7FQ7 to I.L.) with
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approval from the local ethical committee (Animal Welfare and Ethics Review Board, AWERB),
at the Central Biological Services (CBS) unit at the Hammersmith Campus of Imperial College
London.

Adult male C57BL/6J mice (Envigo, Huntingdon U.K.) were maintained under controlled
temperature (21-23°C) and light (12:12 hr light-dark schedule, lights on at 0700). From the
age of 8 weeks they were put on a 58 kcal% Fat and Sucrose diet (D12331, Research Diet,
New Brunswick, NJ) ad libitum to induce obesity and diabetes. Four weeks after the start of
this diet, the animals underwent islet transplantation into the anterior chamber of the eye of
genetically modified islets expressing GCaMP6f to allow for intravital measurements of
cytosolic Ca?*. Four weeks after islet transplantation, the animals underwent either a vertical
sleeve gastrectomy or a sham surgery as described below.

Ins1Cre:GCaMPf" mice, used as donors for islet transplantation were generated by crossing
crossed Ins1Cre mice (provided by J Ferrer, this Department) to mice that express GCaMP6f
downstream of a LoxP-flanked STOP cassette (The Jackson Laboratory, stock no. 028865).
Islets donated from either sex were used for transplantation.

Islet transplantation into the anterior chamber of the mouse eye (ACE) - Pancreatic islets were
isolated and cultured as described previously (75). For transplantation, 10-20 islets were
aspirated with a 27-gauge blunt eye cannula (BeaverVisitec, UK) connected to a 100ul
Hamilton syringe (Hamilton) via 0.4-mm polyethylene tubing (Portex Limited). Prior to surgery,
mice were anaesthetised with 2-4% isoflurane (Zoetis) and placed in a stereotactic frame to
stabilise the head. The cornea was incised near the junction with the sclera, being careful not
to damage the iris. Then, the blunt cannula, pre-loaded with islets, was inserted into the ACE
and islets were expelled (average injection volume 20 pl for 10 islets). Carprofen (Bayer, UK)
and eye ointment were administered post-surgery.

Vertical Sleeve Gastrectomy - Three days before bariatric or sham surgery, animals were
exposed to liquid diet (20% dextrose) and remained on this diet for up to four days post
operatively. Following this, mice were returned to high fat/high sucrose diet until euthanasia
and tissues harvested ten weeks post bariatric surgery. Anaesthesia was induced and
maintained with isoflurane (1.5-2%). A laparotomy incision was made, and the stomach was
isolated outside the abdominal cavity. A simple continuous pattern of suture extending through
the gastric wall and along both gastric walls was placed to ensure the main blood vessels were
contained. Approximately 60% of the stomach was removed, leaving a tubular remnant. The
edges of the stomach were inverted and closed by placing two serosae only sutures, using
Lembert pattern. The initial full thickness suture was subsequently removed. Sham surgeries
were performed by isolating the stomach and performing a 1 mm gastrotomy on the gastric
wall of the fundus. All animals received a five-day course of SC antibiotic injections
(Ciprofloxacin 0.1mg/kg).

In vivo Ca?* imaging of Ins1Cre:GCaMPf"" islets in the ACE - A minimum of four weeks was
allowed for full implantation of islets before imaging. Imaging sessions were performed as
previously described (26) with the mouse held in a stereotactic frame and the eye gently
retracted, with the animal maintained under 2-4% isoflurane anaesthesia. All imaging
experiments were conducted using a spinning disk confocal microscope (Nikon Eclipse Ti,
Crest spinning disk, 20x water dipping 1.0 NA objective). The signal from GCaMP6f
fluorophore (ex. 488 nm, em. 525+25 nm) was monitored in time-series experiments for up to
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20 min. at a rate of 3 frames/ sec. Ca?* traces were recorded for three min, with a mean blood
glucose reading (across six islets in three separate animals per group) of 12.5+0.7. mmol/L.
Islets were continuously monitored, and the focus was manually adjusted to counteract
movement. Animals were imaged 3 days prior to Vertical Sleeve Gastrectomy (baseline) and
then at four, eight and ten weeks post-operatively.

Glucose Tolerance Tests - Mice were fasted overnight (total 16 h) and given free access to
water. At 0900, glucose (3 g/kg body weight) was administered via intraperitoneal injection or
oral gavage. Blood was sampled from the tail vein at 0, 5, 15, 30, 60 and 90 min. after glucose
administration. Blood glucose was measured with an automatic glucometer (Accuchek;
Roche, Burgess Hill, UK).

Insulin Tolerance Tests - Mice were fasted for 8 h and given free access to water. At 1500,
human insulin (Actrapid, Novo Nordisk) (1.5U/kg body weight) was administered via
intraperitoneal injection. Blood was sampled from the tail vein at 0, 15, 30, 60 and 90 min after
insulin administration. Blood glucose was measured with an automatic glucometer (Accuchek;
Roche, Burgess Hill, UK).

Plasma insulin and GLP-1 measurement - To quantify circulating insulin and GLP-1(1-37)
levels, 100ul of blood was collected from the tail vein into heparin-coated tubes (Sarstedt,
Beaumont Leys, UK). Plasma was separated by sedimentation at 10,000g for 10 min. (4°C).
Plasma insulin levels were measured in 5l aliquots and GLP-1(1-37) levels were measured
in 10pl aliquots by ELISA kits from Crystal Chem (USA).

Immunohistochemistry of pancreas sections - Isolated pancreata were fixed in 10% (vol/vol)
buffered formalin and embedded in paraffin wax within 24 h of removal. Slides (5 ym) were
submerged sequentially in Histoclear (Sigma, UK) followed by washing in decreasing
concentrations of ethanol to remove paraffin wax. Permeabilised pancreatic slices were
blotted with ready-diluted anti-guinea pig insulin (Agilent Technologies, USA) and anti-mouse
glucagon (Sigma, UK) primary antibody (1:1000). Slides were visualised by subsequent
incubation with Alexa Fluor 488 and 568-labelled donkey anti-guinea pig and anti-mouse
antibody. Samples were mounted on glass slides using VectashieldTM (Vector Laboratories,
USA) containing DAPI. Images were captured on a Zeiss Axio Observer.Z1 motorised inverted
widefield microscope fitted with a Hamamatsu Flash 4.0 Camera using a Plan-Apochromat
206/0.8 M27 air objective with Colibri.2 LED illumination. Data acquisition was controlled with
Zeiss Zen Blue 2012 Software. Fluorescence quantification was achieved using Image J
(https://imagej.nih.gov/ij/). Whole pancreas was used to quantitate cell mass.

Statistical Analysis - Data were analysed using GraphPad PRISM 7.0 software. Significance
was tested using unpaired Student’s two-tailed t-tests with Bonferroni post-tests for multiple
comparisons, or two-way ANOVA as indicated. P<0.05 was considered significant and errors
signify £ SEM.

Pearson (R)-based connectivity and correlation analyses - Correlation analyses between the
Ca?* signal time series for all cell pairs in an imaged islet were performed in MATLAB using a
modified custom-made script (26). B cell intensity was measured in 100 consecutive frames
(30 sec.). Regions of Interest (ROI, 18-40 per islet, depending on size) were selected with
single or near single cell resolution (i.e. 10-20um diameter) and captured approximately 95%
of the fluorescence of the image plane. Data were smoothed using a retrospective averaging
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method (previous 10 values). The correlation function R between all possible (smoothed) cell
pair combinations (excluding the autocorrelation) was assessed using Pearson’s correlation.
The Cartesian co-ordinates of the imaged cells were then incorporated in the construction of
connectivity line maps. Cell pairs were connected with a straight line, the colour of which
represented the correlation strength and was assigned to a colour-coded light-dark ramp
(R=0.1-0.25 [blue], 0.26-0.5 [green], R=0.51-0.75 [yellow], R=0.76-1.0 [red]). Cells with the
highest number of possible cell pair combinations are shown in red. Data are also displayed
as heatmap matrices, indicating individual cell pair connections on each axis (min. = 0; max.
= 1). The positive R values (excluding the auto-correlated cells) and the percentage of cells
that were significantly connected to one another were averaged and compared between
groups.
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1 Figure legends:

N

Figure 1:

VSG improves glucose and insulin tolerance in HFHSD mice. (A) Timeline of procedures. (B) Body
weight monitoring following VSG (n=6 animals) or sham surgery (n=6). (C) Glucose was administered
via oral gavage (3 g/kg) after mice were fasted overnight and blood glucose levels measured at 0, 15,
30, 60 and 90 min. post gavage, six weeks after surgery, n=5-6 mice/group. (D) Glucose was
administered via intraperitoneal injection (3 g/kg) after mice were fasted overnight and blood glucose
levels measured at 0, 15, 30, 60 and 90 min. post injection, four weeks after surgery, n = 6 mice/group.
(E) Glucose was administered via intraperitoneal injection (3 g/kg) after mice were fasted overnight and
10  Dblood glucose levels measured at 0, 15, 30, 60 and 90 min. post injection, 10 weeks after surgery, n =
11 4-5 mice/group. (F) Corresponding insulin secretion levels measured on plasma samples obtained
12 during the IPGTT performed in D (n=6). (G) Insulin was administered via intraperitoneal injection
13 (1.5Ul/kg) after mice were fasted for 5h and blood glucose levels measured at 0, 15, 30, 60 and 90 min.
14 post injection, 7-8 weeks after surgery, n = 6 mice/group. (H) Corresponding GLP-1 secretion levels
15 measured on plasma samples obtained during the OGTT performed in C (n=5). (I) Corresponding
16  glucose levels for 0, 15 min obtained during the OGTT performed in C (n=5). ## P<0.01 VSG 0 vs. VSG
17 15 min, *P<0.05, **P<0.01,***P<0.001 VSG vs. Sham, following Student t-test or 2-way ANOVA. Data
18 are expressed as means + SEM.
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19
20 Figure 2:

21 Description of Ins1Cre:GCaMPf"f jslet Ca*? dynamics: super wave, full wave, partial wave and
22 no activity. Ins1Cre:GCaMPf" islets implanted in the anterior chamber of the eye and imaged for 400
23 frames (133 secs) using a spinning disk confocal microscope (see Materials and Methods) at baseline
24  week 0, postoperative week 4 and week 10. Each islet is separated in three Regions of Interest (ROIS)
25 in order to categorise its activity. Red represents area 1 (distal islet), yellow represents area 2 (middle
26 islet) and blue represents area 3 (proximal islet). Mean intensity is measured in each ROI for each
27  frame (3 frames/ sec) and presented as Ca*? dynamics. (A). Ins1Cre:GCaMPffl islets implanted in a
28 sham animal and imaged at (i) week 0 (full wave), (i) 4 (full wave) and (iii) 10 (inactive). B (i)
29  Ins1Cre:GCaMPf islet implanted in a VSG-treated animal (i) at week O (partial wave), (ii) week 4 (full
30 wave) and (iii) week 10 (super wave). Scale: 100um. Plasma glucose levels during imaging were
31  12.5+0.7 mmol/L.

32
33 Figure 3:

34  Ca?* dynamics of Ins1Cre:GCaMPf™"! islets in Sham and VSG-treated animals (A). Categorisation
35  of Ins1Cre:GCaMPfi islets in sham (n=3 animals, n=6 islets) and VSG (n=3 animals, n=8 islets) mice
36 on weeks 0 (baseline), 4, 8 and 12. Categories: 1. No activity, 2. Oscillations, 3. Partial Wave, 4. Wave,
37 5. Super Wave (B). Velocity of waves and partial waves of Ins1Cre:GCaMPf islets in sham and VSG
38 animals calculated by d/ At and measured as ym/ sec. *P<0.05, **p<0.01, by Student t-test. Data are
39 expressed as means + SEM.

40
41 Figure 4:

42  Cartesian functional connectivity and correlation coefficiency of islets before and after VSG or
43 Sham surgery. (A) Cartesian functional connectivity maps displaying the correlation coefficients of
44  cells within the x-y position of analysed cells (dots). Cells are connected with a line where the strength
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of each cell pair correlation (the Pearson R statistic) is colour coded: red for R of 0.76 to 1.0, yellow for
R of 0.51 to 0.75, green for R of 0.26-0.5 and blue for R of 0.1 to 0.25. Red dots represent 3 cells with
the highest number of connected cell pairs. Ca?* activity detected during the 30 sec (100 frames)
imaging period analysed is displayed at the top right of each connectivity map. (B) The percentage of
significantly connected cell pairs decreased significantly in the sham group at week 10. (C)
Representative heatmaps depicting connectivity strength (Pearson R correlation) of all 8 cell pairs (x- y
axis) presented in (A) (R values colour coded from 0 to 1, blue to yellow respectively). Yellow represents
B cell pairs with high connectivity strength. (D) The average of correlation coefficient (R) decreased
significantly in the sham group at week 10. N= 3 animals (1 islet/ animal). Data are means + SEM and
*p<0.05, **p<0.01, ***p<0.001 following 1-way ANOVA.

Supplementary data:
Figure 1:

Percentage of pancreatic area occupied by and ratio of ato B cells. (A) Percentage of pancreatic
area occupied by B cells measured by immunofluorescent staining of pancreatic islets using anti-insulin
antibody against total pancreatic area. (B) Ratio of a to B cells in pancreatic islets of VSG (n=4) and
Sham (n=5) mice measured by immunofluorescent staining of pancreatic islets using anti-glucagon
(red) and anti-insulin (green) antibody. (C) Percentage of pancreatic area occupied by a cells measured
by immunofluorescent staining of pancreatic islets using anti-glucagon antibody against total pancreatic
area. Each point represents an average of all islets (10-30/ slide) present in three permeabilised
pancreatic slices, separated by 600um. Total pancreatic area is measured in each slide and percentage
is calculated accordingly.*P<0.05, by unpaired Student’s t-test. Data are expressed as means + SEM.

Figure 2:

Immunofluorescence staining of pancreatic islets. Anti-glucagon (red) and anti-insulin (green)
antibodies where used in VSG (n=4) and Sham (n=5) mice.

Figure 3:

Ca?* dynamics of Ins1Cre:GCaMPf" jslets in Sham and VSG-treated animals Grouped
categorisation of Ins1Cre:GCaMPf islets in sham (n=3 animals, n=6 islets) and VSG (n=3 animals, n=8
islets) mice on weeks 0 (baseline), 4, 8 and 12.

Movie 1:

Description of Ins1Cre:GCaMPf islet when in full wave, partial wave and no activity. (A)
Ins1Cre:GCaMPf jslet implanted in a sham animal, imaged using a spinning disk confocal microscope
at week 0 (full wave), (B) 4 (full wave) and (C) 12 (inactive). (D) Ins1Cre:GCaMPf islet implanted in
VSG-treated animal, imaged at week 0 (partial wave), (E) 4 (full wave) and (F) 12 (super wave). Plasma
glucose levels during imaging were 12.5+0.7 mmol/L measured at 5 min intervals.
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Figure 3:
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Figure 4:

A. i. Sham ii. VSG

Ca** dynamics
Ca®* dynamics

Ca** dynamics

=2 R=0.75-1
- | R=0.5-0.75
g | R=0.25-0.5
v R=0.1-0.25
B 15 e Sham (n=3)
) . e VSG (n=3)
&2
2 1.0 °
©
2 . .
S .
® 0.5+ °
© L[]
(@]
0.0 | I I I
Week 0 Week 4 Week 8 Week 10
C.
_ D.
i. Sham ii. VSG
1 1
154 e Sham (n=3)
x e VSG (n=3)
"E xh*
3 1.0
= N [ ] [ ]
18 22 2 . °
1 18 1 22 ot
[=]
E 0.5+ L °
1 1 [ °
M
0.0 I I I |
Week 0 Week 4 Week 8 Week 10
22 0



https://doi.org/10.1101/2020.05.05.078725
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 1:
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Supplementary Figure 3:
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