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Abstract  35 

The critical role of blood lipids in a broad range of health and disease states is well recognised, 36 

while an understanding of the complex genetic regulation of lipid homeostasis is emerging.  Traditional 37 

blood lipids (LDL-C, HDL-C and triglycerides) are known to be substantially regulated by genetic 38 

variation. Less well explored is the interplay of genetics and environment within the broader blood 39 

lipidome. Here we use the twin model to examine heritability of the plasma lipidome among healthy 40 

older aged twins and explore gene expression and epigenetic (DNA methylation) associations of these 41 

lipids. Heritability of 209 plasma lipids quantified by liquid chromatography coupled mass 42 

spectrometry (LC-MS) was assessed in 75 monozygotic and 55 dizygotic twin pairs enrolled in the 43 

Older Australian Twins Study (OATS), aged 69-93 years. Only 27/209 lipids (13.3%) were significantly 44 

heritable under the classical ACE twin model (h2 = 0.28-0.59). Ceramides (Cer) and triglycerides (TG) 45 

were most heritable, while sphingomyelins (SM) and most phospholipids, especially lysophospholipids, 46 

were not significantly heritable. Lipid levels correlated with 3731 transcripts. Relative to non-47 

significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts, 48 

which were not directly associated with lipid metabolism, but with immune function, signalling and 49 

transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for a 50 

proportion of variability in some non-heritable lipids, especially lysophosphatidylcholine (LPC). We 51 

found a complex interplay of genetic and environmental influences on the ageing plasma lipidome, with 52 

most of the variation controlled by unique environmental influences.  53 

 54 

 55 

 56 
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 59 
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Introduction 61 

As the field of lipidomics has grown, hundreds to thousands of complex lipids have been 62 

characterised 1; 2, with many linked to health and disease states, such as metabolic syndrome 3, 63 

cardiovascular disease 4; 5, obesity 6; 7, and dementia 8-11. Both genetic and environmental factors 64 

influence these biological phenotypes. Identifying the contributions of these factors can help elucidate 65 

the importance of genes for a particular trait, as well as providing insight into the environmental 66 

influences. This information might enable the design of personalised medical treatments for lipid-67 

related disease states.  68 

While there are substantial data to suggest that levels of traditional lipids and lipoproteins such as high 69 

density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL), cholesterol and triglyceride 70 

levels are heritable 12; 13, few studies have focused on the genetic and environmental influences on the 71 

plasma levels of individual lipid species and lipid classes beyond these traditional lipid measures. 72 

Additionally, lipids vary within and between individuals 14-16 based on variables such as age 17-19, sex 17; 73 

19, body mass index (BMI) 19; 20, lipid-lowering medication 21 and genetic background 12; 22, 74 

demonstrating a wide degree of complexity involved in the regulation of lipid metabolism. It would 75 

therefore be informative to understand the extent to which variation in specific plasma lipids is 76 

determined by genetic and environmental influences. We hypothesise that as circulating lipids are 77 

produced downstream of genomic, transcriptomic and proteomic regulatory processes, that there will 78 

be strong environmental influences on lipid variance.  79 

Previous genome-wide association study (GWAS) data implicate many genetic loci associated with 80 

traditional lipid levels. For example, the genes encoding lipoprotein lipase, hepatic lipase and 81 

cholesteryl ester transfer protein (LPL, LIPC and CETP respectively) have been associated with HDL, 82 

and genes encoding cadherin EGF LAG seven-pass G-type receptor 2, apolipoprotein B and translocase 83 

of outer mitochondrial membrane 40 (CELSR2, APOB and TOMM40 respectively) have been associated 84 

with LDL 23. Apolipoprotein E (APOE) variants have been established as a strong risk factor for 85 

cardiovascular disease and Alzheimer’s disease 22; 24 and are associated with altered LDL-C levels. One 86 

large exome wide screening study with over 300,000 individuals identified 444 variants at 250 loci to 87 
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be associated with one or more of plasma LDL, HDL, total cholesterol and triglyceride levels 25. 88 

Collectively, data from 70 independent GWAS with sample sizes ranging from ten thousand to several 89 

hundred thousand participants have identified associations of traditional lipid levels with 500 single 90 

nucleotide polymorphism (SNPs) in 167 loci that explain up to 40% of individual variance in these 91 

traditional lipid measures 26. This number suggests that LDL, HDL, total cholesterol and triglyceride 92 

levels undergo a substantial degree of genetic regulation, but also highlights that much of the lipid 93 

variance is still unaccounted for, possibly related to rare variants or environmental factors 26; 27.  94 

One of the most powerful tools for analysis of gene versus environment effects on phenotypic traits is 95 

the classical twin design, which estimates the relative contribution of heritable additive genetic effects 96 

(A) and shared (C) and unique environmental (E) influences on a given trait by comparing correlations 97 

within monozygotic and dizygotic twin pairs 28. One major strength of this design compared to family 98 

studies is that twins are matched by age and common environment, reducing cross-generation 99 

differences. Genetic and environmental variances can be computed with relatively high power using a 100 

modest sample size. It is expected that since monozygotic twins share 100% of segregating genetic 101 

variation, while dizygotic twins share 50%. It is also assumed that twins are raised in the same 102 

environment, thus any additional differences between monozygotic twins would be attributable to 103 

unique environmental (E) effects. Further, any differences in intraclass correlations between 104 

monozygotic and dizygotic twins could be estimated as due to additive polygenic effects (A).  105 

  106 

We applied the classic twin design to estimate heritability using 75 pairs of MZ twins and 55 pairs of 107 

DZ twins from the Older Australian Twin Study (OATS) 29; 30, aged between 69-93 years. Since many 108 

proteins are known to regulate lipid metabolism, it is expected that some lipids may show substantial 109 

heritability, as reported in previous studies 31; 32. Further, we hypothesised that some of the variance in 110 

lipids that do not have significant heritability might be controlled by gene sequence - independent 111 

mechanisms, such as genome-wide average DNA methylation (GWAM) levels. Our study is the first to 112 

examine heritability of the broad plasma lipidome among healthy older – aged twins and explore 113 

putative genetic, transcriptomic and epigenetic associations of these lipids. 114 
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 115 

Materials and Methods 116 

Cohorts  117 

The study sample comprised participants aged between 69-93 years enrolled in the Older Australian 118 

Twin Study (OATS), established in 2007. The study recruited participants from three states in eastern 119 

Australia (QLD, NSW and VIC). The OATS collection included; patient data, including blood 120 

chemistry, MRI, neuropsychiatric assessment/cognitive tests, and medical exams performed over 121 

several visits (waves), each taken at an interval of 16-18 months, with the first visit denoted as “Wave 122 

1”, second visit denoted as “Wave 2” and so on. From OATS, we selected n=330 participants who had 123 

available plasma from Wave 3; plasma from this wave collected within a period of up to 3 years apart. 124 

Of these, 260 participants were eligible for heritability analyses, including 150 monozygotic twins (75 125 

pairs in total; 25 male, 50 female), and 110 dizygotic twins (55 pairs in total; 31 males, and 79 females). 126 

The study protocol for OATS has been previously published 29; 30; 33. Participants who had significant 127 

neuropsychiatric disorders, cancer, or life threatening illness were excluded from this study.  128 

Ethics Approval 129 

OATS was approved by the Ethics Committees of the University of New South Wales and the South 130 

Eastern Sydney Local Health District (ethics approval HC17414). All work involving human 131 

participants was performed in accordance with the principles of the Declaration of Helsinki of the World 132 

Medical Association. Informed consent was obtained from all participants and/or guardians. 133 

Plasma collection, handling and storage 134 

Blood collection, processing and storage were performed under strict conditions to minimize pre-135 

analytical variability 11. Fasting EDTA plasma was separated from whole blood within 2-4 hours of 136 

venepuncture and immediately stored at -80°C prior to bio-banking. Samples then underwent a single 137 

freeze thaw cycle for the purpose of creating aliquots, which minimizes subsequent freeze thaw cycles 138 

for specific experiments. EDTA plasma was chosen as the anticoagulant since it chelates divalent 139 
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metals, thereby protecting plasma constituents from oxidation, which is particularly important for lipids. 140 

Thereafter, lipid extractions were performed within 15 minutes of freeze thawing and extracts stored at 141 

-80°C and analysed within two months of extraction. 142 

Targeted assays of plasma lipids 143 

Plasma total cholesterol, LDL-C, HDL-C and TG were measured by enzymatic assay at SEALS 144 

pathology (Prince of Wales Hospital) as previously described 34, using a Beckman LX20 Analyzer with 145 

a timed-endpoint method (Fullerton, CA). LDL-C was estimated using the Friedewald equation (LDL-146 

C =total cholesterol - HDL-C - triglycerides/2.2).  147 

APOE genotyping 148 

DNA was extracted from samples using established procedures 35. Genotyping of two APOE single 149 

nucleotide polymorphisms (SNPs rs7412, rs429358) was performed using Taqman genotyping assays 150 

(Applied Biosystems Inc., Foster City, CA) to determine the APOE haplotype, which has three alleles 151 

(ε2, ε3, ε4).  152 

Lipid Extraction from plasma: Single phase 1-butanol/methanol  153 

Lipid internal standards (SPLASH® Lipidomix® Mass Spec Standard) were purchased from Avanti 154 

(Alabaster, Alabama, United States) and diluted ten-fold in 1-butanol/methanol (1:1 v/v). Plasma 155 

extraction was performed in accordance with a single phase extraction as previously described 36; 37. 156 

Briefly, we added 10 µL of 1:10 diluted SPLASH internal lipid standards mixture to 10 µL plasma in 157 

Eppendorf 0.5 mL tubes. 100 µL of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium formate 158 

was then added to the sample. Afterwards, samples were vortexed for 10 seconds, then sonicated for 159 

one hour. Tubes were centrifuged at 13,000 g for 10 minutes. The supernatant was then removed via a 160 

200 µl gel-tipped pipette into a fresh Eppendorf tube. A further 100µl of 1-butanol/methanol (1:1 v/v) 161 

was added to the pellet to re- extract any remaining lipids. The combined supernatant was dried by 162 

vacuum centrifugation and resuspended in 100 µl of 1-butanol/methanol (1:1 v/v) containing 5 mM 163 

ammonium formate and transferred into 300 µl Chromacol autosampler vials containing a glass insert. 164 

Samples were stored at -80° C prior to LC-MS analysis. The robustness and reproducibility of this 165 
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extraction method has been previously demonstrated 37 in our laboratory, with variation in human 166 

plasma ranges of measurement between individuals across age, sex 19 and by APOE genotype 38 167 

reported.  168 

Liquid Chromatography/ Mass spectrometry 169 

Lipid analysis was performed by LC ESI-MS/MS using a Thermo QExactive Plus Orbitrap mass 170 

spectrometer (Bremen, Germany) in two experimental batches separated by a month. A Waters 171 

ACQUITY UPLC CSHTM C18 1.7um, 2.1x100mm column was used for liquid chromatography at a 172 

flow rate of 260 µL/min, using the following gradient condition: 32% solvent B to 100% over 25 min, 173 

a return to 32% B and finally 32% B equilibration for 5 min prior to the next injection. Solvents A and 174 

B consisted of acetonitrile:MilliQ water (6:4 v/v) and isopropanol:acetonitrile (9:1 v/v) respectively, 175 

both containing 10 mM ammonium formate and 0.1% formic acid. Product ion scanning was performed 176 

in positive ion mode. Sampling order was randomised prior to analysis.  177 

Alignment and peak detection/analysis 178 

The raw data was aligned, chromatographic peaks selected, specific lipids identified and their peak 179 

areas integrated using Lipidsearch software v4.2.2 (Thermo Fischer Scientific, Waltham MA). Owing 180 

to the large number of RAW files being processed, the alignment step was performed in four separate 181 

batches, with a maximum of 100 samples aligned at any one time, and the data collated and exported to 182 

an Excel spreadsheet for manual processing and statistical analysis. Only lipids that were present in all 183 

four alignment batches were included in our analysis. The raw abundances (peak areas) were normalised 184 

by dividing each peak area by the raw abundance of the corresponding internal standard for that lipid 185 

class e.g. all phosphatidylcholines were normalised using 15:0-18:1(d7) PC. The intra-assay coefficient 186 

of variation (CV) was calculated by dividing the standard deviation of the normalised abundances by 187 

the mean across lipid species. Lipid ion identifications were filtered using the LipidSearch parameters 188 

rej=0 and average peak quality>0.75. Furthermore, identifications with CV<0.4 from repeated 189 

injections of quality control plasma samples were included (see S1 supporting methods). Where 190 

duplicate identifications were found (i.e. lipid IDs with identical m/z and annotations, and similar 191 
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retention times), the lipid ID with the lowest CV%, and highest peak quality score was used. When 192 

necessary, the average m-score (match score, based on number of matches with product ion peaks in 193 

the spectrum [20]) was also used to differentiate closely related lipid species, with the lipid having the 194 

highest m-score selected. All other duplicates were excluded from analysis. Lipid groupsums were 195 

produced by adding lipids within a defined class/subclass together, such as total monounsaturated 196 

triglycerides (TG), total ceramides (Cer) etc. 197 

Microarray Gene Expression 198 

Fasting blood samples for gene expression analyses were collected. The methods for gene expression 199 

data collection analyses have previously been described 39. Briefly, PAXgene Blood RNA System 200 

(PreAnalytiX, QIAGEN) was used to extract total RNA from whole blood collected in PAXgene tubes 201 

following overnight fasting. RNA samples with RNA integrity number (RIN) ≥6 as measured by the 202 

Agilent Technologies 2100 Bioanalyzer were used in subsequent analyses 40. Assays for gene 203 

expression were performed using the Illumina Whole-Genome Gene Expression Direct Hybridization 204 

Assay System HumanHT-12 v4 (Illumina Inc., San Diego, CA, USA) in accordance with standard 205 

manufacturer protocols. Quality control (QC) and pre-processing of raw gene expression intensity 206 

values extracted from GenomeStudio (Illumina) were performed using the R Bioconductor package 207 

limma 41. Background correction and quantile normalisation was done using the neqc function. 208 

Expressed probes with detection p-value <=0.05 were retained for analysis. After pre-processing and 209 

filtering, 308 samples and 36,053 transcripts were available for gene expression analysis. After 210 

overlapping with the lipids data 290 samples were available for lipids – gene expression analysis. Gene 211 

abbreviations used in the text are based on Gene Ontology nomenclature. 212 

DNA Methylation 213 

Genome-wide DNA methylation data for 113 monozygotic twin pairs was generated using an 214 

established genomics provider using peripheral blood DNA collected at baseline 42. Randomisation of 215 

co-twins across the arrays was performed within experiments. DNA methylation status was assessed 216 

using the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA). 217 
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Background correction was applied to raw intensity data and the R minfi package was used to generate 218 

methylation beta values (ranging from 0-1) 43. Quantile normalisation was used. We excluded sex 219 

chromosome probes, probes containing SNPs, cross-reactive probes as well as probes not detected in 220 

all samples from analysis 44. Following these quality control (QC) procedures, 420,982 out of 485,512 221 

probes remained. White blood cell composition was estimated using a previously described method 45, 222 

implemented in minfi. After filtering methylation outliers using the preprocessQantile function of the 223 

minfi package with default parameters, out of the 217 samples with methylation data, 135 overlapped 224 

with lipids data. Genome wide Average Methylation (GWAM) for each sample across all the probe 225 

level beta values were calculated.  226 

Data Analysis 227 

Data Transformations. Since different sets of covariates are used to adjust for the lipid levels, gene 228 

expression and methylation, we have first obtained residuals after adjusting for standard confounders 229 

in order to obtain lipid and gene expression profiles independent of cohort characteristics. Residuals for 230 

lipids were obtained after adjusting for age, sex, education, BMI, lipid lowering medication, smoking 231 

status, experimental batch and APOE ԑ4 carrier status, which were then inverse normal transformed 232 

using the R package RNOmni 46. This transformation eliminated experimental batch separation effects 233 

(Figure S2). Residuals for gene expression were obtained after adjusting for age, sex, experimental 234 

batch, RIN, blood cell counts (eosinophils, lymphocytes, basophils and neutrophils - obtained using 235 

standard laboratory procedures by Prince of Wales SEALS Pathology). Residuals for methylation beta 236 

values were obtained after adjusting for age, sex, BMI and estimated white blood cell counts (CD8T, 237 

CD4T, NK, B-cell, monocytes, and granulocytes). Residuals were used for all the analyses presented 238 

here. 239 

Heritability Estimation. Heritability was estimated using SEM. Under the SEM the phenotypic 240 

covariance between the twin pairs is modelled as a function of additive genetic (A), shared 241 

environmental (C) and unique environmental (E) components.  In the narrow sense heritability is 242 

defined as the ratio of additive genetic variance [Var(A)] to the total phenotypic variance 243 

[Var(A)+Var(C)+Var(E)]. The model containing these three parameters (A, C and E) is known as the 244 
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ACE model. For model parsimony and test concerning the variance parameters, models with only A 245 

and E components, known as AE model, and the models with CE and E components would be fit and 246 

compared with the full ACE model 47.  Genetic and environmental correlations were estimated using 247 

the bivariate Cholesky model. Heritability, genetic correlations and environmental correlations under 248 

the twin SEM were estimated using the R OpenMx (2.12.1.) package 48. 249 

Association Tests. Test of association of lipids with probe level gene expression were performed using 250 

the linear mixed model and the lme function in R package nlme 49. Gene expression and lipid residuals 251 

(adjusted for age, sex, education, BMI, lipid lowering medication, smoking status, experimental batch 252 

and APOE ԑ4 carrier status) were used as independent and dependent variables respectively in these 253 

models. A p-value threshold of 1.39x10-6 (0.05/35971, obtained by Bonferroni conservative correction 254 

for total number of probes) was used to define significant associations of lipids with probe level gene 255 

expression.  256 

Similarly, lipid residuals were used as dependent variable and average methylation value was used as 257 

the independent variable to test the association of lipids with methylation. The proportion of variance 258 

in lipids explained by the gene expression variation and methylation variance were estimated based on 259 

the log-likelihoods as implemented in the R package rcompanion 50. For most of the lipids, multiple 260 

gene expression probes were associated. Hence to avoid overfitting and multi-collinearity, we used 261 

penalized regression methods as implemented in glmnet of the R package caret 51 to reduce the number 262 

of probes in the regression model. The list of probes retained in the glmnet model was used to estimate 263 

the variance contributed by the gene expression. 264 

For analysis of GWAM (Table 4), r2 is McFadden’s pseudo-r2. p-value for h2 is the p-value for test of 265 

significant additive genetic effects (h2=heritability). Thus p-value for h2  < 0.05 indicates significant 266 

heritability. Regression coefficients are based on average methylation at CpG sites excluding any with 267 

known SNPs influencing lipid levels. 268 

Lipid shorthand notation 269 
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Lipids are named according to the LIPID MAPS convention 52. Lipid abbreviations are as follows: 270 

ceramide (Cer), cholesterol ester (CE), diacylglycerol (DG), lysophosphatidylcholine (PC), 271 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin 272 

(SM) and triglyceride (TG). 273 

 274 

Results 275 

Participant characteristics 276 

Plasma lipidomics was performed on n=330 individuals, 260 of these were used for heritability 277 

analyses. Characteristics of the MZ (n=150, 100 females) and DZ (n=110, 79 females) twins with 278 

available plasma for heritability analyses are presented in Table 1. There were no group differences 279 

between MZ and DZ twins on these characteristics except in HDL-C levels, which were higher in MZ 280 

twins relative to DZ twins (p<0.05), but did not remain significant after correcting for multiple 281 

comparisons. 282 

Table 1. Participant characteristics for heritability analyses. 283 

 

MZ (n=150) DZ (n=110) statistic p-value 

Age  75.7 (5.47) 76.07 (5.31) -0.548 0.584 

Females 100 (67%) 79 (72%) 0.785 0.376 

Education (yrs) 10.99 (3.18) 11.2 (3.18) -0.475 0.635 

BMI (kg/m2) 27.934 (4.74) 27.5 (4.92) 0.776 0.438 

WHR 0.89 (0.09) 0.89 (0.08) 0.164 0.87 

MMSE  28.9 (1.37) 28.95 (1.76) -0.062 0.95 

LDL-C (mmol/L) 2.77 (0.97) 2.78 (0.97) -0.078 0.938 

HDL-C (mmol/L) 1.73 (0.46) 1.60 (0.44) 2.341 0.02 

Cholesterol (mmol/L) 5.08 (1.01) 4.98 (1.12) 0.822 0.412 

Triglyceride (mmol/L) 1.30 (0.54) 1.32 (0.56) -0.298 0.766 
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APOE ԑ4 carrier* 35 (26%) 27 (28%) 0.118 0.731 

Means (SD) are presented for continuous variables, while n (%) is presented for categorical 284 

variables. Comparisons of MZ and DZ pairs used t tests for continuous variables and χ2 tests for 285 

categorical variables. 286 

Abbreviations: MZ = monozygotic, DZ = dizygotic. body mass index (BMI), mini-mental state exam 287 

(MMSE), waist-hip ratio (WHR), low density lipoprotein cholesterol (LDL-C), high density 288 

lipoprotein cholesterol (HDL-C).  289 

*excludes participants with missing data (n=231 participants with APOE genotype data) 290 

Heritability 291 

Heritability of lipids was computed using the classical ACE model. Classical lipid measures of 292 

total cholesterol, LDL, HDL and triglycerides were significantly heritable (h2=0.427, 95% C.I. = [0.075, 293 

0.592], 0.404, 95% C.I. = [0.121, 0.573], 0.419, 95% C.I. = [0.027, 0.766], and 0.427, 95% C.I. = 294 

[0.181, 0.623] respectively). HDL had a substantial C component (i.e., common environment; h2
C = 295 

0.27, 95% C.I. = [0.00, 0.48]). For individual lipid species measured, 27 out of 203 (13.3%) were 296 

significantly heritable with a median heritability of h2 = 0.433, ranging from 0.287 for TG 297 

(18:0/17:0/18:0) to a maximum of 0.59 for Cer (d17:1/24:1). 298 

The percentages of heritable lipids from the total pool of identified lipids in each lipid class is 299 

summarised in Figure 1A. Heritability estimates across lipid class and by individual lipid for 300 

significantly heritable lipids are summarised in Figure 1B and Table S1. Ceramides (Cer) had the 301 

highest heritability estimates (range h2=0.433 – 0.59), where 9 out of 20 species were significantly 302 

heritable. For triglycerides (TG), 12 of out 59 species measured were heritable (range h2= 0.287-0.495). 303 

Among diacylglycerols (DG), 3 species out of 10 were heritable (range h2=0.422-0.544). Only 3 304 

phospholipids were heritable, including 2 of 58 phosphatidylcholines (PC) and 1 out of 5 305 

phosphatidylethanolamines (PE), (range h2 = 0.327 – 0.413). Cholesteryl ester (CE), 306 

lysophosphatidylcholine (LPC), phosphatidylinositol (PI) and SM (sphingomyelin) species were not 307 

significantly heritable, with median heritability for non-significant lipids at h2=0.23, and near zero 308 

heritability for LPC species. Heritability estimates obtained for summed lipid groups (Table S2) were 309 

mostly similar to that of the individual lipids, though there were some differences. For example, the 310 
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sum of monounsaturated SM species was heritable whereas no individual SM was significantly 311 

heritable. A complete heritability table for all lipids is presented in Data S1.  312 

Genetic, Environmental and Phenotypic Correlations 313 

Genetic and environmental correlations were estimated for significantly heritable lipid species 314 

and lipid classes. Median genetic correlations between Cer species were high (rg=0.94), as were TG 315 

(rg=0.81) and DG (rg=0.73) species. DG and TG were also highly genetically correlated with each other 316 

(rg=0.70), as were Cer species with monounsaturated SM (rg=0.83). Median phenotypic correlations 317 

between Cer species, between TG species and between DG species were rp=0.85, 0.61, and 0.53 318 

respectively, and rp=0.51 between TG and DG species, and rp=0.83 between Cer and monounsaturated 319 

SM. Median unique environmental correlations were moderately lower than corresponding genetic 320 

correlations (re=0.75, 0.56 and 0.53 for Cer, TG and DG respectively, and re=0.45 between TG and DG, 321 

and re=0.72 between Cer and monounsaturated SM). Further, traditional lipids (LDL-C, HDL-C, total 322 

cholesterol and TG) had poor genetic and phenotypic correlations with individual lipid species, apart 323 

from traditional triglyceride measures, which was highly correlated with individual TG and DG species. 324 

A genetic correlation matrix heatmap is shown in Figure S1. 325 

 326 

Association with Gene Expression 327 

The association of lipids (n=209) with probe level gene expression (n=35,971) was analysed 328 

using linear mixed models via the R package nlme 49. We found significant gene expression probe 329 

associations (n=3568) with 47 individual lipids (7 DG, 2 PC, 1 PE, 37 TG; see Data S2 and Data S6). 330 

Of these associations, 15 were linked to significantly heritable lipids (12 TG, 3 DG, n= 380 unique 331 

probes). In fact, we found that all significantly heritable TG and DG species were also significantly 332 

associated with gene expression of particular transcripts. An additional 32 individual lipids (25 TGs, 4 333 

DGs, 2 PCs and 1 PE, n= 276 unique probes) without significant heritability were significantly 334 

associated with gene expression. In regards to traditional  and grouped classes of lipids, there were also 335 

significant gene expression associations with HDL-C, total TG, and grouped TGs regardless of total 336 
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carbon number or number of double bonds. No significant gene expression associations were identified 337 

for LDL-C.  There was a modest but non-significant positive correlation between variance explained 338 

by gene expression of probes and heritability (p>0.05, Figure 2 and Data S2). This implies that gene 339 

expression accounts for some but not all the variance in heritable lipid levels. 340 

Since the bulk of significant gene expression associations were with TG, we  examined the 341 

relationship of gene expression associations for TG species by degree of saturation, classifying each 342 

TG species as being saturated (no fatty acyl double bonds), monounsaturated (possessing one double 343 

bond), or polyunsaturated (possessing two or more double bonds). We then investigated how many 344 

transcripts were associated with a low, medium and high number of lipids, by counting the number of 345 

gene transcripts significantly associated with either 1-2 lipids, 3-8 lipids, and over 8 lipids in that class 346 

(in the case of polyunsaturated TG). Generally, only a few gene transcripts were associated with many 347 

lipids, regardless of saturation level. There were 282 gene transcripts associated with 1-2 TGs in the 348 

saturated TG class, but only 6 were associated with at least three different TGs in that class.  349 

Table 2 summarises the number of significantly associated gene transcripts among each TG saturation 350 

class, while Figure 3 is a Venn diagram identifying gene transcripts that are unique or shared across 351 

saturation classes for significantly heritable TG lipids (Figure 3A) and non-heritable TGs only (Figure 352 

3B). The total list of gene transcripts associated with lipids can be found in Data S3 and S4, while Data 353 

S5 and Data S6 show gene transcripts ordered by TG degree of saturation and total number of carbons. 354 

For example, ribosomal protein L4 pseudogene 2 (RPL4P2), A disintegrin and metalloproteinase 355 

domain-containing protein 8 (ADAM8) and Adipocyte Plasma Membrane Associated Protein (APMAP) 356 

were uniquely associated with saturated TG when considering heritable TG lipids.  357 

 358 

 359 

Table 2. Gene expression associations among TG lipids. 360 

TG Class Number of 

Associated 

Lipids  

Number of 

Transcript 

Associations 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.05.075606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.075606
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

Saturated TG 1-2 282 

3-8 6 

Monounsaturated 

TG 

1-2 59 

3-8 7 

Polyunsaturated 

TG 

1-2 243 

3-8 119 

>8 9 

Note. Table 2 lists number of gene expression associations common to a maximum of 1-2, 3-8 and >8 361 

lipids in each TG saturation class (saturated, monounsaturated, and polyunsaturated TG).  362 

 363 

Interestingly, there were a number of transcripts associated with a maximum of 1-2 TG lipids (e.g. 1-2 364 

saturated lipids had 282 hits). In a majority of cases,  these associations were driven by a specific TG 365 

lipid (among saturated TGs, this was TG(16_0/16_0/24_0), among monounsaturated TGs, this was 366 

TG(16_0/14_0/18_1) and for polyunsaturated TGs, these were TG(19_1/18_1/18_2), 367 

TG(16_0/18_1/23_1), TG(16_0/22_6/22_6) and TG(25_0/18_1/18_1)). These lipids tended to have a 368 

medium to high total carbon count (i.e. >55 carbons). By contrast, our analysis also found gene 369 

expression of histidine decarboxylase (HDC) and carboxypeptidase A3 (CPA3) to be significantly 370 

associated with all TGs irrespective of the number of total carbons and number of double bonds. In fact, 371 

HDC and CPA3 were also significantly associated with other lipids including DG and HDL-C (Data 372 

S6). Notably, there were some differences between the gene transcript association profiles of 373 

significantly heritable vs non-heritable lipids; many more gene transcript associations were unique to 374 

heritable as opposed to non-heritable TGs (Figure 3A-D, Table S3). For example, pseudogenes 375 

appearing in the heritable lipid list do not appear in the non-heritable list. Comparing transcribed genes 376 

associated with TG lipids by total number of carbons (<49 carbons “low”, 49-55 carbons “medium” 377 

and 56+ carbons “high”) also yielded a similar outcome (Figure 3D). 378 

Furthermore, the majority of transcriptome associations with non-heritable lipids were inverse 379 

associations, whereas the lipid-transcriptome associations for heritable lipids were a mix of positive and 380 

inverse associations, suggesting a diverse impact of these lipids on cellular function. It is also interesting 381 

that the majority of inverse lipid-transcriptome associations encode protein coding transcripts (15/17 382 

total), and only 2/17 were non-protein coding RNAs/pseudogenes. By contrast, the majority of positive 383 
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lipid-transcriptome associations were for non-protein coding pseudogenes (9/11) and only 2/11 were 384 

protein coding. 385 

Functional pathways of associated gene transcripts 386 

The majority of the protein coding transcriptome which associates with our lipidomic data has some 387 

association with inflammatory and vascular pathways (Table 3), with possible roles in the central 388 

nervous system (CNS). The STRING and BioGRID databases 53; 54 were used to provide functional 389 

information on genes identified in the lipid-transcriptome analysis. Some other notable pathways 390 

include vasoactive peptides, vesicular transport and pseudogenes/non-protein coding genes. 391 
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Table 3. Functions of genes with significant lipid-gene transcriptome associations.  392 

Biological Pathways Gene Transcripts* Relevance to the CNS 

Inflammation   

Innate immunity ↓LILRB3, ↓MGAM  

Adaptive immune response ↓LILRA6  

Host Defense ↓FPR1, ↓TRIM51  FPR1 found in neural glial cells, astrocytes and neuroblastoma 55. 

Allergic Response ↓ADAM8, ↓HDC, ↓CPA3 
ADAM8 may regulate cell adhesion during neurodegeneration 56. 
HDC as a histidine decarboxylase, produces histamine, which in the 
CNS is a neurotransmitter 57. 

Class I MHC antigen binding ↓LILRA6, ↓LILRB3  

B-Cell response/receptor signalling ↓GAB2, ↓LILRB3, ↓PRKCD  

GAB2 is associated with Alzheimer's disease. By activating PI3K, 
increases amyloid production and microglia-mediated inflammation. 
Several GAB2 SNPs are associated with late-onset Alzheimer’s 
disease 58. 

Mast Cell Degranulation ↓CPA3, ↓HDC,   

Vasoactive Actions   

Regulation of vasoactive peptides 
(e.g., endothelin, angiotensin 1, 
snake toxins, etc) 

↓GATA2, ↓CPA3,  

Epithelial Cell Integrity ↓KRT23, ↓PRKCD   

Cell Adhesion ↓APMAP  APMAP supresses brain Aβ production 59.  

DNA Regulation ↑ RPSA, ↑ SNORA62, ↑ SNHG1  

Vesicle/Endosome 
Regulation/Transport 

↑ VAMP8, ↓REPS2, ↓SLC45A3 SLC45A3 regulates oligodendrocyte differentiation 60. 

Pseudogenes/non-protein coding ↓S100A11P1, ↓RPSAP15,  
↑ RP11-179G5.1,  
↑ RP11-350G8.3,                 
↑ RPL35P5, ↑ RPL4P2,  
↑ RPS10P14,  ↑ RPSAP15,  
↑ RPSAP58, ↑ SNHG1, 
↑ SNORA62 

Regulatory roles. Gene silencing, affects mRNA stability. 

393 
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Directions of arrows indicate either positive (upwards facing) or inverse (downwards facing) lipid-gene 394 

transcriptome associations. Even though our transcriptomic data was for the blood transcriptome, some 395 

of these genes also have functions in the CNS or associations with neurodegenerative diseases (far right 396 

column). 397 

Association of DNA methylation levels at specific CpG sites with lipid and gene 398 

expression  399 

To gain insight into the relationships between lipid levels and DNA methylation of CpGs at specific 400 

genes, we selected gene transcripts significantly associated with lipids and identified associations 401 

between DNA methylation at CpG sites within close proximity to these gene transcripts, and lipid 402 

expression (Data S7). We found significant associations of DNA methylation (p<0.05) with four 403 

lipids: PE(16:0_20:4), TG(25:0_16:0_18:1), TG(18:0_17:0_18:0) and TG(18:1_18:2_18:2). Of these, 404 

two were heritable - TG(25:0_16:0_18:1) and TG(18:0_17:0_18:0). 405 

 406 

We also examined the relationship between gene expression and DNA methylation at specific CpG 407 

sites of genes whose transcripts were associated with significant heritability (Data S8). We found 19 408 

significant CpG site-gene expression associations related to four unique lipids (TG(19:1_18:1_18:2), 409 

TG(15:0_16:0_18:1), PC(20:2_18:2), TG(16:0_18:1_23:1), but these associations were a very minor 410 

subset of all CpG site-gene expression associations. Therefore, we did not find sufficient evidence to 411 

suggest that DNA methylation at specific CpG sites drives changes in gene expression, though we 412 

acknowledge this analysis lacks sufficient power to be conclusive. 413 

 414 

Association of lipids with genome wide average DNA methylation (GWAM) 415 

We then explored associations of genome wide average methylation with lipid levels and found 416 

significant associations of all five LPCs (and the total LPC sum) with GWAM (range beta = -0.22 to -417 

0.27, see Table 4). Notably, four TGs were also significantly inversely associated with GWAM (beta = 418 

-0.18 to -0.23). Further, only two other lipids were positively associated with GWAM, namely one CE 419 
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and one PC (beta = 0.21, and 0.18 respectively, Table 3). None of these lipids was significantly 420 

heritable, with maximum heritability of 0.39, though one TG (TG18:1_17:1_22:6) was borderline 421 

significant (p=0.05 for h2), with a maximum of two significant gene expression associations (for 422 

TG18:1_17:1_22:6 and TG18:1_20:4_22:6).  423 

Table 4. Regression of lipid residuals significantly associated with genome wide average DNA 424 

methylation levels 425 

Lipid Beta SE t p-value h2 p-value for h2 

CE(20:3) 0.21 0.09 2.34 2.31E-02 0.31 0.30 

LPC(15:0) -0.22 0.09 -2.54 1.39E-02 6.51E-16 1 

LPC(16:0) -0.27 0.09 -3.12 2.90E-03 3.82E-14 1 

LPC(17:0) -0.21 0.09 -2.34 2.30E-02 2.82E-14 1 

LPC(18:1e) -0.21 0.09 -2.44 1.81E-02 3.52E-17 1 

LPC(26:0) -0.27 0.09 -3.10 3.07E-03 0.056 0.87 

PC(39:3) 0.18 0.09 2.12 3.84E-02 0.39 0.14 

TG(18:1_17:1_22:6) -0.18 0.09 -2.05 4.51E-02 0.31 0.05 

TG(18:1_18:1_22:5) -0.23 0.09 -2.69 9.58E-03 3.42E-15 1 

TG(18:1_20:4_22:6) -0.21 0.09 -2.41 1.96E-02 2.98E-15 1 

TG(19:0_18:1_18:1) -0.18 0.09 -2.14 3.73E-02 0.312 0.29 

GroupLPC -0.24 0.09 -2.74 8.32E-03 1.88E-15 1 

Notes. Associations of GWAM with lipid residuals (adjusted for age, sex, education, BMI, lipid 426 

lowering medication, smoking status, experimental batch and APOE ԑ4 carrier status).  427 

 428 

 429 

Discussion 430 

Heritability Estimates 431 

In this study, we evaluated the relative contributions of genetic versus environmental factors to 432 

the plasma lipidome among older Australian adults aged 69-93 years. As hypothesised, both genetic 433 

and environmental factors contribute to shaping the plasma lipidome, though in our sample of older 434 

individuals, environmental factors were predominant, with only 13.3% of individual lipids analysed 435 

being significantly heritable. The median heritability of heritable lipids was h2 = 0.433, indicating a 436 

moderate level of heritability which compares well with an estimate of 36.2% provided for metabolites 437 

from a genome-wide genotyping study in subjects aged 60 years and over 61. The effect of common 438 
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environment (C) was minimal for all lipid measures, except for a low to moderate finding for HDL-C 439 

(0.27), which is consistent with previous studies 12; 62, indicating that the shared environment early in 440 

life is an important contributor to HDL-C variance later in life. 441 

Traditional lipid measures of LDL-C, HDL-C, total cholesterol and TG were significantly heritable, 442 

consistent with previous studies 12; 13, though our estimates for these traits (range 0.40-0.47) were lower 443 

than estimates from other studies, where heritabilities have been reported to exceed 0.60 12; 63. 444 

Interestingly, one of these studies compared heritability using data from three cohorts around the world, 445 

and found heritability estimates of these traits among Australian twins to be lower than the same 446 

estimates in Dutch and Swedish twin pairs 63. It is likely that heritability differences between different 447 

studies are a product of differences in ethnicity, cohort and age, leading to substantial variance in 448 

reported heritabilities from study to study. 449 

Our analyses also indicated that there is differential heritability depending on the lipid class examined. 450 

While no individual class had over 50% of its lipids significantly heritable, the largest proportion of 451 

heritable lipids was found for TG, followed by Cer and DG. By contrast, only three phospholipids were 452 

significantly heritable, two of these being PCs (out of a total of 58 PCs assessed), and one PE. None of 453 

the remaining classes examined (SM, CE, LPC and PI) yielded significantly heritable lipids, with LPCs 454 

having virtually no heritability in this study. Further, it is important to note that the pattern of heritability 455 

across summed lipid traits often did not match the heritability of individual lipids in a given lipid class 456 

or subclass, likely owing to the broad range of heritability estimates obtained, which was also reported 457 

in a previous study 31. Thus, for heritability analyses, it appears important to analyse heritability 458 

estimates for individual species as opposed to summed lipid classes. 459 

The high heritability of Cer in this study supports data from family-based GWAS which found 36 460 

ceramides to be significantly heritable, with heritability estimates as high as 0.63 64. One recently 461 

published German twin study using data from NutriGenomic Analysis in Twins (NUGAT), examined 462 

the extent to which lipidomic changes in response to a high fat diet intervention are heritable and yielded 463 

a similar range of heritabilities for individual lipid species, with estimates ranging from 0-62% 31. This 464 

study identified 19 of 150 plasma lipid species to be highly heritable (h2>0.40), which is not dissimilar 465 
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to the number of significantly heritable individual lipid species identified in the present study (27 of 466 

207). However, the heritability of various classes often did not corroborate our findings. For example, 467 

in the NUGAT study, LPC and PE were reported to be moderately heritable (0.25<h2<0.35), while SMs 468 

had high heritability, as opposed to ceramides which were reported to be lowly heritable. By contrast, 469 

our study found high heritability of ceramides with no significantly heritable SMs and virtually zero 470 

heritability of LPCs. One possible explanation for these differences is that heritabilities may change 471 

across the lifespan 13. Age-dependent heritability has been reported for LDL-C and HDL-C 13, and also 472 

in BMI, where heritability estimates are lower in older adults compared to young adults 65.  The age 473 

range of NUGAT participants was 18 to 70 years, with a median of 25 years, whereas the OATS cohort 474 

consisted of much older individuals ranging from 69 to 93 years. This could be especially important 475 

considering the potential impact of pre- and post-menopausal status on lipid profiles 66; 67 among 476 

women, who comprise a majority of participants in both OATS (n=179, 68.8%) and the NUGAT study 477 

(n=58, 63%). Additionally, the NUGAT study features a substantially smaller sample size of 46 twin 478 

pairs (34 MZ and 12 DZ twin pairs, vs. 75 MZ and 55 DZ twin pairs in the present study) and NUGAT 479 

heritabilities were based on linear mixed models with an additional unknown effects variance added. 480 

Thus it may be more difficult to ascertain the C component of the NUGAT study, which we found to 481 

be negligible for all lipids except for HDL.  A more recent publication  of a Finnish population based 482 

study (FINRISK) reported SNP-based heritability of lipid species to be in the range 0.10-0.54 68, and 483 

found Cer to be the most heritable species, corroborating findings from the present study, though 484 

heritability of some other lipid classes, such as LPC was markedly higher than reported in the present 485 

study. As with the NUGAT study, some differences could be attributable to the younger age range of 486 

participants (25 – 74 years) in FINRISK relative to OATS, and potentially the low sample size for SNP-487 

based heritability calculations. 488 

Genetic correlations  489 

High within-class genetic correlations between individual Cer, TG, and DG species (all r> 0.70) 490 

suggest similar genetic influences between lipids of the same class. Further, Cer species and 491 

monounsaturated SM also exhibited high genetic correlations, as did TG and DG. Metabolically, Cer 492 
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and SM belong to the sphingolipid class where SM can be converted to Cer via sphingomyelin 493 

phosphodiesterase 69, while TG and DG are interconvertible, where TG can be metabolised to DG by 494 

adipose triglyceride lipase (ATGL), or DG to TG through the addition of acyl CoA via DG 495 

acyltransferase (DGAT) 70. Further, genetic correlations were all higher than the corresponding 496 

environmental correlations, indicating heritable lipids of similar class have a strong shared genetic basis 497 

relative to the unique environment. Our results suggest that the heritable lipidome is regulated by 498 

overlapping genes which are associated with multiple lipids, especially lipids that belong to the same 499 

class, or are related by a connected metabolic pathway. Nevertheless, environmental correlations were 500 

still high for these lipids suggesting the importance of environmental factors on lipid levels. Traditional 501 

lipids (total triglyceride, LDL-C, HDL-C and total cholesterol) had low genetic and phenotypic 502 

correlations with individual lipid species, except for triglyceride measures, which were highly 503 

correlated with TG and DG species. This finding confirms previous results 68 and suggests some 504 

differences between variance in traditional lipid measures and variance in the lipidome at the individual 505 

lipid species level.  506 

Lipid-Transcriptome Associations  507 

Transcriptome associations of both heritable and non-heritable triglycerides, which represented 508 

the largest component of our lipidomics dataset, were assessed. We anticipated that both heritable and 509 

non-heritable lipids would have gene transcript probe associations, since endogenous triglycerides are 510 

derived from essential dietary fatty acids, such as linoleic acid, or other fatty acids substantially derived 511 

from dietary sources (such as linolenic acid and docosahexaenoic acid). Gut microbiota (microbiome) 512 

can also have an effect on the dietary lipidome, prior to absorption, representing another 513 

“environmental” contributor, to lipid abundance and structure 71.  Once absorbed, the environmentally 514 

sourced lipid milieu becomes available for genetically regulated structural change by a diversity of lipid 515 

modifying machinery. This includes families of elongase and desaturase enzymes responsible for 516 

modifying fatty acid chain length and saturation level 72, as well as a plethora of synthetases which 517 

assemble complex lipids such as the triglycerides and phospholipids 73. Interestingly, in our gene/lipid 518 

transcriptomic association list (Tables 3 and 4/Figure 3 and Figure 4), such structure regulating genes 519 
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do not appear. Instead, the transcripts reveal genes which regulate other physiological and cellular 520 

functions, particularly those involved with immune and vascular functions (Table 4). We also found an 521 

upregulation of pseudogenes, which could play important regulatory roles, such as in gene silencing 74.  522 

From this, we infer that the genes which are thought to account for the substantially heritable 523 

phenotype of our triglyceride group (i.e. via lipid metabolic processes) are not necessarily the same as 524 

those reflected in the lipid-transcriptome associations. This might be the case if the heritable aspect of 525 

our lipid list is driven by lipid modifying genes (such as desaturases, elongases, fatty acid synthases and 526 

synthetases), while the blood transcriptome   is associated with  the endogenous lipidome, which is a 527 

product of both environment and genetics (a feedback loop of sorts). We model this hypothesis in Figure 528 

4. This also complements our finding that variance in lipid levels due to heritability is only partially 529 

accounted for by gene expression of associated transcripts. 530 

     531 

Biological effects of the lipid associated blood transcriptome 532 

Our lipid-transcriptome analysis revealed strong associations of lipids with gene transcripts 533 

involved in modulating immune and vascular function. Interestingly, a previous twin study found a 534 

minor subset of the immune system is modulated by genetic influences, such as the homeostatic 535 

cytokine response 75, and many of the associated gene transcripts in the current study including Solute 536 

carrier family 45 member 3 (SLC45A3), CPA3 and HDC were previously reported in a study of lipid 537 

and immune response 76. Thus, some of the transcriptome associations uncovered could reflect lipid-538 

modulated innate immune responses. Since this protein coding transcriptome has largely negative 539 

associations with lipid levels, we infer that it is moderating/suppressing inflammation or adverse 540 

vascular events. On the other hand, high fat diet in mouse models leads to elevated gene transcription 541 

related to white adipose tissue and liver metabolism, and after a prolonged high fat dietary regimen, 542 

activation of inflammatory pathways 77. We postulate that lipid levels are normally linked to the 543 

suppression of inflammatory responses to maintain homeostasis, but become associated with activation 544 

of inflammatory responses following metabolic overload, such as in diabetes mellitus or obesity 78; 79. 545 

Indeed, the authors of this study only noted significant upregulation of genes associated with 546 
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inflammatory pathways after six weeks of high fat diet consumption, in contrast to genes associated 547 

with lipid metabolism, which were upregulated directly following a high fat diet.  548 

We found most of the associated lipid-protein coding transcriptome to be membrane proteins, which 549 

suggests a possible interaction between lipids and protein function at the cellular surface. This would 550 

also explain transcripts being associated with proteins involved in phosphorylation and other signalling 551 

pathways. Vesicle associated membrane protein 8 (VAMP8) is involved in cellular fusion and 552 

autophagy. A couple of transcripts are associated with endothelial function. CPA3 is involved in anti-553 

proteotoxic effects by proteolytically cleaving peptides with potentially harmful physiological effects 554 

such as vasoconstriction peptides (endothelin and angiotensin 1) and snake venom peptides. Other 555 

identified transcripts are involved with production of vasoactive peptides. GATA2 regulates endothelin-556 

1 gene expression in endothelial cells, and PRKCD phosphorylates ELAV Like RNA Binding Protein 557 

1 (ELAVL1) in response to angiotensin-2 treatment 80.  558 

Lipid associations with DNA Methylation 559 

To assess possible mechanisms contributing to variance of non-heritable lipids, we compared 560 

average DNA methylation levels over 450,000 different DNA methylation sites among MZ twins. DNA 561 

methylation is a well characterised epigenetic mechanism by which a gene expression profile can be 562 

regulated and inherited independent of the genetic sequence 81, and involves the addition of a methyl 563 

group (-CH3) to the base cytosine of 5’-cytosine-phosphate-guanine-3’ (CpG) dinucleotides 82; 83. 564 

Methylation of CpG clusters around promoter regions of genes typically leads to suppression of gene 565 

transcription. DNA methylation analysis revealed a suggestive level of significance for the association 566 

of GWAM with 4 TGs, 1 PC, and all 5 LPCs. None of these lipid species was significantly heritable, 567 

with the exception of TG(18:1_17:1_22:6), which was borderline heritable (p=0.05). In particular, all 568 

five LPCs and their summed total, which were extremely non-heritable (near zero), were also 569 

significantly associated with GWAM. Although only a small subset of lipids showed significant 570 

associations with GWAM (just 8 individual lipids of 180 non-heritable lipids), these findings do suggest 571 

that epigenetic factors such as DNA methylation could explain some of the variation associated with 572 
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non-heritable lipids, especially very lowly heritable phospholipids and LPC, the least heritable lipid 573 

class in our data-set.  574 

In previously published work, DNA methylation has been associated with environmental changes in 575 

lipid levels. Maternal lipids, passing from mother to child in utero at 26 weeks of gestation, lead to 576 

DNA methylation changes in the newborn 84. The lipids associated with DNA methylation changes 577 

included phosphatidylcholine and lysolipids – phospholipid degradation products. The authors 578 

hypothesised that the choline source from these lipid products could be important precursors for DNA 579 

methylation. Further, the direction of change was largely negative, with higher lipid metabolites 580 

associated with lower methylation levels of genes involved in prenatal development. While the 581 

association of LPCs with DNA methylation has not previously been identified, it is worth noting that 582 

LPCs are a major source of polyunsaturated fatty acid (PUFA) for the brain 85 and regulate gene 583 

transcription through sterol regulatory-element binding protein (SREBP) pathways 86. Thus, LPC is an 584 

important lipid to convey dietary sources of PUFAs into the brain and regulate gene transcription.  585 

These findings add to studies conducted in animal models which also show that nutrients taken by the 586 

mother are passed on to offspring during pregnancy, and may have a lasting impact on gene expression 587 

through DNA methylation 87. Dietary restriction has also been shown to attenuate age-related 588 

hypomethylation of DNA in the liver, resulting in the downregulation of genes involved in lipogenesis 589 

and elongation of fatty acid chains in TGs, leading to a shift in the TG pool from long chain to medium 590 

and shorter chain TGs 88. In summary, there is evidence to suggest that lipids can influence DNA 591 

methylation levels, while genes related to lipid metabolism can also be regulated in response to DNA 592 

methylation.  593 

Interestingly, when we attempted to focus on DNA methylation at specific CpG sites within close 594 

proximity to genes whose transcripts were significantly associated with lipids, we found a few 595 

associations with lipids and with gene expression, but little overall evidence to indicate that DNA 596 

methylation drives gene expression of these transcripts. More work needs to be done to clarify these 597 

relationships using a larger sample size. 598 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.05.075606doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.075606
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Limitations and future perspectives 599 

There are some important limitations to this work. Firstly, this study covers a fairly wide age 600 

range in older aged adults (69-93 years). Very few heritability studies have focused on the lipidome in 601 

this age bracket. It is thereby important to stress the findings of this study may not necessarily generalise 602 

to the whole population and could be unique to the elderly, specifically those aged over 70 years. We 603 

suspect that in this cohort, environmental factors would dominate given the time in which these 604 

exposures are allowed to accumulate and shape the lipidome. Some of the heritabilities reported may 605 

vary longitudinally, owing to the dynamic contribution of genetic and environmental factors, and their 606 

interaction, across the lifespan [81]. In particular, heritability estimates may decrease where unique 607 

environmental exposures accumulate with time and become a dominant force in lipid modulation. By 608 

contrast, heritabilities may also increase where certain genes become more active in older age to shape 609 

a given phenotype. Given the age range of the cohort used, the results from the present study likely 610 

reflect a combination of both genetic and environmental influences on variation in the lipidome relevant 611 

to older age, and may provide important clues as to lipids and genes important in longevity. Some of 612 

these influences may underlie metabolic and lipidomic signatures previously described in very old 613 

individuals 19; 42; 89; 90. It is also important to emphasise that heritability estimates only represent the 614 

relative contribution of genetic and environmental influences. A “low heritability” score does not 615 

necessarily imply that there are no additive genetic effects, but rather that variation in the lipid profile 616 

among twins is largely mediated by the shared or unique environment. Further, we acknowledge that 617 

though we have included as many participants as possible from this study, there may be insufficient 618 

power to make substantive conclusions. Nevertheless, we believe our findings to be a good starting 619 

point for further investigation. 620 

Transcriptomics data obtained through the Illumina microarray provides a broad overview of many 621 

potential gene transcript associations with measured lipids from the same individuals. However, these 622 

data were obtained using RNA from blood cells, which presents potential biases in the types of 623 

associations uncovered and could account for some of the immune regulatory genes uncovered. 624 

Nevertheless, given the strict cutoff p-value employed in the analyses, it is likely these associations 625 
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reflect true roles of these lipids in immune function, and the genes we uncovered have previously been 626 

identified in other lipid-transcriptomic studies 76. We must emphasise that the transcriptome is 627 

influenced by many independent factors up- and downstream. The relationship between genetic 628 

variance (heritability) and the transcriptome is not clearcut. Nevertheless, we find some evidence that 629 

the transcriptome is linked to heritable plasma lipids and may explain a small proportion of their 630 

heritability. Additionally, while ceramides were the most heritable lipids, there were no significant gene 631 

expression associations with these lipids. This could be due to very low endogenous expression of 632 

ceramide synthases in leukocytes 91, though this pattern may be different in tissues where the most 633 

abundant CerS, CerS2, is highly expressed 92, such as in the kidney or liver 91.   634 

Another major limitation is the fact that only average levels of DNA methylation (i.e. GWAM) were 635 

considered when associating with lipids, rather than DNA methylation at specific sites. This approach 636 

was necessary in order to avoid multiple testing correction for over 450,000 CpG methylation sites. The 637 

result is that the associated lipids showed at best suggestive significant associations with DNA 638 

methylation. The associations that we did find were for non-heritable lipids only, especially the least 639 

heritable LPCs, and were largely inverse. It is likely that based on previous studies, more significant 640 

associations with DNA methylation sites could be determined using greater selectivity of methylation 641 

sites at certain genomic regions. Further, as our analysis only showed that a small subset of non-642 

heritable lipids were associated with GWAM, there is a still a lot variation in the lipidome not accounted 643 

for. CpG site specific analysis for particular genes did not find a relationship between DNA methylation 644 

and gene expression of these transcripts, though this analysis may lack power to detect these 645 

relationships. Other epigenetic mechanisms such as histone modification and chromatin structural 646 

changes could be implicated in regulating lipid metabolism, but are beyond the scope of this study. In 647 

spite of these limitations, this study provides a strong first step towards understanding some of the 648 

complex contributions of genes and the environment to shaping the human plasma lipidome at a lipid 649 

species level, especially among older individuals. 650 

 651 

Conclusion 652 
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In our study of older Australian twins combining lipidomics, transcriptomics and DNA methylation 653 

data, a small subset of plasma lipids was heritable and included largely Cer, TG and DG species. Most 654 

phospholipids, especially LPCs, were not significantly heritable. Significantly heritable lipids exhibited 655 

high genetic correlations between individual Cer, TG and DG species, as well as between Cer and SM, 656 

and between DG and TG, indicating shared genetic influences between lipids of the same class or 657 

metabolic pathways. Heritable lipids, especially TGs and DGs, were associated with a greater degree 658 

of gene transcript probe associations relative to the non-heritable lipids, and these transcripts were 659 

related to immune function and cell signalling rather than lipid metabolism directly. Thus, genes not 660 

related to lipid metabolism may still be associated with plasma lipid levels. Finally, associations of 661 

genome-wide average DNA methylation with highly non-heritable lipids, especially LPCs, suggest a 662 

potential mechanism by which environmental influences on lipids are conveyed. Overall, this study 663 

shows that a vast majority of plasma lipids are controlled by the environment, and hence modifiable, 664 

with genetic control still a major contributor to Cer, DG and TG lipid levels. Further, our study suggests 665 

a complex interaction between lipids, environment, DNA methylation and gene transcription. 666 
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Figure Legends 686 

Figure 1. Heritability of lipids. (A) Percentage distribution of heritable lipids. The central wheel represents 687 

significantly heritable lipids and their percentage distribution by lipid class. Smaller wheels emanating from 688 

each sector represent proportions of these heritable lipids compared to total measured lipids of that class, 689 

such that the sum of these smaller wheels equals the total pool of 207 individual lipids measured. For 690 

example, 45% of significantly heritable lipids belonged to the TG lipid class, and these heritable lipids 691 

represented 17% of total measured plasma TG. (B) The distribution of heritability (h2), estimated from the 692 

ACE model, for each individual lipid species grouped according to class. A, C and E represent standardised 693 

variance components due to additive genetic (A=heritability), common/shared environment (C) and unique 694 

environment (E). Boxplots show median with interquartile range for each class. Dark circles represent 695 

heritable lipids, as opposed to grey circles, which represent lipids that were not significantly heritable. 696 

Minimum heritability is h2>0.287. 697 

Figure 2. Heritability estimate (h2
a) vs total variance explained (Nagelkerke r2) by gene expression 698 

probe transcripts for heritable lipids. 699 

Figure 3. Venn diagrams showing distribution of gene transcripts associated with a majority of 700 

TG lipids. These were subdivided into those associated with saturated vs monounsaturated vs 701 

polyunsaturated lipids for (A) significantly heritable TGs and (B) non-heritable TGs. Also shown are 702 

heritable vs non-heritable set of significant gene expression associations of TG lipids for (C) double 703 

bond group/saturation (Data S5) and (D) total number of carbons (<49 carbons, 49-55 carbons and 704 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.05.075606doi: bioRxiv preprint 

https://string-db.org/
https://thebiogrid.org/
https://doi.org/10.1101/2020.05.05.075606
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

56+ carbons, Data S6). Gene transcripts included in these Venn diagrams were those significantly 705 

associated with the highest and second highest number of lipids of a particular saturation class (A and 706 

B), or among heritable and non-heritable lipids (C and D). Upwards and downwards arrows indicate 707 

positive and inverse gene expression associations with lipid levels respectively. 708 

Figure 4.  Schematic of the combined genetic and environmental influences on the blood 709 

lipidome, and the association of this lipidome with the blood transcriptome. Under this model, 710 

non-heritable lipids could affect gene transcription, while heritable lipids could also affect gene 711 

transcription (collectively “blood lipid associated transcriptome”), but are possibly modified upstream 712 

by genetic machinery such as elongases, desaturases, synthetases, receptors and binding proteins. 713 

Gene transcripts encoding these enzymes and proteins may be independent of the “blood lipid 714 

associated transcriptome” noted in this study.  715 
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