

1
2
3

4 Genetic and environmental determinants of variation in the 5 plasma lipidome of older Australian twins

6

7 Matthew W.K. Wong,¹ Anbupalam Thalamuthu,¹ Nady Braidy,¹ Karen A. Mather,^{1,2} Yue Liu,¹
8 Liliana Ciobanu,³ Bernhardt T. Baune,^{3,4,5,6} Nicola J. Armstrong,⁷ John Kwok,⁸ Peter R. Schofield,^{2,14}
9 Margaret J. Wright,^{9,10} David Ames,^{11,12} Russell Pickford,¹³ Teresa Lee,^{1,15} Anne Poljak,^{†1,13,14}
10 Perminder S. Sachdev,^{†1,15}

11 ¹Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New
12 South Wales, Sydney, Australia

13 ²Neuroscience Research Australia, Sydney, Australia

14 ³The University of Adelaide, Adelaide Medical School, Discipline of Psychiatry, Adelaide, Australia.

15 ⁴Department of Psychiatry, University of Münster, Münster, Germany;

16 ⁵Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Australia;

17 ⁶The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Australia;

18 ⁷Mathematics and Statistics, Murdoch University, Perth, Australia.

19 ⁸Brain and Mind Centre, The University of Sydney, Sydney, Australia.

20 ⁹Queensland Brain Institute, University of Queensland, Australia

21 ¹⁰Centre for Advanced Imaging, University of Queensland, Australia

22 ¹¹University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew,
23 Victoria

24 ¹²National Ageing Research Institute, Parkville, Victoria, Australia

25 ¹³Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia

26 ¹⁴School of Medical Sciences, University of New South Wales, Sydney, Australia

27 ¹⁵Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia

28

29 [†]denotes equal last author

30

31 *Corresponding author: Prof. Perminder S. Sachdev

32 Email: p.sachdev@unsw.edu.au

33

34

35 Abstract

36 The critical role of blood lipids in a broad range of health and disease states is well recognised,
37 while an understanding of the complex genetic regulation of lipid homeostasis is emerging. Traditional
38 blood lipids (LDL-C, HDL-C and triglycerides) are known to be substantially regulated by genetic
39 variation. Less well explored is the interplay of genetics and environment within the broader blood
40 lipidome. Here we use the twin model to examine heritability of the plasma lipidome among healthy
41 older aged twins and explore gene expression and epigenetic (DNA methylation) associations of these
42 lipids. Heritability of 209 plasma lipids quantified by liquid chromatography coupled mass
43 spectrometry (LC-MS) was assessed in 75 monozygotic and 55 dizygotic twin pairs enrolled in the
44 Older Australian Twins Study (OATS), aged 69-93 years. Only 27/209 lipids (13.3%) were significantly
45 heritable under the classical ACE twin model ($h^2 = 0.28-0.59$). Ceramides (Cer) and triglycerides (TG)
46 were most heritable, while sphingomyelins (SM) and most phospholipids, especially lysophospholipids,
47 were not significantly heritable. Lipid levels correlated with 3731 transcripts. Relative to non-
48 significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts,
49 which were not directly associated with lipid metabolism, but with immune function, signalling and
50 transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for a
51 proportion of variability in some non-heritable lipids, especially lysophosphatidylcholine (LPC). We
52 found a complex interplay of genetic and environmental influences on the ageing plasma lipidome, with
53 most of the variation controlled by unique environmental influences.

54

55

56

57

58

59

60

61 Introduction

62 As the field of lipidomics has grown, hundreds to thousands of complex lipids have been
63 characterised^{1; 2}, with many linked to health and disease states, such as metabolic syndrome³,
64 cardiovascular disease^{4; 5}, obesity^{6; 7}, and dementia⁸⁻¹¹. Both genetic and environmental factors
65 influence these biological phenotypes. Identifying the contributions of these factors can help elucidate
66 the importance of genes for a particular trait, as well as providing insight into the environmental
67 influences. This information might enable the design of personalised medical treatments for lipid-
68 related disease states.

69 While there are substantial data to suggest that levels of traditional lipids and lipoproteins such as high
70 density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL), cholesterol and triglyceride
71 levels are heritable^{12; 13}, few studies have focused on the genetic and environmental influences on the
72 plasma levels of individual lipid species and lipid classes beyond these traditional lipid measures.
73 Additionally, lipids vary within and between individuals¹⁴⁻¹⁶ based on variables such as age¹⁷⁻¹⁹, sex^{17;}
74¹⁹, body mass index (BMI)^{19; 20}, lipid-lowering medication²¹ and genetic background^{12; 22},
75 demonstrating a wide degree of complexity involved in the regulation of lipid metabolism. It would
76 therefore be informative to understand the extent to which variation in specific plasma lipids is
77 determined by genetic and environmental influences. We hypothesise that as circulating lipids are
78 produced downstream of genomic, transcriptomic and proteomic regulatory processes, that there will
79 be strong environmental influences on lipid variance.

80 Previous genome-wide association study (GWAS) data implicate many genetic loci associated with
81 traditional lipid levels. For example, the genes encoding lipoprotein lipase, hepatic lipase and
82 cholesterol ester transfer protein (*LPL*, *LIPC* and *CETP* respectively) have been associated with HDL,
83 and genes encoding cadherin EGF LAG seven-pass G-type receptor 2, apolipoprotein B and translocase
84 of outer mitochondrial membrane 40 (*CELSR2*, *APOB* and *TOMM40* respectively) have been associated
85 with LDL²³. Apolipoprotein E (*APOE*) variants have been established as a strong risk factor for
86 cardiovascular disease and Alzheimer's disease^{22; 24} and are associated with altered LDL-C levels. One
87 large exome wide screening study with over 300,000 individuals identified 444 variants at 250 loci to

88 be associated with one or more of plasma LDL, HDL, total cholesterol and triglyceride levels ²⁵.
89 Collectively, data from 70 independent GWAS with sample sizes ranging from ten thousand to several
90 hundred thousand participants have identified associations of traditional lipid levels with 500 single
91 nucleotide polymorphism (SNPs) in 167 loci that explain up to 40% of individual variance in these
92 traditional lipid measures ²⁶. This number suggests that LDL, HDL, total cholesterol and triglyceride
93 levels undergo a substantial degree of genetic regulation, but also highlights that much of the lipid
94 variance is still unaccounted for, possibly related to rare variants or environmental factors ^{26;27}.

95 One of the most powerful tools for analysis of gene versus environment effects on phenotypic traits is
96 the classical twin design, which estimates the relative contribution of heritable additive genetic effects
97 (A) and shared (C) and unique environmental (E) influences on a given trait by comparing correlations
98 within monozygotic and dizygotic twin pairs ²⁸. One major strength of this design compared to family
99 studies is that twins are matched by age and common environment, reducing cross-generation
100 differences. Genetic and environmental variances can be computed with relatively high power using a
101 modest sample size. It is expected that since monozygotic twins share 100% of segregating genetic
102 variation, while dizygotic twins share 50%. It is also assumed that twins are raised in the same
103 environment, thus any additional differences between monozygotic twins would be attributable to
104 unique environmental (E) effects. Further, any differences in intraclass correlations between
105 monozygotic and dizygotic twins could be estimated as due to additive polygenic effects (A).

106

107 We applied the classic twin design to estimate heritability using 75 pairs of MZ twins and 55 pairs of
108 DZ twins from the Older Australian Twin Study (OATS) ^{29;30}, aged between 69-93 years. Since many
109 proteins are known to regulate lipid metabolism, it is expected that some lipids may show substantial
110 heritability, as reported in previous studies ^{31;32}. Further, we hypothesised that some of the variance in
111 lipids that do not have significant heritability might be controlled by gene sequence - independent
112 mechanisms, such as genome-wide average DNA methylation (GWAM) levels. Our study is the first to
113 examine heritability of the broad plasma lipidome among healthy older – aged twins and explore
114 putative genetic, transcriptomic and epigenetic associations of these lipids.

115

116 **Materials and Methods**

117 **Cohorts**

118 The study sample comprised participants aged between 69-93 years enrolled in the Older Australian
119 Twin Study (OATS), established in 2007. The study recruited participants from three states in eastern
120 Australia (QLD, NSW and VIC). The OATS collection included; patient data, including blood
121 chemistry, MRI, neuropsychiatric assessment/cognitive tests, and medical exams performed over
122 several visits (waves), each taken at an interval of 16-18 months, with the first visit denoted as “Wave
123 1”, second visit denoted as “Wave 2” and so on. From OATS, we selected $n=330$ participants who had
124 available plasma from Wave 3; plasma from this wave collected within a period of up to 3 years apart.
125 Of these, 260 participants were eligible for heritability analyses, including 150 monozygotic twins (75
126 pairs in total; 25 male, 50 female), and 110 dizygotic twins (55 pairs in total; 31 males, and 79 females).
127 The study protocol for OATS has been previously published ^{29; 30; 33}. Participants who had significant
128 neuropsychiatric disorders, cancer, or life threatening illness were excluded from this study.

129 **Ethics Approval**

130 OATS was approved by the Ethics Committees of the University of New South Wales and the South
131 Eastern Sydney Local Health District (ethics approval HC17414). All work involving human
132 participants was performed in accordance with the principles of the Declaration of Helsinki of the World
133 Medical Association. Informed consent was obtained from all participants and/or guardians.

134 **Plasma collection, handling and storage**

135 Blood collection, processing and storage were performed under strict conditions to minimize pre-
136 analytical variability ¹¹. Fasting EDTA plasma was separated from whole blood within 2-4 hours of
137 venepuncture and immediately stored at -80°C prior to bio-banking. Samples then underwent a single
138 freeze thaw cycle for the purpose of creating aliquots, which minimizes subsequent freeze thaw cycles
139 for specific experiments. EDTA plasma was chosen as the anticoagulant since it chelates divalent

140 metals, thereby protecting plasma constituents from oxidation, which is particularly important for lipids.
141 Thereafter, lipid extractions were performed within 15 minutes of freeze thawing and extracts stored at
142 -80°C and analysed within two months of extraction.

143 **Targeted assays of plasma lipids**

144 Plasma total cholesterol, LDL-C, HDL-C and TG were measured by enzymatic assay at SEALS
145 pathology (Prince of Wales Hospital) as previously described³⁴, using a Beckman LX20 Analyzer with
146 a timed-endpoint method (Fullerton, CA). LDL-C was estimated using the Friedewald equation (LDL-
147 C=total cholesterol - HDL-C - triglycerides/2.2).

148 ***APOE* genotyping**

149 DNA was extracted from samples using established procedures³⁵. Genotyping of two *APOE* single
150 nucleotide polymorphisms (SNPs rs7412, rs429358) was performed using Taqman genotyping assays
151 (Applied Biosystems Inc., Foster City, CA) to determine the *APOE* haplotype, which has three alleles
152 (ϵ 2, ϵ 3, ϵ 4).

153 **Lipid Extraction from plasma: Single phase 1-butanol/methanol**

154 Lipid internal standards (SPLASH® Lipidomix® Mass Spec Standard) were purchased from Avanti
155 (Alabaster, Alabama, United States) and diluted ten-fold in 1-butanol/methanol (1:1 v/v). Plasma
156 extraction was performed in accordance with a single phase extraction as previously described^{36; 37}.
157 Briefly, we added 10 μ L of 1:10 diluted SPLASH internal lipid standards mixture to 10 μ L plasma in
158 Eppendorf 0.5 mL tubes. 100 μ L of 1-butanol/methanol (1:1 v/v) containing 5 mM ammonium formate
159 was then added to the sample. Afterwards, samples were vortexed for 10 seconds, then sonicated for
160 one hour. Tubes were centrifuged at 13,000 g for 10 minutes. The supernatant was then removed via a
161 200 μ l gel-tipped pipette into a fresh Eppendorf tube. A further 100 μ l of 1-butanol/methanol (1:1 v/v)
162 was added to the pellet to re- extract any remaining lipids. The combined supernatant was dried by
163 vacuum centrifugation and resuspended in 100 μ l of 1-butanol/methanol (1:1 v/v) containing 5 mM
164 ammonium formate and transferred into 300 μ l Chromacol autosampler vials containing a glass insert.
165 Samples were stored at -80° C prior to LC-MS analysis. The robustness and reproducibility of this

166 extraction method has been previously demonstrated ³⁷ in our laboratory, with variation in human
167 plasma ranges of measurement between individuals across age, sex ¹⁹ and by *APOE* genotype ³⁸
168 reported.

169 **Liquid Chromatography/ Mass spectrometry**

170 Lipid analysis was performed by LC ESI-MS/MS using a Thermo QExactive Plus Orbitrap mass
171 spectrometer (Bremen, Germany) in two experimental batches separated by a month. A Waters
172 ACQUITY UPLC CSHTM C18 1.7um, 2.1x100mm column was used for liquid chromatography at a
173 flow rate of 260 μ L/min, using the following gradient condition: 32% solvent B to 100% over 25 min,
174 a return to 32% B and finally 32% B equilibration for 5 min prior to the next injection. Solvents A and
175 B consisted of acetonitrile:MilliQ water (6:4 v/v) and isopropanol:acetonitrile (9:1 v/v) respectively,
176 both containing 10 mM ammonium formate and 0.1% formic acid. Product ion scanning was performed
177 in positive ion mode. Sampling order was randomised prior to analysis.

178 **Alignment and peak detection/analysis**

179 The raw data was aligned, chromatographic peaks selected, specific lipids identified and their peak
180 areas integrated using Lipidsearch software v4.2.2 (Thermo Fischer Scientific, Waltham MA). Owing
181 to the large number of RAW files being processed, the alignment step was performed in four separate
182 batches, with a maximum of 100 samples aligned at any one time, and the data collated and exported to
183 an Excel spreadsheet for manual processing and statistical analysis. Only lipids that were present in all
184 four alignment batches were included in our analysis. The raw abundances (peak areas) were normalised
185 by dividing each peak area by the raw abundance of the corresponding internal standard for that lipid
186 class e.g. all phosphatidylcholines were normalised using 15:0-18:1(d7) PC. The intra-assay coefficient
187 of variation (CV) was calculated by dividing the standard deviation of the normalised abundances by
188 the mean across lipid species. Lipid ion identifications were filtered using the LipidSearch parameters
189 rej=0 and average peak quality>0.75. Furthermore, identifications with CV<0.4 from repeated
190 injections of quality control plasma samples were included (see S1 supporting methods). Where
191 duplicate identifications were found (i.e. lipid IDs with identical m/z and annotations, and similar

192 retention times), the lipid ID with the lowest CV%, and highest peak quality score was used. When
193 necessary, the average m-score (match score, based on number of matches with product ion peaks in
194 the spectrum [20]) was also used to differentiate closely related lipid species, with the lipid having the
195 highest m-score selected. All other duplicates were excluded from analysis. Lipid groupsums were
196 produced by adding lipids within a defined class/subclass together, such as total monounsaturated
197 triglycerides (TG), total ceramides (Cer) etc.

198 **Microarray Gene Expression**

199 Fasting blood samples for gene expression analyses were collected. The methods for gene expression
200 data collection analyses have previously been described ³⁹. Briefly, PAXgene Blood RNA System
201 (PreAnalytiX, QIAGEN) was used to extract total RNA from whole blood collected in PAXgene tubes
202 following overnight fasting. RNA samples with RNA integrity number (RIN) ≥ 6 as measured by the
203 Agilent Technologies 2100 Bioanalyzer were used in subsequent analyses ⁴⁰. Assays for gene
204 expression were performed using the Illumina Whole-Genome Gene Expression Direct Hybridization
205 Assay System HumanHT-12 v4 (Illumina Inc., San Diego, CA, USA) in accordance with standard
206 manufacturer protocols. Quality control (QC) and pre-processing of raw gene expression intensity
207 values extracted from GenomeStudio (Illumina) were performed using the R Bioconductor package
208 limma ⁴¹. Background correction and quantile normalisation was done using the neqc function.
209 Expressed probes with detection p-value ≤ 0.05 were retained for analysis. After pre-processing and
210 filtering, 308 samples and 36,053 transcripts were available for gene expression analysis. After
211 overlapping with the lipids data 290 samples were available for lipids – gene expression analysis. Gene
212 abbreviations used in the text are based on Gene Ontology nomenclature.

213 **DNA Methylation**

214 Genome-wide DNA methylation data for 113 monozygotic twin pairs was generated using an
215 established genomics provider using peripheral blood DNA collected at baseline ⁴². Randomisation of
216 co-twins across the arrays was performed within experiments. DNA methylation status was assessed
217 using the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, CA, USA).

218 Background correction was applied to raw intensity data and the R *minfi* package was used to generate
219 methylation beta values (ranging from 0-1)⁴³. Quantile normalisation was used. We excluded sex
220 chromosome probes, probes containing SNPs, cross-reactive probes as well as probes not detected in
221 all samples from analysis⁴⁴. Following these quality control (QC) procedures, 420,982 out of 485,512
222 probes remained. White blood cell composition was estimated using a previously described method⁴⁵,
223 implemented in *minfi*. After filtering methylation outliers using the preprocessQntile function of the
224 *minfi* package with default parameters, out of the 217 samples with methylation data, 135 overlapped
225 with lipids data. Genome wide Average Methylation (GWAM) for each sample across all the probe
226 level beta values were calculated.

227 **Data Analysis**

228 **Data Transformations.** Since different sets of covariates are used to adjust for the lipid levels, gene
229 expression and methylation, we have first obtained residuals after adjusting for standard confounders
230 in order to obtain lipid and gene expression profiles independent of cohort characteristics. Residuals for
231 lipids were obtained after adjusting for age, sex, education, BMI, lipid lowering medication, smoking
232 status, experimental batch and *APOE ε4* carrier status, which were then inverse normal transformed
233 using the R package RNOMni⁴⁶. This transformation eliminated experimental batch separation effects
234 (Figure S2). Residuals for gene expression were obtained after adjusting for age, sex, experimental
235 batch, RIN, blood cell counts (eosinophils, lymphocytes, basophils and neutrophils - obtained using
236 standard laboratory procedures by Prince of Wales SEALS Pathology). Residuals for methylation beta
237 values were obtained after adjusting for age, sex, BMI and estimated white blood cell counts (CD8T,
238 CD4T, NK, B-cell, monocytes, and granulocytes). Residuals were used for all the analyses presented
239 here.

240 **Heritability Estimation.** Heritability was estimated using SEM. Under the SEM the phenotypic
241 covariance between the twin pairs is modelled as a function of additive genetic (A), shared
242 environmental (C) and unique environmental (E) components. In the narrow sense heritability is
243 defined as the ratio of additive genetic variance [Var(A)] to the total phenotypic variance
244 [Var(A)+Var(C)+Var(E)]. The model containing these three parameters (A, C and E) is known as the

245 ACE model. For model parsimony and test concerning the variance parameters, models with only A
246 and E components, known as AE model, and the models with CE and E components would be fit and
247 compared with the full ACE model ⁴⁷. Genetic and environmental correlations were estimated using
248 the bivariate Cholesky model. Heritability, genetic correlations and environmental correlations under
249 the twin SEM were estimated using the R OpenMx (2.12.1.) package ⁴⁸.

250 **Association Tests.** Test of association of lipids with probe level gene expression were performed using
251 the linear mixed model and the lme function in R package nlme ⁴⁹. Gene expression and lipid residuals
252 (adjusted for age, sex, education, BMI, lipid lowering medication, smoking status, experimental batch
253 and *APOE ε4* carrier status) were used as independent and dependent variables respectively in these
254 models. A p-value threshold of 1.39×10^{-6} ($0.05/35971$, obtained by Bonferroni conservative correction
255 for total number of probes) was used to define significant associations of lipids with probe level gene
256 expression.

257 Similarly, lipid residuals were used as dependent variable and average methylation value was used as
258 the independent variable to test the association of lipids with methylation. The proportion of variance
259 in lipids explained by the gene expression variation and methylation variance were estimated based on
260 the log-likelihoods as implemented in the R package rcompanion ⁵⁰. For most of the lipids, multiple
261 gene expression probes were associated. Hence to avoid overfitting and multi-collinearity, we used
262 penalized regression methods as implemented in glmnet of the R package caret ⁵¹ to reduce the number
263 of probes in the regression model. The list of probes retained in the glmnet model was used to estimate
264 the variance contributed by the gene expression.

265 For analysis of GWAM (Table 4), r^2 is McFadden's pseudo- r^2 . p-value for h^2 is the p-value for test of
266 significant additive genetic effects (h^2 =heritability). Thus p-value for $h^2 < 0.05$ indicates significant
267 heritability. Regression coefficients are based on average methylation at CpG sites excluding any with
268 known SNPs influencing lipid levels.

269 **Lipid shorthand notation**

270 Lipids are named according to the LIPID MAPS convention ⁵². Lipid abbreviations are as follows:
271 ceramide (Cer), cholesterol ester (CE), diacylglycerol (DG), lysophosphatidylcholine (PC),
272 phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), sphingomyelin
273 (SM) and triglyceride (TG).

274

275 **Results**

276 **Participant characteristics**

277 Plasma lipidomics was performed on $n=330$ individuals, 260 of these were used for heritability
278 analyses. Characteristics of the MZ ($n=150$, 100 females) and DZ ($n=110$, 79 females) twins with
279 available plasma for heritability analyses are presented in Table 1. There were no group differences
280 between MZ and DZ twins on these characteristics except in HDL-C levels, which were higher in MZ
281 twins relative to DZ twins ($p<0.05$), but did not remain significant after correcting for multiple
282 comparisons.

283 **Table 1. Participant characteristics for heritability analyses.**

	MZ (n=150)	DZ (n=110)	statistic	p-value
Age	75.7 (5.47)	76.07 (5.31)	-0.548	0.584
Females	100 (67%)	79 (72%)	0.785	0.376
Education (yrs)	10.99 (3.18)	11.2 (3.18)	-0.475	0.635
BMI (kg/m ²)	27.934 (4.74)	27.5 (4.92)	0.776	0.438
WHR	0.89 (0.09)	0.89 (0.08)	0.164	0.87
MMSE	28.9 (1.37)	28.95 (1.76)	-0.062	0.95
LDL-C (mmol/L)	2.77 (0.97)	2.78 (0.97)	-0.078	0.938
HDL-C (mmol/L)	1.73 (0.46)	1.60 (0.44)	2.341	0.02
Cholesterol (mmol/L)	5.08 (1.01)	4.98 (1.12)	0.822	0.412
Triglyceride (mmol/L)	1.30 (0.54)	1.32 (0.56)	-0.298	0.766

<i>APOE</i> ε4 carrier*	35 (26%)	27 (28%)	0.118	0.731
-------------------------	----------	----------	-------	-------

284 Means (SD) are presented for continuous variables, while n (%) is presented for categorical
285 variables. Comparisons of MZ and DZ pairs used *t* tests for continuous variables and χ^2 tests for
286 categorical variables.

287 Abbreviations: MZ = monozygotic, DZ = dizygotic, body mass index (BMI), mini-mental state exam
288 (MMSE), waist-hip ratio (WHR), low density lipoprotein cholesterol (LDL-C), high density
289 lipoprotein cholesterol (HDL-C).

290 *excludes participants with missing data (n=231 participants with *APOE* genotype data)

291 **Heritability**

292 Heritability of lipids was computed using the classical ACE model. Classical lipid measures of
293 total cholesterol, LDL, HDL and triglycerides were significantly heritable ($h^2=0.427$, 95% C.I. = [0.075,
294 0.592], 0.404, 95% C.I. = [0.121, 0.573], 0.419, 95% C.I. = [0.027, 0.766], and 0.427, 95% C.I. =
295 [0.181, 0.623] respectively). HDL had a substantial C component (i.e., common environment; $h^2_C =$
296 0.27, 95% C.I. = [0.00, 0.48]). For individual lipid species measured, 27 out of 203 (13.3%) were
297 significantly heritable with a median heritability of $h^2 = 0.433$, ranging from 0.287 for TG
298 (18:0/17:0/18:0) to a maximum of 0.59 for Cer (d17:1/24:1).

299 The percentages of heritable lipids from the total pool of identified lipids in each lipid class is
300 summarised in Figure 1A. Heritability estimates across lipid class and by individual lipid for
301 significantly heritable lipids are summarised in Figure 1B and Table S1. Ceramides (Cer) had the
302 highest heritability estimates (range $h^2=0.433 - 0.59$), where 9 out of 20 species were significantly
303 heritable. For triglycerides (TG), 12 of out 59 species measured were heritable (range $h^2=0.287-0.495$).
304 Among diacylglycerols (DG), 3 species out of 10 were heritable (range $h^2=0.422-0.544$). Only 3
305 phospholipids were heritable, including 2 of 58 phosphatidylcholines (PC) and 1 out of 5
306 phosphatidylethanolamines (PE), (range $h^2 = 0.327 - 0.413$). Cholesteryl ester (CE),
307 lysophosphatidylcholine (LPC), phosphatidylinositol (PI) and SM (sphingomyelin) species were not
308 significantly heritable, with median heritability for non-significant lipids at $h^2=0.23$, and near zero
309 heritability for LPC species. Heritability estimates obtained for summed lipid groups (Table S2) were
310 mostly similar to that of the individual lipids, though there were some differences. For example, the

311 sum of monounsaturated SM species was heritable whereas no individual SM was significantly
312 heritable. A complete heritability table for all lipids is presented in Data S1.

313 **Genetic, Environmental and Phenotypic Correlations**

314 Genetic and environmental correlations were estimated for significantly heritable lipid species
315 and lipid classes. Median genetic correlations between Cer species were high ($r_g=0.94$), as were TG
316 ($r_g=0.81$) and DG ($r_g=0.73$) species. DG and TG were also highly genetically correlated with each other
317 ($r_g=0.70$), as were Cer species with monounsaturated SM ($r_g=0.83$). Median phenotypic correlations
318 between Cer species, between TG species and between DG species were $r_p=0.85$, 0.61, and 0.53
319 respectively, and $r_p=0.51$ between TG and DG species, and $r_p=0.83$ between Cer and monounsaturated
320 SM. Median unique environmental correlations were moderately lower than corresponding genetic
321 correlations ($r_e=0.75$, 0.56 and 0.53 for Cer, TG and DG respectively, and $r_e=0.45$ between TG and DG,
322 and $r_e=0.72$ between Cer and monounsaturated SM). Further, traditional lipids (LDL-C, HDL-C, total
323 cholesterol and TG) had poor genetic and phenotypic correlations with individual lipid species, apart
324 from traditional triglyceride measures, which was highly correlated with individual TG and DG species.
325 A genetic correlation matrix heatmap is shown in Figure S1.

326

327 **Association with Gene Expression**

328 The association of lipids (n=209) with probe level gene expression (n=35,971) was analysed
329 using linear mixed models via the R package nlme ⁴⁹. We found significant gene expression probe
330 associations (n=3568) with 47 individual lipids (7 DG, 2 PC, 1 PE, 37 TG; see Data S2 and Data S6).
331 Of these associations, 15 were linked to significantly heritable lipids (12 TG, 3 DG, n= 380 unique
332 probes). In fact, we found that all significantly heritable TG and DG species were also significantly
333 associated with gene expression of particular transcripts. An additional 32 individual lipids (25 TGs, 4
334 DGs, 2 PCs and 1 PE, n= 276 unique probes) without significant heritability were significantly
335 associated with gene expression. In regards to traditional and grouped classes of lipids, there were also
336 significant gene expression associations with HDL-C, total TG, and grouped TGs regardless of total

337 carbon number or number of double bonds. No significant gene expression associations were identified
338 for LDL-C. There was a modest but non-significant positive correlation between variance explained
339 by gene expression of probes and heritability ($p>0.05$, Figure 2 and Data S2). This implies that gene
340 expression accounts for some but not all the variance in heritable lipid levels.

341 Since the bulk of significant gene expression associations were with TG, we examined the
342 relationship of gene expression associations for TG species by degree of saturation, classifying each
343 TG species as being saturated (no fatty acyl double bonds), monounsaturated (possessing one double
344 bond), or polyunsaturated (possessing two or more double bonds). We then investigated how many
345 transcripts were associated with a low, medium and high number of lipids, by counting the number of
346 gene transcripts significantly associated with either 1-2 lipids, 3-8 lipids, and over 8 lipids in that class
347 (in the case of polyunsaturated TG). Generally, only a few gene transcripts were associated with many
348 lipids, regardless of saturation level. There were 282 gene transcripts associated with 1-2 TGs in the
349 saturated TG class, but only 6 were associated with at least three different TGs in that class.

350 Table 2 summarises the number of significantly associated gene transcripts among each TG saturation
351 class, while Figure 3 is a Venn diagram identifying gene transcripts that are unique or shared across
352 saturation classes for significantly heritable TG lipids (Figure 3A) and non-heritable TGs only (Figure
353 3B). The total list of gene transcripts associated with lipids can be found in Data S3 and S4, while Data
354 S5 and Data S6 show gene transcripts ordered by TG degree of saturation and total number of carbons.
355 For example, ribosomal protein L4 pseudogene 2 (*RPL4P2*), A disintegrin and metalloproteinase
356 domain-containing protein 8 (*ADAM8*) and Adipocyte Plasma Membrane Associated Protein (*APMAP*)
357 were uniquely associated with saturated TG when considering heritable TG lipids.

358

359

360 **Table 2. Gene expression associations among TG lipids.**

TG Class	Number of Associated Lipids	Number of Transcript Associations
----------	-----------------------------------	---

Saturated TG	1-2	282
	3-8	6
Monounsaturated TG	1-2	59
	3-8	7
Polyunsaturated TG	1-2	243
	3-8	119
	>8	9

361 Note. Table 2 lists number of gene expression associations common to a maximum of 1-2, 3-8 and >8
362 lipids in each TG saturation class (saturated, monounsaturated, and polyunsaturated TG).

363
364 Interestingly, there were a number of transcripts associated with a maximum of 1-2 TG lipids (e.g. 1-2
365 saturated lipids had 282 hits). In a majority of cases, these associations were driven by a specific TG
366 lipid (among saturated TGs, this was TG(16_0/16_0/24_0), among monounsaturated TGs, this was
367 TG(16_0/14_0/18_1) and for polyunsaturated TGs, these were TG(19_1/18_1/18_2),
368 TG(16_0/18_1/23_1), TG(16_0/22_6/22_6) and TG(25_0/18_1/18_1)). These lipids tended to have a
369 medium to high total carbon count (i.e. >55 carbons). By contrast, our analysis also found gene
370 expression of histidine decarboxylase (*HDC*) and carboxypeptidase A3 (*CPA3*) to be significantly
371 associated with all TGs irrespective of the number of total carbons and number of double bonds. In fact,
372 *HDC* and *CPA3* were also significantly associated with other lipids including DG and HDL-C (Data
373 S6). Notably, there were some differences between the gene transcript association profiles of
374 significantly heritable vs non-heritable lipids; many more gene transcript associations were unique to
375 heritable as opposed to non-heritable TGs (Figure 3A-D, Table S3). For example, pseudogenes
376 appearing in the heritable lipid list do not appear in the non-heritable list. Comparing transcribed genes
377 associated with TG lipids by total number of carbons (<49 carbons “low”, 49-55 carbons “medium”
378 and 56+ carbons “high”) also yielded a similar outcome (Figure 3D).

379 Furthermore, the majority of transcriptome associations with non-heritable lipids were inverse
380 associations, whereas the lipid-transcriptome associations for heritable lipids were a mix of positive and
381 inverse associations, suggesting a diverse impact of these lipids on cellular function. It is also interesting
382 that the majority of inverse lipid-transcriptome associations encode protein coding transcripts (15/17
383 total), and only 2/17 were non-protein coding RNAs/pseudogenes. By contrast, the majority of positive

384 lipid-transcriptome associations were for non-protein coding pseudogenes (9/11) and only 2/11 were
385 protein coding.

386 **Functional pathways of associated gene transcripts**

387 The majority of the protein coding transcriptome which associates with our lipidomic data has some
388 association with inflammatory and vascular pathways (Table 3), with possible roles in the central
389 nervous system (CNS). The STRING and BioGRID databases^{53; 54} were used to provide functional
390 information on genes identified in the lipid-transcriptome analysis. Some other notable pathways
391 include vasoactive peptides, vesicular transport and pseudogenes/non-protein coding genes.

392 **Table 3.** Functions of genes with significant lipid-gene transcriptome associations.

Biological Pathways	Gene Transcripts*	Relevance to the CNS
Inflammation		
Innate immunity	↓ <i>LILRB3</i> , ↓ <i>MGAM</i>	
Adaptive immune response	↓ <i>LILRA6</i>	
Host Defense	↓ <i>FPR1</i> , ↓ <i>TRIM51</i>	<i>FPR1</i> found in neural glial cells, astrocytes and neuroblastoma ⁵⁵ .
Allergic Response	↓ <i>ADAM8</i> , ↓ <i>HDC</i> , ↓ <i>CPA3</i>	<i>ADAM8</i> may regulate cell adhesion during neurodegeneration ⁵⁶ . <i>HDC</i> as a histidine decarboxylase, produces histamine, which in the CNS is a neurotransmitter ⁵⁷ .
Class I MHC antigen binding	↓ <i>LILRA6</i> , ↓ <i>LILRB3</i>	
B-Cell response/receptor signalling	↓ <i>GAB2</i> , ↓ <i>LILRB3</i> , ↓ <i>PRKCD</i>	<i>GAB2</i> is associated with Alzheimer's disease. By activating PI3K, increases amyloid production and microglia-mediated inflammation. Several <i>GAB2</i> SNPs are associated with late-onset Alzheimer's disease ⁵⁸ .
Mast Cell Degranulation	↓ <i>CPA3</i> , ↓ <i>HDC</i> ,	
Vasoactive Actions		
Regulation of vasoactive peptides (e.g., endothelin, angiotensin 1, snake toxins, etc)	↓ <i>GATA2</i> , ↓ <i>CPA3</i> ,	
Epithelial Cell Integrity	↓ <i>KRT23</i> , ↓ <i>PRKCD</i>	
Cell Adhesion	↓ <i>APMAP</i>	<i>APMAP</i> suppresses brain Aβ production ⁵⁹ .
DNA Regulation	↑ <i>RPSA</i> , ↑ <i>SNORA62</i> , ↑ <i>SNHG1</i>	
Vesicle/Endosome	↑ <i>VAMP8</i> , ↓ <i>REPS2</i> , ↓ <i>SLC45A3</i>	<i>SLC45A3</i> regulates oligodendrocyte differentiation ⁶⁰ .
Regulation/Transport		
Pseudogenes/non-protein coding	↓ <i>S100A11P1</i> , ↓ <i>RPSAP15</i> , ↑ <i>RP11-179G5.1</i> , ↑ <i>RP11-350G8.3</i> , ↑ <i>RPL35P5</i> , ↑ <i>RPL4P2</i> , ↑ <i>RPS10P14</i> , ↑ <i>RPSAP15</i> , ↑ <i>RPSAP58</i> , ↑ <i>SNHG1</i> , ↑ <i>SNORA62</i>	Regulatory roles. Gene silencing, affects mRNA stability.

394 Directions of arrows indicate either positive (upwards facing) or inverse (downwards facing) lipid-gene
395 transcriptome associations. Even though our transcriptomic data was for the blood transcriptome, some
396 of these genes also have functions in the CNS or associations with neurodegenerative diseases (far right
397 column).

398 **Association of DNA methylation levels at specific CpG sites with lipid and gene
399 expression**

400 To gain insight into the relationships between lipid levels and DNA methylation of CpGs at specific
401 genes, we selected gene transcripts significantly associated with lipids and identified associations
402 between DNA methylation at CpG sites within close proximity to these gene transcripts, and lipid
403 expression (Data S7). We found significant associations of DNA methylation ($p < 0.05$) with four
404 lipids: PE(16:0_20:4), TG(25:0_16:0_18:1), TG(18:0_17:0_18:0) and TG(18:1_18:2_18:2). Of these,
405 two were heritable - TG(25:0_16:0_18:1) and TG(18:0_17:0_18:0).

406

407 We also examined the relationship between gene expression and DNA methylation at specific CpG
408 sites of genes whose transcripts were associated with significant heritability (Data S8). We found 19
409 significant CpG site-gene expression associations related to four unique lipids (TG(19:1_18:1_18:2),
410 TG(15:0_16:0_18:1), PC(20:2_18:2), TG(16:0_18:1_23:1), but these associations were a very minor
411 subset of all CpG site-gene expression associations. Therefore, we did not find sufficient evidence to
412 suggest that DNA methylation at specific CpG sites drives changes in gene expression, though we
413 acknowledge this analysis lacks sufficient power to be conclusive.

414

415 **Association of lipids with genome wide average DNA methylation (GWAM)**

416 We then explored associations of genome wide average methylation with lipid levels and found
417 significant associations of all five LPCs (and the total LPC sum) with GWAM (range beta = -0.22 to -
418 0.27, see Table 4). Notably, four TGs were also significantly inversely associated with GWAM (beta =
419 -0.18 to -0.23). Further, only two other lipids were positively associated with GWAM, namely one CE

420 and one PC (beta = 0.21, and 0.18 respectively, Table 3). None of these lipids was significantly
421 heritable, with maximum heritability of 0.39, though one TG (TG18:1_17:1_22:6) was borderline
422 significant ($p=0.05$ for h^2), with a maximum of two significant gene expression associations (for
423 TG18:1_17:1_22:6 and TG18:1_20:4_22:6).

424 **Table 4.** Regression of lipid residuals significantly associated with genome wide average DNA
425 methylation levels

Lipid	Beta	SE	t	p-value	h^2	p-value for h^2
CE(20:3)	0.21	0.09	2.34	2.31E-02	0.31	0.30
LPC(15:0)	-0.22	0.09	-2.54	1.39E-02	6.51E-16	1
LPC(16:0)	-0.27	0.09	-3.12	2.90E-03	3.82E-14	1
LPC(17:0)	-0.21	0.09	-2.34	2.30E-02	2.82E-14	1
LPC(18:1e)	-0.21	0.09	-2.44	1.81E-02	3.52E-17	1
LPC(26:0)	-0.27	0.09	-3.10	3.07E-03	0.056	0.87
PC(39:3)	0.18	0.09	2.12	3.84E-02	0.39	0.14
TG(18:1_17:1_22:6)	-0.18	0.09	-2.05	4.51E-02	0.31	0.05
TG(18:1_18:1_22:5)	-0.23	0.09	-2.69	9.58E-03	3.42E-15	1
TG(18:1_20:4_22:6)	-0.21	0.09	-2.41	1.96E-02	2.98E-15	1
TG(19:0_18:1_18:1)	-0.18	0.09	-2.14	3.73E-02	0.312	0.29
GroupLPC	-0.24	0.09	-2.74	8.32E-03	1.88E-15	1

426 Notes. Associations of GWAM with lipid residuals (adjusted for age, sex, education, BMI, lipid
427 lowering medication, smoking status, experimental batch and *APOE* ε4 carrier status).

428

429

430 **Discussion**

431 **Heritability Estimates**

432 In this study, we evaluated the relative contributions of genetic versus environmental factors to
433 the plasma lipidome among older Australian adults aged 69-93 years. As hypothesised, both genetic
434 and environmental factors contribute to shaping the plasma lipidome, though in our sample of older
435 individuals, environmental factors were predominant, with only 13.3% of individual lipids analysed
436 being significantly heritable. The median heritability of heritable lipids was $h^2 = 0.433$, indicating a
437 moderate level of heritability which compares well with an estimate of 36.2% provided for metabolites
438 from a genome-wide genotyping study in subjects aged 60 years and over⁶¹. The effect of common

439 environment (C) was minimal for all lipid measures, except for a low to moderate finding for HDL-C
440 (0.27), which is consistent with previous studies ^{12; 62}, indicating that the shared environment early in
441 life is an important contributor to HDL-C variance later in life.

442 Traditional lipid measures of LDL-C, HDL-C, total cholesterol and TG were significantly heritable,
443 consistent with previous studies ^{12; 13}, though our estimates for these traits (range 0.40-0.47) were lower
444 than estimates from other studies, where heritabilities have been reported to exceed 0.60 ^{12; 63}.
445 Interestingly, one of these studies compared heritability using data from three cohorts around the world,
446 and found heritability estimates of these traits among Australian twins to be lower than the same
447 estimates in Dutch and Swedish twin pairs ⁶³. It is likely that heritability differences between different
448 studies are a product of differences in ethnicity, cohort and age, leading to substantial variance in
449 reported heritabilities from study to study.

450 Our analyses also indicated that there is differential heritability depending on the lipid class examined.
451 While no individual class had over 50% of its lipids significantly heritable, the largest proportion of
452 heritable lipids was found for TG, followed by Cer and DG. By contrast, only three phospholipids were
453 significantly heritable, two of these being PCs (out of a total of 58 PCs assessed), and one PE. None of
454 the remaining classes examined (SM, CE, LPC and PI) yielded significantly heritable lipids, with LPCs
455 having virtually no heritability in this study. Further, it is important to note that the pattern of heritability
456 across summed lipid traits often did not match the heritability of individual lipids in a given lipid class
457 or subclass, likely owing to the broad range of heritability estimates obtained, which was also reported
458 in a previous study ³¹. Thus, for heritability analyses, it appears important to analyse heritability
459 estimates for individual species as opposed to summed lipid classes.

460 The high heritability of Cer in this study supports data from family-based GWAS which found 36
461 ceramides to be significantly heritable, with heritability estimates as high as 0.63 ⁶⁴. One recently
462 published German twin study using data from *NutriGenomic Analysis in Twins* (NUGAT), examined
463 the extent to which lipidomic changes in response to a high fat diet intervention are heritable and yielded
464 a similar range of heritabilities for individual lipid species, with estimates ranging from 0-62% ³¹. This
465 study identified 19 of 150 plasma lipid species to be highly heritable ($h^2 > 0.40$), which is not dissimilar

466 to the number of significantly heritable individual lipid species identified in the present study (27 of
467 207). However, the heritability of various classes often did not corroborate our findings. For example,
468 in the NUGAT study, LPC and PE were reported to be moderately heritable ($0.25 < h^2 < 0.35$), while SMs
469 had high heritability, as opposed to ceramides which were reported to be lowly heritable. By contrast,
470 our study found high heritability of ceramides with no significantly heritable SMs and virtually zero
471 heritability of LPCs. One possible explanation for these differences is that heritabilities may change
472 across the lifespan ¹³. Age-dependent heritability has been reported for LDL-C and HDL-C ¹³, and also
473 in BMI, where heritability estimates are lower in older adults compared to young adults ⁶⁵. The age
474 range of NUGAT participants was 18 to 70 years, with a median of 25 years, whereas the OATS cohort
475 consisted of much older individuals ranging from 69 to 93 years. This could be especially important
476 considering the potential impact of pre- and post-menopausal status on lipid profiles ^{66; 67} among
477 women, who comprise a majority of participants in both OATS (n=179, 68.8%) and the NUGAT study
478 (n=58, 63%). Additionally, the NUGAT study features a substantially smaller sample size of 46 twin
479 pairs (34 MZ and 12 DZ twin pairs, vs. 75 MZ and 55 DZ twin pairs in the present study) and NUGAT
480 heritabilities were based on linear mixed models with an additional unknown effects variance added.
481 Thus it may be more difficult to ascertain the C component of the NUGAT study, which we found to
482 be negligible for all lipids except for HDL. A more recent publication of a Finnish population based
483 study (FINRISK) reported SNP-based heritability of lipid species to be in the range 0.10-0.54 ⁶⁸, and
484 found Cer to be the most heritable species, corroborating findings from the present study, though
485 heritability of some other lipid classes, such as LPC was markedly higher than reported in the present
486 study. As with the NUGAT study, some differences could be attributable to the younger age range of
487 participants (25 – 74 years) in FINRISK relative to OATS, and potentially the low sample size for SNP-
488 based heritability calculations.

489 **Genetic correlations**

490 High within-class genetic correlations between individual Cer, TG, and DG species (all $r > 0.70$)
491 suggest similar genetic influences between lipids of the same class. Further, Cer species and
492 monounsaturated SM also exhibited high genetic correlations, as did TG and DG. Metabolically, Cer

493 and SM belong to the sphingolipid class where SM can be converted to Cer via sphingomyelin
494 phosphodiesterase ⁶⁹, while TG and DG are interconvertible, where TG can be metabolised to DG by
495 adipose triglyceride lipase (ATGL), or DG to TG through the addition of acyl CoA via DG
496 acyltransferase (DGAT) ⁷⁰. Further, genetic correlations were all higher than the corresponding
497 environmental correlations, indicating heritable lipids of similar class have a strong shared genetic basis
498 relative to the unique environment. Our results suggest that the heritable lipidome is regulated by
499 overlapping genes which are associated with multiple lipids, especially lipids that belong to the same
500 class, or are related by a connected metabolic pathway. Nevertheless, environmental correlations were
501 still high for these lipids suggesting the importance of environmental factors on lipid levels. Traditional
502 lipids (total triglyceride, LDL-C, HDL-C and total cholesterol) had low genetic and phenotypic
503 correlations with individual lipid species, except for triglyceride measures, which were highly
504 correlated with TG and DG species. This finding confirms previous results ⁶⁸ and suggests some
505 differences between variance in traditional lipid measures and variance in the lipidome at the individual
506 lipid species level.

507 **Lipid-Transcriptome Associations**

508 Transcriptome associations of both heritable and non-heritable triglycerides, which represented
509 the largest component of our lipidomics dataset, were assessed. We anticipated that both heritable and
510 non-heritable lipids would have gene transcript probe associations, since endogenous triglycerides are
511 derived from essential dietary fatty acids, such as linoleic acid, or other fatty acids substantially derived
512 from dietary sources (such as linolenic acid and docosahexaenoic acid). Gut microbiota (microbiome)
513 can also have an effect on the dietary lipidome, prior to absorption, representing another
514 “environmental” contributor, to lipid abundance and structure ⁷¹. Once absorbed, the environmentally
515 sourced lipid milieu becomes available for genetically regulated structural change by a diversity of lipid
516 modifying machinery. This includes families of elongase and desaturase enzymes responsible for
517 modifying fatty acid chain length and saturation level ⁷², as well as a plethora of synthetases which
518 assemble complex lipids such as the triglycerides and phospholipids ⁷³. Interestingly, in our gene/lipid
519 transcriptomic association list (Tables 3 and 4/Figure 3 and Figure 4), such structure regulating genes

520 do not appear. Instead, the transcripts reveal genes which regulate other physiological and cellular
521 functions, particularly those involved with immune and vascular functions (Table 4). We also found an
522 upregulation of pseudogenes, which could play important regulatory roles, such as in gene silencing⁷⁴.

523 From this, we infer that the genes which are thought to account for the substantially heritable
524 phenotype of our triglyceride group (i.e. via lipid metabolic processes) are not necessarily the same as
525 those reflected in the lipid-transcriptome associations. This might be the case if the heritable aspect of
526 our lipid list is driven by lipid modifying genes (such as desaturases, elongases, fatty acid synthases and
527 synthetases), while the blood transcriptome is associated with the endogenous lipidome, which is a
528 product of both environment and genetics (a feedback loop of sorts). We model this hypothesis in Figure
529 4. This also complements our finding that variance in lipid levels due to heritability is only partially
530 accounted for by gene expression of associated transcripts.

531

532 **Biological effects of the lipid associated blood transcriptome**

533 Our lipid-transcriptome analysis revealed strong associations of lipids with gene transcripts
534 involved in modulating immune and vascular function. Interestingly, a previous twin study found a
535 minor subset of the immune system is modulated by genetic influences, such as the homeostatic
536 cytokine response⁷⁵, and many of the associated gene transcripts in the current study including Solute
537 carrier family 45 member 3 (*SLC45A3*), *CPA3* and *HDC* were previously reported in a study of lipid
538 and immune response⁷⁶. Thus, some of the transcriptome associations uncovered could reflect lipid-
539 modulated innate immune responses. Since this protein coding transcriptome has largely negative
540 associations with lipid levels, we infer that it is moderating/suppressing inflammation or adverse
541 vascular events. On the other hand, high fat diet in mouse models leads to elevated gene transcription
542 related to white adipose tissue and liver metabolism, and after a prolonged high fat dietary regimen,
543 activation of inflammatory pathways⁷⁷. We postulate that lipid levels are normally linked to the
544 suppression of inflammatory responses to maintain homeostasis, but become associated with activation
545 of inflammatory responses following metabolic overload, such as in diabetes mellitus or obesity^{78; 79}.
546 Indeed, the authors of this study only noted significant upregulation of genes associated with

547 inflammatory pathways after six weeks of high fat diet consumption, in contrast to genes associated
548 with lipid metabolism, which were upregulated directly following a high fat diet.

549 We found most of the associated lipid-protein coding transcriptome to be membrane proteins, which
550 suggests a possible interaction between lipids and protein function at the cellular surface. This would
551 also explain transcripts being associated with proteins involved in phosphorylation and other signalling
552 pathways. Vesicle associated membrane protein 8 (VAMP8) is involved in cellular fusion and
553 autophagy. A couple of transcripts are associated with endothelial function. CPA3 is involved in anti-
554 proteotoxic effects by proteolytically cleaving peptides with potentially harmful physiological effects
555 such as vasoconstriction peptides (endothelin and angiotensin 1) and snake venom peptides. Other
556 identified transcripts are involved with production of vasoactive peptides. GATA2 regulates endothelin-
557 1 gene expression in endothelial cells, and PRKCD phosphorylates ELAV Like RNA Binding Protein
558 1 (ELAVL1) in response to angiotensin-2 treatment ⁸⁰.

559 **Lipid associations with DNA Methylation**

560 To assess possible mechanisms contributing to variance of non-heritable lipids, we compared
561 average DNA methylation levels over 450,000 different DNA methylation sites among MZ twins. DNA
562 methylation is a well characterised epigenetic mechanism by which a gene expression profile can be
563 regulated and inherited independent of the genetic sequence ⁸¹, and involves the addition of a methyl
564 group (-CH₃) to the base cytosine of 5'-cytosine-phosphate-guanine-3' (CpG) dinucleotides ^{82; 83}.
565 Methylation of CpG clusters around promoter regions of genes typically leads to suppression of gene
566 transcription. DNA methylation analysis revealed a suggestive level of significance for the association
567 of GWAM with 4 TGs, 1 PC, and all 5 LPCs. None of these lipid species was significantly heritable,
568 with the exception of TG(18:1_17:1_22:6), which was borderline heritable (p=0.05). In particular, all
569 five LPCs and their summed total, which were extremely non-heritable (near zero), were also
570 significantly associated with GWAM. Although only a small subset of lipids showed significant
571 associations with GWAM (just 8 individual lipids of 180 non-heritable lipids), these findings do suggest
572 that epigenetic factors such as DNA methylation could explain some of the variation associated with

573 non-heritable lipids, especially very lowly heritable phospholipids and LPC, the least heritable lipid
574 class in our data-set.

575 In previously published work, DNA methylation has been associated with environmental changes in
576 lipid levels. Maternal lipids, passing from mother to child *in utero* at 26 weeks of gestation, lead to
577 DNA methylation changes in the newborn ⁸⁴. The lipids associated with DNA methylation changes
578 included phosphatidylcholine and lysolipids – phospholipid degradation products. The authors
579 hypothesised that the choline source from these lipid products could be important precursors for DNA
580 methylation. Further, the direction of change was largely negative, with higher lipid metabolites
581 associated with lower methylation levels of genes involved in prenatal development. While the
582 association of LPCs with DNA methylation has not previously been identified, it is worth noting that
583 LPCs are a major source of polyunsaturated fatty acid (PUFA) for the brain ⁸⁵ and regulate gene
584 transcription through sterol regulatory-element binding protein (SREBP) pathways ⁸⁶. Thus, LPC is an
585 important lipid to convey dietary sources of PUFAs into the brain and regulate gene transcription.

586 These findings add to studies conducted in animal models which also show that nutrients taken by the
587 mother are passed on to offspring during pregnancy, and may have a lasting impact on gene expression
588 through DNA methylation ⁸⁷. Dietary restriction has also been shown to attenuate age-related
589 hypomethylation of DNA in the liver, resulting in the downregulation of genes involved in lipogenesis
590 and elongation of fatty acid chains in TGs, leading to a shift in the TG pool from long chain to medium
591 and shorter chain TGs ⁸⁸. In summary, there is evidence to suggest that lipids can influence DNA
592 methylation levels, while genes related to lipid metabolism can also be regulated in response to DNA
593 methylation.

594 Interestingly, when we attempted to focus on DNA methylation at specific CpG sites within close
595 proximity to genes whose transcripts were significantly associated with lipids, we found a few
596 associations with lipids and with gene expression, but little overall evidence to indicate that DNA
597 methylation drives gene expression of these transcripts. More work needs to be done to clarify these
598 relationships using a larger sample size.

599 **Limitations and future perspectives**

600 There are some important limitations to this work. Firstly, this study covers a fairly wide age
601 range in older aged adults (69-93 years). Very few heritability studies have focused on the lipidome in
602 this age bracket. It is thereby important to stress the findings of this study may not necessarily generalise
603 to the whole population and could be unique to the elderly, specifically those aged over 70 years. We
604 suspect that in this cohort, environmental factors would dominate given the time in which these
605 exposures are allowed to accumulate and shape the lipidome. Some of the heritabilities reported may
606 vary longitudinally, owing to the dynamic contribution of genetic and environmental factors, and their
607 interaction, across the lifespan [81]. In particular, heritability estimates may decrease where unique
608 environmental exposures accumulate with time and become a dominant force in lipid modulation. By
609 contrast, heritabilities may also increase where certain genes become more active in older age to shape
610 a given phenotype. Given the age range of the cohort used, the results from the present study likely
611 reflect a combination of both genetic and environmental influences on variation in the lipidome relevant
612 to older age, and may provide important clues as to lipids and genes important in longevity. Some of
613 these influences may underlie metabolic and lipidomic signatures previously described in very old
614 individuals [19; 42; 89; 90]. It is also important to emphasise that heritability estimates only represent the
615 relative contribution of genetic and environmental influences. A “low heritability” score does not
616 necessarily imply that there are no additive genetic effects, but rather that variation in the lipid profile
617 among twins is largely mediated by the shared or unique environment. Further, we acknowledge that
618 though we have included as many participants as possible from this study, there may be insufficient
619 power to make substantive conclusions. Nevertheless, we believe our findings to be a good starting
620 point for further investigation.

621 Transcriptomics data obtained through the Illumina microarray provides a broad overview of many
622 potential gene transcript associations with measured lipids from the same individuals. However, these
623 data were obtained using RNA from blood cells, which presents potential biases in the types of
624 associations uncovered and could account for some of the immune regulatory genes uncovered.
625 Nevertheless, given the strict cutoff p-value employed in the analyses, it is likely these associations

626 reflect true roles of these lipids in immune function, and the genes we uncovered have previously been
627 identified in other lipid-transcriptomic studies ⁷⁶. We must emphasise that the transcriptome is
628 influenced by many independent factors up- and downstream. The relationship between genetic
629 variance (heritability) and the transcriptome is not clearcut. Nevertheless, we find some evidence that
630 the transcriptome is linked to heritable plasma lipids and may explain a small proportion of their
631 heritability. Additionally, while ceramides were the most heritable lipids, there were no significant gene
632 expression associations with these lipids. This could be due to very low endogenous expression of
633 ceramide synthases in leukocytes ⁹¹, though this pattern may be different in tissues where the most
634 abundant CerS, CerS2, is highly expressed ⁹², such as in the kidney or liver ⁹¹.

635 Another major limitation is the fact that only average levels of DNA methylation (i.e. GWAM) were
636 considered when associating with lipids, rather than DNA methylation at specific sites. This approach
637 was necessary in order to avoid multiple testing correction for over 450,000 CpG methylation sites. The
638 result is that the associated lipids showed at best suggestive significant associations with DNA
639 methylation. The associations that we did find were for non-heritable lipids only, especially the least
640 heritable LPCs, and were largely inverse. It is likely that based on previous studies, more significant
641 associations with DNA methylation sites could be determined using greater selectivity of methylation
642 sites at certain genomic regions. Further, as our analysis only showed that a small subset of non-
643 heritable lipids were associated with GWAM, there is still a lot variation in the lipidome not accounted
644 for. CpG site specific analysis for particular genes did not find a relationship between DNA methylation
645 and gene expression of these transcripts, though this analysis may lack power to detect these
646 relationships. Other epigenetic mechanisms such as histone modification and chromatin structural
647 changes could be implicated in regulating lipid metabolism, but are beyond the scope of this study. In
648 spite of these limitations, this study provides a strong first step towards understanding some of the
649 complex contributions of genes and the environment to shaping the human plasma lipidome at a lipid
650 species level, especially among older individuals.

651

652 **Conclusion**

653 In our study of older Australian twins combining lipidomics, transcriptomics and DNA methylation
654 data, a small subset of plasma lipids was heritable and included largely Cer, TG and DG species. Most
655 phospholipids, especially LPCs, were not significantly heritable. Significantly heritable lipids exhibited
656 high genetic correlations between individual Cer, TG and DG species, as well as between Cer and SM,
657 and between DG and TG, indicating shared genetic influences between lipids of the same class or
658 metabolic pathways. Heritable lipids, especially TGs and DGs, were associated with a greater degree
659 of gene transcript probe associations relative to the non-heritable lipids, and these transcripts were
660 related to immune function and cell signalling rather than lipid metabolism directly. Thus, genes not
661 related to lipid metabolism may still be associated with plasma lipid levels. Finally, associations of
662 genome-wide average DNA methylation with highly non-heritable lipids, especially LPCs, suggest a
663 potential mechanism by which environmental influences on lipids are conveyed. Overall, this study
664 shows that a vast majority of plasma lipids are controlled by the environment, and hence modifiable,
665 with genetic control still a major contributor to Cer, DG and TG lipid levels. Further, our study suggests
666 a complex interaction between lipids, environment, DNA methylation and gene transcription.

667

668 **Acknowledgements**

669 We acknowledge the contribution of the OATS research team
670 (<https://cheba.unsw.edu.au/project/older-australian-twins-study>) to this study. The OATS study has
671 been funded by a National Health & Medical Research Council (NHMRC) and Australian Research
672 Council (ARC) Strategic Award Grant of the Ageing Well, Ageing Productively Program (ID No.
673 401162) and NHMRC Project Grants (ID 1045325 and 1085606). We thank the Rebecca Cooper
674 Medical Research Foundation for their research support. We thank the participants for their time and
675 generosity in contributing to this research. We would also like to acknowledge Ms. Mahboobeh
676 Housseini's assistance with OATS plasma biobanking.

677 This research was facilitated through Twins Research Australia, a national resource in part supported
678 by a NHMRC Centre for Research Excellence Grant (ID: 1079102).

679 **Web Resources**

680 The STRING v11.0 database and Biological General Repository for Interaction Datasets (BioGRID)
681 were used to identify known and potential functional connections between gene-coded proteins that are
682 associated with heritable lipids. STRING (<https://string-db.org/>) and BioGRID (<https://thebiogrid.org>)
683 are free open-access resources available online.

684 **Conflicts of Interest**

685 The authors declare no conflicts of interest.

686 **Figure Legends**

687 **Figure 1. Heritability of lipids.** (A) Percentage distribution of heritable lipids. The central wheel represents
688 significantly heritable lipids and their percentage distribution by lipid class. Smaller wheels emanating from
689 each sector represent proportions of these heritable lipids compared to total measured lipids of that class,
690 such that the sum of these smaller wheels equals the total pool of 207 individual lipids measured. For
691 example, 45% of significantly heritable lipids belonged to the TG lipid class, and these heritable lipids
692 represented 17% of total measured plasma TG. (B) The distribution of heritability (h^2), estimated from the
693 ACE model, for each individual lipid species grouped according to class. A, C and E represent standardised
694 variance components due to additive genetic (A=heritability), common/shared environment (C) and unique
695 environment (E). Boxplots show median with interquartile range for each class. Dark circles represent
696 heritable lipids, as opposed to grey circles, which represent lipids that were not significantly heritable.
697 Minimum heritability is $h^2 > 0.287$.

698 **Figure 2. Heritability estimate (h^2_a) vs total variance explained (Nagelkerke r^2) by gene expression
699 probe transcripts for heritable lipids.**

700 **Figure 3. Venn diagrams showing distribution of gene transcripts associated with a majority of
701 TG lipids.** These were subdivided into those associated with saturated vs monounsaturated vs
702 polyunsaturated lipids for (A) significantly heritable TGs and (B) non-heritable TGs. Also shown are
703 heritable vs non-heritable set of significant gene expression associations of TG lipids for (C) double
704 bond group/saturation (Data S5) and (D) total number of carbons (<49 carbons, 49-55 carbons and

705 56+ carbons, Data S6). Gene transcripts included in these Venn diagrams were those significantly
706 associated with the highest and second highest number of lipids of a particular saturation class (A and
707 B), or among heritable and non-heritable lipids (C and D). Upwards and downwards arrows indicate
708 positive and inverse gene expression associations with lipid levels respectively.

709 **Figure 4. Schematic of the combined genetic and environmental influences on the blood**
710 **lipidome, and the association of this lipidome with the blood transcriptome.** Under this model,
711 non-heritable lipids could affect gene transcription, while heritable lipids could also affect gene
712 transcription (collectively “blood lipid associated transcriptome”), but are possibly modified upstream
713 by genetic machinery such as elongases, desaturases, synthetases, receptors and binding proteins.
714 Gene transcripts encoding these enzymes and proteins may be independent of the “blood lipid
715 associated transcriptome” noted in this study.

716

717 **References**

- 718 1. Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Jr., Murphy, R.C., Raetz, C.R., Russell, D.W., Seyama, Y., Shaw, W., et al. (2005). A comprehensive classification system for lipids. *J Lipid Res* 46, 839-861.
- 719 2. Quehenberger, O., Armando, A.M., Brown, A.H., Milne, S.B., Myers, D.S., Merrill, A.H., Bandyopadhyay, S., Jones, K.N., Kelly, S., Shaner, R.L., et al. (2010). Lipidomics reveals a remarkable diversity of lipids in human plasma. *J Lipid Res* 51, 3299-3305.
- 720 3. Meikle, P.J., and Christopher, M.J. (2011). Lipidomics is providing new insight into the metabolic syndrome and its sequelae. *Current Opinion in Lipidology* 22, 210-215.
- 721 4. Meikle, P.J., Wong, G., Barlow, C.K., and Kingwell, B.A. (2014). Lipidomics: Potential role in risk prediction and therapeutic monitoring for diabetes and cardiovascular disease. *Pharmacology & Therapeutics* 143, 12-23.
- 722 5. Harmon, M.E., Campen, M.J., Miller, C., Shuey, C., Cajero, M., Lucas, S., Pacheco, B., Erdei, E., Ramone, S., Nez, T., et al. (2016). Associations of Circulating Oxidized LDL and Conventional Biomarkers of Cardiovascular Disease in a Cross-Sectional Study of the Navajo Population. *PLoS One* 11, e0143102.
- 723 6. Barber, M.N., Risis, S., Yang, C., Meikle, P.J., Staples, M., Febbraio, M.A., and Bruce, C.R. (2012). Plasma Lysophosphatidylcholine Levels Are Reduced in Obesity and Type 2 Diabetes. *PLOS ONE* 7, e41456.
- 724 7. Rauschert, S., Uhl, O., Koletzko, B., Kirchberg, F., Mori, T.A., Huang, R.C., Beilin, L.J., Hellmuth, C., and Oddy, W.H. (2016). Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults. *J Clin Endocrinol Metab* 101, 871-879.
- 725 8. Han, X., Holtzman, D.M., and McKeel, D.W., Jr. (2001). Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. *J Neurochem* 77, 1168-1180.

742 9. Kim, W.S., Jary, E., Pickford, R., He, Y., Ahmed, R.M., Piguet, O., Hodges, J.R., and Halliday,
743 G.M. (2018). Lipidomics Analysis of Behavioral Variant Frontotemporal Dementia: A Scope
744 for Biomarker Development. *Frontiers in neurology* 9, 104-104.

745 10. Mielke, M.M., Bandaru, V.V., Haughey, N.J., Xia, J., Fried, L.P., Yasar, S., Albert, M., Varma,
746 V., Harris, G., Schneider, E.B., et al. (2012). Serum ceramides increase the risk of Alzheimer
747 disease: the Women's Health and Aging Study II. *Neurology* 79, 633-641.

748 11. Wong, M.W., Braidy, N., Poljak, A., Pickford, R., Thambisetty, M., and Sachdev, P.S. (2017).
749 Dysregulation of lipids in Alzheimer's disease and their role as potential biomarkers.
750 *Alzheimer's & Dementia: The Journal of the Alzheimer's Association* 13, 810-827.

751 12. Liu, H., Wang, W., Zhang, C., Xu, C., Duan, H., Tian, X., and Zhang, D. (2018). Heritability and
752 Genome-Wide Association Study of Plasma Cholesterol in Chinese Adult Twins. *Frontiers in
753 endocrinology* 9.

754 13. Goode, E.L., Cherny, S.S., Christian, J.C., Jarvik, G.P., and de Andrade, M. (2007). Heritability of
755 longitudinal measures of body mass index and lipid and lipoprotein levels in aging twins.
756 *Twin research and human genetics : the official journal of the International Society for Twin
757 Studies* 10, 703-711.

758 14. Begum, H., Li, B., Shui, G., Cazenave-Gassiot, A., Soong, R., Ong, R.T., Little, P., Teo, Y.Y.,
759 and Wenk, M.R. (2016). Discovering and validating between-subject variations in plasma
760 lipids in healthy subjects. *Scientific reports* 6, 19139.

761 15. Begum, H., Torta, F., Narayanaswamy, P., Mundra, P.A., Ji, S., Bendt, A.K., Saw, W.-Y., Teo,
762 Y.Y., Soong, R., Little, P.F., et al. (2017). Lipidomic profiling of plasma in a healthy
763 Singaporean population to identify ethnic specific differences in lipid levels and associations
764 with disease risk factors. *Clinical Mass Spectrometry* 6, 25-31.

765 16. Saw, W.-Y., Tantoso, E., Begum, H., Zhou, L., Zou, R., He, C., Chan, S.L., Tan, L.W.-L., Wong,
766 L.-P., Xu, W., et al. (2017). Establishing multiple omics baselines for three Southeast Asian
767 populations in the Singapore Integrative Omics Study. *Nature Communications* 8, 653.

768 17. Ishikawa, M., Maekawa, K., Saito, K., Senoo, Y., Urata, M., Murayama, M., Tajima, Y.,
769 Kumagai, Y., and Saito, Y. (2014). Plasma and serum lipidomics of healthy white adults
770 shows characteristic profiles by subjects' gender and age. *PLoS One* 9, e91806.

771 18. Lawton, K.A., Berger, A., Mitchell, M., Milgram, K.E., Evans, A.M., Guo, L., Hanson, R.W.,
772 Kalhan, S.C., Ryals, J.A., and Milburn, M.V. (2008). Analysis of the adult human plasma
773 metabolome. *Pharmacogenomics* 9, 383-397.

774 19. Wong, M.W.K., Braidy, N., Pickford, R., Vafaei, F., Crawford, J., Muenchhoff, J., Schofield, P.,
775 Attia, J., Brodaty, H., Sachdev, P., et al. (2019). Plasma lipidome variation during the second
776 half of the human lifespan is associated with age and sex but minimally with BMI. *PLoS One*
777 14, e0214141.

778 20. Shamai, L., Lurix, E., Shen, M., Novaro, G.M., Szomstein, S., Rosenthal, R., Hernandez, A.V.,
779 and Asher, C.R. (2011). Association of body mass index and lipid profiles: evaluation of a
780 broad spectrum of body mass index patients including the morbidly obese. *Obesity surgery*
781 21, 42-47.

782 21. Meikle, P.J., Wong, G., Tan, R., Giral, P., Robillard, P., Orsoni, A., Hounslow, N., Magliano,
783 D.J., Shaw, J.E., Curran, J.E., et al. (2015). Statin action favors normalization of the plasma
784 lipidome in the atherogenic mixed dyslipidemia of MetS: potential relevance to statin-
785 associated dysglycemia. *J Lipid Res* 56, 2381-2392.

786 22. Bennet, A.M., Di Angelantonio, E., Ye, Z., Wensley, F., Dahlin, A., Ahlbom, A., Keavney, B.,
787 Collins, R., Wiman, B., de Faire, U., et al. (2007). Association of apolipoprotein E genotypes
788 with lipid levels and coronary risk. *Jama* 298, 1300-1311.

789 23. Middelberg, R.P., Ferreira, M.A., Henders, A.K., Heath, A.C., Madden, P.A., Montgomery, G.W.,
790 Martin, N.G., and Whitfield, J.B. (2011). Genetic variants in LPL, OASL and
791 TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits.
792 *BMC medical genetics* 12, 123.

793 24. Corder, E.H., Saunders, A.M., Risch, N.J., Strittmatter, W.J., Schmeichel, D.E., Gaskell, P.C., Jr.,
794 Rimmier, J.B., Locke, P.A., Conneally, P.M., Schmader, K.E., et al. (1994). Protective effect
795 of apolipoprotein E type 2 allele for late onset Alzheimer disease. *Nat Genet* 7, 180-184.

796 25. Liu, D.J., Peloso, G.M., Yu, H., Butterworth, A.S., Wang, X., Mahajan, A., Saleheen, D., Emdin, C., Alam, D., Alves, A.C., et al. (2017). Exome-wide association study of plasma lipids in >300,000 individuals. *Nature genetics* 49, 1758-1766.

797 26. Matey-Hernandez, M.L., Williams, F.M.K., Potter, T., Valdes, A.M., Spector, T.D., and Menni, C. (2017). Genetic and microbiome influence on lipid metabolism and dyslipidemia. *Physiological Genomics* 50, 117-126.

798 27. García-Giustiniani, D., and Stein, R. (2016). Genetics of Dyslipidemia. *Arq Bras Cardiol* 106, 434-438.

799 28. Van Dongen, J., Slagboom, P.E., Draisma, H.H., Martin, N.G., and Boomsma, D.I. (2012). The 800 continuing value of twin studies in the omics era. *Nature Reviews Genetics* 13, 640.

801 29. Sachdev, P.S., Lammel, A., Trollor, J.N., Lee, T., Wright, M.J., Ames, D., Wen, W., Martin, N.G., 802 Brodaty, H., and Schofield, P.R. (2012). A Comprehensive Neuropsychiatric Study of Elderly Twins: The Older Australian Twins Study. *Twin Research and Human Genetics* 12, 573-582.

803 30. Sachdev, P.S., Lee, T., Wen, W., Ames, D., Batouli, A.H., Bowden, J., Brodaty, H., Chong, E., 804 Crawford, J., Kang, K., et al. (2013). The contribution of twins to the study of cognitive 805 ageing and dementia: the Older Australian Twins Study. *International review of psychiatry* (Abingdon, England) 25, 738-747.

806 31. Frahnow, T., Osterhoff, M.A., Hornemann, S., Kruse, M., Surma, M.A., Klose, C., Simons, K., 807 and Pfeiffer, A.F.H. (2017). Heritability and responses to high fat diet of plasma lipidomics in 808 a twin study. *Scientific reports* 7, 3750.

809 32. Draisma, H.H.M., Reijmers, T.H., Meulman, J.J., van der Greef, J., Hankemeier, T., and 810 Boomsma, D.I. (2013). Hierarchical clustering analysis of blood plasma lipidomics profiles 811 from mono- and dizygotic twin families. *Eur J Hum Genet* 21, 95-101.

812 33. Sachdev, P.S., Lee, T., Lammel, A., Crawford, J., Trollor, J.N., Wright, M.J., Brodaty, H., Ames, 813 D., and Martin, N.G. (2011). Cognitive functioning in older twins: the Older Australian Twins 814 Study. *Australasian journal on ageing* 30 Suppl 2, 17-23.

815 34. Song, F., Poljak, A., Crawford, J., Kochan, N.A., Wen, W., Cameron, B., Lux, O., Brodaty, H., 816 Mather, K., Smythe, G.A., et al. (2012). Plasma Apolipoprotein Levels Are Associated with 817 Cognitive Status and Decline in a Community Cohort of Older Individuals. *PLoS ONE* 7, 818 e34078.

819 35. Muenchhoff, J., Song, F., Poljak, A., Crawford, J.D., Mather, K.A., Kochan, N.A., Yang, Z., 820 Trollor, J.N., Reppermund, S., Maston, K., et al. (2017). Plasma apolipoproteins and physical 821 and cognitive health in very old individuals. *Neurobiol Aging* 55, 49-60.

822 36. Alshehry, Z.H., Barlow, C.K., Weir, J.M., Zhou, Y., McConville, M.J., and Meikle, P.J. (2015). 823 An Efficient Single Phase Method for the Extraction of Plasma Lipids. *Metabolites* 5, 389- 824 403.

825 37. Wong, M.W.K., Braidy, N., Pickford, R., Sachdev, P.S., and Poljak, A. (2019). Comparison of 826 Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. 827 *Frontiers in neurology* 10.

828 38. Wong, M.W.K., Braidy, N., Crawford, J., Pickford, R., Song, F., Mather, K.A., Attia, J., Brodaty, H., 829 Sachdev, P., and Poljak, A. (2019). APOE Genotype Differentially Modulates Plasma 830 Lipids in Healthy Older Individuals, with Relevance to Brain Health. *J Alzheimers Dis.* 831

832 39. Ciobanu, L.G., Sachdev, P.S., Trollor, J.N., Reppermund, S., Thalamuthu, A., Mather, K.A., 833 Cohen-Woods, S., Stacey, D., Toben, C., Schubert, K.O., et al. (2018). Co-expression 834 network analysis of peripheral blood transcriptome identifies dysregulated protein processing 835 in endoplasmic reticulum and immune response in recurrent MDD in older adults. *Journal of* 836 *psychiatric research* 107, 19-27.

837 40. Gallego Romero, I., Pai, A.A., Tung, J., and Gilad, Y. (2014). RNA-seq: impact of RNA 838 degradation on transcript quantification. *BMC Biology* 12, 42.

839 41. Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma 840 powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic* 841 *acids research* 43, e47.

842 42. Armstrong, N.J., Mather, K.A., Thalamuthu, A., Wright, M.J., Trollor, J.N., Ames, D., Brodaty, H., 843 Schofield, P.R., Sachdev, P.S., and Kwok, J.B. (2017). Aging, exceptional longevity and 844 comparisons of the Hannum and Horvath epigenetic clocks. *Epigenomics* 9, 689-700.

851 43. Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A.P., Hansen, K.D., and
852 Irizarry, R.A. (2014). Minfi: A flexible and comprehensive Bioconductor package for the
853 analysis of Infinium DNA methylation microarrays. *Bioinformatics* 30, 1363-1369.

854 44. Chen, Y.-a., Lemire, M., Choufani, S., Butcher, D.T., Grafodatskaya, D., Zanke, B.W., Gallinger,
855 S., Hudson, T.J., and Weksberg, R. (2013). Discovery of cross-reactive probes and
856 polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. *Epigenetics*
857 8, 203-209.

858 45. Houseman, E.A., Accomando, W.P., Koestler, D.C., Christensen, B.C., Marsit, C.J., Nelson, H.H.,
859 Wiencke, J.K., and Kelsey, K.T. (2012). DNA methylation arrays as surrogate measures of
860 cell mixture distribution. *BMC Bioinformatics* 13, 86.

861 46. McCaw, Z. (2019). RNOMni: Rank Normal Transformation Omnibus Test. In. (R package

862 47. Neale, M.C., and Cardon, L.R. (1992). Methodology for genetic studies of twins and
863 families. (Dordrecht, The Netherlands: Kluwer Academic Publishers).

864 48. Neale, M.C., Hunter, M.D., Pritikin, J.N., Zahery, M., Brick, T.R., Kirkpatrick, R.M., Estabrook,
865 R., Bates, T.C., Maes, H.H., and Boker, S.M. (2016). OpenMx 2.0: Extended Structural
866 Equation and Statistical Modeling. *Psychometrika* 81, 535-549.

867 49. Pinheiro J, Bates D, DebRoy S, Sarkar D, and R Core Team. (2019). nlme: Linear and Nonlinear
868 Mixed Effects Models. . In. (R package

869 50. Mangiafico, S. (2019). rcompanion: Functions to Support Extension Education Program
870 Evaluation. . In. (R package

871 51. Kuhn, M., Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan
872 Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael
873 Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and
874 Tyler Hunt.. (2018). caret: Classification and Regression Training. In. (R package

875 52. Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R., Shimizu, T., Spener, F.,
876 van Meer, G., Wakelam, M.J., and Dennis, E.A. (2009). Update of the LIPID MAPS
877 comprehensive classification system for lipids. *J Lipid Res* 50 Suppl, S9-14.

878 53. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M.,
879 Doncheva, N.T., Morris, J.H., Bork, P., et al. (2019). STRING v11: protein-protein
880 association networks with increased coverage, supporting functional discovery in genome-
881 wide experimental datasets. *Nucleic acids research* 47, D607-d613.

882 54. Oughtred, R., Stark, C., Breitkreutz, B.J., Rust, J., Boucher, L., Chang, C., Kolas, N., O'Donnell,
883 L., Leung, G., McAdam, R., et al. (2019). The BioGRID interaction database: 2019 update.
884 *Nucleic acids research* 47, D529-d541.

885 55. Cussell, P.J.G., Howe, M.S., Illingworth, T.A., Gomez Escalada, M., Milton, N.G.N., and
886 Paterson, A.W.J. (2019). The formyl peptide receptor agonist FPRa14 induces differentiation
887 of Neuro2a mouse neuroblastoma cells into multiple distinct morphologies which can be
888 specifically inhibited with FPR antagonists and FPR knockdown using siRNA. *PloS one* 14,
889 e0217815-e0217815.

890 56. Schlomann, U., Rathke-Hartlieb, S., Yamamoto, S., Jockusch, H., and Bartsch, J.W. (2000).
891 Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156):
892 implications for neuron-glia interactions during neurodegeneration. *The Journal of
893 neuroscience : the official journal of the Society for Neuroscience* 20, 7964-7971.

894 57. Yoshikawa, T., Nakamura, T., Shibakusa, T., Sugita, M., Naganuma, F., Iida, T., Miura, Y.,
895 Mohsen, A., Harada, R., and Yanai, K. (2014). Insufficient Intake of L-Histidine Reduces
896 Brain Histamine and Causes Anxiety-Like Behaviors in Male Mice. *The Journal of Nutrition*
897 144, 1637-1641.

898 58. Chen, X.-X., Guo, R.-R., Cao, X.-P., Tan, L., Tan, L., and Alzheimer's Disease Neuroimaging, I.
899 (2018). The impact of GAB2 genetic variations on cerebrospinal fluid markers in Alzheimer's
900 disease. *Ann Transl Med* 6, 171-171.

901 59. Mosser, S., Alattia, J.-R., Dimitrov, M., Matz, A., Pascual, J., Schneider, B.L., and Fraering, P.C.
902 (2015). The adipocyte differentiation protein APMAP is an endogenous suppressor of A β
903 production in the brain. *Hum Mol Genet* 24, 371-382.

904 60. Shin, D., Howng, S.Y., Ptacek, L.J., and Fu, Y.H. (2012). miR-32 and its target SLC45A3
905 regulate the lipid metabolism of oligodendrocytes and myelin. *Neuroscience* 213, 29-37.

906 61. Darst, B.F., Koscik, R.L., Hogan, K.J., Johnson, S.C., and Engelman, C.D. (2019). Longitudinal
907 plasma metabolomics of aging and sex. *Aging* 11, 1262-1282.

908 62. Mahaney, M.C., Blangero, J., Comuzzie, A.G., VandeBerg, J.L., Stern, M.P., and MacCluer, J.W.
909 (1995). Plasma HDL cholesterol, triglycerides, and adiposity. A quantitative genetic test of
910 the conjoint trait hypothesis in the San Antonio Family Heart Study. *Circulation* 92, 3240-
911 3248.

912 63. Beekman, M., Heijmans, B.T., Martin, N.G., Pedersen, N.L., Whitfield, J.B., DeFaire, U., van
913 Baal, G.C., Snieder, H., Vogler, G.P., Slagboom, P.E., et al. (2002). Heritabilities of
914 apolipoprotein and lipid levels in three countries. *Twin Res* 5, 87-97.

915 64. McGurk, K., Nicolaou, A., and Keavney, B. (2017). 141 Heritability and family-based gwas
916 analyses to discover novel lipidomic biomarkers of cardiovascular disease. *Heart* 103,
917 A106.101-A106.

918 65. Silventoinen, K., Jelenkovic, A., Sund, R., Yokoyama, Y., Hur, Y.M., Cozen, W., Hwang, A.E.,
919 Mack, T.M., Honda, C., Inui, F., et al. (2017). Differences in genetic and environmental
920 variation in adult BMI by sex, age, time period, and region: an individual-based pooled
921 analysis of 40 twin cohorts. *Am J Clin Nutr* 106, 457-466.

922 66. Anagnostis, P., Stevenson, J.C., Crook, D., Johnston, D.G., and Godsland, I.F. (2015). Effects of
923 menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions.
924 *Maturitas* 81, 62-68.

925 67. Saha, K.R., Rahman, M.M., Paul, A.R., Das, S., Haque, S., Jafrin, W., and Mia, A.R. (2013).
926 Changes in lipid profile of postmenopausal women. *Mymensingh medical journal : MMJ* 22,
927 706-711.

928 68. Tabassum, R., Ramo, J.T., Ripatti, P., Koskela, J.T., Kurki, M., Karjalainen, J., Palta, P., Hassan,
929 S., Nunez-Fontarnau, J., Kiiskinen, T.T.J., et al. (2019). Genetic architecture of human
930 plasma lipidome and its link to cardiovascular disease. *Nature communications* 10, 4329.

931 69. Pralhada Rao, R., Vaidyanathan, N., Rengasamy, M., Mammen Oommen, A., Somaiya, N., and
932 Jagannath, M.R. (2013). Sphingolipid Metabolic Pathway: An Overview of Major Roles
933 Played in Human Diseases. *Journal of Lipids* 2013, 12.

934 70. Liang, W.-C., and Nishino, I. (2010). State of the art in muscle lipid diseases. *Acta myologica :
935 myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology
936 / edited by the Gaetano Conte Academy for the study of striated muscle diseases* 29, 351-356.

937 71. Just, S., Mondot, S., Ecker, J., Wegner, K., Rath, E., Gau, L., Streidl, T., Hery-Arnaud, G.,
938 Schmidt, S., Lesker, T.R., et al. (2018). The gut microbiota drives the impact of bile acids and
939 fat source in diet on mouse metabolism. *Microbiome* 6, 134.

940 72. Kindt, A., Liebisch, G., Clavel, T., Haller, D., Hörmannsperger, G., Yoon, H., Kolmeder, D.,
941 Siguener, A., Krautbauer, S., Seeliger, C., et al. (2018). The gut microbiota promotes hepatic
942 fatty acid desaturation and elongation in mice. *Nature Communications* 9, 3760.

943 73. Sorger, D., and Daum, G. (2002). Synthesis of Triacylglycerols by the Acyl-Coenzyme A:Diacyl-
944 Glycerol Acyltransferase Dga1p in Lipid Particles of the Yeast Saccharomyces
945 cerevisiae. *Journal of Bacteriology* 184, 519.

946 74. Guo, X., Lin, M., Rockowitz, S., Lachman, H.M., and Zheng, D. (2014). Characterization of
947 human pseudogene-derived non-coding RNAs for functional potential. *PloS one* 9, e93972-
948 e93972.

949 75. Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C.J.L., Furman, D., Shen-Orr, S., Dekker,
950 C.L., Swan, G.E., Butte, A.J., et al. (2015). Variation in the human immune system is largely
951 driven by non-heritable influences. *Cell* 160, 37-47.

952 76. Inouye, M., Silander, K., Hamalainen, E., Salomaa, V., Harald, K., Jousilahti, P., Männistö, S.,
953 Eriksson, J.G., Saarela, J., Ripatti, S., et al. (2010). An immune response network associated
954 with blood lipid levels. *PLoS genetics* 6, e1001113-e1001113.

955 77. Liang, W., Tonini, G., Mulder, P., Kelder, T., van Erk, M., van den Hoek, A.M., Mariman, R.,
956 Wielinga, P.Y., Baccini, M., Kooistra, T., et al. (2013). Coordinated and Interactive
957 Expression of Genes of Lipid Metabolism and Inflammation in Adipose Tissue and Liver
958 during Metabolic Overload. *PLOS ONE* 8, e75290.

959 78. Feng, Y.-M., Zhao, D., Zhang, N., Yu, C.-G., Zhang, Q., Thijs, L., and Staessen, J.A. (2016).
960 Insulin Resistance in Relation to Lipids and Inflammation in Type-2 Diabetic Patients and
961 Non-Diabetic People. *PloS one* 11, e0153171-e0153171.

962 79. Hubler, M.J., and Kennedy, A.J. (2016). Role of lipids in the metabolism and activation of
963 immune cells. *The Journal of nutritional biochemistry* 34, 1-7.

964 80. Doller, A., Akool, E.-S., Huwiler, A., Müller, R., Radeke, H.H., Pfeilschifter, J., and Eberhardt,
965 W. (2008). Posttranslational modification of the AU-rich element binding protein HuR by
966 protein kinase Cdelta elicits angiotensin II-induced stabilization and nuclear export of
967 cyclooxygenase 2 mRNA. *Molecular and cellular biology* 28, 2608-2625.

968 81. Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004). Epigenetics in human disease and
969 prospects for epigenetic therapy. *Nature* 429, 457-463.

970 82. Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes & development* 16, 6-
971 21.

972 83. Lim, D.H.K., and Maher, E.R. (2010). DNA methylation: a form of epigenetic control of gene
973 expression. *The Obstetrician & Gynaecologist* 12, 37-42.

974 84. Tindula, G., Lee, D., Huen, K., Bradman, A., Eskenazi, B., and Holland, N. (2019). Pregnancy
975 lipidomic profiles and DNA methylation in newborns from the CHAMACOS cohort. *Environ
976 Epigenet* 5, dvz004-dvz004.

977 85. Yalagala, P.C., Sugarsini, D., Dasarathi, S., Pahan, K., and Subbaiah, P.V. (2018). Dietary
978 lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: Potential treatment
979 for depression. *Journal of Lipid Research*.

980 86. Chan, J.P., Wong, B.H., Chin, C.F., Galam, D.L.A., Foo, J.C., Wong, L.C., Ghosh, S., Wenk,
981 M.R., Cazenave-Gassiot, A., and Silver, D.L. (2018). The lysolipid transporter Mfsd2a
982 regulates lipogenesis in the developing brain. *PLoS biology* 16, e2006443.

983 87. Hoile, S.P., Irvine, N.A., Kelsall, C.J., Sibbons, C., Feunteun, A., Collister, A., Torrens, C.,
984 Calder, P.C., Hanson, M.A., Lillycrop, K.A., et al. (2013). Maternal fat intake in rats alters
985 20:4n-6 and 22:6n-3 status and the epigenetic regulation of Fads2 in offspring liver. *The
986 Journal of nutritional biochemistry* 24, 1213-1220.

987 88. Hahn, O., Gronke, S., Stubbs, T.M., Ficz, G., Hendrich, O., Krueger, F., Andrews, S., Zhang, Q.,
988 Wakelam, M.J., Beyer, A., et al. (2017). Dietary restriction protects from age-associated DNA
989 methylation and induces epigenetic reprogramming of lipid metabolism. *Genome Biol* 18, 56.

990 89. Montoliu, I., Scherer, M., Beguelin, F., DaSilva, L., Mari, D., Salvioli, S., Martin, F.P., Capri, M.,
991 Bucci, L., Ostan, R., et al. (2014). Serum profiling of healthy aging identifies phospho- and
992 sphingolipid species as markers of human longevity. *Aging* 6, 9-25.

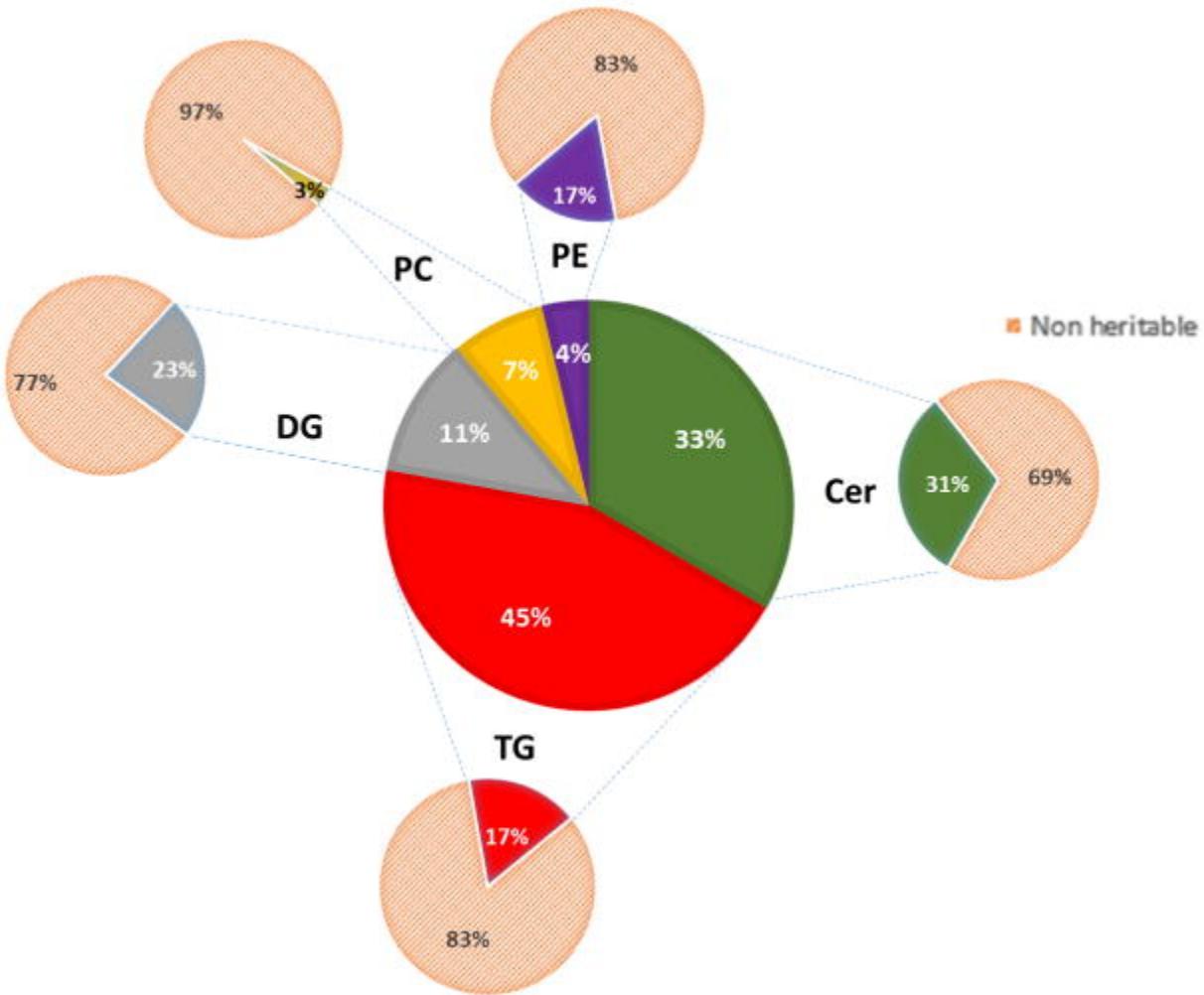
993 90. Clement, J., Wong, M., Poljak, A., Sachdev, P., and Braidy, N. (2019). The Plasma NAD(+)
994 Metabolome Is Dysregulated in "Normal" Aging. *Rejuvenation research* 22, 121-130.

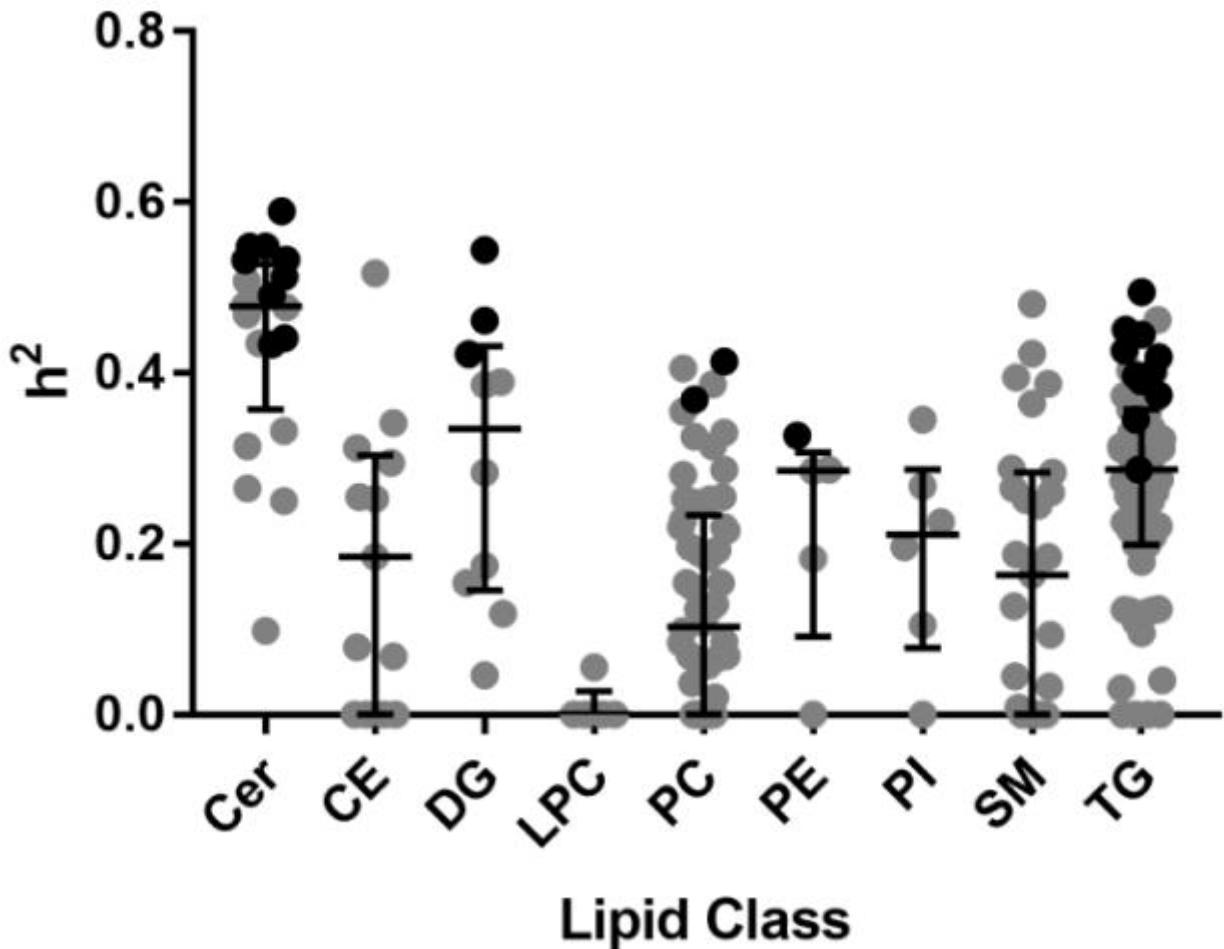
995 91. Levy, M., and Futerman, A.H. (2010). Mammalian ceramide synthases. *IUBMB life* 62, 347-356.

996 92. Laviad, E.L., Albee, L., Pankova-Kholmyansky, I., Epstein, S., Park, H., Merrill, A.H., Jr., and
997 Futerman, A.H. (2008). Characterization of ceramide synthase 2: tissue distribution, substrate
998 specificity, and inhibition by sphingosine 1-phosphate. *J Biol Chem* 283, 5677-5684.

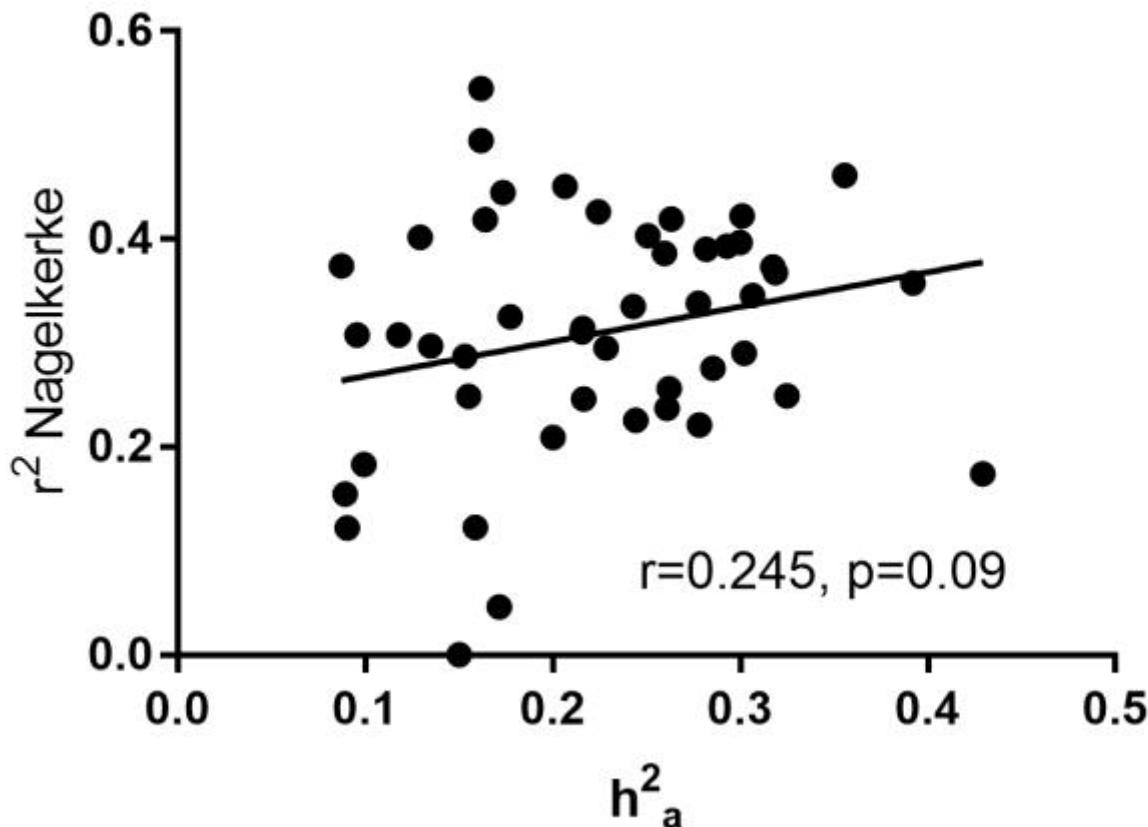
999

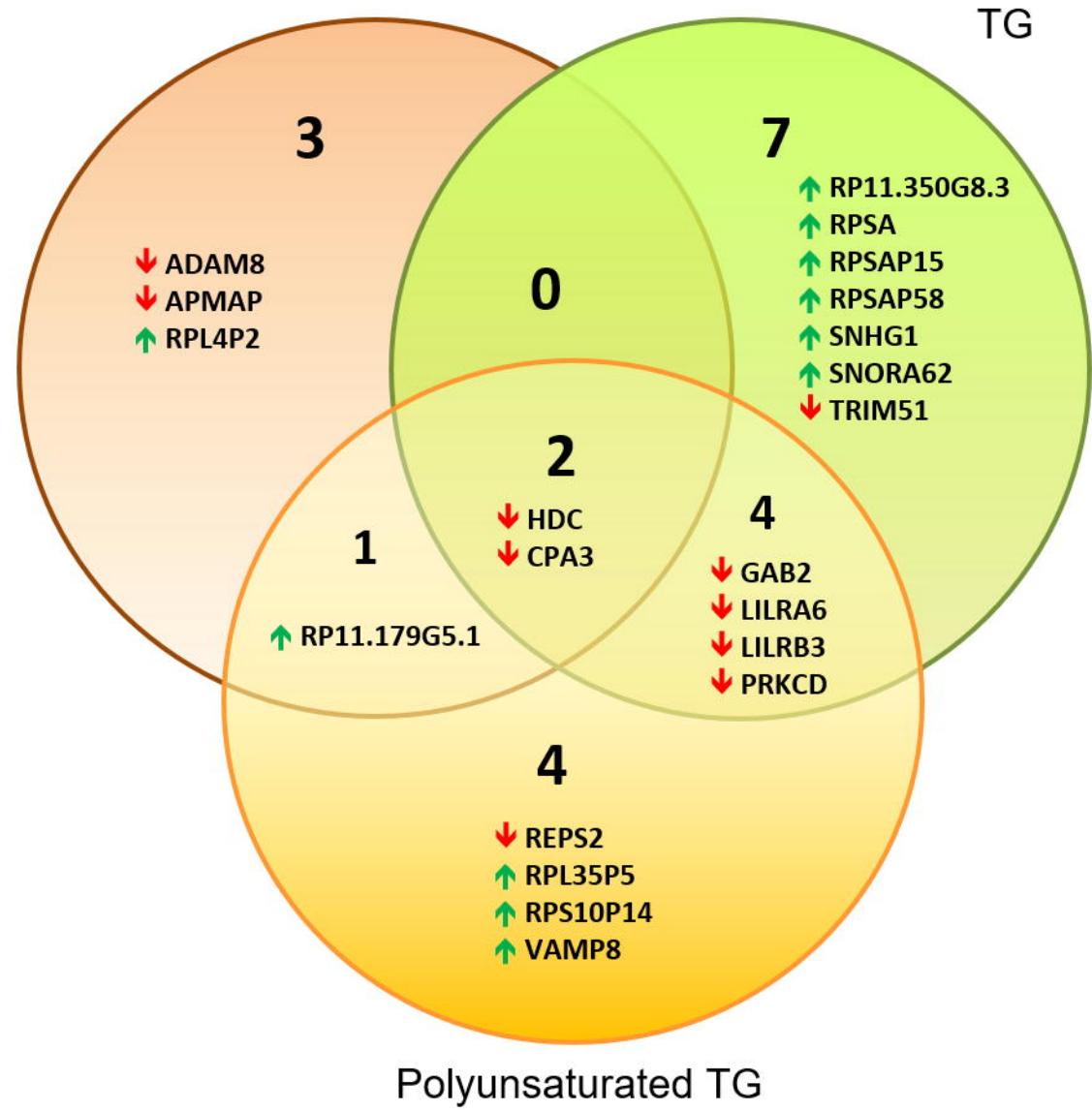
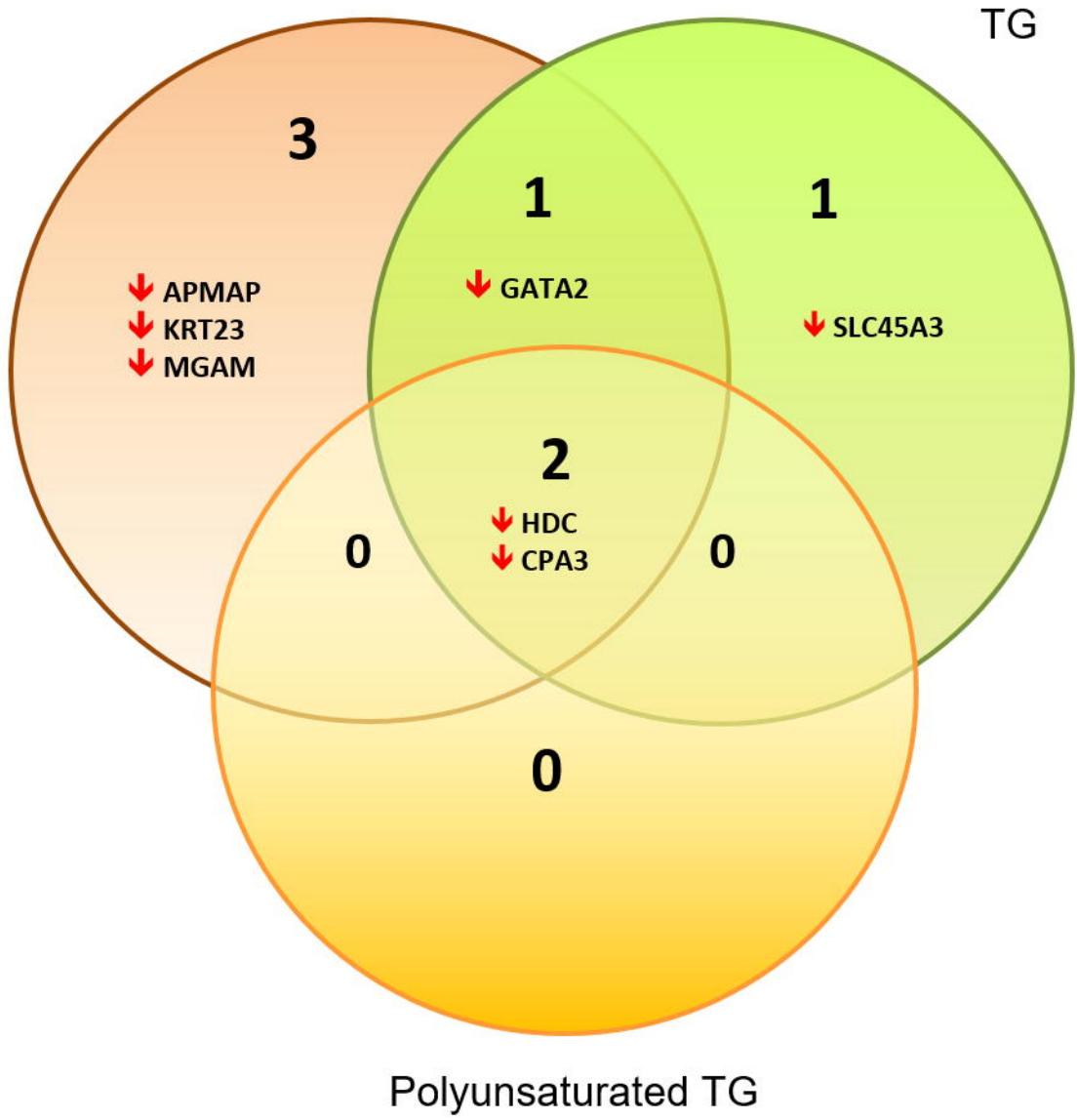
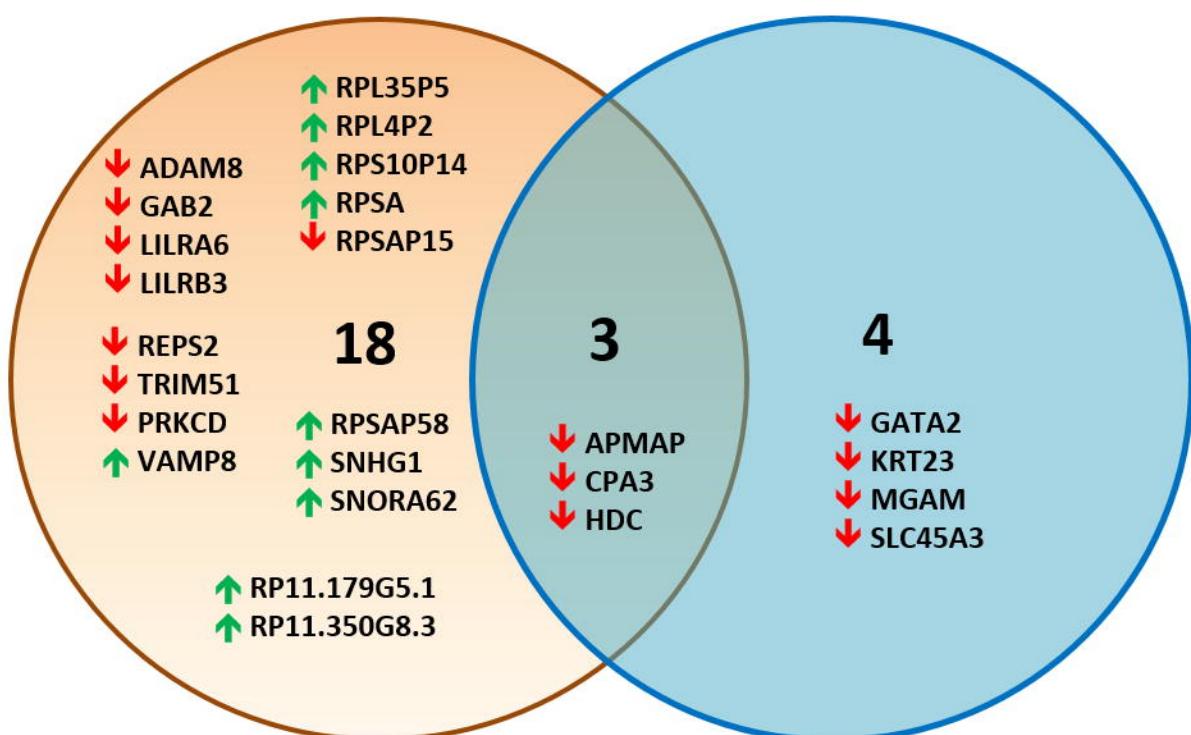
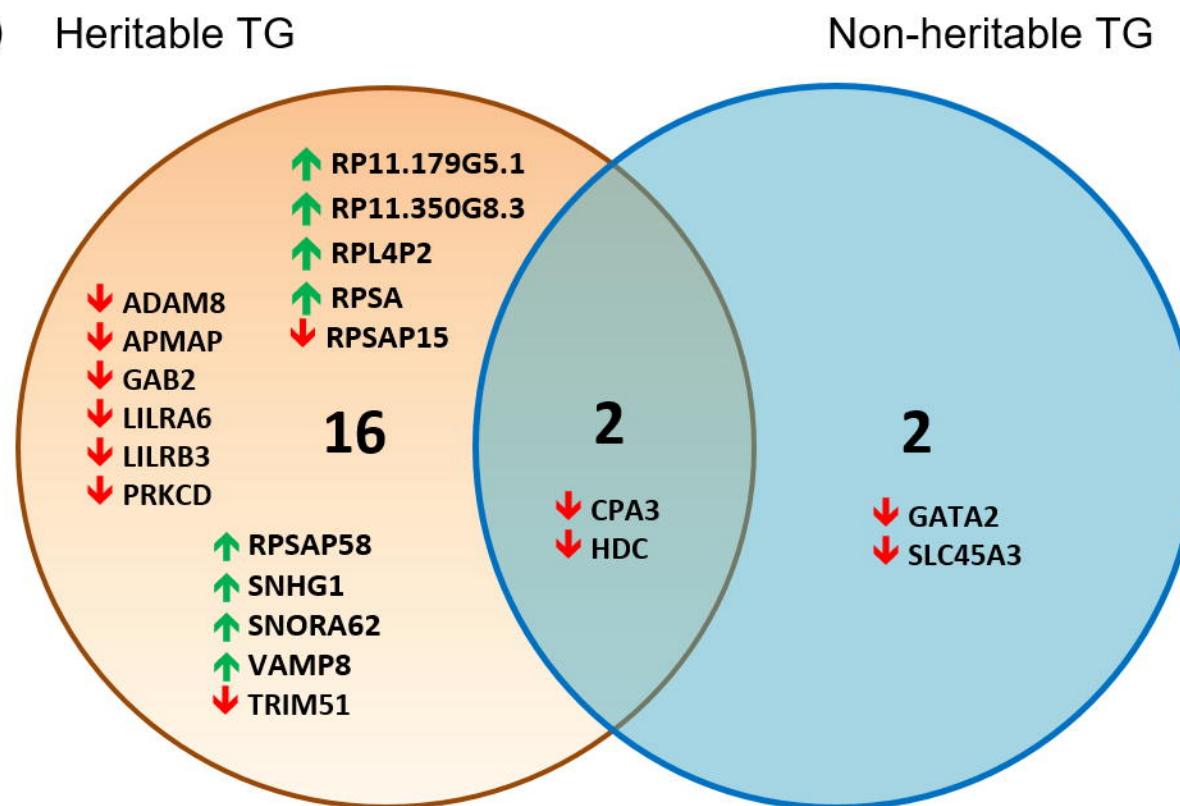
1000





Probe association vs h^2



A Saturated TG**B** Saturated TG**C** Heritable TG**D** Non-heritable TG

Genetic Impacts on Blood Lipids

e.g. elongases, desaturases, synthetases, receptors, binding proteins

