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ABSTRACT 

Patch clamp recording of neurons is a labor-intensive and time-consuming procedure. We            

have developed a tool that fully automatically performs electrophysiological recordings in           

label-free tissue slices. The automation covers the detection of cells in label-free images,             

calibration of the micropipette movement, approach to the cell with the pipette, formation of              

the whole-cell configuration, and recording. The cell detection is based on deep learning. The              

model was trained on a new image database of neurons in unlabeled brain tissue slices. The                

pipette tip detection and approaching phase use image analysis techniques for precise            

movements. High-quality measurements were performed on hundreds of human and rodent           

neurons. We also demonstrate that further molecular and anatomical analysis can be            

performed on the recorded cells. The software has a diary module that automatically logs              

patch clamp events. Our tool can multiply the number of daily measurements to help brain               

research. 

INTRODUCTION 

Research of the past decade uncovered the unprecedented cellular heterogeneity of the            

mammalian brain. It is well accepted now, that the complexity of the rodent and human cortex                

can be best resolved by classifying individual neurons into subsets by their cellular             

phenotypes ​(1–3)​. By characterizing molecular, morphological, connectional, physiological        

and functional properties several neuronal subtypes have been defined ​(4, 5)​. Revealing            

cell-type heterogeneity is still incomplete and challenging since classification based on           
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quantitative features requires large amount of individual cell samples, often thousands or            

more, encompassing a highly heterogeneous cell population. Recording morphological,         

electrophysiological, and transcriptional properties of neurons requires different techniques         

combined on the same sample such as patch clamp electrophysiology, post hoc morphological             

reconstruction or single-cell transcriptomics. The fundamental technique to achieve such          

trimodal characterization of neurons is the patch clamp recording, which is highly laborious             

and expertise intense. The quantitative and qualitative efficiency of single-cell patch clamp            

procedure is highly determinant for every follow up measurements including anatomical           

reconstruction and molecular analyses. Therefore, there is a high demand to efficiently            

automate this labour intense and challenging process. 

Recently, patch clamp technique has been automated and improved to a more advanced level              

(6, 7)​. ‘Blind patch clamping’ moves the pipette forward ​in vivo ​(8–10) and the brain cells are                 

automatically detected by a resistance increase at the pipette tip. Automated systems soon             

incorporated image-guidance by using multi-photon microscopy on genetically modified         

rodents ​(11–13) ​. Further improvements include the integration of tools for monitoring animal            

behavio​r ​(14) ​, the design of an obstacle avoidance algorithm before reaching the target cell              

(15) or the development of a pipette cleaning method which allows the immediate reuse of the                

pipettes up to ten times ​(16, 17)​. Automated multi-pipette systems were developed to study              

the synaptic connections ​(18, 19)​. It is also shown that cell morphology can be examined               

using automated systems ​(20) ​. One crucial step for image-guided automation is pipette tip             

localization. Different pipette detection algorithms were compared previously ​(21)​. The other           

crucial step is the automatic detection of the cells which has only been performed in               

two-photon images so far. It is currently not possible to efficiently fluorescently stain human              

brain tissues. Alternatively, detection of cells in label-free images would open up new             
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application possibilities ​in vitro ​(22)​, e.g. experiments on surgically removed human tissues.            

Most recently, deep learning ​(23) has been emerging to a level that in the case of well-defined                

tasks, outperforms humans, and often reaches human performance on ill-defined problems           

like detecting astrocyte cells ​(24) ​.  

In this paper we describe a system we developed in order to overcome time-consuming and               

expertise-intense neuron characterization and collection. This fully automated differential         

interference contrast microscopy (DIC, or label-free in general) image-guided patch clamping           

system (DIGAP) combines 3D infrared video microscopy, cell detection using deep           

convolutional neural networks and a glass microelectrode guiding system to approach, attach,            

break-in and record biophysical properties of the target cell. 

The steps of the visual patch clamp recording process are illustrated in Fig. 1a. Before the first                 

use of the system, the pipette has to be calibrated, so that it can be moved relative to the field                    

of view of the camera (1). Thereafter, a position update is made after every pipette               

replacement (2) using the built-in pipette detection algorithms (3) to overcome the problem             

caused by pipette length differences. At this point, the system is ready to perform patch clamp                

recordings. We have acquired and annotated a single cell image database on label-free             

neocortical brain tissues, to our knowledge the largest 3D set of this kind. A deep               

convolutional neural network was trained for cell detection. The system can automatically            

select a detected cell for recording (4). When a cell is selected, multiple subsystems are               

started simultaneously that perform the patch clamping:  

i) A subsystem is controlling the movement of the micropipette next to the cell. If any                

obstacle is found in the way, an avoidance algorithm tries to bypass it (5).  

ii) A cell tracking system follows the possible shift of the cell in 3D (7).  
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iii) During the whole process, a pressure regulator system assures that the requested             

pressure on the pipette tip is available (6). 

Once the pipette touches the cell (cell-attached configuration) the system performs gigaseal            

formation (8), then breaks in the cell membrane and automatically starts the            

electrophysiological measurements (9). The nucleus or the cytoplasm of the patched cell can             

be harvested (10). Later, the recorded cells can be anatomically reconstructed in the tissue              

(11). 

At the end of the measurements, the implemented pipette cleaning method can be performed              

or the next patch clamp recording can be started after pipette replacement and from the pipette                

tip position update step (3). An event logging system collects information during the patch              

clamp process, including the target locations and the outcome success, and report files can be               

generated at the end. The report files are compatible with the Allen Cell Types Database ​(25)​.  

Our system was tested on rodent and human samples ​in vitro ​. The quality of the               

electrophysiological measurements strongly correlates to that of made by a trained           

experimenter. We used the system for harvesting cytoplasm and nucleus from the recorded             

cells and performed anatomical reconstruction on the samples. Our system is the first that can               

operate on unstained tissues using deep learning, that reaches and even outperforms the cell              

detection accuracy of human experts, and that enables the multiplication of the number of              

recordings while preserving high-quality measurements. 

 

RESULTS 

Here we introduce an automated seek-and-patch system that performs electrophysiological          

recordings and sample harvesting for molecular biological analysis from single cells on            

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.05.078162doi: bioRxiv preprint 

https://paperpile.com/c/HNrb5R/DJRC
https://doi.org/10.1101/2020.05.05.078162
http://creativecommons.org/licenses/by-nc-nd/4.0/


unlabeled neocortical brain slices. Using deep learning, trained on a previously built database             

of single neurons acquired in 3D, our system can detect most of the healthy neuronal somata                

in a Z-stack recorded by DIC microscopy from a living neocortical slice. The pipette              

approaches the target cell, touches it, acquires electrophysiological data, and the cell’s nucleus             

can be isolated for further molecular analysis. Components of the system are a typical              

electrophysiological setup: IR video microscopy imaging system, motorized microelectrode         

manipulators, XY shifting table, electrical amplifier and a custom-designed pressure          

controller. All these elements were controlled by a custom-developed software (available at            

https://bitbucket.org/biomag/autopatcher/​). The system was successfully applied to perform        

patch clamp recordings on a large set of rodent and human cells (100 and 74 respectively).                

The automatically collected cells well represent the wide-range phenotypic heterogeneity of           

the brain cortex. Subsequent transcriptome profiling and whole-cell anatomical reconstruction          

confirmed the usefulness and applicability of the proposed system.  

In this section, we present the hardware components, the developed computational           

methodologies and the biological evaluation of our system. 
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Figure 1. ​Scheme of the DIC image-guided automatic patch clamp (DIGAP) system. a:             

Steps of DIGAP procedures. 1: Pipette calibration by the user, 2: pipette replacement after              

recording, 3: image-based automatic pipette tip detection, 4: automatic cell detection, 5:            

pipette navigation to the target cell, 6: pressure regulation, 7: 3D cell tracking, 8: gigaseal               

formation, 9: break-in and electrophysiological recording, 10: nucleus and cytoplasm          

harvesting, 11: anatomical reconstruction of the recorded cell. ​b: ​Hardware setup of the             

DIGAP system. 

 

Hardware development and control 

The schematic hardware setup of the proposed system is shown in Fig. 1b. The software               

system we developed controls each hardware using their drivers on application programming            

interface (API) level, which makes the system modular and different types of hardware             

component (e.g. manipulators, biological amplifier, XZ shifting table etc.) can be attached.            

The electrophysiological signal is transferred to the DIGAP software via USB digitizer board             

(National Instruments, USB-6009). To apply different air pressure on the pipette in distinct             

phases of the patching procedure we built a custom pressure controller detailed in             

Supplementary Information: Pressure Regulator. Analog pressure sensors are used for          

monitoring the actual air pressure on the pipette and voltage signals of the sensors were               

connected in the input channels of the USB digitizer board. The solenoid valves of the               

regulator are controlled with TTL signals of the digital output channels of the digitizer. 
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Pipette calibration and automatic detection 

Pipette calibration is a one-time process which determines the coordinate system           

transformation between the pipette and the stage axes. The calibration consists of moving the              

pipette along its axes with known distances, finding it with the stage and detecting the exact                

pipette tip position in the camera image. Calibration allows the pipette to be moved at any                

position of the microscope stage space. Note that no assumptions are made on the orientation               

or the tilt angles of the pipette.  

The glass pipettes usually differ in length, thus the tip position should be updated after a                

pipette change. To automate this step we have developed algorithms for pipette detection in              

DIC images. First, we use a fast initialization heuristic and then refine the detection. The               

refinement step is the extension of our previous differential geometry-based method to 3             

dimensions ​(21)​. The pipette is modeled as two cylinders that have a common reference point               

and an orientation. The model is updated by the gradient descent method such that it covers                

dark regions introduced by the pipette in the image. Fig. 2a shows the starting and final state                 

of the algorithm from different projections in gradient images for visualization purposes. The             

detailed description of the algorithms and the equation derivations can be found in             

Supplementary Information: Pipette Detection System. The algorithm has an accuracy of 0.99            

± 0.55 μm compared to manually selected tip positions, which allow to reliably reach the cells                

of 10 μm diameter (on average) with the pipette when oriented towards their centroids.  

 

Cell detection 

We applied a deep learning algorithm in order to detect cells in DIC images and propose                

them for automatic patch clamp recording. Object detection of neurons in label-free tissue             
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images is challenging ​(24)​. Various software solutions ​(26, 27) were developed to segment             

neurons in cell cultures, however, they do not provide satisfactory results on tissues. To obtain               

a reliable object detection in brain tissue, we designed a cell detection algorithm, which              

involved three steps: data annotation, training of the model and inference. 

The annotation of the image stacks was performed by 4 field experts using our custom-built               

annotation software, which resulted in 31,720 objects labeled as healthy cells. The training             

process was capable of generating a suitable model that recognizes neurons in their original              

environment in DIC images (Fig. 2b). Our algorithm detects neurons in 2D images, then it               

extends the detection along the z-axis in the image stacks to complete the object detection in                

3D space (Fig. 2c). Four different comparisons were performed for evaluation. Intra-expert            

accuracies were measured by showing a small part of the dataset to the annotators again after                

3 months. Inter-expert accuracy was also measured to compare the annotators and resulted in              

a 0.752 F1-score. The deep learning model outperformed both annotators with a 0.835             

F1-score (81.72% precision and 85.39% recall, Fig. 2d). 

The result model was imported to the software. When the user initiates cell detection a               

stack is created and the detected cells are highlighted with bounding boxes (Fig 2c). The               

detections are ordered by the confidence value thus healthier cells are offered earlier. The              

target cell can also be selected manually based on arbitrary criteria required for the              

experiment. The details of the detection system can be found in Supplementary Information:             

Cell Detection System. 
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Figure 2. ​The developed algorithms for the DIGAP system. a: Result of the Pipette Hunter               

detection model shown in three different projections of the image stack. Blue lines show the               

initial state of our pipette localization algorithm, while green lines show the result of the               

method. ​b: Training dataset generation: 265 image stacks (60-100 images per stack with 1 μm               

frame distance along the Z axis) captured from human and rodent neocortical slices with DIC               

videomicroscopy (left). 31,720 objects as healthy cells (green boxes) labeled on every slice of              

the image stack by 4 experts. ​c: After training session the DIGAP system detects cells in                

unstained living neocortical tissues. ​d: Accuracy of the automated cell detection pipeline.            

Both intra- and inter expert measurements are performed. ​e: Lateral tracking of the cell              

movement. DIC images of the targeted (in blue box) and patched cell (in green box). The cell                 

drifted from its initial location (yellow arrows in the right panel) during the pipette maneuver.               
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f-g: Z-tracking of the cell movement. The template image was captured at the optimal focal               

depth (in red boxes) before starting the tracking. During the pipette movement image stacks              

were captured from the targeted cell (upper panels). The bottom row shows the differences              

between the template and the image of the corresponding z position. The lowest standard              

deviation value of the difference images (plots) shows the direction of the cell drift in the Z                 

axis. 

 

Tracking the cell in 3D 

Due to the elasticity of the tissue the movement of the pipette can significantly deform it and                 

change the location of the cell of interest. In order to precisely re-define the pipette trajectory,                

the location of the target cell needs to be tracked. We have developed an online system that                 

performs tracking in the lateral and Z directions (Fig. 2e-g). Both directions require a template               

image of the target cell which is acquired before starting the patch clamp process when the                

cell is in the focal plane of the microscope. The lateral tracking is performed in the image of                  

the most recent focal level. It uses the Kanade-Lucas-Tomasi (KLT) feature tracker algorithm             

(28, 29)​. The Z tracking is based on a focus detection algorithm that operates on a small                 

image stack encompassing target cell body. The standard deviation of the images of the target               

cell body is computed and compared to initial images. As a result, the displacement direction               

of the target cell along the Z axis is determined. The whole process was done with stopped                 

pipette to ensure that the cell is not pushed away meanwhile. The detailed explanation of the                

algorithms with examples can be found in Supplementary Information: Cell Tracking System. 
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Automated patch clamping steps 

After pipette calibration and cell detection the patch clamping procedure can be started. First,              

the DIGAP software calculates the trajectory of the pipette movement along which the             

manipulator moves the pipette tip close to the cell while applying medium air pressure (50-70               

mbar) . The initial trajectory is a straight line along the manipulators X axis. Note that the X                  

axis of the manipulator is tilted so the movement vector of the pipette is parallel to the                 

longitudinal axis of the pipette. We found that approaching is more reliable if the pipette is                

first moved a few micrometers above the cell and then finally descending on it. The               

impedance of the pipette tip is monitored continuously during the movement.  

During the movement of the pipette air pressure is dynamically changed with predefined air              

pressure values. Air pressures were empirically set for the different phases: hunting, sealing,             

and breaking. Pipette tip impedance was continuously checked in order to detect phases and              

apply the task specific pressure.  

Early resistance increase denotes the presence of an obstacle in front of the pipette, e.g. a                

blood vessel or another cell. If an obstacle is hit, the pipette is pulled back, slightly moved                 

laterally and when the obstacle is passed the pipette is oriented back to the initial trajectory                

towards the target ​(15)​. Meanwhile, the described 3D tracking algorithm compensates for the             

movement trajectory due to the possible displacement of the target cell. When the pipette tip               

reaches the target position above the cell, the pressure is decreased to a low positive value                

(10-30 mbar). Then the pipette is moved in Z direction and the resistance of the tip is                 

monitored by 5 ms long -5 mV voltage steps. If the impedance increases more than a                

predefined value (0.7-1.2 MΩ) the sealing phase is initiated. The cell-attached configuration            

is set up by the immediate cease of pressure. To achieve tight sealing of the cell membrane                 

into the glass we apply small negative pressure (from -30 to -10 mbar) and the holding                
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potential is set to -60 mV stepwise. If seal resistance reaches 1 GΩ (‘gigaseal’) then suction                

pulses of increasing length are applied to break-in the membrane. Information about the             

process, including pipette distance from the target, actual air pressure, and electrical resistance             

values are continuously monitored and shown in the GUI windows. Description of the steps              

and the parameter values are described in detail in Supplementary Information: Software            

Usage. A representative procedure is demonstrated in Fig. 3. 

 

 

 

Figure 3. ​Representative example of a whole-cell recording. ​a: Trajectory of the pipette tip              

(red line) with obstacle avoidance (numbered) in the tissue and the spatial location of the               

detected cells (green boxes). ​b: Plots of the depth of the pipette tip in the tissue, the applied                  

air pressure, and the measured pipette tip resistance during the approach. ​c: Image of a cell                

before and after performing patch clamp recording on it. 
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Software 

The control software is written in MATLAB and the source code is made publicly available at                

https://bitbucket.org/biomag/autopatcher/​. The visual patch clamping process can be started         

from a user-friendly GUI which allows every parameter to be set and the process to be                

monitored real-time by the operator. Throughout the session, the Patch Clamp Diary module             

collects and visualizes information about patch clamping attempts, including their location           

and outcome status. The user can additionally mark positions in the biological sample that              

help orientation during the experiment (i.e. boundaries of the brain slice or the parallel strands               

that keep secure the tissue).  

Many utility features are present to help everyday experimenting. Single images or image             

stacks can be acquired, saved or loaded from the menu bar. The acquired images can be                

processed by performing background illumination correction or DIC image reconstruction          

which can help in identifying cells and their features. The graphical processing unit (GPU)              

extension of our reconstruction algorithm ​(30) can be used for reconstruction, which results in              

about 1000x speed increase. The software contains a built-in labeling tool that allows image              

database generation to train deep learning cell recognition. Furthermore, most recent practices            

from other automation systems have also been implemented for the ​in vivo usage, including              

pipette cleaning ​(16, 17) or hit reproducibility check​(31) ​. The XML configuration file makes            

the adaptation easy between different setups and the software can also operate as a general               

microscope controller. A logging system is used for maintainability purposes. 
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Application in brain slices 

To test the performance and effectiveness of our system we obtained a series of recordings on                

slice preparation of rat somatosensory and visual cortices (n=23 animals) and human temporal             

and association cortices (n=16 patients). Successful automatic whole-cell patch clamp trials           

without experimenter assistance were achieved in a total number of n=100 and n=74 (rodent              

visual and somatosensory cortices and human cortex, respectively) out of n=157 and n=198             

attempts. The quality of recordings was supervised by measuring series resistance (R​s​) (Fig.             

4). We found a wide range of R​s values within successful attempts in both species: 34.52 ±                 

18.99 MΩ in rat and 31.39 ± 16.67 MΩ in human recordings. Trials with R​s value exceeding                 

100 MΩ were noted as unsuccesful attempts . Access resistance in 48.28% of our recordings               

was under 30 MΩ which we denoted as high quality and used for further analysis. We applied                 

standard stimulation protocol and recorded membrane potential responses to injected currents.           

Based on the extracted common physiological features and firing patterns we grouped            

neurons into electrophysiological types (e-types​(32) ​) based on criteria established by the           

Petilla convention ​(33) ​. There were 8 e-types in automatic patched rat samples: pyramidal cell              

(pyr), burst adapting (bAD), continuous non-accommodating (cNAC), continuous stuttering         

(cSTUT), burst stuttering (bSTUT), delayed stuttering (dSTUT), continuous adapting (cAD),          

delayed non-accommodating (dNAC). From the human samples, 7 e-types were identified. In            

our automatically-collected dataset, dNAC type was not represented (Fig. 4). 

Each electrophysiological recording was performed using biocytin-containing intracellular        

solution for further anatomical investigation. Among autopatched neurons with <30 MΩ           

access resistance 80% and 60.71% of full recovery was achieved from rat and human              

samples, respectively (Fig. 5a). 
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We next tested if single-cell RNA analysis is achievable from the collected cytoplasm of              

autopatched neurons. After whole-cell recording of the neurons in the brain slices the             

intracellular content of the patched cells were aspirated into the recording pipette with gentle              

vacuum applied by the pressure regulator unit (-40 mBar for 1 min, then -60 mBar for 2-3                 

min, and finally -40 mBar for 1 min). The tight seal was maintained and the pipette was                 

carefully withdrawn from the cell to form an outside-out configuration. Subsequently, the            

content of the pipette was expelled into a low-adsorption test tube (Axygen) containing 0.5 μl               

SingleCellProtectTM (Avidin Ltd. Szeged, Hungary) solution in order to prevent nucleic acid            

degradation and to be compatible with direct reverse transcription reaction. Then the samples             

were used for digital polymerase chain reaction (dPCR) analysis to determine the copy             

number of selected genes. From four single pyramidal cell cytoplasm samples which were             

extracted from the human temporal cortex, we determined the copy number of a ribosomal              

housekeeping RPS18 and aquaporin 1 (AQP1) genes (Fig. 5b). The results of the dPCR              

experiments are in agreement with our previous observations ​(34, 35)​. 
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Figure 4. ​Electrophysiological properties of the cells patched with DIGAP. ​ ​a:​ Main 

electrophysiological parameters from the successful automatic patch clamp recordings. The 

box plots show the series resistance (R ​s​,left panel), the input resistance (R​in​, middle panel) and 

the resting membrane potential (right panel) of all successful measurements. ​b: ​Different cell 

types are identified according to firing features: pyramidal cell (pyr), burst adapting (bAD), 

continuous non-accommodating (cNAC), continuous stuttering (cSTUT), burst stuttering 
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(bSTUT), delayed stuttering (dSTUT), continuous adapting (cAD), delayed 

non-accomodating (dNAC). ​c:  ​The proportion of recorded cell types. ​d: ​Individual neurons' 

action potential half-widths are presented as a function of the same neuron's R​in​. Note the 

segregation of excitatory and inhibitory neuronal classes. Dataset is recorded from rodent 

samples (Panel c and d colors correspond to panel b). ​e-g: ​same plots as b-d, representing the 

dataset recorded in human neocortical slices.  

 

 

 

Figure 5. ​Anatomical and molecular biological investigation of neurons patched with           

DIGAP. a: ​Two anatomically reconstructed human autopatched neurons. The darker colors           

represent somata and dendrites of the pyramidal (green) and the interneuron (red) cells. The              

brighter color shows the axonal arborization. The firing patterns of the cells are the same               

color as their reconstructions. ​b: ​mRNA copy numbers of a housekeeping (RPS18, black bars)              

and the aquaporin 1 (AQP1, red bars) gene from four representative human pyramidal cells​.  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.05.078162doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.078162
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 

Hardware setup 

An Olympus BX61 (Tokyo, Japan) microscope with a 40x objective was used for 3D              

imaging. For moving the pipette and the microscope stage we used Luigs and Neumann Mini               

manipulators with SM-5 controllers (Ratingen, Germany). The electrophysiological signals         

were measured by a HEKA EPC-10 amplifier (HEKA Elektronik, Lambrecht, Germany). The            

signals were digitized at 100 kHz and Bessel filtered at 10 kHz. 

In vitro preparation of human and rat brain slices 

All procedures were performed according to the Declaration of Helsinki with the approval of              

the University of Szeged Ethics Committee. Human slices were derived from materials that             

had to be removed to gain access for the surgical treatment of deep-brain tumors, epilepsy or                

hydrocephalus from the association cortical areas with written informed consent of female            

(n=9, aged 48.2 ± 26.6 years) and male (n=7, aged 48.3 ± 9.9 years) patients prior to surgery.                  

Anesthesia was induced with intravenous midazolam and fentanyl (0.03 mg/kg, 1–2 µg/kg,            

respectively). A bolus dose of propofol (1–2 mg/kg) was administered intravenously. To            

facilitate endotracheal intubation, the patient received 0.5 mg/kg rocuronium. After 120 s, the            

trachea was intubated and the patient was ventilated with a mixture of O ​2 and N ​2​O at a ratio of                   

1:2. Anesthesia was maintained with sevourane at monitored anesthesia care (MAC) volume            

of 1.2–1.5. After surgical removing blocks of tissue were immediately immersed in ice-cold             

solution containing (in mM) 130 NaCl, 3.5 KCl, 1 NaH ​2​PO ​4​, 24 NaHCO ​3​, 1 CaCl​2​, 3 MgSO ​4​,                

10 d(+)-glucose, saturated with 95% O ​2 and 5% CO ​2​. Slices were cut perpendicular to cortical               

layers at a thickness of 350 μm with a vibrating blade microtome (Microm HM 650 V) and                
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were incubated at room temperature for 1 hour in the same solution. The artificial             

cerebrospinal fluid (aCSF) used during recordings was similar to the slicing solution, but it              

contained 3 mM CaCl​ ​ and 1.5 mM MgSO ​4​.  

Coronal slices (350 μm) were prepared from the somatosensory cortex of male Wistar rats             

(P18-25, n=23, RRID: RGD_2312511) ​(36)​. Recordings were performed at 36°C temperature.          

Micropipettes (3.5–5 MΩ) were filled with low [Cl] intracellular solution for whole-cell patch             

clamp recording: (in mM) 126 K-gluconate, 4 KCl, 4 ATP-Mg, 0.3 GTP-Na ​2​, 10 HEPES, 10              

phosphocreatine, and 8 biocytin (pH 7.20; 300 mOsm). 

Molecular biological analysis 

After harvesting the cytoplasm of the recorded cells the samples were frozen in dry ice and                

stored at -80 °C until used for reverse transcription. The reverse transcription (RT) of the               

harvested cytoplasm was carried out in two steps. The first step took 5 min at 65 °C in a total                    

reaction volume of 5 μl containing 2 μl intracellular solution and SingleCellProtectTM mix             

with the cytoplasmic contents of the neuron, 0.3 μl TaqMan Assays, 0.3 μl 10 mM dNTPs, 1                 

μl 5× first-strand buffer, 0.3 μl 0.1 mol/ L DTT, 0.3 μl RNase inhibitor (Life Technologies)                

and 100 U of reverse transcriptase (Superscript III, Invitrogen). The second step of the              

reaction was carried out at 55 °C for 1 h and then the reaction was stopped by heating at 75 °C                     

for 15 min. The reverse transcription reaction mix was stored at −20 °C until PCR               

amplification. For digital PCR analysis the reverse transcription reaction mixture (5 μl), 2 μl              

TaqMan Assays (Life Technologies), 10 μl OpenArray Digital PCR Master Mix (Life            

Technologies) and nuclease-free water (5.5 μl) were mixed in a total volume of 20 μl. The                

mixture was evenly distributed on an OpenArray plate. RT mixes were loaded into 4 wells of                

a 384-well plate from which the OpenArray autoloader transferred the cDNA master mix by              

capillary action into 256 nanocapillary holes (4 subarrays) on an OpenArray plate. Processing             
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of the OpenArray slide, cycling in the OpenArray NT cycler and data analysis was done as                

previously described ​(34)​. For our dPCR protocol amplification, reactions with CT confidence            

values below 100 as well as reactions having CT values less than 23 or greater than 33 were                  

considered primer dimers or background signals, respectively, and were excluded from the            

data set. 

Anatomical processing and reconstruction of recorded cells 

Following electrophysiological recordings, slices were transferred into a fixative solution          

containing 4% paraformaldehyde, 15% (v/v) saturated picric acid, and 1.25% glutaraldehyde           

in 0.1 M phosphate buffer (PB; pH=7.4) at 4 °C for at least 12 h. After several washes with                   

0.1 M PB, slices were frozen in liquid nitrogen then thawed in 0.1 M PB, embedded in 10%                  

gelatin, and further sectioned into 60-μm slices. Sections were incubated in a solution of              

conjugated avidin-biotin horseradish peroxidase (ABC; 1:100; Vector Labs) in Tris-buffered          

saline (TBS, pH=7.4) at 4 °C overnight. The enzyme reaction was revealed by 3′              

3-diaminobenzidine tetra-hydrochloride (0.05%) as chromogen and 0.01% H ​2​O ​2 as oxidant.          

Sections were postfixed with 1% OsO ​4 in 0.1 M PB. After several washes in distilled water,                

sections were stained in 1% uranyl acetate and dehydrated in an ascending series of ethanol.               

Sections were infiltrated with epoxy resin (Durcupan) overnight and embedded on glass            

slides. Three-dimensional light-microscopic reconstructions were carried out using a         

Neurolucida system (MicroBrightField) with a 100× objective. 

Pipette cleaner 

We implemented a pipette cleaning method ​(16) into our system. The cleaning procedure             

requires two cleaning agents: Alconox, a commercially available cleaning detergent, and           

artificial cerebrospinal fluid (aCSF). We 3D printed a holder for two PCR tubes containing              
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the liquids that can be attached to the microscope objective and are reachable by the pipette                

tip. The cleaning is performed by pneumatically taking up and then removing the agents into               

and from the pipette. The vacuum strength used for the intake of the liquids is -300 mBar and                  

the pressure used for the expulsion is +1000 mBar. The method consists of three steps. First,                

the pipette is moved to the cleaning agent bath and vacuum is applied for 4 seconds. Then, to                  

physically agitate glass-adhered tissue, pressure and vacuum are alternated, each for 1 second             

and repeated 5 times total. Finally, pressure is applied for 10 seconds to make sure all                

detergent is removed. In the second step, the pipette is moved to the aCSF bath and any                 

remaining detergent is expelled by applying pressure for 10 seconds. In the third step, the               

pipette is moved back to the position near to the biological sample where the cleaning process                

was initiated. In the original paper, it is shown that these pressure values and the duration of                 

the different steps are more than enough to cycle the volume of agents necessary to clean the                 

pipette tip. We provide a graphical window in our software to calibrate the pipette positions of                

the tubes containing the cleaning agent and the aCSF and to start the cleaning process.  

DISCUSSION 

The developed DIGAP system is able to fully automatically perform whole cell patch clamp              

recordings on single neurons in rodent and human neocortical slices ( ​Supplementary Video            

1​). This is a step forward towards characterizing and understanding the phenotypic            

heterogeneity and cellular diversity of the brain. A central part of the method is the detection                

of single neurons in label-free 3D images using deep convolutional neural networks reaching             

super-human precision. The system we developed is fully controlled by a single software,             

including all hardware components, data handling, and visualization. The control software has            

its highly comprehensive internal logging system, that allows tracking the approaching and            
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harvesting conditions to such a detailed level. In addition, it can connect to and save database                

entry records that are compatible with the Allen Brain Atlas single neuron database. In this               

work, we demonstrated the power of our system that is capable of measuring a large set of                 

rodent and human neurons in the brain cortex. The results show strong correlation to the               

earlier results in literature in terms of quality and phenotypic composition of cell             

heterogeneity. Records of measured cells were inserted to the database of the Allen Institute              

for Brain Science and a subset of the cells was isolated from their tissue environment and                

single-cell mRNA copy numbers of two selected genes were determined. Furthermore, we            

successfully demonstrated that ​autopatched neurons can be anatomically reconstructed.  

The main advantage of the proposed system is that it is easily portable to any existing setups                 

and although we do not believe that it will fully substitute human experts, it is a great choice                  

for complex specific tasks, allows parallelization and speeds up discovery. It is important to              

emphasize the need for a standardized and fully documented patch clamping procedure, which             

is guaranteed by using DIGAP. The choice of advanced image analysis and deep learning              

techniques made it possible to work with the least harmful imaging modalities at a human               

expert level of single-cell detection that was impossible so far. Further possibilities are more              

widespread and potentially enabling or accelerating discoveries. Combining with intelligent          

single-cell selection strategies of the detected cells, the proposed system can be the ultimate              

tool to reveal and describe cellular heterogeneity. In multiple patch clamp setup it can be used                

to describe the connectome at cellular level. We presented DIGAP’s application to brain             

research, but other fields, such as cardiovascular or organoid research will benefit from the              

system. Based on its nearly complete automation, it can help in education.  

We plan to enhance our cell detection algorithm with the capability of predicting neuronal              

phenotypes on label-free DIC images, that will allow targeting specific neuron classes. We             
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also plan to add multi-pipette support to study connections between pairs, triplets or a higher               

number of cells at a time. 
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