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Abstract

The critical role of blood lipids in a broad range of health and disease states is well recognised,
while an understanding of the complex genetic regulation of lipid homeostasis is emerging. Traditional
blood lipids (LDL-C, HDL-C and triglycerides) are known to be substantially regulated by genetic
variation. Less well explored is the interplay of genetics and environment within the broader blood
lipidome. Here we use the twin model to examine heritability of the plasma lipidome among healthy
older aged twins and explore gene expression and epigenetic (DNA methylation) associations of these
lipids. Heritability of 209 plasma lipids quantified by liquid chromatography coupled mass
spectrometry (LC-MS) was assessed in 75 monozygotic and 55 dizygotic twin pairs enrolled in the
Older Australian Twins Study (OATS), aged 69-93 years. Only 27/209 lipids (13.3%) were significantly
heritable under the classical ACE twin model (h?= 0.28-0.59). Ceramides (Cer) and triglycerides (TG)
were most heritable, while sphingomyelins (SM) and most phospholipids, especially lysophospholipids,
were not significantly heritable. Lipid levels correlated with 3731 transcripts. Relative to non-
significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts,
which were not directly associated with lipid metabolism, but with immune function, signalling and
transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for a
proportion of variability in some non-heritable lipids, especially lysophosphatidylcholine (LPC). We
found a complex interplay of genetic and environmental influences on the ageing plasma lipidome, with

most of the variation controlled by unique environmental influences.
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Introduction

As the field of lipidomics has grown, hundreds to thousands of complex lipids have been
characterised ¥ 2, with many linked to health and disease states, such as metabolic syndrome 3,
cardiovascular disease * °, obesity ® 7, and dementia ®!. Both genetic and environmental factors
influence these biological phenotypes. Identifying the contributions of these factors can help elucidate
the importance of genes for a particular trait, as well as providing insight into the environmental
influences. This information might enable the design of personalised medical treatments for lipid-

related disease states.

While there are substantial data to suggest that levels of traditional lipids and lipoproteins such as high
density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL), cholesterol and triglyceride
levels are heritable 12 13, few studies have focused on the genetic and environmental influences on the
plasma levels of individual lipid species and lipid classes beyond these traditional lipid measures.
Additionally, lipids vary within and between individuals 141 based on variables such as age *"°, sex 1"
1 body mass index (BMI) % 20 lipid-lowering medication 2! and genetic background % 22,
demonstrating a wide degree of complexity involved in the regulation of lipid metabolism. It would
therefore be informative to understand the extent to which variation in specific plasma lipids is
determined by genetic and environmental influences. We hypothesise that as circulating lipids are
produced downstream of genomic, transcriptomic and proteomic regulatory processes, that there will

be strong environmental influences on lipid variance.

Previous genome-wide association study (GWAS) data implicate many genetic loci associated with
traditional lipid levels. For example, the genes encoding lipoprotein lipase, hepatic lipase and
cholesteryl ester transfer protein (LPL, LIPC and CETP respectively) have been associated with HDL,
and genes encoding cadherin EGF LAG seven-pass G-type receptor 2, apolipoprotein B and translocase
of outer mitochondrial membrane 40 (CELSR2, APOB and TOMM40 respectively) have been associated
with LDL 2. Apolipoprotein E (APOE) variants have been established as a strong risk factor for
cardiovascular disease and Alzheimer’s disease 2% 2* and are associated with altered LDL-C levels. One

large exome wide screening study with over 300,000 individuals identified 444 variants at 250 loci to

4
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88  be associated with one or more of plasma LDL, HDL, total cholesterol and triglyceride levels %.
89  Collectively, data from 70 independent GWAS with sample sizes ranging from ten thousand to several
90  hundred thousand participants have identified associations of traditional lipid levels with 500 single
91  nucleotide polymorphism (SNPs) in 167 loci that explain up to 40% of individual variance in these
92  traditional lipid measures 2. This number suggests that LDL, HDL, total cholesterol and triglyceride
93 levels undergo a substantial degree of genetic regulation, but also highlights that much of the lipid

94  variance is still unaccounted for, possibly related to rare variants or environmental factors 2627,

95  One of the most powerful tools for analysis of gene versus environment effects on phenotypic traits is
96 the classical twin design, which estimates the relative contribution of heritable additive genetic effects
97  (A) and shared (C) and unique environmental (E) influences on a given trait by comparing correlations
98  within monozygotic and dizygotic twin pairs 2. One major strength of this design compared to family
99  studies is that twins are matched by age and common environment, reducing cross-generation
100  differences. Genetic and environmental variances can be computed with relatively high power using a
101  modest sample size. It is expected that since monozygotic twins share 100% of segregating genetic
102  variation, while dizygotic twins share 50%. It is also assumed that twins are raised in the same
103  environment, thus any additional differences between monozygotic twins would be attributable to
104  unique environmental (E) effects. Further, any differences in intraclass correlations between

105 monozygotic and dizygotic twins could be estimated as due to additive polygenic effects (A).
106

107  We applied the classic twin design to estimate heritability using 75 pairs of MZ twins and 55 pairs of
108  DZ twins from the Older Australian Twin Study (OATS) 2°2°, aged between 69-93 years. Since many
109  proteins are known to regulate lipid metabolism, it is expected that some lipids may show substantial
110 heritability, as reported in previous studies % %2, Further, we hypothesised that some of the variance in
111  lipids that do not have significant heritability might be controlled by gene sequence - independent
112  mechanisms, such as genome-wide average DNA methylation (GWAM) levels. Our study is the first to
113  examine heritability of the broad plasma lipidome among healthy older — aged twins and explore

114  putative genetic, transcriptomic and epigenetic associations of these lipids.
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115

116 Materials and Methods

117 Cohorts

118  The study sample comprised participants aged between 69-93 years enrolled in the Older Australian
119  Twin Study (OATS), established in 2007. The study recruited participants from three states in eastern
120  Australia (QLD, NSW and VIC). The OATS collection included; patient data, including blood
121  chemistry, MRI, neuropsychiatric assessment/cognitive tests, and medical exams performed over
122 several visits (waves), each taken at an interval of 16-18 months, with the first visit denoted as “Wave
123 17, second visit denoted as “Wave 2” and so on. From OATS, we selected Nn=330 participants who had
124  available plasma from Wave 3; plasma from this wave collected within a period of up to 3 years apart.
125  Of these, 260 participants were eligible for heritability analyses, including 150 monozygotic twins (75
126  pairsin total; 25 male, 50 female), and 110 dizygotic twins (55 pairs in total; 31 males, and 79 females).
127  The study protocol for OATS has been previously published 2 3% 32, Participants who had significant

128  neuropsychiatric disorders, cancer, or life threatening illness were excluded from this study.

129  Ethics Approval

130  OATS was approved by the Ethics Committees of the University of New South Wales and the South
131  Eastern Sydney Local Health District (ethics approval HC17414). All work involving human
132  participants was performed in accordance with the principles of the Declaration of Helsinki of the World

133  Medical Association. Informed consent was obtained from all participants and/or guardians.

134  Plasma collection, handling and storage

135 Blood collection, processing and storage were performed under strict conditions to minimize pre-
136  analytical variability . Fasting EDTA plasma was separated from whole blood within 2-4 hours of
137  venepuncture and immediately stored at -80°C prior to bio-banking. Samples then underwent a single
138  freeze thaw cycle for the purpose of creating aliquots, which minimizes subsequent freeze thaw cycles

139  for specific experiments. EDTA plasma was chosen as the anticoagulant since it chelates divalent
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140  metals, thereby protecting plasma constituents from oxidation, which is particularly important for lipids.
141  Thereafter, lipid extractions were performed within 15 minutes of freeze thawing and extracts stored at

142  -80°C and analysed within two months of extraction.
143  Targeted assays of plasma lipids

144  Plasma total cholesterol, LDL-C, HDL-C and TG were measured by enzymatic assay at SEALS
145  pathology (Prince of Wales Hospital) as previously described 3, using a Beckman LX20 Analyzer with
146  atimed-endpoint method (Fullerton, CA). LDL-C was estimated using the Friedewald equation (LDL-

147  C=total cholesterol - HDL-C - triglycerides/2.2).
148  APOE genotyping

149  DNA was extracted from samples using established procedures . Genotyping of two APOE single
150 nucleotide polymorphisms (SNPs rs7412, rs429358) was performed using Tagman genotyping assays
151  (Applied Biosystems Inc., Foster City, CA) to determine the APOE haplotype, which has three alleles

152 (g2, €3, ¢4).
153  Lipid Extraction from plasma: Single phase 1-butanol/methanol

154  Lipid internal standards (SPLASH® Lipidomix® Mass Spec Standard) were purchased from Avanti
155  (Alabaster, Alabama, United States) and diluted ten-fold in 1-butanol/methanol (1:1 v/v). Plasma
156  extraction was performed in accordance with a single phase extraction as previously described ¢ %,
157  Briefly, we added 10 pL of 1:10 diluted SPLASH internal lipid standards mixture to 10 uL plasma in
158  Eppendorf 0.5 mL tubes. 100 pL of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium formate
159  was then added to the sample. Afterwards, samples were vortexed for 10 seconds, then sonicated for
160  one hour. Tubes were centrifuged at 13,000 g for 10 minutes. The supernatant was then removed via a
161 200 pl gel-tipped pipette into a fresh Eppendorf tube. A further 100pl of 1-butanol/methanol (1:1 v/v)
162  was added to the pellet to re- extract any remaining lipids. The combined supernatant was dried by
163  vacuum centrifugation and resuspended in 100 pl of 1-butanol/methanol (1:1 v/v) containing 5 mM
164  ammonium formate and transferred into 300 pl Chromacol autosampler vials containing a glass insert.

165  Samples were stored at -80° C prior to LC-MS analysis. The robustness and reproducibility of this
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166  extraction method has been previously demonstrated 3 in our laboratory, with variation in human
167  plasma ranges of measurement between individuals across age, sex ** and by APOE genotype 3

168  reported.
169  Liquid Chromatography/ Mass spectrometry

170  Lipid analysis was performed by LC ESI-MS/MS using a Thermo QExactive Plus Orbitrap mass
171  spectrometer (Bremen, Germany) in two experimental batches separated by a month. A Waters
172  ACQUITY UPLC CSHTM C18 1.7um, 2.1x100mm column was used for liquid chromatography at a
173  flow rate of 260 pL/min, using the following gradient condition: 32% solvent B to 100% over 25 min,
174  areturnto 32% B and finally 32% B equilibration for 5 min prior to the next injection. Solvents A and
175 B consisted of acetonitrile:MilliQ water (6:4 v/v) and isopropanol:acetonitrile (9:1 v/v) respectively,
176  both containing 10 mM ammonium formate and 0.1% formic acid. Product ion scanning was performed

177  in positive ion mode. Sampling order was randomised prior to analysis.
178  Alignment and peak detection/analysis

179  The raw data was aligned, chromatographic peaks selected, specific lipids identified and their peak
180  areas integrated using Lipidsearch software v4.2.2 (Thermo Fischer Scientific, Waltham MA). Owing
181  to the large number of RAW files being processed, the alignment step was performed in four separate
182  batches, with a maximum of 100 samples aligned at any one time, and the data collated and exported to
183  an Excel spreadsheet for manual processing and statistical analysis. Only lipids that were present in all
184  four alignment batches were included in our analysis. The raw abundances (peak areas) were normalised
185 by dividing each peak area by the raw abundance of the corresponding internal standard for that lipid
186  class e.g. all phosphatidylcholines were normalised using 15:0-18:1(d7) PC. The intra-assay coefficient
187  of variation (CV) was calculated by dividing the standard deviation of the normalised abundances by
188  the mean across lipid species. Lipid ion identifications were filtered using the LipidSearch parameters
189 rej=0 and average peak quality>0.75. Furthermore, identifications with CV<0.4 from repeated
190 injections of quality control plasma samples were included (see S1 supporting methods). Where

191  duplicate identifications were found (i.e. lipid IDs with identical m/z and annotations, and similar
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192  retention times), the lipid ID with the lowest CV%, and highest peak quality score was used. When
193  necessary, the average m-score (match score, based on number of matches with product ion peaks in
194  the spectrum [20]) was also used to differentiate closely related lipid species, with the lipid having the
195  highest m-score selected. All other duplicates were excluded from analysis. Lipid groupsums were
196  produced by adding lipids within a defined class/subclass together, such as total monounsaturated

197  triglycerides (TG), total ceramides (Cer) etc.
198  Microarray Gene Expression

199  Fasting blood samples for gene expression analyses were collected. The methods for gene expression
200 data collection analyses have previously been described *. Briefly, PAXgene Blood RNA System
201  (PreAnalytiX, QIAGEN) was used to extract total RNA from whole blood collected in PAXgene tubes
202  following overnight fasting. RNA samples with RNA integrity number (RIN) >6 as measured by the
203  Agilent Technologies 2100 Bioanalyzer were used in subsequent analyses “°. Assays for gene
204  expression were performed using the lllumina Whole-Genome Gene Expression Direct Hybridization
205  Assay System HumanHT-12 v4 (lllumina Inc., San Diego, CA, USA) in accordance with standard
206  manufacturer protocols. Quality control (QC) and pre-processing of raw gene expression intensity
207  values extracted from GenomeStudio (Illumina) were performed using the R Bioconductor package
208 limma “.. Background correction and quantile normalisation was done using the neqc function.
209  Expressed probes with detection p-value <=0.05 were retained for analysis. After pre-processing and
210  filtering, 308 samples and 36,053 transcripts were available for gene expression analysis. After
211  overlapping with the lipids data 290 samples were available for lipids — gene expression analysis. Gene

212  abbreviations used in the text are based on Gene Ontology nomenclature.
213  DNA Methylation

214  Genome-wide DNA methylation data for 113 monozygotic twin pairs was generated using an
215  established genomics provider using peripheral blood DNA collected at baseline “>. Randomisation of
216  co-twins across the arrays was performed within experiments. DNA methylation status was assessed

217  using the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA).
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218  Background correction was applied to raw intensity data and the R minfi package was used to generate
219  methylation beta values (ranging from 0-1) “3. Quantile normalisation was used. We excluded sex
220  chromosome probes, probes containing SNPs, cross-reactive probes as well as probes not detected in
221  all samples from analysis *. Following these quality control (QC) procedures, 420,982 out of 485,512
222  probes remained. White blood cell composition was estimated using a previously described method “,
223  implemented in minfi. After filtering methylation outliers using the preprocessQantile function of the
224  minfi package with default parameters, out of the 217 samples with methylation data, 135 overlapped
225  with lipids data. Genome wide Average Methylation (GWAM) for each sample across all the probe

226 level beta values were calculated.

227  Data Analysis

228 Data Transformations. Since different sets of covariates are used to adjust for the lipid levels, gene
229  expression and methylation, we have first obtained residuals after adjusting for standard confounders
230 inorder to obtain lipid and gene expression profiles independent of cohort characteristics. Residuals for
231 lipids were obtained after adjusting for age, sex, education, BMI, lipid lowering medication, smoking
232  status, experimental batch and APOE ¢4 carrier status, which were then inverse normal transformed
233 using the R package RNOmni . This transformation eliminated experimental batch separation effects
234  (Figure S2). Residuals for gene expression were obtained after adjusting for age, sex, experimental
235  batch, RIN, blood cell counts (eosinophils, lymphocytes, basophils and neutrophils - obtained using
236  standard laboratory procedures by Prince of Wales SEALS Pathology). Residuals for methylation beta
237  values were obtained after adjusting for age, sex, BMI and estimated white blood cell counts (CDS8T,
238  CDA4T, NK, B-cell, monocytes, and granulocytes). Residuals were used for all the analyses presented

239 here.

240  Heritability Estimation. Heritability was estimated using SEM. Under the SEM the phenotypic
241  covariance between the twin pairs is modelled as a function of additive genetic (A), shared
242  environmental (C) and unique environmental (E) components. In the narrow sense heritability is
243  defined as the ratio of additive genetic variance [Var(A)] to the total phenotypic variance
244 [Var(A)+Var(C)+Var(E)]. The model containing these three parameters (A, C and E) is known as the

10
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245  ACE model. For model parsimony and test concerning the variance parameters, models with only A
246  and E components, known as AE model, and the models with CE and E components would be fit and
247  compared with the full ACE model #. Genetic and environmental correlations were estimated using
248  the bivariate Cholesky model. Heritability, genetic correlations and environmental correlations under

249  the twin SEM were estimated using the R OpenMx (2.12.1.) package “®.

250  Association Tests. Test of association of lipids with probe level gene expression were performed using
251  the linear mixed model and the Ime function in R package nlme *°. Gene expression and lipid residuals
252  (adjusted for age, sex, education, BMI, lipid lowering medication, smoking status, experimental batch
253  and APOE ¢4 carrier status) were used as independent and dependent variables respectively in these
254  models. A p-value threshold of 1.39x10 (0.05/35971, obtained by Bonferroni conservative correction
255  for total number of probes) was used to define significant associations of lipids with probe level gene

256  expression.

257  Similarly, lipid residuals were used as dependent variable and average methylation value was used as
258  the independent variable to test the association of lipids with methylation. The proportion of variance
259 inlipids explained by the gene expression variation and methylation variance were estimated based on
260 the log-likelihoods as implemented in the R package rcompanion *°. For most of the lipids, multiple
261  gene expression probes were associated. Hence to avoid overfitting and multi-collinearity, we used
262  penalized regression methods as implemented in glmnet of the R package caret 5! to reduce the number
263  of probes in the regression model. The list of probes retained in the glmnet model was used to estimate

264  the variance contributed by the gene expression.

265  For analysis of GWAM (Table 4), r? is McFadden’s pseudo-r?. p-value for h? is the p-value for test of
266  significant additive genetic effects (h*=heritability). Thus p-value for h? < 0.05 indicates significant
267  heritability. Regression coefficients are based on average methylation at CpG sites excluding any with

268  known SNPs influencing lipid levels.

269  Lipid shorthand notation

11
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270  Lipids are named according to the LIPID MAPS convention %2 Lipid abbreviations are as follows:
271  ceramide (Cer), cholesterol ester (CE), diacylglycerol (DG), lysophosphatidylcholine (PC),
272  phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin

273  (SM) and triglyceride (TG).
274

275 Results

276  Participant characteristics

277 Plasma lipidomics was performed on n=330 individuals, 260 of these were used for heritability
278  analyses. Characteristics of the MZ (n=150, 100 females) and DZ (n=110, 79 females) twins with
279  available plasma for heritability analyses are presented in Table 1. There were no group differences
280  between MZ and DZ twins on these characteristics except in HDL-C levels, which were higher in MZ
281  twins relative to DZ twins (p<0.05), but did not remain significant after correcting for multiple

282  comparisons.

283 Table 1. Participant characteristics for heritability analyses.
MZ (n=150) DZ (n=110) statistic p-value
Age 75.7 (5.47) 76.07 (5.31)  -0.548 0.584
Females 100 (67%) 79 (72%) 0.785 0.376
Education (yrs) 10.99 (3.18)  11.2(3.18) -0.475 0.635
BMI (kg/m2) 27.934 (4.74)  27.5(4.92) 0.776 0.438
WHR 0.89 (0.09) 0.89 (0.08) 0.164 0.87
MMSE 28.9 (1.37) 28.95(1.76)  -0.062 0.95
LDL-C (mmol/L) 2.77 (0.97) 2.78 (0.97) -0.078 0.938
HDL-C (mmol/L) 1.73 (0.46) 1.60 (0.44) 2.341 0.02
Cholesterol (mmol/L) 5.08 (1.01) 4.98 (1.12) 0.822 0.412
Triglyceride (mmol/L) 1.30 (0.54) 1.32 (0.56) -0.298 0.766

12
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APOE ¢4 carrier* 35 (26%) 27 (28%) 0.118 0.731
284 Means (SD) are presented for continuous variables, while n (%) is presented for categorical
285 variables. Comparisons of MZ and DZ pairs used t tests for continuous variables and y? tests for
286 categorical variables.
287 Abbreviations: MZ = monozygotic, DZ = dizygotic. body mass index (BMI), mini-mental state exam
288 (MMSE), waist-hip ratio (WHR), low density lipoprotein cholesterol (LDL-C), high density
289 lipoprotein cholesterol (HDL-C).
290 *excludes participants with missing data (n=231 participants with APOE genotype data)

291  Heritability
292 Heritability of lipids was computed using the classical ACE model. Classical lipid measures of
293  total cholesterol, LDL, HDL and triglycerides were significantly heritable (h?=0.427, 95% C.I. = [0.075,

294  0.592], 0.404, 95% C.I. = [0.121, 0.573], 0.419, 95% C.I. = [0.027, 0.766], and 0.427, 95% C.I.

295  [0.181, 0.623] respectively). HDL had a substantial C component (i.e., common environment; h%c
296  0.27, 95% C.I. = [0.00, 0.48]). For individual lipid species measured, 27 out of 203 (13.3%) were
297  significantly heritable with a median heritability of h? = 0.433, ranging from 0.287 for TG

298  (18:0/17:0/18:0) to a maximum of 0.59 for Cer (d17:1/24:1).

299  The percentages of heritable lipids from the total pool of identified lipids in each lipid class is
300 summarised in Figure 1A. Heritability estimates across lipid class and by individual lipid for
301  significantly heritable lipids are summarised in Figure 1B and Table S1. Ceramides (Cer) had the
302  highest heritability estimates (range h?=0.433 — 0.59), where 9 out of 20 species were significantly
303  heritable. For triglycerides (TG), 12 of out 59 species measured were heritable (range h?= 0.287-0.495).
304  Among diacylglycerols (DG), 3 species out of 10 were heritable (range h?=0.422-0.544). Only 3
305  phospholipids were heritable, including 2 of 58 phosphatidylcholines (PC) and 1 out of 5
306  phosphatidylethanolamines (PE), (range h?> = 0.327 — 0.413). Cholesteryl ester (CE),
307  lysophosphatidylcholine (LPC), phosphatidylinositol (Pl) and SM (sphingomyelin) species were not
308  significantly heritable, with median heritability for non-significant lipids at h?=0.23, and near zero
309 heritability for LPC species. Heritability estimates obtained for summed lipid groups (Table S2) were

310  mostly similar to that of the individual lipids, though there were some differences. For example, the
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311 sum of monounsaturated SM species was heritable whereas no individual SM was significantly

312  heritable. A complete heritability table for all lipids is presented in Data S1.

313  Genetic, Environmental and Phenotypic Correlations

314 Genetic and environmental correlations were estimated for significantly heritable lipid species
315 and lipid classes. Median genetic correlations between Cer species were high (rg=0.94), as were TG
316  (rg=0.81) and DG (rg=0.73) species. DG and TG were also highly genetically correlated with each other
317  (rg=0.70), as were Cer species with monounsaturated SM (rs=0.83). Median phenotypic correlations
318  between Cer species, between TG species and between DG species were r,=0.85, 0.61, and 0.53
319  respectively, and r,=0.51 between TG and DG species, and r,=0.83 between Cer and monounsaturated
320 SM. Median unique environmental correlations were moderately lower than corresponding genetic
321  correlations (r.=0.75, 0.56 and 0.53 for Cer, TG and DG respectively, and re=0.45 between TG and DG,
322  and r.=0.72 between Cer and monounsaturated SM). Further, traditional lipids (LDL-C, HDL-C, total
323  cholesterol and TG) had poor genetic and phenotypic correlations with individual lipid species, apart
324  from traditional triglyceride measures, which was highly correlated with individual TG and DG species.

325 A genetic correlation matrix heatmap is shown in Figure S1.
326

327  Association with Gene Expression

328 The association of lipids (n=209) with probe level gene expression (n=35,971) was analysed
329  using linear mixed models via the R package nlme . We found significant gene expression probe
330  associations (n=3568) with 47 individual lipids (7 DG, 2 PC, 1 PE, 37 TG; see Data S2 and Data S6).
331  Of these associations, 15 were linked to significantly heritable lipids (12 TG, 3 DG, n= 380 unique
332 probes). In fact, we found that all significantly heritable TG and DG species were also significantly
333  associated with gene expression of particular transcripts. An additional 32 individual lipids (25 TGs, 4
334 DGs, 2 PCs and 1 PE, n= 276 unique probes) without significant heritability were significantly
335  associated with gene expression. In regards to traditional and grouped classes of lipids, there were also

336  significant gene expression associations with HDL-C, total TG, and grouped TGs regardless of total
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337  carbon number or number of double bonds. No significant gene expression associations were identified
338  for LDL-C. There was a modest but non-significant positive correlation between variance explained
339 by gene expression of probes and heritability (p>0.05, Figure 2 and Data S2). This implies that gene

340  expression accounts for some but not all the variance in heritable lipid levels.

341  Since the bulk of significant gene expression associations were with TG, we examined the

342  relationship of gene expression associations for TG species by degree of saturation, classifying each
343 TG species as being saturated (no fatty acyl double bonds), monounsaturated (possessing one double
344  bond), or polyunsaturated (possessing two or more double bonds). We then investigated how many
345  transcripts were associated with a low, medium and high number of lipids, by counting the number of
346  gene transcripts significantly associated with either 1-2 lipids, 3-8 lipids, and over 8 lipids in that class
347  (inthe case of polyunsaturated TG). Generally, only a few gene transcripts were associated with many
348  lipids, regardless of saturation level. There were 282 gene transcripts associated with 1-2 TGs in the

349  saturated TG class, but only 6 were associated with at least three different TGs in that class.

350  Table 2 summarises the number of significantly associated gene transcripts among each TG saturation
351 class, while Figure 3 is a Venn diagram identifying gene transcripts that are unigque or shared across
352  saturation classes for significantly heritable TG lipids (Figure 3A) and non-heritable TGs only (Figure
353  3B). The total list of gene transcripts associated with lipids can be found in Data S3 and S4, while Data
354 S5 and Data S6 show gene transcripts ordered by TG degree of saturation and total number of carbons.
355  For example, ribosomal protein L4 pseudogene 2 (RPL4P2), A disintegrin and metalloproteinase
356  domain-containing protein 8 (ADAMS8) and Adipocyte Plasma Membrane Associated Protein (APMAP)

357  were uniquely associated with saturated TG when considering heritable TG lipids.

358

359

360  Table 2. Gene expression associations among TG lipids.

TG Class Number of  Number of
Associated  Transcript
Lipids Associations
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Saturated TG 1-2 282
3-8 6
Monounsaturated 1-2 59
TG 3-8 7
Polyunsaturated 1-2 243
TG 3-8 119
>8 9
361  Note. Table 2 lists number of gene expression associations common to a maximum of 1-2, 3-8 and >8
362  lipids in each TG saturation class (saturated, monounsaturated, and polyunsaturated TG).
363

364  Interestingly, there were a number of transcripts associated with a maximum of 1-2 TG lipids (e.g. 1-2
365  saturated lipids had 282 hits). In a majority of cases, these associations were driven by a specific TG
366  lipid (among saturated TGs, this was TG(16_0/16_0/24_0), among monounsaturated TGs, this was
367 TG(16_0/14 0/18_1) and for polyunsaturated TGs, these were TG(19_1/18 1/18 2),
368 TG(16_0/18 1/23 1), TG(16_0/22 6/22 _6) and TG(25_0/18 1/18 1)). These lipids tended to have a
369  medium to high total carbon count (i.e. >55 carbons). By contrast, our analysis also found gene
370  expression of histidine decarboxylase (HDC) and carboxypeptidase A3 (CPA3) to be significantly
371  associated with all TGs irrespective of the number of total carbons and number of double bonds. In fact,
372  HDC and CPA3 were also significantly associated with other lipids including DG and HDL-C (Data
373  S6). Notably, there were some differences between the gene transcript association profiles of
374  significantly heritable vs non-heritable lipids; many more gene transcript associations were unique to
375  heritable as opposed to non-heritable TGs (Figure 3A-D, Table S3). For example, pseudogenes
376  appearing in the heritable lipid list do not appear in the non-heritable list. Comparing transcribed genes
377  associated with TG lipids by total number of carbons (<49 carbons “low”, 49-55 carbons “medium”

378  and 56+ carbons “high”) also yielded a similar outcome (Figure 3D).

379  Furthermore, the majority of transcriptome associations with non-heritable lipids were inverse
380  associations, whereas the lipid-transcriptome associations for heritable lipids were a mix of positive and
381  inverse associations, suggesting a diverse impact of these lipids on cellular function. It is also interesting
382  that the majority of inverse lipid-transcriptome associations encode protein coding transcripts (15/17

383  total), and only 2/17 were non-protein coding RNAs/pseudogenes. By contrast, the majority of positive
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lipid-transcriptome associations were for non-protein coding pseudogenes (9/11) and only 2/11 were

protein coding.

Functional pathways of associated gene transcripts

The majority of the protein coding transcriptome which associates with our lipidomic data has some
association with inflammatory and vascular pathways (Table 3), with possible roles in the central
nervous system (CNS). The STRING and BioGRID databases °% % were used to provide functional
information on genes identified in the lipid-transcriptome analysis. Some other notable pathways

include vasoactive peptides, vesicular transport and pseudogenes/non-protein coding genes.
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392

393

Table 3. Functions of genes with significant lipid-gene transcriptome associations.

Biological Pathways

Gene Transcripts*

Relevance to the CNS

Inflammation

Innate immunity

\LILRB3, [MGAM

Adaptive immune response

|\LILRA6

Host Defense

\FPR1, | TRIM51

FPR1 found in neural glial cells, astrocytes and neuroblastoma *°.

Allergic Response

|ADAMS, |HDC, |CPA3

ADAMS8 may regulate cell adhesion during neurodegeneration 6.
HDC as a histidine decarboxylase, produces histamine, which in the
CNS is a neurotransmitter °’.

Class | MHC antigen binding

\LILRA6, |LILRB3

B-Cell response/receptor signalling

1GAB2, |LILRB3, |PRKCD

GAB2 is associated with Alzheimer's disease. By activating PI3K,
increases amyloid production and microglia-mediated inflammation.
Several GAB2 SNPs are associated with late-onset Alzheimer’s
disease %8

Mast Cell Degranulation

LCPA3, |HDC,

Vasoactive Actions

Regulation of vasoactive peptides
(e.g., endothelin, angiotensin 1,
shake toxins, etc)

LGATA2, |CPA3,

Epithelial Cell Integrity

|KRT23, |PRKCD

Cell Adhesion

|APMAP

APMAP supresses brain AB production %°.

DNA Regulation

1 RPSA, 1 SNORA62, 1 SNHGT

Vesicle/Endosome
Regulation/Transport

1 VAMPS, |REPS2, |SLC45A3

SLC45A3 regulates oligodendrocyte differentiation .

Pseudogenes/non-protein coding

1S100A11P1, |RPSAP15,
1 RP11-179G5.1,

1 RP11-350G8.3,

1 RPL35P5, 1 RPL4P2,

1 RPS10P14, 1 RPSAP15,
1 RPSAP58, 1 SNHG1,

1 SNORA62

Regulatory roles. Gene silencing, affects mRNA stability.
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394  Directions of arrows indicate either positive (upwards facing) or inverse (downwards facing) lipid-gene
395 transcriptome associations. Even though our transcriptomic data was for the blood transcriptome, some
396  of these genes also have functions in the CNS or associations with neurodegenerative diseases (far right

397  column).

398  Association of DNA methylation levels at specific CpG sites with lipid and gene

399  expression

400 To gain insight into the relationships between lipid levels and DNA methylation of CpGs at specific
401  genes, we selected gene transcripts significantly associated with lipids and identified associations
402  between DNA methylation at CpG sites within close proximity to these gene transcripts, and lipid
403  expression (Data S7). We found significant associations of DNA methylation (p<0.05) with four
404  lipids: PE(16:0_20:4), TG(25:0_16:0 18:1), TG(18:0_17:0_18:0) and TG(18:1_18:2_18:2). Of these,
405  two were heritable - TG(25:0_16:0_18:1) and TG(18:0_17:0_18:0).

406

407  We also examined the relationship between gene expression and DNA methylation at specific CpG
408  sites of genes whose transcripts were associated with significant heritability (Data S8). We found 19
409  significant CpG site-gene expression associations related to four unique lipids (TG(19:1_18:1 18:2),
410 TG(15:0_16:0_18:1), PC(20:2_18:2), TG(16:0_18:1 23:1), but these associations were a very minor
411  subset of all CpG site-gene expression associations. Therefore, we did not find sufficient evidence to
412  suggest that DNA methylation at specific CpG sites drives changes in gene expression, though we

413  acknowledge this analysis lacks sufficient power to be conclusive.
414

415  Association of lipids with genome wide average DNA methylation (GWAM)

416 We then explored associations of genome wide average methylation with lipid levels and found
417  significant associations of all five LPCs (and the total LPC sum) with GWAM (range beta = -0.22 to -
418  0.27, see Table 4). Notably, four TGs were also significantly inversely associated with GWAM (beta =

419  -0.18 to -0.23). Further, only two other lipids were positively associated with GWAM, namely one CE
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and one PC (beta = 0.21, and 0.18 respectively, Table 3). None of these lipids was significantly
heritable, with maximum heritability of 0.39, though one TG (TG18:1 17:1 22:6) was borderline
significant (p=0.05 for h?), with a maximum of two significant gene expression associations (for

TG18:1 17:1 22:6 and TG18:1 20:4 22:6).

Table 4. Regression of lipid residuals significantly associated with genome wide average DNA

methylation levels

Lipid Beta SE t p-value h? p-value for h?
CE(20:3) 021 0.09 234 23102 031 0.30
LPC(15:0) -0.22 0.09 -254 139g-02 651E-16 1
LPC(16:0) -0.27 0.09 -3.12 290E-03 382E-14 1
LPC(17:0) -0.21 0.09 -2.34 230E-02 282E-14 1
LPC(18:1e) -0.21 0.09 -244 181E-02 352E-17 1
LPC(26:0) -0.27 0.09 -3.10 3.07E-03 0.056 0.87
PC(39:3) 0.18 0.09 212 38402 0.39 0.14
TG(18:1_17:1_22:6) -0.18 0.09 -2.05 451E-02 0.31 0.05
TG(18:1_18:1_22:5) -0.23 0.09 -2.69 958E-03 3.42E-15 1
TG(18:1 20:4 22:6) -0.21 0.09 -241 1096E-02 298E-15 1
TG(19:0_18:1_18:1) -0.18 0.09 -2.14 373e-02 0.312 0.29
GroupLPC -0.24 0.09 -274 g32E-03 188E-15 1

Notes. Associations of GWAM with lipid residuals (adjusted for age, sex, education, BMI, lipid

lowering medication, smoking status, experimental batch and APOE &4 carrier status).

Discussion

Heritability Estimates

In this study, we evaluated the relative contributions of genetic versus environmental factors to
the plasma lipidome among older Australian adults aged 69-93 years. As hypothesised, both genetic
and environmental factors contribute to shaping the plasma lipidome, though in our sample of older
individuals, environmental factors were predominant, with only 13.3% of individual lipids analysed
being significantly heritable. The median heritability of heritable lipids was h? = 0.433, indicating a
moderate level of heritability which compares well with an estimate of 36.2% provided for metabolites
from a genome-wide genotyping study in subjects aged 60 years and over L. The effect of common
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439  environment (C) was minimal for all lipid measures, except for a low to moderate finding for HDL-C
440  (0.27), which is consistent with previous studies 2 %2, indicating that the shared environment early in

441  life is an important contributor to HDL-C variance later in life.

442  Traditional lipid measures of LDL-C, HDL-C, total cholesterol and TG were significantly heritable,
443  consistent with previous studies 123, though our estimates for these traits (range 0.40-0.47) were lower
444  than estimates from other studies, where heritabilities have been reported to exceed 0.60 % 3,
445  Interestingly, one of these studies compared heritability using data from three cohorts around the world,
446  and found heritability estimates of these traits among Australian twins to be lower than the same
447  estimates in Dutch and Swedish twin pairs %. It is likely that heritability differences between different
448  studies are a product of differences in ethnicity, cohort and age, leading to substantial variance in

449  reported heritabilities from study to study.

450  Our analyses also indicated that there is differential heritability depending on the lipid class examined.
451  While no individual class had over 50% of its lipids significantly heritable, the largest proportion of
452  heritable lipids was found for TG, followed by Cer and DG. By contrast, only three phospholipids were
453  significantly heritable, two of these being PCs (out of a total of 58 PCs assessed), and one PE. None of
454 the remaining classes examined (SM, CE, LPC and PI) yielded significantly heritable lipids, with LPCs
455  having virtually no heritability in this study. Further, it is important to note that the pattern of heritability
456  across summed lipid traits often did not match the heritability of individual lipids in a given lipid class
457  orsubclass, likely owing to the broad range of heritability estimates obtained, which was also reported
458 in a previous study 3. Thus, for heritability analyses, it appears important to analyse heritability

459  estimates for individual species as opposed to summed lipid classes.

460  The high heritability of Cer in this study supports data from family-based GWAS which found 36
461  ceramides to be significantly heritable, with heritability estimates as high as 0.63 . One recently
462  published German twin study using data from NutriGenomic Analysis in Twins (NUGAT), examined
463  the extent to which lipidomic changes in response to a high fat diet intervention are heritable and yielded
464  asimilar range of heritabilities for individual lipid species, with estimates ranging from 0-62% 3. This
465  study identified 19 of 150 plasma lipid species to be highly heritable (h?>0.40), which is not dissimilar
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466  to the number of significantly heritable individual lipid species identified in the present study (27 of
467  207). However, the heritability of various classes often did not corroborate our findings. For example,
468  inthe NUGAT study, LPC and PE were reported to be moderately heritable (0.25<h?<0.35), while SMs
469  had high heritability, as opposed to ceramides which were reported to be lowly heritable. By contrast,
470  our study found high heritability of ceramides with no significantly heritable SMs and virtually zero
471  heritability of LPCs. One possible explanation for these differences is that heritabilities may change
472  across the lifespan . Age-dependent heritability has been reported for LDL-C and HDL-C 3, and also
473  in BMI, where heritability estimates are lower in older adults compared to young adults %. The age
474  range of NUGAT participants was 18 to 70 years, with a median of 25 years, whereas the OATS cohort
475  consisted of much older individuals ranging from 69 to 93 years. This could be especially important
476  considering the potential impact of pre- and post-menopausal status on lipid profiles % 8 among
477  women, who comprise a majority of participants in both OATS (n=179, 68.8%) and the NUGAT study
478  (n=58, 63%). Additionally, the NUGAT study features a substantially smaller sample size of 46 twin
479  pairs (34 MZ and 12 DZ twin pairs, vs. 75 MZ and 55 DZ twin pairs in the present study) and NUGAT
480 heritabilities were based on linear mixed models with an additional unknown effects variance added.
481  Thus it may be more difficult to ascertain the C component of the NUGAT study, which we found to
482  be negligible for all lipids except for HDL. A more recent publication of a Finnish population based
483  study (FINRISK) reported SNP-based heritability of lipid species to be in the range 0.10-0.54 %, and
484  found Cer to be the most heritable species, corroborating findings from the present study, though
485 heritability of some other lipid classes, such as LPC was markedly higher than reported in the present
486  study. As with the NUGAT study, some differences could be attributable to the younger age range of
487  participants (25 — 74 years) in FINRISK relative to OATS, and potentially the low sample size for SNP-

488  based heritability calculations.

489  Genetic correlations

490 High within-class genetic correlations between individual Cer, TG, and DG species (all r>0.70)
491  suggest similar genetic influences between lipids of the same class. Further, Cer species and

492  monounsaturated SM also exhibited high genetic correlations, as did TG and DG. Metabolically, Cer
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493 and SM belong to the sphingolipid class where SM can be converted to Cer via sphingomyelin
494  phosphodiesterase %, while TG and DG are interconvertible, where TG can be metabolised to DG by
495  adipose triglyceride lipase (ATGL), or DG to TG through the addition of acyl CoA via DG
496  acyltransferase (DGAT) . Further, genetic correlations were all higher than the corresponding
497  environmental correlations, indicating heritable lipids of similar class have a strong shared genetic basis
498  relative to the unique environment. Our results suggest that the heritable lipidome is regulated by
499  overlapping genes which are associated with multiple lipids, especially lipids that belong to the same
500 class, or are related by a connected metabolic pathway. Nevertheless, environmental correlations were
501  still high for these lipids suggesting the importance of environmental factors on lipid levels. Traditional
502 lipids (total triglyceride, LDL-C, HDL-C and total cholesterol) had low genetic and phenotypic
503 correlations with individual lipid species, except for triglyceride measures, which were highly
504  correlated with TG and DG species. This finding confirms previous results ® and suggests some
505  differences between variance in traditional lipid measures and variance in the lipidome at the individual

506 lipid species level.

507 Lipid-Transcriptome Associations

508 Transcriptome associations of both heritable and non-heritable triglycerides, which represented
509 the largest component of our lipidomics dataset, were assessed. We anticipated that both heritable and
510 non-heritable lipids would have gene transcript probe associations, since endogenous triglycerides are
511  derived from essential dietary fatty acids, such as linoleic acid, or other fatty acids substantially derived
512  from dietary sources (such as linolenic acid and docosahexaenoic acid). Gut microbiota (microbiome)
513 can also have an effect on the dietary lipidome, prior to absorption, representing another
514  “environmental” contributor, to lipid abundance and structure . Once absorbed, the environmentally
515  sourced lipid milieu becomes available for genetically regulated structural change by a diversity of lipid
516  modifying machinery. This includes families of elongase and desaturase enzymes responsible for
517  modifying fatty acid chain length and saturation level "2, as well as a plethora of synthetases which
518  assemble complex lipids such as the triglycerides and phospholipids ™. Interestingly, in our gene/lipid

519 transcriptomic association list (Tables 3 and 4/Figure 3 and Figure 4), such structure regulating genes
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520 do not appear. Instead, the transcripts reveal genes which regulate other physiological and cellular
521  functions, particularly those involved with immune and vascular functions (Table 4). We also found an

522  upregulation of pseudogenes, which could play important regulatory roles, such as in gene silencing 7.

523 From this, we infer that the genes which are thought to account for the substantially heritable
524  phenotype of our triglyceride group (i.e. via lipid metabolic processes) are not necessarily the same as
525  those reflected in the lipid-transcriptome associations. This might be the case if the heritable aspect of
526  ourlipid list is driven by lipid modifying genes (such as desaturases, elongases, fatty acid synthases and
527  synthetases), while the blood transcriptome is associated with the endogenous lipidome, which is a
528  product of both environment and genetics (a feedback loop of sorts). We model this hypothesis in Figure
529 4. This also complements our finding that variance in lipid levels due to heritability is only partially

530 accounted for by gene expression of associated transcripts.

531

532  Biological effects of the lipid associated blood transcriptome

533 Our lipid-transcriptome analysis revealed strong associations of lipids with gene transcripts
534  involved in modulating immune and vascular function. Interestingly, a previous twin study found a
535 minor subset of the immune system is modulated by genetic influences, such as the homeostatic
536  cytokine response ", and many of the associated gene transcripts in the current study including Solute
537  carrier family 45 member 3 (SLC45A3), CPA3 and HDC were previously reported in a study of lipid
538 and immune response “®. Thus, some of the transcriptome associations uncovered could reflect lipid-
539  modulated innate immune responses. Since this protein coding transcriptome has largely negative
540  associations with lipid levels, we infer that it is moderating/suppressing inflammation or adverse
541  vascular events. On the other hand, high fat diet in mouse models leads to elevated gene transcription
542  related to white adipose tissue and liver metabolism, and after a prolonged high fat dietary regimen,
543  activation of inflammatory pathways 7. We postulate that lipid levels are normally linked to the
544  suppression of inflammatory responses to maintain homeostasis, but become associated with activation
545  of inflammatory responses following metabolic overload, such as in diabetes mellitus or obesity 8 7,

546  Indeed, the authors of this study only noted significant upregulation of genes associated with
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547  inflammatory pathways after six weeks of high fat diet consumption, in contrast to genes associated

548  with lipid metabolism, which were upregulated directly following a high fat diet.

549  We found most of the associated lipid-protein coding transcriptome to be membrane proteins, which
550  suggests a possible interaction between lipids and protein function at the cellular surface. This would
551  also explain transcripts being associated with proteins involved in phosphorylation and other signalling
552  pathways. Vesicle associated membrane protein 8 (VAMPS) is involved in cellular fusion and
553  autophagy. A couple of transcripts are associated with endothelial function. CPAS3 is involved in anti-
554  proteotoxic effects by proteolytically cleaving peptides with potentially harmful physiological effects
555  such as vasoconstriction peptides (endothelin and angiotensin 1) and snake venom peptides. Other
556 identified transcripts are involved with production of vasoactive peptides. GATA2 regulates endothelin-
557 1 gene expression in endothelial cells, and PRKCD phosphorylates ELAV Like RNA Binding Protein

558 1 (ELAVLLY) in response to angiotensin-2 treatment .

559  Lipid associations with DNA Methylation

560 To assess possible mechanisms contributing to variance of non-heritable lipids, we compared
561  average DNA methylation levels over 450,000 different DNA methylation sites among MZ twins. DNA
562  methylation is a well characterised epigenetic mechanism by which a gene expression profile can be
563  regulated and inherited independent of the genetic sequence 8, and involves the addition of a methyl
564  group (-CHs) to the base cytosine of 5’-cytosine-phosphate-guanine-3’ (CpG) dinucleotides 8 83,
565  Methylation of CpG clusters around promoter regions of genes typically leads to suppression of gene
566 transcription. DNA methylation analysis revealed a suggestive level of significance for the association
567 of GWAM with 4 TGs, 1 PC, and all 5 LPCs. None of these lipid species was significantly heritable,
568  with the exception of TG(18:1 _17:1 22:6), which was borderline heritable (p=0.05). In particular, all
569 five LPCs and their summed total, which were extremely non-heritable (near zero), were also
570  significantly associated with GWAM. Although only a small subset of lipids showed significant
571  associations with GWAM (just 8 individual lipids of 180 non-heritable lipids), these findings do suggest

572  that epigenetic factors such as DNA methylation could explain some of the variation associated with
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573  non-heritable lipids, especially very lowly heritable phospholipids and LPC, the least heritable lipid

574  class in our data-set.

575  In previously published work, DNA methylation has been associated with environmental changes in
576 lipid levels. Maternal lipids, passing from mother to child in utero at 26 weeks of gestation, lead to
577  DNA methylation changes in the newborn 84, The lipids associated with DNA methylation changes
578 included phosphatidylcholine and lysolipids — phospholipid degradation products. The authors
579  hypothesised that the choline source from these lipid products could be important precursors for DNA
580  methylation. Further, the direction of change was largely negative, with higher lipid metabolites
581  associated with lower methylation levels of genes involved in prenatal development. While the
582  association of LPCs with DNA methylation has not previously been identified, it is worth noting that
583  LPCs are a major source of polyunsaturated fatty acid (PUFA) for the brain % and regulate gene
584 transcription through sterol regulatory-element binding protein (SREBP) pathways %. Thus, LPC is an

585 important lipid to convey dietary sources of PUFAs into the brain and regulate gene transcription.

586  These findings add to studies conducted in animal models which also show that nutrients taken by the
587  mother are passed on to offspring during pregnancy, and may have a lasting impact on gene expression
588  through DNA methylation 8. Dietary restriction has also been shown to attenuate age-related
589  hypomethylation of DNA in the liver, resulting in the downregulation of genes involved in lipogenesis
590 and elongation of fatty acid chains in TGs, leading to a shift in the TG pool from long chain to medium
591 and shorter chain TGs 8. In summary, there is evidence to suggest that lipids can influence DNA
592  methylation levels, while genes related to lipid metabolism can also be regulated in response to DNA

593  methylation.

594  Interestingly, when we attempted to focus on DNA methylation at specific CpG sites within close
595  proximity to genes whose transcripts were significantly associated with lipids, we found a few
596  associations with lipids and with gene expression, but little overall evidence to indicate that DNA
597  methylation drives gene expression of these transcripts. More work needs to be done to clarify these

598 relationships using a larger sample size.
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599 Limitations and future perspectives

600 There are some important limitations to this work. Firstly, this study covers a fairly wide age
601 range in older aged adults (69-93 years). Very few heritability studies have focused on the lipidome in
602 thisage bracket. It is thereby important to stress the findings of this study may not necessarily generalise
603  to the whole population and could be unique to the elderly, specifically those aged over 70 years. We
604  suspect that in this cohort, environmental factors would dominate given the time in which these
605  exposures are allowed to accumulate and shape the lipidome. Some of the heritabilities reported may
606 vary longitudinally, owing to the dynamic contribution of genetic and environmental factors, and their
607 interaction, across the lifespan [81]. In particular, heritability estimates may decrease where unique
608  environmental exposures accumulate with time and become a dominant force in lipid modulation. By
609  contrast, heritabilities may also increase where certain genes become more active in older age to shape
610 a given phenotype. Given the age range of the cohort used, the results from the present study likely
611 reflect a combination of both genetic and environmental influences on variation in the lipidome relevant
612  to older age, and may provide important clues as to lipids and genes important in longevity. Some of
613  these influences may underlie metabolic and lipidomic signatures previously described in very old
614  individuals 1% 4% 8% % 1t js also important to emphasise that heritability estimates only represent the
615 relative contribution of genetic and environmental influences. A “low heritability” score does not
616  necessarily imply that there are no additive genetic effects, but rather that variation in the lipid profile
617  among twins is largely mediated by the shared or unique environment. Further, we acknowledge that
618  though we have included as many participants as possible from this study, there may be insufficient
619  power to make substantive conclusions. Nevertheless, we believe our findings to be a good starting

620  point for further investigation.

621  Transcriptomics data obtained through the Illumina microarray provides a broad overview of many
622  potential gene transcript associations with measured lipids from the same individuals. However, these
623  data were obtained using RNA from blood cells, which presents potential biases in the types of
624  associations uncovered and could account for some of the immune regulatory genes uncovered.

625  Nevertheless, given the strict cutoff p-value employed in the analyses, it is likely these associations
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626  reflect true roles of these lipids in immune function, and the genes we uncovered have previously been
627  identified in other lipid-transcriptomic studies . We must emphasise that the transcriptome is
628 influenced by many independent factors up- and downstream. The relationship between genetic
629  variance (heritability) and the transcriptome is not clearcut. Nevertheless, we find some evidence that
630 the transcriptome is linked to heritable plasma lipids and may explain a small proportion of their
631 heritability. Additionally, while ceramides were the most heritable lipids, there were no significant gene
632  expression associations with these lipids. This could be due to very low endogenous expression of
633  ceramide synthases in leukocytes °!, though this pattern may be different in tissues where the most

634  abundant CerS, CerS2, is highly expressed %, such as in the kidney or liver

635  Another major limitation is the fact that only average levels of DNA methylation (i.e. GWAM) were
636  considered when associating with lipids, rather than DNA methylation at specific sites. This approach
637  was necessary in order to avoid multiple testing correction for over 450,000 CpG methylation sites. The
638  result is that the associated lipids showed at best suggestive significant associations with DNA
639  methylation. The associations that we did find were for non-heritable lipids only, especially the least
640  heritable LPCs, and were largely inverse. It is likely that based on previous studies, more significant
641  associations with DNA methylation sites could be determined using greater selectivity of methylation
642  sites at certain genomic regions. Further, as our analysis only showed that a small subset of non-
643  heritable lipids were associated with GWAM, there is a still a lot variation in the lipidome not accounted
644  for. CpG site specific analysis for particular genes did not find a relationship between DNA methylation
645 and gene expression of these transcripts, though this analysis may lack power to detect these
646  relationships. Other epigenetic mechanisms such as histone modification and chromatin structural
647  changes could be implicated in regulating lipid metabolism, but are beyond the scope of this study. In
648  spite of these limitations, this study provides a strong first step towards understanding some of the
649  complex contributions of genes and the environment to shaping the human plasma lipidome at a lipid

650  species level, especially among older individuals.

651

652 Conclusion
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653  In our study of older Australian twins combining lipidomics, transcriptomics and DNA methylation
654  data, a small subset of plasma lipids was heritable and included largely Cer, TG and DG species. Most
655  phospholipids, especially LPCs, were not significantly heritable. Significantly heritable lipids exhibited
656  high genetic correlations between individual Cer, TG and DG species, as well as between Cer and SM,
657 and between DG and TG, indicating shared genetic influences between lipids of the same class or
658  metabolic pathways. Heritable lipids, especially TGs and DGs, were associated with a greater degree
659  of gene transcript probe associations relative to the non-heritable lipids, and these transcripts were
660 related to immune function and cell signalling rather than lipid metabolism directly. Thus, genes not
661 related to lipid metabolism may still be associated with plasma lipid levels. Finally, associations of
662  genome-wide average DNA methylation with highly non-heritable lipids, especially LPCs, suggest a
663  potential mechanism by which environmental influences on lipids are conveyed. Overall, this study
664  shows that a vast majority of plasma lipids are controlled by the environment, and hence modifiable,
665  with genetic control still a major contributor to Cer, DG and TG lipid levels. Further, our study suggests

666  acomplex interaction between lipids, environment, DNA methylation and gene transcription.

667
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679 Web Resources

680  The STRING v11.0 database and Biological General Repository for Interaction Datasets (BioGRID)
681  were used to identify known and potential functional connections between gene-coded proteins that are

682  associated with heritable lipids. STRING (https://string-db.org/) and BioGRID (https://thebiogrid.org)

683  are free open-access resources available online.
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686 Figure Legends

687  Figure 1. Heritability of lipids. (A) Percentage distribution of heritable lipids. The central wheel represents
688  significantly heritable lipids and their percentage distribution by lipid class. Smaller wheels emanating from
689  each sector represent proportions of these heritable lipids compared to total measured lipids of that class,
690  such that the sum of these smaller wheels equals the total pool of 207 individual lipids measured. For
691  example, 45% of significantly heritable lipids belonged to the TG lipid class, and these heritable lipids
692  represented 17% of total measured plasma TG. (B) The distribution of heritability (h?), estimated from the
693  ACE model, for each individual lipid species grouped according to class. A, C and E represent standardised
694  variance components due to additive genetic (A=heritability), common/shared environment (C) and unique
695  environment (E). Boxplots show median with interquartile range for each class. Dark circles represent
696  heritable lipids, as opposed to grey circles, which represent lipids that were not significantly heritable.

697  Minimum heritability is h?>0.287.

698  Figure 2. Heritability estimate (h%) vs total variance explained (Nagelkerke r?) by gene expression

699  probe transcripts for heritable lipids.

700  Figure 3. Venn diagrams showing distribution of gene transcripts associated with a majority of
701 TG lipids. These were subdivided into those associated with saturated vs monounsaturated vs

702  polyunsaturated lipids for (A) significantly heritable TGs and (B) non-heritable TGs. Also shown are
703  heritable vs non-heritable set of significant gene expression associations of TG lipids for (C) double

704  bond group/saturation (Data S5) and (D) total number of carbons (<49 carbons, 49-55 carbons and
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705 56+ carbons, Data S6). Gene transcripts included in these Venn diagrams were those significantly
706  associated with the highest and second highest number of lipids of a particular saturation class (A and
707  B), or among heritable and non-heritable lipids (C and D). Upwards and downwards arrows indicate

708  positive and inverse gene expression associations with lipid levels respectively.

709  Figure 4. Schematic of the combined genetic and environmental influences on the blood

710 lipidome, and the association of this lipidome with the blood transcriptome. Under this model,
711  non-heritable lipids could affect gene transcription, while heritable lipids could also affect gene

712 transcription (collectively “blood lipid associated transcriptome”), but are possibly modified upstream
713 by genetic machinery such as elongases, desaturases, synthetases, receptors and binding proteins.

714  Gene transcripts encoding these enzymes and proteins may be independent of the “blood lipid

715  associated transcriptome” noted in this study.

716
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