

1 **Proteomic Investigation of the Signal Transduction Pathways Controlling Colistin
2 Resistance in *Klebsiella pneumoniae*.**

3

4

5 **Ching Hei Phoebe Cheung^a, Punyawee Dulyayangkul^a, Kate J. Heesom^b, Matthew B.
6 Avison^a#**

7

8

9 **^aSchool of Cellular & Molecular Medicine, University of Bristol, Bristol, UK**

10 **^b University of Bristol Proteomics Facility, Bristol, UK**

11

12

13 **#Correspondence to: School of Cellular & Molecular Medicine, University of Bristol,
14 Bristol, United Kingdom. bimba@bris.ac.uk**

15

16

17

18 **Running Title: Colistin resistance in *K. pneumoniae*.**

19 **Abstract**

20 **Colistin resistance in *Klebsiella pneumoniae* is predominantly caused by mutations**
21 **that increase expression of the *arn* (also known as *pbg* or *pmrF*) operon. Expression**
22 **is activated by the PhoPQ and PmrAB two-component systems. Constitutive PhoPQ**
23 **activation occurs directly by mutation or following loss of MgrB. PhoPQ may also**
24 **cross-activate PmrAB via the linker protein PmrD. Using proteomics, we show that**
25 **MgrB loss causes a wider proteomic effect than direct PhoPQ activation, suggesting**
26 **additional targets for MgrB. Different *mgrB* mutations cause different amounts of Arn**
27 **protein production, which correlated with colistin MIC. Disruption of *phoP* in an *mgrB***
28 **mutant had a reciprocal effect to direct activation of PhoQ in a wild-type background,**
29 **but the regulated proteins showed almost total overlap. Disruption of *pmrD* or *pmrA***
30 **slightly reduced Arn protein production in an *mgrB* mutant, but production was still**
31 **high enough to confer colistin resistance; disruption of *phoP* conferred wild-type Arn**
32 **production and colistin MIC. Activation of PhoPQ directly, or through *mgrB* mutation**
33 **did not significantly activate PmrAB or PmrC production but direct activation of**
34 **PmrAB by mutation did, and also activated Arn production and conferred colistin**
35 **resistance. There was little overlap between the PmrAB and PhoPQ regulons. We**
36 **conclude that under the conditions used for colistin susceptibility testing, PhoPQ-**
37 **PmrD-PmrAB cross-regulation is not significant and that independent activation of**
38 **PhoPQ or PmrAB is the main reason that Arn protein production increases above the**
39 **threshold required for colistin resistance.**

40 **Introduction**

41 Colistin is increasingly used to treat infections caused by extensively drug resistant Gram-
42 negative bacteria (1). Colistin resistance in carbapenem-resistant *Klebsiella pneumoniae*,
43 which was first reported in 2010 (2-4) is, therefore, a critically important problem. It can be
44 caused by mobile *mcr* genes but by far the most common causes are chromosomal
45 mutations (5,6). For example, loss-of-function mutations in *mgrB* regularly emerge following
46 colistin therapy in the clinic, and when selecting resistant mutants in the laboratory (7-10).
47 Loss of *MgrB* causes activation of *arn* operon expression (7). This operon, also referred to
48 as the *pbg* or *pmrF* operon (5) encodes a series of enzymes forming a pathway that modifies
49 lipid A in lipopolysaccharide by adding 4-amino-4-deoxy-L-arabinose. This modification has
50 been seen in colistin resistant *K. pneumoniae* mutants in many studies (e.g. 11-13). Its effect
51 is to reduce cell surface negative charge, reducing affinity for positively charged colistin,
52 raising its MIC (5).

53 Activation of *arn* operon transcription in *K. pneumoniae* involves two upstream promoters,
54 each targeted by a two-component system response regulator. *PhoP* targets promoter 1 in
55 response to low magnesium concentrations and *PmrA* targets promoter 2 in response to
56 high iron concentrations and low pH (14). The dramatic impact that cations and pH have on
57 *arn* promoter activity explains the wide range of medium-dependent colistin MICs observed
58 in the laboratory (15,16). According to a joint CLSI and EUCAST report, colistin susceptibility
59 testing needs to be tightly standardised, therefore, and the gold standard is broth
60 microdilution using colistin sulphate, cation adjusted Muller Hinton broth and with no
61 additives (17)

62 Additional complexity arises in control of *arn* operon transcription in *K. pneumoniae* because
63 the response regulator *PhoP* can also activate transcription of *pmrD* and *PmrD* binds *PmrA*
64 and enhances its activation (14,18). Hence, when low magnesium and high iron occur at the

65 same time, the PmrA-targeted *arn* operon promoter 2 is more strongly activated than it is in
66 the presence of high magnesium and high iron (14).

67 The cognate sensor kinases activating PhoP and PmrA are PhoQ and PmrB, respectively
68 (14). It is generally accepted that loss-of-function mutations in *mgrB* activate *arn* operon
69 transcription in *K. pneumoniae* because MgrB is a direct negative regulator of PhoQ sensor
70 kinase activity (5). In fact, this is experimentally confirmed only in *Salmonella* spp. (19) but
71 loss of MgrB does constitutively activate PhoPQ in *K. pneumoniae*, leading to constitutively
72 enhanced transcription from *arn* operon promoter 1 (14). Specific mutations in PhoPQ also
73 activate *arn* operon transcription and confer colistin resistance or heteroresistance in *K.*
74 *pneumoniae*, e.g. PhoQ substitutions Asp434Asn (20) or Ala21Ser (21) or PhoP substitution
75 Asp191Tyr (22).

76 Mutations in PmrAB, constitutively activating *arn* operon transcription from promoter 2 have
77 also been found to cause colistin resistance in *K. pneumoniae*. For example, Leu82Arg (23)
78 or Thr157Pro (24) in PmrB, but activation of PmrAB also increases expression of *pmrC*. This
79 encodes an enzyme that modifies lipopolysaccharide by decorating it with
80 phosphoethanolamine, which contributes to colistin resistance in *Salmonella* spp. because it
81 is another way to reduce negative charge on the cell surface (25).

82 A third two-component regulatory system known to be involved in colistin resistance in *K.*
83 *pneumoniae* is CrrAB. Activatory mutations in the sensor kinase CrrB have been identified in
84 colistin resistant clinical isolates (20,26,27). Based on transcriptomic analysis these mutants
85 have increased *arn* operon and *pmrC* transcription (20) and in this they closely resemble
86 PmrAB activatory mutants and indeed *pmrAB* is essential for the activation of *arn* operon
87 and *pmrC* transcription in CrrAB activatory mutants, suggesting direct linkage between these
88 two-component systems (26). One additional effect of CrrAB activation is upregulation of
89 *crrC* transcription (20) and *crrC* is also essential for activation of *arn* operon and *pmrC*
90 transcription in a CrrAB activatory mutant (26). This suggests that CrrC forms the link

91 between activated CrrAB and activation of PmrAB, leading to colistin resistance, but the
92 mechanism by which this link operates is not yet known.

93 The complexity associated with acquisition of colistin resistance in *K. pneumoniae*, means
94 that clinical cases involve a wide range of mutations. In a recent large clinical survey, *mgrB*
95 loss-of-function was the most common mechanism, but in many cases, additional mutations
96 in two-component system genes was seen, and in cases where multiple mutations were
97 seen, a sequential increase in colistin MIC was observed (28)

98 The aim of the work reported here was to use LC-MS/MS shotgun proteomics and targeted
99 mutagenesis to investigate the importance of the MgrB-PhoPQ-PmrD-PmrAB signal
100 transduction pathway to modulate Arn protein and PmrC production, and assess the protein
101 abundance thresholds required for colistin resistance in *K. pneumoniae* stimulated by
102 mutations affecting PhoPQ and/or PmrAB activity.

103

104 **Results and Discussion**

105 *The direct role of PhoPQ and the indirect role of signal transduction from PhoPQ through*
106 *PmrD to PmrAB in Arn protein production and colistin resistance caused by mgrB mutation.*

107 A collection of six *K. pneumoniae* spontaneous single-step mutants were selected in the
108 laboratory using Muller-Hinton agar containing 32 µg.mL⁻¹ of colistin, and in each case, PCR
109 sequencing confirmed mutation in *mgrB* or upstream. Three different mutations were seen,
110 causing the following changes: Gln29STOP in MgrB (found in four colistin resistant mutants
111 here, represented by mutant P21); an A to G transition at -31 relative to the *mgrB* start
112 codon, weakening a putative second -10 promoter sequence (**Figure 1**) (represented by
113 mutant P22); a deletion comprising the region between -19 relative to the start codon, to
114 remove the first 41 amino acids of MgrB (represented by mutant P23).

115 Colistin MICs against these three representative mutants were determined and, in all cases,
116 colistin resistance was confirmed (**Table 1**). Envelope proteomics identified 45 proteins
117 significantly differentially regulated in all three *mgrB* mutants relative to the parent strain,
118 Ecl8 (33 up- and 12 down-regulated; **Table 2**). These included the ArnABCDT operon
119 proteins known to be responsible for modification of lipopolysaccharide by the addition of 4-
120 amino-4-deoxy-L-arabinose (5). **Figure 2** shows that Arn protein production is highest in the
121 mutant P23, where MgrB is entirely lost. The *mgrB* nonsense mutant truncated at 29 amino
122 acids, P22 and the *mgrB* promoter mutant P21 both have significantly lower Arn protein
123 production than in P23, implying some residual repressive activity of MgrB in both cases.
124 Overall, P22 had the lowest Arn protein production of the three (**Figure 2**). Nonetheless all
125 three mutants are colistin resistant though, as expected based on Arn protein production
126 levels, the highest MIC is against P23 and the lowest against P22 (**Table 1**). This leads to
127 the conclusion that once Arn protein production increases above a certain threshold, colistin
128 resistance is conferred, but that as protein production increases further – P23>P21>P22 –
129 MIC also increases.

130 It has been proposed that *arn* operon gene expression is increased upon *mgrB* mutation
131 through activation of the two-component system PhoPQ, and that in addition, there is a
132 secondary increase through activation of the PmrAB two-component system, with PmrD
133 being necessary for transducing PhoPQ activation into PmrAB activation (reviewed in ref. 5).
134 Using *mgrB* mutant P23 as a starting point, we disrupted *phoP*, *pmrD* and *pmrA*, to test the
135 effects of these mutations on Arn protein production and colistin MIC.

136 Observed Arn protein abundance changes in these regulatory mutants demonstrated the
137 primacy of PhoPQ activation in colistin resistance driven by *mgrB* loss. Arn protein
138 abundance returned to wild-type (**Figure 3**) and colistin MIC fell below the resistance
139 breakpoint (**Table 1**) upon disruption of *phoP* in the *mgrB* mutant P23. In contrast, our
140 proteomics analysis (**Figure 3**) showed that PmrD and PmrAB play only a minor role in
141 increased Arn protein production seen in an *mgrB* mutant. Only ArnC significantly reduced in

142 abundance following disruption of *pmrA*. There was a larger effect following disruption of
143 *pmrD* (4/5 Arn proteins significantly reduced in abundance) but in neither mutant did any of
144 the Arn proteins fall in abundance significantly below levels seen in the *mgrB* mutants P21
145 and P22 (**Figure 2**) and not surprisingly therefore, the *pmrA* and *pmrD* mutant derivatives of
146 *mgrB* mutant P23 remained colistin resistant, and the MIC against them was only one
147 doubling dilution below that against P23 (**Table 1**). These data add support for our
148 conclusion that there is a threshold of Arn protein abundance required for colistin resistance.
149 It seems clear that PhoPQ activation alone can support an abundance above this threshold
150 even without any additional effects caused by PmrAB activation.

151

152 *PhoPQ regulated proteins identified following mgrB mutation and PhoQ activation.*

153 Of 45 proteins (i.e. including the Arn proteins) differentially regulated in all three *mgrB*
154 mutants (**Table 2**) 18 of those upregulated in the *mgrB* mutant P23 returned to wild-type
155 levels upon disruption of *phoP* (**Table 3**). These included the five Arn proteins, the response
156 regulator PhoP itself, LpxO, two Mg²⁺ transporters including MgtA, SlyB and MacA.
157 Transcripts representing all these proteins have been seen to be upregulated in *mgrB* loss-
158 of-function and in PhoQ activatory (PhoQ*) colistin resistant clinical isolates relative to
159 colistin susceptible control isolates through transcriptomics (20). Our proteomics analysis
160 reinforces the definition of a core PhoPQ regulon, but a secondary observation is that the
161 majority (27/45) of the protein abundance changes seen in the *mgrB* mutant P23 do not
162 occur via activation of PhoPQ; they were not reversed following disruption of *phoP* (**Table 3**).
163 The implication of this finding, made here by comparing otherwise isogenic pairs of strains,
164 is that MgrB interacts with regulatory networks other than PhoPQ in *K. pneumoniae*, though
165 these additional effects are not important for colistin resistance, which was completely
166 reversed following disruption of *phoP* (**Table 1**).

167 In order to further investigate the role of direct PhoPQ activation in colistin resistance, we
168 turned to a colistin resistant, PhoQ* (activatory) mutant that we selected from *K. pneumoniae*
169 clinical isolate KP47 (**Table 1**). Whole genome sequencing identified the mutation causes a
170 Tyr89Asn change in PhoQ. Proteomics comparing KP47 with the PhoQ* mutant derivative
171 revealed that levels of Arn protein production in the PhoQ* mutant were not significantly
172 different from those in the *mgrB* loss-of-function mutant P23 (**Figure 4**). Indeed, despite
173 starting with a different parent strain, significant upregulation of 15/18 proteins seen to
174 become downregulated when *phoP* was disrupted in the Ecl8-derived *mgrB* mutant P23
175 were also upregulated in the PhoQ* mutant relative to its parent, KP47. This further focussed
176 down onto the core *K. pneumoniae* PhoPQ regulon, which is shown in **Table 3**.

177

178 *Proteins upregulated following activation of PmrAB.*

179 Disruption of *pmrA* had little effect on Arn protein production in the *mgrB* mutant P23 (**Figure**
180 **3**) suggesting that PmrAB activation is not a major cross-regulatory effect of *mgrB* loss in the
181 context of colistin resistance. Nonetheless, it has been reported that PmrAB activation
182 directly by mutation can confer colistin resistance (23,24) and indeed, we were able to select
183 a colistin resistant mutant of clinical isolate KP47 with an activatory mutation in PmrB (**Table**
184 **1**). The mutation identified using whole genome sequencing was Thr157Pro. Arn protein
185 abundance in this PmrB* mutant was significantly elevated relative to KP47 in all cases
186 except for ArnB. For all except ArnA and ArnB the extent of abundance increase was like
187 that seen in the PhoQ* derivative of KP47, and the *mgrB* mutant P23 (**Figure 4**). The fact
188 that ArnB abundance did not increase significantly above the level seen in wild-type KP47
189 was surprising since the PmrB* mutant is colistin resistant, but it was notable that the MIC of
190 colistin against this PmrB* mutant was one doubling dilution below that against the PhoQ*
191 mutant (**Table 1**). This suggested that either significant upregulation of ArnB is not essential
192 for colistin resistance or there is another mechanism involved in colistin resistance in the
193 PmrB* mutant. In total, only 7/45 proteins significantly up- or down-regulated in the *mgrB*

194 mutant P23 were significantly up- or down-regulated in the PmrB* mutant. As well as the Arn
195 proteins (except ArnB), these were SlyB, LpxO and one Mg²⁺ transporter, which are all part
196 of the core PhoPQ regulon (**Table 2**). Transcripts representing all seven of these
197 PrmAB/PhoPQ dual regulated proteins, plus ArnB have also been seen to be upregulated in
198 clinical isolates with activatory mutations in CrrB (20, **Table 2**) which indirectly activates
199 PmrAB (26,27). In search of an additional mechanism of colistin resistance in the PmrB*
200 mutant we searched the 65 proteins differentially regulated in the PmrB* mutant relative to
201 KP47. Three of those most strongly over-produced were PmrA, PmrB and PmrC (**Figure 5**).
202 Transcription of *pmrC* (also known as *eptA*) is known to be positively controlled by PmrAB in
203 *K. pneumoniae* (24). In *Salmonella* spp. it encodes a phosphoethanolamine transferase,
204 responsible for modifying lipopolysaccharide by decorating it with phosphoethanolamine
205 (25). Importantly, we did not see PmrA, B or C upregulation above our limit of detection
206 (around 100 times less than the level seen in the PmrB* mutant) in any *mgrB* loss-of-function
207 mutant or in the PhoQ* mutant (**Figure 5**). These findings fit, therefore, with our conclusion
208 that cross activation of PmrAB (the direct regulator of *pmrC*) following activation of PhoPQ is
209 very limited under the growth conditions used for our analysis. We also conclude that the
210 PmrAB regulon has limited components that overlap with the PhoPQ regulon, and that
211 PmrC, in terms of functionally important protein product upregulation, is unique to the
212 PmrAB-mediated branch of the colistin resistance-mediating regulatory system. This may
213 well explain why, of multiple studies monitoring the impact of *mgrB* loss-of-function on
214 lipopolysaccharide modification in *K. pneumoniae* (11-13,29) only one has reported elevated
215 levels of phosphoethanolamine modification (29). Indeed, even in this case, contrary to
216 expectations, the observed modification, and the observed upregulation of *pmrC* expression
217 were apparently dependent on PhoPQ but not PmrAB, suggesting it was not caused by
218 PhoPQ-PmrD-PmrAB cross-regulation at all (29). Furthermore, the authors showed that
219 *pmrC* disruption in an *mgrB* loss-of-function mutant background only had a small impact on
220 survival in the presence of colistin (29). This implies that even when rarely seen,
221 phosphoethanolamine modification by PmrC has only a minor role in colistin resistance in *K.*

222 *pneumoniae*. Indeed, an absence of phosphoethanolamine modification has been advocated
223 as a way to identify mutational colistin resistance (as opposed to *mcr*-mediated resistance,
224 which does cause this modification) whether due to *mgrB* loss-of-function mutation, PhoPQ
225 activation or PmrAB activation in *K. pneumoniae* (30). Overall, this situation is different from
226 that reported in *Salmonella* spp. (25) and another difference between the species is the
227 finding that PmrE production is constitutive in *K. pneumoniae*, and not part of the PhoPQ or
228 PmrAB regulons (**Figure 5**) which is the case in *Salmonella* spp. (5). In the context of PmrB
229 activation in *K. pneumoniae*, this has also been shown by qRT-PCR (26) and in the context
230 of CrrB activation – leading to PmrAB activation – this has been shown through
231 transcriptomics (20). We confirm here using proteomics that PmrE, which is an enzyme
232 responsible for driving the committed step for the biosynthesis of
233 4-amino-4-deoxy-L-arabinose required for colistin resistance (5), is present at levels in wild-
234 type cells similar to the levels of Arn protein produced in colistin resistant mutants (**Figures**
235 **4, 5**).

236

237 *Conclusions*

238 Our aim was to definitively investigate the importance of the MgrB-PhoPQ-PmrD-PmrAB
239 signal transduction cascade on Arn and PmrC protein production in *K. pneumoniae*, which
240 has been previously explored using gene knockouts and measurements of transcript levels
241 (5). Based on our data, grounded in protein abundance levels collected during growth in the
242 medium defined for colistin susceptibility testing, we show that this complex interplay,
243 despite remaining potentially important in patients, has minimal importance in the context of
244 colistin resistance in *K. pneumoniae* *in vitro*. Disruption of *pmrD* or *pmrA* in an *mgrB* loss-of-
245 function mutant does not reduce Arn protein production below a threshold required for
246 colistin resistance (**Figure 3**). Activation of PhoPQ directly or via *mgrB* loss-of-function
247 mutation does not increase the PmrAB-controlled production of PmrC above the level of
248 detection, which is >100-fold less than the observed abundance of PmrC in a PmrB*

249 activatory mutant (**Figure 5**). Therefore, we conclude that colistin resistance caused by
250 PhoPQ activation in conditions defined for colistin susceptibility testing – i.e. in most clinical
251 cases (28) – is due almost exclusively to PhoPQ activation, leading to Arn protein
252 upregulation, and that the level of Arn protein upregulation dictates colistin MIC during
253 growth. It is interesting to note, therefore that clinical isolates with multiple mutations
254 potentially activating PhoPQ can be found, where there is an additive effect on colistin MIC
255 (28). The implication is that real-world colistin usage in the clinical, in some cases, selects
256 for mutations or combinations of mutations that confer colistin MICs above the currently
257 defined resistance breakpoint.

258 The reason why other earlier seminal reports have placed far higher importance on the
259 cross-activation of PmrAB by PhoPQ via PmrD (14,18) could be that they used media that
260 caused greater basal activation of PmrAB. It is important to remember that the PmrD linker
261 protein has only experimentally been shown to increase the activation of PmrAB once
262 already activated by an external signal, not to activate it from the basal state (14,18). Since
263 PmrAB activation is affected by iron concentration and pH, it may be that the medium used
264 for colistin susceptibility testing – and used by us here – does not activate PmrAB in the first
265 place, so there is nothing that PmrD can do to enhance activation, effectively silencing the
266 cross-regulatory pathway. Another explanation is that previous work relied on measurements
267 of transcript levels. In some cases, small changes in protein abundance are associated with
268 phenotypically relevant changes in antimicrobial susceptibility, as we have shown previously
269 in *K. pneumoniae*, for example upon loss-of-function mutations in *ramR*, which, despite
270 having <5 fold effects on OmpK35 porin and AcrAB-TolC efflux pump production, has large
271 effects on susceptibility to a range of antimicrobial agents from different classes (31). But in
272 some cases, large changes in gene expression are required to have a phenotypic effect
273 when a gene is not highly expressed in the wild-type, for example in the case of OqxAB
274 efflux pump production as controlled by OqxAB in *K. pneumoniae*, which needs to increase
275 >10,000 fold to have a phenotypic effect on resistance (32). One major advantage of

276 proteomics is that comparisons of protein abundance can be drawn between different gene
277 products, which is not always the case when transcript levels are measured, since the
278 kinetics of DNA hybridisation can have major influences on signal. This advantage is
279 exemplified here, where we confirmed that *pmrE* expression, measured at the level of
280 protein abundance, is not affected by mutations associated with colistin resistance (**Figure**
281 **5**). This was also shown by measuring transcript levels (20,24) but the added value of
282 proteomics is that we found that constitutive PmrE protein levels in all backgrounds are
283 similar to those of the Arn proteins following mutation to colistin resistance, rather than
284 constitutive but at low levels (**Figure 5**).

285

286 **Experimental**

287 *Materials, bacterial isolates, selection and generation of mutants*

288 Chemicals were from Sigma and growth media from Oxoid, unless otherwise stated. Strains
289 used were *K. pneumoniae* Ecl8 (30), plus the clinical isolate KP47 (32). To select colistin
290 resistant mutants, one hundred microlitre aliquots of overnight cultures of the parent strain
291 grown in Cation Adjusted Muller-Hinton Broth (CAMHB) were spread onto Mueller-Hinton
292 Agar containing 32 µg.mL⁻¹ colistin, which were then incubated for 24 h. Insertional
293 inactivation of *phoP*, *pmrD*, or *pmrA* was performed using the pKNOCK suicide plasmid (33).
294 The *phoP*, *pmrD* and *pmrA* DNA fragments were amplified with Phusion High-Fidelity DNA
295 Polymerase (NEB, UK) from *K. pneumoniae* Ecl8 genomic DNA by using primers *phoP* KO
296 FW (5'-AAGCGGACTACTATCTGGC-3') and *phoP* KO RV (5'-
297 TGGAAAGGCTTGGTGACGTA-3'); *pmrD* KO FW (5'-AAGTACAGGACAACGCTTCG-3')
298 and *pmrD* KO RV (5'-AGTTTATCCCCTCCGCAG-3'); *pmrA* KO FW (5'-
299 GACGGGCTGCATTTCTCTC-3') and *pmrA* KO RV (5'-TTACCAGGTAGTCATCCGCC-3').
300 Each PCR product was ligated into the pKNOCK-GM at the SmaI site. The recombinant
301 plasmid was then transferred into *K. pneumoniae* cells by conjugation. Mutants were

302 selected for gentamicin non-susceptibility (5 $\mu\text{g.mL}^{-1}$) and the mutation was confirmed by
303 PCR using primers *phoP* KO RV and BT543 (5'-TGACGCGTCCTCGGTAC-3'); *pmrD* KO
304 FW and BT543; *pmrA* KO RV and BT543.

305

306 *Determining minimal inhibitory concentrations (MICs) of colistin*

307 MICs were determined using CLSI broth microtitre assays (34) and interpreted using
308 published breakpoints (35). Briefly, a PBS bacterial suspension was prepared to obtain a
309 stock of $\text{OD}_{600}=0.01$. The final volume in each well of a 96-well cell culture plate (Corning
310 Costar) was 200 μL and included 20 μL of the bacterial suspension. Bacterial growth was
311 determined after 20 h of incubation by measuring OD_{600} values using a POLARstar Omega
312 spectrophotometer (BMG Labtech).

313

314 *Proteomics*

315 500 μL of an overnight CAMHB culture were transferred to 50 mL CAMHB and cells were
316 grown at 37°C to 0.6 OD_{600} . Cells were pelleted by centrifugation (10 min, 4,000 $\times g$, 4°C)
317 and resuspended in 30 mL of 30 mM Tris-HCl, pH 8 and broken by sonication using a cycle
318 of 1 s on, 0.5 s off for 3 min at amplitude of 63% using a Sonics Vibracell VC-505TM (Sonics
319 and Materials Inc., Newton, Connecticut, USA). The sonicated samples were centrifuged at
320 8,000 rpm (Sorval RC5B PLUS using an SS-34 rotor) for 15 min at 4°C to pellet intact cells
321 and large cell debris. For envelope preparations, the supernatant was subjected to
322 centrifugation at 20,000 rpm for 60 min at 4°C using the above rotor to pellet total envelopes.
323 To isolate total envelope proteins, this total envelope pellet was solubilised using 200 μL of
324 30 mM Tris-HCl pH 8 containing 0.5% (w/v) SDS.

325 Protein concentrations in all samples were quantified using Biorad Protein Assay Dye
326 Reagent Concentrate according to the manufacturer's instructions. Proteins (2.5 $\mu\text{g/lane}$)

327 were separated by SDS-PAGE using 11% acrylamide, 0.5% bis-acrylamide (Biorad) gels
328 and a Biorad Min-Protein Tetracell chamber model 3000X1. Gels were resolved at 175 V
329 until the dye front had moved approximately 1 cm into the separating gel. Proteins in all gels
330 were stained with Instant Blue (Expedeon) for 10 min and de-stained in water.

331 The 1 cm of gel lane was subjected to in-gel tryptic digestion using a DigestPro automated
332 digestion unit (Intavis Ltd). The resulting peptides from each gel fragment were fractionated
333 separately using an Ultimate 3000 nanoHPLC system in line with an LTQ-Orbitrap Velos
334 mass spectrometer (Thermo Scientific). In brief, peptides in 1% (v/v) formic acid were
335 injected onto an Acclaim PepMap C18 nano-trap column (Thermo Scientific). After washing
336 with 0.5% (v/v) acetonitrile plus 0.1% (v/v) formic acid, peptides were resolved on a 250 mm
337 × 75 µm Acclaim PepMap C18 reverse phase analytical column (Thermo Scientific) over a
338 150 min organic gradient, using 7 gradient segments (1-6% solvent B over 1 min, 6-15% B
339 over 58 min, 15-32% B over 58 min, 32-40% B over 5 min, 40-90% B over 1 min, held at
340 90% B for 6 min and then reduced to 1% B over 1 min) with a flow rate of 300 nL/min.
341 Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic
342 acid. Peptides were ionized by nano-electrospray ionization MS at 2.1 kV using a stainless-
343 steel emitter with an internal diameter of 30 µm (Thermo Scientific) and a capillary
344 temperature of 250°C. Tandem mass spectra were acquired using an LTQ-Orbitrap Velos
345 mass spectrometer controlled by Xcalibur 2.1 software (Thermo Scientific) and operated in
346 data-dependent acquisition mode. The Orbitrap was set to analyse the survey scans at
347 60,000 resolution (at m/z 400) in the mass range m/z 300 to 2000 and the top twenty
348 multiply charged ions in each duty cycle selected for MS/MS in the LTQ linear ion trap.
349 Charge state filtering, where unassigned precursor ions were not selected for fragmentation,
350 and dynamic exclusion (repeat count, 1; repeat duration, 30 s; exclusion list size, 500) were
351 used. Fragmentation conditions in the LTQ were as follows: normalized collision energy,
352 40%; activation q, 0.25; activation time 10 ms; and minimum ion selection intensity, 500
353 counts.

354 The raw data files were processed and quantified using Proteome Discoverer software v1.4
355 (Thermo Scientific) and searched against the UniProt *K. pneumoniae* strain ATCC 700721 /
356 MGH 78578 database (5126 protein entries; UniProt accession 272620) using the
357 SEQUEST algorithm. Peptide precursor mass tolerance was set at 10 ppm, and MS/MS
358 tolerance was set at 0.8 Da. Search criteria included carbamidomethylation of cysteine
359 (+57.0214) as a fixed modification and oxidation of methionine (+15.9949) as a variable
360 modification. Searches were performed with full tryptic digestion and a maximum of 1 missed
361 cleavage was allowed. The reverse database search option was enabled, and all peptide
362 data was filtered to satisfy false discovery rate (FDR) of 5 %. Protein abundance
363 measurements were calculated from peptide peak areas using the Top 3 method (36) and
364 proteins with fewer than three peptides identified were excluded. The proteomic analysis
365 was repeated three times for each parent and mutant strain, each using a separate batch of
366 cells. Specific protein abundance was normalised based on the average abundance of the
367 50 most abundant proteins in each sample. Comparisons of normalised abundance between
368 samples used an unpaired t-test, and significance was defined with $p < 0.05$. Fold-change in
369 abundance between strains was calculated by first calculating average normalised
370 abundance across the three samples representing each strain.

371

372 *Whole genome sequencing to identify mutations*

373 Whole genome resequencing was performed by MicrobesNG (Birmingham, UK) on a HiSeq
374 2500 instrument (Illumina, San Diego, CA, USA). Reads were trimmed using Trimmomatic
375 (37) and assembled into contigs using SPAdes 3.10.1 (<http://cab.spbu.ru/software/spades/>).
376 Assembled contigs were mapped to the *K. pneumoniae* Ecl8 reference genome (GenBank
377 accession number GCF_000315385.1), obtained from GenBank by using progressive
378 Mauve alignment software (38).

379

380 **Acknowledgments**

381 This work was funded by grant MR/S004769/1 to M.B.A. from the Antimicrobial Resistance
382 Cross Council Initiative supported by the seven United Kingdom research councils and the
383 National Institute for Health Research. Genome sequencing was provided by MicrobesNG
384 (<http://www.microbesng.uk/>), which is supported by the BBSRC (grant number
385 BB/L024209/1).

386

387 **We declare no conflicts of interest.**

388 **Figure Legends**

389 **Figure 1. Sequence at the 5' end of *mgrB* and upstream in colistin resistant mutant**
390 **P22.**

391 The two promoters for *mgrB* are highlighted in blue and green. The mutation in P22 alters
392 the wild-type sequence at the position highlighted in yellow from A to G in the putative -10
393 box of the second promoter, which is marked with two stars. The first promoter sequence,
394 defined as -35 and -10 was defined in (10).

395

396 **Figure 2. Arn protein abundance in parent strain Ecl8 versus three *mgrB* mutants.**

397 Strains were grown in CAMHB and raw envelope protein abundance data for each Arn
398 protein in a sample are presented normalised using the average abundance of the 50 most
399 abundant proteins in that sample. Data for three biological replicates of parent (Ecl8) and
400 *mgrB* mutants (P21, P22 and P23) are presented as mean +/- Standard Error of the Mean.
401 All mutants have statistically significantly increased production of all Arn proteins relative to
402 Ecl8 based on a t-test (p<0.05).

403

404 **Figure 3. Arn protein abundance in *mgrB* loss-of-function mutant P23 versus its *phoP*.**
405 ***pmrD* and *pmrA* loss-of-function mutant derivatives.**

406 Strains were grown in CAMHB and raw envelope protein abundance data for each Arn
407 protein in a sample are presented normalised using the average abundance of the 50 most
408 abundant proteins in that sample. Data for three biological replicates of parent (P23) and
409 mutants where *phoP*, *pmrD* or *pmrA* had been insertionally inactivated (PhoP-, PmrD- or
410 PmrA-) are presented as mean +/- Standard Error of the Mean. All PhoP- mutants have
411 statistically significantly reductions in production of all Arn proteins relative to P23 based on

412 a t-test ($p<0.05$). For PmrD- and PmrA- mutants, significant changes relative to P23 are
413 noted with a star.

414 **Figure 4. Arn protein abundance in *mgrB* mutant P23 versus clinical isolate KP47 and**
415 **PhoQ* or PmrB* (activatory) mutant derivatives.**

416 Strains were grown in CAMHB and raw envelope protein abundance data for each Arn
417 protein in a sample are presented normalised using the average abundance of the 50 most
418 abundant proteins in that sample. Data for three biological replicates of parent (KP47) and
419 mutants where PhoQ or PmrA have been activated, compared with the *mgrB* loss-of-function
420 mutant P23 are presented as mean +/- Standard Error of the Mean. All Arn proteins, and all
421 Arn proteins except ArnB are significantly upregulated relative to KP47 in its PhoQ* mutant,
422 and PmrB* mutant, respectively based on a t-test ($p<0.05$). For the PmrB* mutant,
423 significantly lower abundances relative to the PhoQ* mutant are noted with a star.

424

425 **Figure 5. PmrA, B, C and E protein abundance in *mgrB* mutant P23 versus clinical**
426 **isolate KP47 and PhoQ* or PmrB* (activatory) mutant derivatives.**

427 Strains were grown in CAMHB and raw envelope protein abundance data for each Pmr
428 protein in a sample are presented normalised using the average abundance of the 50 most
429 abundant proteins in that sample. Data for three biological replicates of parent (KP47) and
430 mutants where PhoQ or PmrA have been activated, compared with the *mgrB* loss-of-function
431 mutant P23 are presented as mean +/- Standard Error of the Mean. PmrA, B and C were
432 significantly upregulated relative to KP47 in its PmrB* mutant based on a t-test ($p<0.05$). No
433 other differences were statistically significant.

434

435 **Tables**

436

437 **Table**

1: MICs of colistin

against clinical
isolates and mutant
derivatives.

	Strain/ mutant	Colistin MIC ($\mu\text{g.mL}^{-1}$)
	Ecl8	1
441	P21 (<i>mgrB</i>)	64
442	P22 (<i>mgrB</i>)	32
443	P23 (<i>mgrB</i>)	128
444	P23 <i>phoP</i>	2
445	P23 <i>pmrD</i>	64
446	P23 <i>pmrA</i>	64
447	KP47	2
448	KP47 PhoQ*	64
449	KP47 PmrB*	32

450

451

452

453

454 Values reported are the modes of three repetitions. Shading indicates resistance according

455 to susceptibility breakpoints set by the CLSI (35).

456 **Table 2: Significant changes in envelope protein abundance seen in *K. pneumoniae* *mgrB* mutant P21 versus parent strain Ecl8**

457 Strains were grown in CAMHB and raw abundance data for each protein in a sample are presented normalised using the average abundance
 458 of the 50 most abundant proteins in that sample. Data for three biological replicates of parent (Ecl8) and *mgrB* mutant (P21). Proteins listed are
 459 those significantly differently up- (fold change >1) or down-regulated (fold change <1) in P21, and in *mgrB* mutants P22 and P23 versus their
 460 parent Ecl8, based on t-test. Shading indicates proteins also upregulated in the PmrB^{*} (activatory) mutant of *K. pneumoniae* clinical isolate
 461 KP47 relative to KP47, see text. Stars indicate proteins encoded by transcripts upregulated in a *K. pneumoniae* CrrB activatory mutant (20).

Accession	Description	Ecl8 1	Ecl8 2	Ecl8 3	P21 1	P21 2	P21 3	Fold Change	t-test
A6T5Y8	Mg2+ transport ATPase	0.01	0.00	0.00	0.02	0.04	0.03	7.63	0.01
A6T7F8	Thymidylate kinase	0.01	0.00	0.00	0.01	0.02	0.01	4.29	0.02
A6TBQ4	Lipid A 1-diphosphate synthase	0.00	0.00	0.00	0.07	0.09	0.08	>100	0.00
A6THT5	Putative porin	0.01	0.02	0.00	0.16	0.16	0.08	13.77	0.01
A6T4W9	Bifunctional uridylyltransferase/uridylyl-removing enzyme	0.00	0.00	0.00	0.01	0.01	0.00	2.76	0.04
A6T5U9	Putative periplasmic binding protein	0.00	0.00	0.00	0.01	0.02	0.01	>100	<0.005
A6THH1	MgtA	0.00	0.00	0.00	0.01	0.03	0.02	>100	<0.005
A6T6X6	MacA	0.00	0.00	0.00	0.01	0.02	0.02	11.68	0.01
A6T7D1	Hypothetical Protein	0.01	0.00	0.01	0.01	0.01	0.01	1.83	0.03
A6T7J8	PhoP	0.01	0.01	0.01	0.05	0.06	0.05	5.41	<0.005
A6T9Y9	SlyB	0.37	0.38	0.17	0.81	1.04	0.46	2.52	0.03
A6TBT1	AbpE	0.00	0.01	0.00	0.01	0.03	0.01	5.61	0.02
A6TCT2	LpxO	0.01	0.01	0.01	0.03	0.04	0.02	4.77	0.01
A6TF96	ArnT	0.00	0.00	0.00	0.02	0.01	0.01	>100	<0.005
A6TF97	ArnD	0.00	0.00	0.00	0.03	0.04	0.02	>100	<0.005
A6TF98	ArnA	0.01	0.00	0.00	0.09	0.11	0.15	20.27	<0.005
A6TF99	ArnC	0.00	0.00	0.00	0.05	0.08	0.05	>100	<0.005
A6TFA0	ArnB	0.00	0.00	0.00	0.05	0.00	0.04	>100	0.04
A6T7H3	Putative enzyme	0.01	0.01	0.01	0.01	0.01	0.01	1.67	0.04
A6TEP0	Cell division protein ZapE	0.02	0.01	0.01	0.05	0.04	0.02	2.36	0.03
A6T6G3	Tol-Pal system protein TolQ	0.04	0.04	0.03	0.06	0.08	0.05	1.73	0.04
A6TDS9	Component of the MscS	0.06	0.03	0.04	0.06	0.09	0.07	1.65	0.04

	mechanosensitive channel								
A6T4X0	Methionine aminopeptidase	0.04	0.04	0.05	0.06	0.05	0.05	1.29	0.01
A6T5I4	Peptidylprolyl isomerase	0.13	0.07	0.09	0.20	0.18	0.21	2.00	<0.005
A6T642	2,3-dihydro-2,3-dihydroxybenzoate synthetase, isochroismatase	0.00	0.00	0.01	0.01	0.01	0.01	2.17	0.03
A6T7K1	Adenylosuccinate lyase	0.16	0.09	0.12	0.16	0.22	0.17	1.47	0.05
A6T7R3	Putative chitinase II	0.02	0.03	0.02	0.02	0.01	0.02	0.69	0.01
A6T7X8	Cob(I)yrinic acid a,c-diamide adenosyltransferase	0.01	0.01	0.01	0.01	0.02	0.01	1.75	0.05
A6T9L3	Alcohol dehydrogenase	0.04	0.04	0.08	0.02	0.02	0.01	0.35	0.03
A6T9V4	Glucans biosynthesis protein D	0.02	0.01	0.01	0.00	0.00	0.01	0.27	0.03
A6TA04	Superoxide dismutase	0.03	0.02	0.04	0.01	0.00	0.00	0.14	0.01
A6TAU7	Probable formate acetyltransferase 3	0.28	0.25	0.28	0.19	0.25	0.23	0.83	0.04
A6TCB4	Phosphoribosylglycinamide formyltransferase	0.03	0.02	0.02	0.03	0.04	0.03	1.55	0.01
A6TCL8	Signal recognition particle protein	0.05	0.03	0.04	0.06	0.06	0.06	1.51	0.01
A6TD49	CysJ	0.03	0.02	0.02	0.00	0.00	0.00	<0.01	<0.005
A6TE01	Uncharacterized protein	0.02	0.01	0.02	0.02	0.02	0.02	1.35	0.03
A6TEB4	3-hydroxy-5-phosphonooxypentane-2,4-dione thiolase	0.02	0.02	0.03	0.01	0.01	0.01	0.46	0.03
A6TEE8	2-hydroxy-3-oxopropionate reductase	0.01	0.01	0.02	0.00	0.00	0.00	<0.01	0.01
A6TEZ6	Cyclic AMP receptor protein	0.45	0.32	0.26	0.47	0.47	0.54	1.44	0.03
A6TF07	CysG2	0.01	0.01	0.01	0.01	0.01	0.01	0.73	0.02
A6TFY4	Putative glycoside hydrolase	0.00	0.00	0.01	0.00	0.00	0.00	0.24	0.03
A6TGM2	NAD(P)H-flavin reductase	0.06	0.05	0.05	0.08	0.08	0.08	1.54	0.01
A6TGU4	MalE	0.02	0.01	0.02	0.00	0.01	0.00	0.32	0.04
A6TGU6	LamB2	0.30	0.28	0.41	0.18	0.22	0.26	0.67	0.04
A6THU9	4-hydroxyphenylacetate catabolism	0.01	0.01	0.01	0.02	0.02	0.02	2.57	<0.005

462

463 **Table 3: Significant changes in envelope protein abundance seen in *K. pneumoniae* mutant P23 *phoP* versus P23**

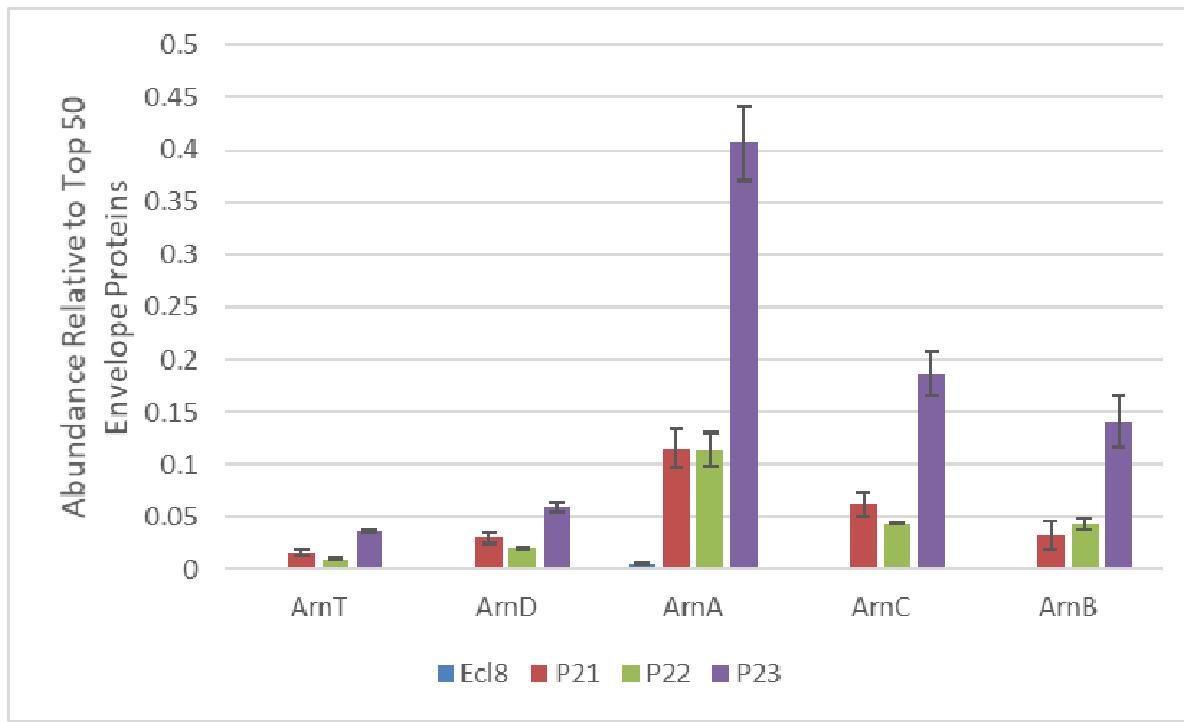
464 Strains were grown in CAMHB and raw abundance data for each protein in a sample are presented normalised using the average abundance
 465 of the 50 most abundant proteins in that sample. Data for three biological replicates of colistin resistant *mgrB* mutant P23 and its *phoP*
 466 insertionally inactivated derivative. Proteins listed are those significantly (based on t-test) differently up- (fold change >1) or down-regulated
 467 (fold change <1) in P23 *phoP* versus P23; considering only proteins that were oppositely regulated in P23 compared with its colistin susceptible
 468 parent, Ecl8, as listed in **Table 2**. Shading indicates proteins not upregulated in the PhoQ* (activatory) mutant of *K. pneumoniae* clinical isolate
 469 KP47 relative to KP47; the other 15/18 proteins not shaded are therefore considered the core PhoPQ regulon, see text. Stars indicate proteins
 470 encoded by transcripts upregulated in a *K. pneumoniae* PhoQ activatory mutant (20).

Accession	Description	P23 1	P23 2	P23 3	<i>phoP</i> 1	<i>phoP</i> 2	<i>phoP</i> 3	Fold Change	t-test
A6T4W9	GlnD	0.005	0.011	0.009	0.005	0.002	0.003	0.408	0.027
A6T5U9	Putative periplasmic binding protein	0.036	0.029	0.024	0.000	0.000	0.000	<0.01	0.001
A6T5Y8	Mg2+ transport ATPase*	0.033	0.041	0.032	0.002	0.000	0.000	0.018	<0.005
A6T6X6	MacA*	0.016	0.024	0.021	0.006	0.010	0.002	0.305	0.005
A6T7D1	Hypothetical Protein	0.017	0.021	0.022	0.016	0.014	0.013	0.714	0.019
A6T7F8	Thymidylate kinase	0.021	0.018	0.016	0.016	0.013	0.011	0.740	0.039
A6T7J8	PhoP*	0.087	0.105	0.125	0.011	0.000	0.000	0.036	<0.005
A6T9Y9	SlyB*	1.833	2.191	1.513	0.669	0.634	0.697	0.361	0.002
A6TBQ4	Lipid A 1-diphosphate synthase	0.122	0.153	0.122	0.012	0.000	0.000	0.030	<0.005
A6TBT1	ApbE*	0.043	0.045	0.038	0.014	0.005	0.005	0.189	<0.005
A6TCT2	LpxO*	0.048	0.052	0.037	0.009	0.000	0.003	0.081	0.001
A6TF96	ArnT*	0.040	0.070	0.035	0.000	0.000	0.000	<0.01	0.006
A6TF97	ArnD*	0.071	0.041	0.041	0.000	0.000	0.000	<0.01	0.004
A6TF98	ArnA*	0.496	0.309	0.321	0.000	0.000	0.000	<0.01	<0.005
A6TF99	ArnC*	0.236	0.313	0.247	0.000	0.000	0.000	<0.01	<0.005
A6TFA0	ArnB*	0.098	0.051	0.053	0.000	0.000	0.000	<0.01	0.006
A6THH1	MgtA*	0.025	0.036	0.031	0.000	0.000	0.000	<0.01	<0.005
A6THT5	Putative porin	0.639	0.794	0.614	0.053	0.054	0.058	0.081	<0.005

471

472 **Figures**

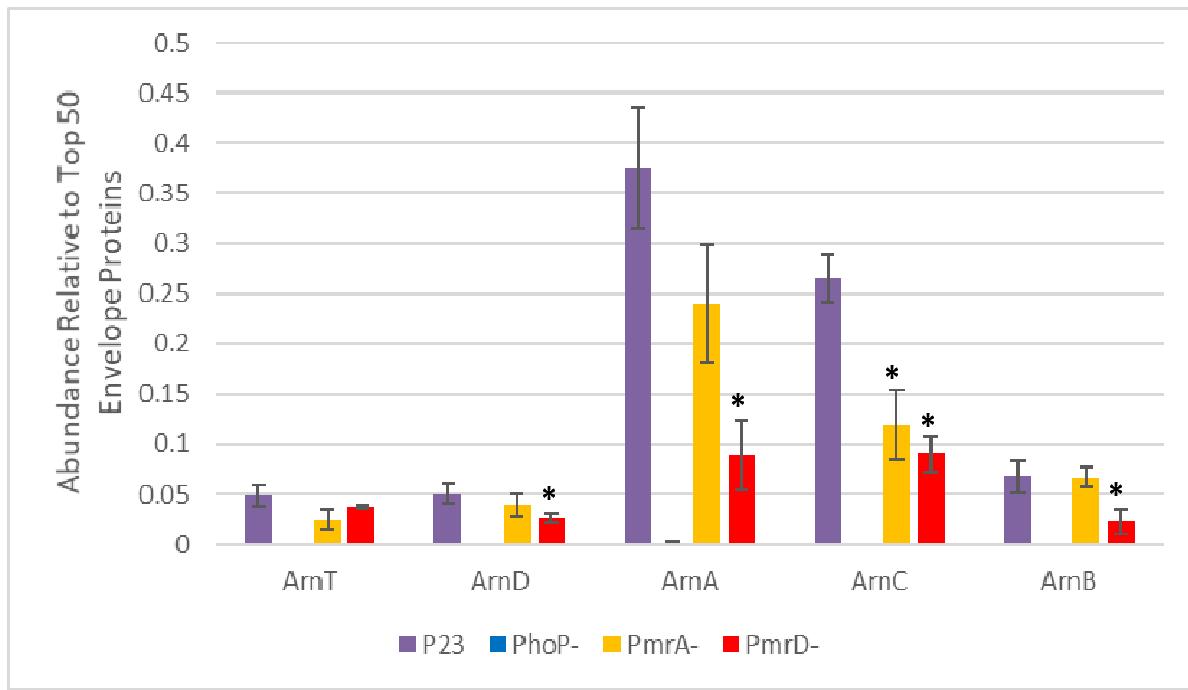
473


474 **Figure 1**

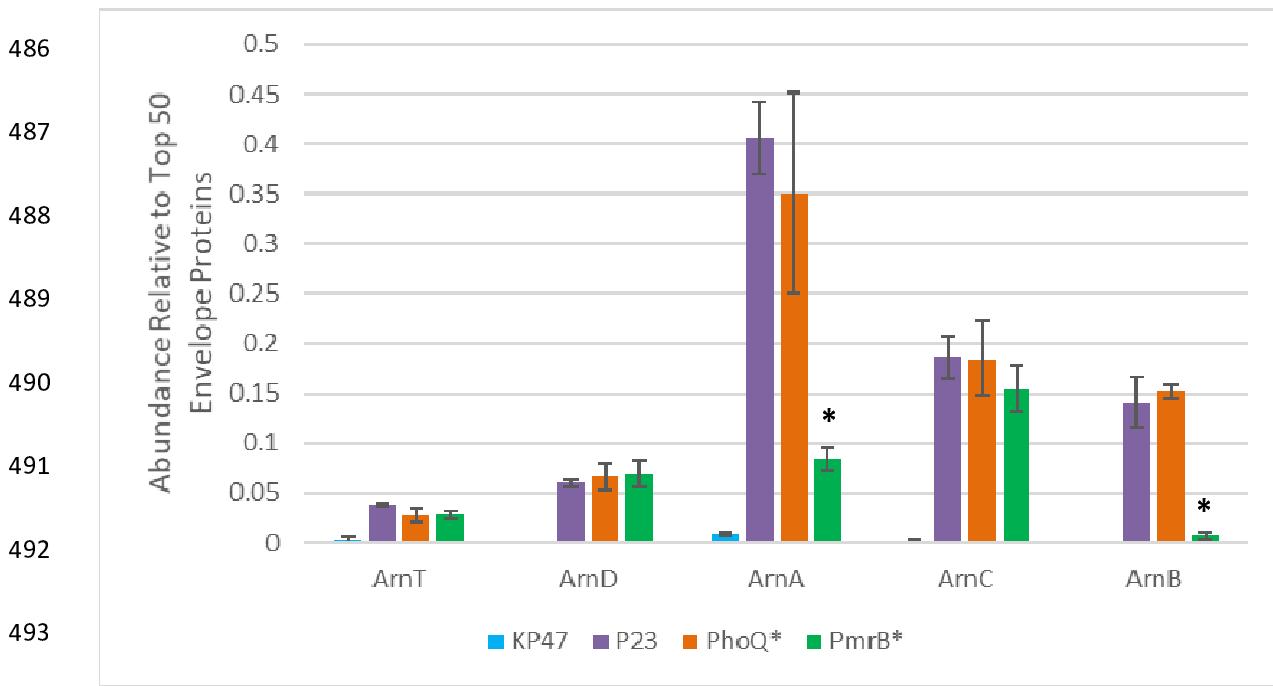
475

476

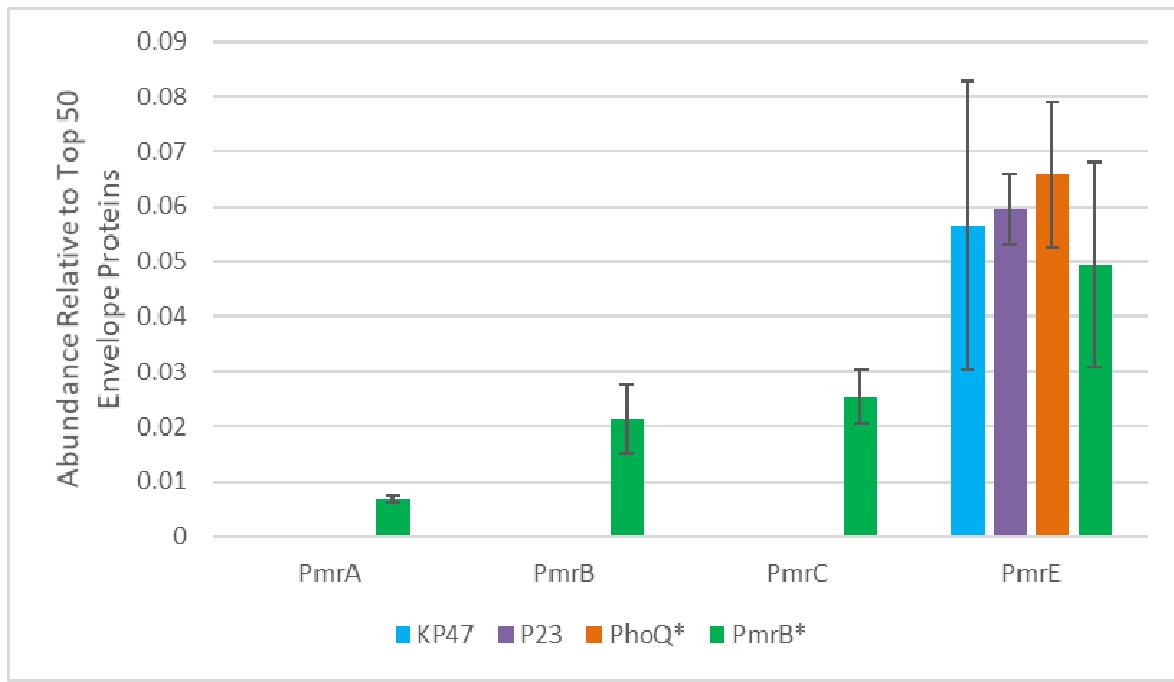
477 **Figure 2**


478

479
480


481 **Figure 3**

482


483
484

485 **Figure 4**

494 **Figure 5**

495

496

497

498 **References**

499 1. Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant
500 Enterobacteriaceae infections. *Clin Microbiol Infect.* 2019;25:943-950.

501 2. Tóth A, Damjanova I, Puskás E, Jánvári L, Farkas M, Dobák A, Böröcz K, Pászti J.
502 Emergence of a colistin-resistant KPC-2-producing *Klebsiella pneumoniae* ST258 clone
503 in Hungary. *Eur J Clin Microbiol Infect Dis.* 2010 Jul;29(7):765-9. doi: 10.1007/s10096-
504 010-0921-3. Epub 2010 Apr 18.

505 3. Kontopoulou K, Protonotariou E, Vasilakos K, Kriti M, Koteli A, Antoniadou E, Sofianou
506 D. Hospital outbreak caused by *Klebsiella pneumoniae* producing KPC-2 beta-lactamase
507 resistant to colistin. *J Hosp Infect.* 2010 Sep;76(1):70-3. doi: 10.1016/j.jhin.2010.03.021.
508 Epub 2010 Jun 17.

509 4. Eleam A, Rahimian J, Doymaz M. In vitro evaluation of antibiotic synergy for polymyxin
510 B-resistant carbapenemase-producing *Klebsiella pneumoniae*. *J Clin Microbiol.* 2010
511 Oct;48(10):3558-62. doi: 10.1128/JCM.01106-10. Epub 2010 Aug 4.

512 5. Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms.
513 *Int J Antimicrob Agents.* 2017 May;49(5):526-535.

514 6. Deshpande LM, Hubler C, Davis AP, Castanheira M. Updated Prevalence of mcr-Like
515 Genes among *Escherichia coli* and *Klebsiella pneumoniae* in the SENTRY Program and
516 Characterization of mcr-1.11 Variant. *Antimicrob Agents Chemother.* 2019 Mar 27;63(4).
517 pii: e02450-18.

518 7. Cannatelli A, D'Andrea MM, Giani T, Di Pilato V, Arena F, Ambretti S, Gaibani P,
519 Rossolini GM. In vivo emergence of colistin resistance in *Klebsiella pneumoniae*
520 producing KPC-type carbapenemases mediated by insertional inactivation of the
521 *PhoQ/PhoP* mgrB regulator. *Antimicrob Agents Chemother.* 2013 Nov;57(11):5521-6.

522 8. López-Camacho E, Gómez-Gil R, Tobes R, Manrique M, Lorenzo M, Galván B, Salvarelli
523 E, Moatassim Y, Salanueva IJ, Pareja E, Codoñer FM, Alvarez-Tejado M, Garcillán-
524 Barcia MP, De la Cruz F, Mingorance J. Genomic analysis of the emergence and

525 evolution of multidrug resistance during a *Klebsiella pneumoniae* outbreak including
526 carbapenem and colistin resistance. *J Antimicrob Chemother.* 2014 Mar;69(3):632-6.

527 9. Cannatelli A, Giani T, D'Andrea MM, Di Pilato V, Arena F, Conte V, Tryfinopoulou K,
528 Vatopoulos A, Rossolini GM; COLGRIT Study Group. MgrB inactivation is a common
529 mechanism of colistin resistance in KPC-producing *Klebsiella pneumoniae* of clinical
530 origin. *Antimicrob Agents Chemother.* 2014 Oct;58(10):5696-703.

531 10. Poirel L, Jayol A, Bontron S, Villegas MV, Ozdamar M, Türkoglu S, Nordmann P. The
532 mgrB gene as a key target for acquired resistance to colistin in *Klebsiella pneumoniae*. *J*
533 *Antimicrob Chemother.* 2015 Jan;70(1):75-80.

534 11. Helander IM, Kato Y, Kilpeläinen I, Kostiainen R, Lindner B, Nummila K, Sugiyama T,
535 Yokochi T. Characterization of lipopolysaccharides of polymyxin-resistant and polymyxin-
536 sensitive *Klebsiella pneumoniae* O3. *Eur J Biochem.* 1996 Apr 1;237(1):272-8.

537 12. Leung LM, Cooper VS, Rasko DA, Guo Q, Pacey MP, McElheny CL, Mettus RT, Yoon
538 SH, Goodlett DR, Ernst RK, Doi Y. Structural modification of LPS in colistin-resistant,
539 KPC-producing *Klebsiella pneumoniae*. *J Antimicrob Chemother.* 2017 Nov
540 1;72(11):3035-3042.

541 13. Jasim R, Baker MA, Zhu Y, Han M, Schneider-Futschik EK, Hussein M, Hoyer D, Li J,
542 Velkov T. A Comparative Study of Outer Membrane Proteome between Paired Colistin-
543 Susceptible and Extremely Colistin-Resistant *Klebsiella pneumoniae* Strains. *ACS Infect*
544 *Dis.* 2018 Dec 14;4(12):1692-1704.

545 14. Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA. Evolution and dynamics of
546 regulatory architectures controlling polymyxin B resistance in enteric bacteria. *PLoS*
547 *Genet.* 2008 Oct;4(10):e1000233.

548 15. Humphries RM, Green DA, Schuetz AN, Bergman Y, Lewis S, Yee R, Stump S, Lopez
549 M, Macesic N, Uhlemann AC, Kohner P, Cole N, Simner PJ. Multicenter Evaluation of
550 Colistin Broth Disk Elution and Colistin Agar Test: a Report from the Clinical and
551 Laboratory Standards Institute. *J Clin Microbiol.* 2019 Oct 23;57(11). pii: e01269-19.

552 16. Carretto E, Brovarone F, Russello G, Nardini P, El-Bouseary MM, Aboklaish AF, Walsh

553 TR, Tyrrell JM. Clinical Validation of SensiTest Colistin, a Broth Microdilution-Based
554 Method To Evaluate Colistin MICs. *J Clin Microbiol.* 2018 Mar 26;56(4). pii: e01523-17.

555 17. CLSI-EUCAST Polymyxin Breakpoints Working Group. 2016. Recommendations for MIC
556 determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST
557 Polymyxin Breakpoints Working Group. EUCAST
558 [http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Rec](http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf)
559 [ommendations_for_MIC_determination_of_colistin_March_2016.pdf](http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf).

560 18. Cheng HY, Chen YF, Peng HL. Molecular characterization of the PhoPQ-PmrD-PmrAB
561 mediated pathway regulating polymyxin B resistance in *Klebsiella pneumoniae* CG43. *J*
562 *Biomed Sci.* 2010 Jul 24;17:60

563 19. Lippa AM, Goulian M. Feedback inhibition in the PhoQ/PhoP signaling system by a
564 membrane peptide, *PLoS Genet*, 2009, 5: e1000788.

565 20. Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, Kaye K, Jacobs
566 MR, Bonomo RA, Adams MD. Genomic and transcriptomic analyses of colistin-resistant
567 clinical isolates of *Klebsiella pneumoniae* reveal multiple pathways of resistance.
568 *Antimicrob Agents Chemother.* 2015 Jan;59(1):536-43.

569 21. Halaby T, Kucukkose E, Janssen AB, Rogers MR, Doorduijn DJ, van der Zanden AG, Al
570 Naiemi N, Vandebroucke-Grauls CM, van Schaik W. Genomic Characterization of
571 Colistin Heteroresistance in *Klebsiella pneumoniae* during a Nosocomial Outbreak.
572 *Antimicrob Agents Chemother.* 2016 Oct 21;60(11):6837-6843.

573 22. Jayol A, Nordmann P, Brink A, Poirel L. Heteroresistance to colistin in *Klebsiella*
574 *pneumoniae* associated with alterations in the PhoPQ regulatory system. *Antimicrob*
575 *Agents Chemother.* 2015 May;59(5):2780-4.

576 23. Cannatelli A, Di Pilato V, Giani T, Arena F, Ambretti S, Gaibani P, D'Andrea MM,
577 Rossolini GM. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in
578 KPC-producing *Klebsiella pneumoniae* is associated with low-dosage colistin treatment.
579 *Antimicrob Agents Chemother.* 2014 Aug;58(8):4399-403.

580 24. Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P. Resistance to colistin

581 associated with a single amino acid change in protein PmrB among *Klebsiella*
582 *pneumoniae* isolates of worldwide origin. *Antimicrob Agents Chemother*. 2014
583 Aug;58(8):4762-6.

584 25. Lee H, Hsu FF, Turk J, Groisman EA. The PmrA-regulated pmrC gene mediates
585 phosphoethanolamine modification of lipid A and polymyxin resistance in *Salmonella*
586 *enterica*. *J Bacteriol*. 2004 Jul;186(13):4124-33.

587 26. Cheng YH, Lin TL, Lin YT, Wang JT. Amino Acid Substitutions of CrrB Responsible for
588 Resistance to Colistin through CrrC in *Klebsiella pneumoniae*. *Antimicrob Agents*
589 *Chemother*. 2016 May 23;60(6):3709-16.

590 27. Jayol A, Nordmann P, Brink A, Villegas MV, Dubois V, Poirel L. High-Level Resistance to
591 Colistin Mediated by Various Mutations in the crrB Gene among Carbapenemase-
592 Producing *Klebsiella pneumoniae*. *Antimicrob Agents Chemother*. 2017 Oct 24;61(11).
593 pii: e01423-17.

594 28. Macesic N, Nelson B, Mcconville TH, Giddins MJ, Green DA, Stump S, Gomez-
595 Simmonds A, Annavajhala MK, Uhlemann AC. Emergence of Polymyxin Resistance in
596 Clinical *Klebsiella pneumoniae* Through Diverse Genetic Adaptations: A Genomic,
597 Retrospective Cohort Study. *Clin Infect Dis*. pii: ciz623. doi: 10.1093/cid/ciz623. [Epub
598 ahead of print]

599 29. Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, Ingram R, Hobley L,
600 Bengoechea JA. A *Klebsiella pneumoniae* antibiotic resistance mechanism that subdues
601 host defences and promotes virulence. *EMBO Mol Med*. 2017 9:430-447.

602 30. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T,
603 Heesom KJ, Avison MB. Envelope proteome changes driven by RamA overproduction in
604 *Klebsiella pneumoniae* that enhance acquired β -lactam resistance. *J Antimicrob*
605 *Chemother*. 2018 73:88-94.

606 31. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB. Impact of
607 OqxR loss of function on the envelope proteome of *Klebsiella pneumoniae* and
608 susceptibility to antimicrobials. *J Antimicrob Chemother*. 2018 73:2990-2996.

609 32. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Jiménez-Castellanos JC,
610 Zhang J, Graham L, Bowker K, Williams OM, MacGowan AP, Avison MB. 2018.
611 Prediction of Fluoroquinolone Susceptibility Directly from Whole-Genome Sequence
612 Data by Using Liquid Chromatography-Tandem Mass Spectrometry To Identify Mutant
613 Genotypes. *Antimicrob Agents Chemother* 62 pii:e01814-17.

614 33. Alexeyev MF. 1999. The pKNOCK series of broad-host-range mobilizable suicide
615 vectors for gene knockout and targeted DNA insertion into the chromosome of gram-
616 negative bacteria. *BioTechniques* 26:824-828.

617 34. Clinical and Laboratory Standards Institute. 2015. M07-A10. Methods for dilution
618 antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard,
619 10th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

620 35. Clinical and Laboratory Standards Institute. 2019. M100-S29. Performance standards for
621 antimicrobial susceptibility testing; twenty-ninth informational supplement. An
622 informational supplement for global application developed through the Clinical and
623 Laboratory Standards Institute consensus process. Clinical and Laboratory Standards
624 Institute, Wayne, PA.

625 36. Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. 2006. Absolute
626 quantification of proteins by LCMSE: a virtue of parallel MS acquisition. *Mol Cell*
627 *Proteomics* 5:144–156.

628 37. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
629 sequence data. *Bioinformatics* 30:2114–2120.

630 38. Darling AE, Mau B, Perna NT, Batzoglou S, Zhong Y. 2010. progressiveMauve: multiple
631 genome alignment with gene gain, loss and rearrangement. *PLoS One* 5:e11147.