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The human brain is composed of regions that can be grouped into functionally specialized systems.
These systems transiently couple and decouple across time to support complex cognitive processes.
Recently, we proposed an edge-centric model of brain networks whose elements can be clustered
to reveal communities of connections whose co-fluctuations are correlated across time. It remains
unclear, however, how these co-fluctuation patterns relate to traditionally-defined brain systems.
Here, we address this question using data from the Midnight Scan Club. We show that edge
communities transcend traditional definitions of brain systems, forming a multiplexed network in
which all pairs of brain systems are linked to one another by at least two distinct edge communities.
Mapping edge communities back to individual brain regions and deriving a novel distance metric to
describe the similarity of regions’ “edge community profiles”, we then demonstrate that the within-
system similarity of profiles is heterogeneous across systems. Specifically, we find that heteromodal
association areas exhibit significantly greater diversity of edge communities than primary sensory
systems. Next, we cluster the entire cerebral cortex according to the similarity of regions’ edge
community profiles, revealing systematic differences between traditionally-defined systems and the
detected clusters. Specifically, we find that regions in heteromodal systems exhibit dissimilar edge
community profiles and are more likely to form their own clusters. Finally, we show show that edge
communities are highly personalized and can be used to identify individual subjects. Collectively, our
work reveals the pervasive overlap of edge communities across the cerebral cortex and characterizes
their relationship with the brain’s system level architecture. Our work provides clear pathways for
future research using edge-centric brain networks to investigate individual differences in behavior,

development, and disease.

INTRODUCTION

The human brain is a complex network made up of
functionally and structurally interacting neural elements
[IH3]. Traditionally, brain networks are represented using
models in which nodes and edges are defined as regions
and the magnitude of their correlated activity, i.e. func-
tional connectivity (FC), respectively [4H6]. This node-
centric model emphasizes interactivity among pairs of
nodes and has been especially useful in cognitive and net-
work neuroscience, where inter-individual variation has
been linked to subjects’ cognitive [7], disease [§], and de-
velopmental states [9].

Among the most salient features of node-centric func-
tional networks is their decomposability into subnetworks
called “modules” or “communities” [T0OHI3]. In general,
networks with modular structure are evolvable [14 [15],
are capable of supporting complex dynamics [I6], can
buffer perturbations, and facilitate cost-effective embed-
ding in three-dimensional space [I7]. In the case of
human brain networks, the boundaries of modules de-
lineate patterns of task-evoked activity [I8] and corre-
spond closely with known cognitive and functional sys-
tems [10, [I1]. This is true even when modules are esti-
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mated under task-free or resting-state conditions. This
observation has prompted the hypothesis that modular
structure is a key feature for supporting specialized brain
function [19].

In virtually every application, the brain’s modular
structure is estimated using node-centric FC, which re-
sults in a mapping of nodes (brain regions) to mod-
ules [20]. Recently, we proposed a novel edge-centric
model for representing pairwise functional interactions
among a network’s edges [21] 22]. Although node and
edge FC (nFC and eFC) are generated from identical
fMRI time series, the two constructs provide complemen-
tary insight into brain network organization and opera-
tion. Whereas nFC measures the extent to which the
activity of one brain region fluctuations with the activ-
ity of another, eFC unwraps those co-fluctuations across
time, first yielding moment-by-moment accounts of the
co-fluctuations between pairs of brain regions (edges)
and then assessing the similarity between pairs of co-
fluctuation time series [22].

Similarly, compared to the modular structure of nFC,
the modules estimated from eFC provide complemen-
tary information about the brain’s system-level organi-
zation. Clustering nFC results in a partition of nodes
into non-overlapping modules, such that each brain re-
gion gets assigned to one community and one community
only [23] 24]. Applying the same algorithm to eFC results
in a non-overlapping partition of edges into communities.
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However, when edges are mapped back to their respective
nodes, non-overlapping edge partitions yield overlapping
nodal partitions, such that a single node can be associ-
ated with multiple communities [25], [26].

In a previous paper, we characterized the basic prop-
erties of eFC, including its modular structure [21]. How-
ever, the relationship between modules derived from eFC
and brain systems derived from nFC remains unclear.
Are the edges that link brain systems to one another
homogeneous in terms of their edge community assign-
ments? Or are brain systems linked to one another via
diverse assemblies of edges that comprise several distinct
edge communities [27, 28]? Addressing these questions
would add clarity to our understanding of how the brain’s
modular structure helps support cognition.

Here we investigate this relationship in greater de-
tail with eFC estimated using Midnight Scan Club data
[29, 30]. First, we derive edge communities and show
that individual brain regions participate in many differ-
ent communities. Next, we investigate how these commu-
nities are distributed within and between traditionally-
defined brain systems. We demonstrate that all systems
are linked to one another via multiple distinct edge com-
munities. Focusing on the configuration of edge commu-
nities within brain systems, we use a data-driven com-
munity detection algorithm to uncover their multi-scale
organization [31], demonstrating that higher-order cog-
nitive systems exhibit more complex communities com-
pared to sensorimotor systems. We then apply the same
clustering algorithm to data from the entire cerebral cor-
tex, identifying a novel cluster structure that deviates,
systematically, from previously described brain systems.
Finally, we investigate edge community structure at the
level of individual subjects. We show that edge commu-
nity structure exhibits remarkable idiosyncrasies, which
are driven by the personalization of edge communities
outside of sensorimotor cortices. The results presented
here offer pathways for future studies aimed at relating
features of edge-centric networks to individual differences
in behavior and cognition.

RESULTS

In this section, we present analyses of eFC esti-
mated using resting-state data from the Midnight Scan
Club (MSC). Complete details of MRI acquisition, pre-
processing pipelines, and network construction can be
found in Materials and Methods.

Edge communities reveal
overlapping network structure

Many studies have shown that the brain exhibits mod-
ular structure, meaning that its elements can be parti-
tioned into cohesive clusters called communities or mod-
ules [10, 111 B2] [33]. Modules are usually defined to be

internally dense and non-overlapping (with some notable
exceptions [34H37]), such that nodes are assigned to one
module only and that nodes tend to be strongly con-
nected to other nodes in their own module and weakly
connected to nodes in other modules. Recently, we de-
veloped a novel edge-centric representation of brain net-
works, which we used to cluster network edges, resulting
in overlapping nodal communities. Here, we replicate
those findings using data from the Midnight Scan Club.
We show that community overlap varies across cerebral
cortex and canonical brain systems [38]. These observa-
tions motivate a further exploration of the relationship
of brain systems and edge communities.

We first derived group-representative edge communi-
ties. To do so, we estimated edge time series for all 100
resting-state scans in the dataset (10 subjects; 10 scans
each), concatenated these data, and used a two-stage
clustering algorithm to generate 250 estimates of com-
munities before synthesizing these results into consensus
edge communities. These communities can be visualized
in several different ways. First, because the clustering
algorithm operates at the level of edges, we can visualize
edge communities in matrix form, by labeling the edge
between nodes ¢ and j according to its edge community
assignment (Fig. b). Here, each color corresponds to a
different edge community (as in our previous paper, we
show results with the number of communities fixed at
k = 10; see Fig. for edge communities detected at
other k). A second strategy for visualizing edge com-
munities is to calculate for each node the fraction of its
edges that belong to a given community. This procedure
is especially useful, as it allows us to describe edge com-
munities more intuitively in terms of brain regions and
systems (Fig. [[jc). This also allows us to visualize the
topography of edge communities in anatomical spaces,
by projecting regional participation in edge communities
onto brain surfaces (Fig. [1}d).

Following our previous paper, we then calculated the
level of community overlap for a given brain region as
normalized entropy, where values close to 0 indicate that
a brain regions’ edges are concentrated among a small
number of communities, while values close to 1 indicate
that edges are uniformly distributed over communities
(Fig. [je). Notably, we found that there were no re-
gions with entropies near zero, in agreement with the
observation from our previous paper that brains exhibit
“pervasive overlap.” Nonetheless, the community overlap
measure exhibited cortical specificity. Again, in agree-
ment with our previous paper, we found that the great-
est levels of overlap were concentrated in primary sen-
sory and attentional networks (Fig. [1lf,g). This observa-
tion indicates that the connections associated with brain
regions in those systems are involved in many different
edge communities. In contrast, heteromodal association
cortices, which include control, default mode, and limbic
networks, exhibited the lowest levels of overlap.

Collectively, these results recapitulate the main find-
ings from our previous paper |21, and extend them to an
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FIG. 1. Edge functional connectivity. (a) Force-directed layout of edge functional connectivity (eFC). Each point represents
an individual edge, colored according to the brain systems to which the edge’s stub nodes belong to. (b) Edge communities
mapped into a node X node matrix. Each color reflects a distinct edge community. (¢) Edge communities mapped back to
individual nodes. In this plot, rows and columns represent nodes and communities, respectively. Within each column, colors
indicate the fraction of a node’s edges that are associated with the corresponding edge community. We can project the columns
of this matrix onto the cortical surface. In panel d we show projections for each of the £ = 10 edge communities. From edge
communities, we can also calculate the normalized entropy for each node — a measure of community overlap, In panel e we
show projections of those overlap scores onto the cortical surface. (f and g) We can then aggregate, entropy (overlap) scores
according to brain systems. As in our previous paper, we find that overlap is greatest in primary sensory and attentional
systems and lowest in association cortices.

increasingly fine-grained parcellation [38]. More practi- form additional complex analyses in the future. In sum-
cally, the fact that we could obtain qualitatively similar mary, these findings are in line with our earlier report
community structure and overlap by clustering edge time [21] and provide a baseline for the following extension of
series, which are more computationally tractable than the edge connectivity framework.

the edge connectivity matrix, makes it possible to per-
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FIG. 2. Edge community templates reveal system-dependent organization. (a) Edge communities mapped into a
node X node matrix. (b) We generated community templates, where each community is represented as a binary matrix with
edges assigned a value of 1 or 0 depending upon whether they were included in that community. (¢) We aggregated template
edges by brain systems, counting the number of edges that fell within or between eight canonical brain networks. (d) Each
template describes the fraction of inter- and intra-system interactions mediated by a given edge community (here, we split
systems into their left- and right-hemisphere components for visualization only). (e) We can use these templates to identify
brain systems linked to one another by edges assigned to many or few edge communities (high or low entropy). (f) We calculated
the entropies for all pairs of brain systems. (g) If we consider only within-system edges, we find that heteromodal association
cortex tends to have greater entropy and participate in a greater number of discrete edge communities than primary sensory
systems (panels h and 1).

System-level complexity of higher-order heteromodal systems.
edge community structure We first mapped edge community labels into a node-
by-node matrix (Fig. ) and, for each edge community,
An edge community is a collection of edges — pairs  extracted its template pattern (Fig. )a in which edges
of nodes — whose co-fluctuations follows a similar time  belonging to that community were assigned a value of 1
course. How are these communities distributed within while all other edges were set equal to 0. We aggregated
and between canonical brain systems [10, 1T, B38]? Are the nonzero elements in each template by cognitive sys-
some brain systems linked to one another via many com- tems, COllIltiIlg the fraction of the edges within or between
munities? Are others linked by few? Here, we address  those systems that belonged to a given edge community
these questions by considering edge community templates  (Fig. [2l¢). These system-by-system maps quantified the

— binarized maps of edge communities — which we ag- extent to which systems were linked by a given edge com-
gregate into descriptions of system-level interactions. In munity (Fig. d)-

general, we find additional evidence of “pervasive over- Using the system-by-system maps, we estimated the
lap” [25], such that virtually all pairs of systems are entropy associated with all pairs of systems (Fig. e).
linked to one another by at least two edge communities. Intuitively, if the edges between those systems belonged

We also find that, internally, sensorimotor systems are to a diverse set of edge communities, then the entropy
spanned by relatively few edge communities compared to score was high. On the other hand, if the edges belonged
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FIG. 3. Categorization of edge communities.

Edge communities

(a) Each edge community was classified as a “cohesive” or “bridge”

community according to whether edges belonging to that community fell within or between brain systems, respectively. We
further sub-classified bridge communities according to whether the edges linked heteromodal systems (control, default mode,
dorsal attention, salience/ventral attention, limbic, temporoparietal) to other heteromodal systems or to sensorimotor systems
(somatomotor, visual). We referred to these two sub-categories as “association” and “processing” communities, respectively.
(b) As expected, we found that cohesive communities included a greater proportion within-system edges compared to bridge
communities. Similarly, association communities had a greater proportion of edges linking heteromodal systems to other
heteromodal systems (panel ¢) while processing communities exhibited a greater proportion of heteromodal to unimodal edges
(panel d). In panel e, we show the ten edge communities divided into their respective classes. The vertical line divides
“cohesive” from “bridge” communities while the horizontal line divides “association” from “processing”. The outlines (black,

green, red) are used to help identify system pairs responsible for that edge community’s classification.

to relatively few communities, then the entropy was low.
Interestingly, we found that the highest levels of entropy
were associated with connections between the dorsal at-
tention and cognitive control networks, while the lowest
were associated with the within-system connections of
the somatomotor network (Fig. ) When considering
just the internal edges of brain systems, we found that
default mode and dorsal attention had the highest levels
of entropy while, somatomotor, temporparietal, and the
visual network were among the lowest. Similar patterns
were when considering the number of distinct edge com-
munities observed in within- and between-system blocks
(Fig. [2h.3).

Finally, we investigated the structure of each edge com-
munity in greater detail, focusing on the specific brain
systems that it linked. Broadly, edge communities could
be sub-divided into two groups: “cohesive” communi-
ties that included disproportionately many within sys-

tem edges and “bridge” communities, comprised mostly
of edges that fell between brain systems (Fig. Bla).
We further sub-classified “bridge” communities based
on the systems that they linked: “association” bridges
linked heteromodal systems (control, default mode, dor-
sal attention, limbic, salience/ventral attention, and tem-
poroparietal systems) to one another, while “processing”
bridges linked heteromodal and unimodal systems (so-
matomotor and visual) to each other (Fig. [3[p). As ex-
pected, we found that cohesive communities contained
a greater proportion of within-system edges than bridge
communities (Fig. b; p < 0.05; t-test). We also found
that association communities contained a greater propor-
tion of edges linking heteromodal systems to one another
compared to processing communities (Fig. ; p < 0.05;
t-test) while processing communities contained a greater
proportion of heteromodal to unimodal edges (Fig. ;
p < 0.05; t-test). We show the full ontology of edge com-
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munities in Fig. Ble. We find similar results with different
numbers of edge communities (Fig. [52).

Collectively, these findings suggest that the brain’s
edge community structure is pervasively overlapping,
such that all pairs of brain systems are linked to one
another via multiple edge communities that, in turn, re-
flect distinct patterns of edge co-fluctuations. Second,
these findings further suggest that although all systems
interact via distinct modes, the number and diversity
of modes is system-dependent and that heteromodal sys-
tems exhibit a more complex internal structure than sen-
sorimotor systems. Further, the particular configuration
of edge communities among brain systems suggests dis-
tinct functional classes, with some edge communities po-
sitioned to maintain the cohesiveness of systems and oth-
ers to form links across system boundaries.

Multi-scale and system-dependent
organization of edge community structure

In the previous section, we showed that brain systems
can be linked to one another via different modes of cou-
pling (edge communities). Notably, we found that the
diversity of edge communities within brain systems was
highly variable. Here, we investigate the internal struc-
ture of brain systems in greater detail. To do so, we intro-
duce the concept of an edge community profile and define
a measure of similarity for comparing profiles between
pairs of regions. Separately for each cognitive system,
we generate the interregional similarity matrix among all
regions assigned to that system, which we partition us-
ing multi-scale modularity maximization [23| B9-H41]. We
find that the number of distinct sub-communities within
each brain system was greatest for higher-order cognitive
systems, whereas sensorimotor networks exhibited many
fewer sub-communities.

To estimate multi-scale community structure, we lever-
aged the node-by-node matrix representation of edge
communities (Fig. a) and extracted each region’s edge
community profile as the corresponding row (Fig. [b).
To measure the similarity between two region’s profiles,
we simply measured the fraction of their elements as-
signed to the same edge community. Repeating this pro-
cess for all pairs of brain regions generated a node-by-
node similarity matrix (Fig. c). Considering separately
the within-system elements for each system, we found
that visual and sensorimotor systems exhibited signifi-
cantly greater levels of similarity compared to the other
brain systems (permutation test, p < 107%; Fig. [dd.e).
We found similar results with different numbers of edge
communities (Fig. [S3).

Next, we clustered the within-system similarity ma-
trix for each system (Fig. a). This procedure entailed
extracting the set of within-system similarity values and,
using a variant of modularity maximization [23], estimat-
ing clusters across a range of topological scales (by vary-
ing the value of a structural resolution parameter, -y, over

the interval [0, 1] in increments of 0.002 [39]). We then
grouped together clusters estimated using similar param-
eter values and, from these estimates, extracted consen-
sus clusters [42]. We repeated this procedure for multiple
topological scales (resolution parameters); here we focus
on the range 0.4 < v < 0.5.

In general, we found that the number of detected clus-
ters was greatest in higher-order systems compared to
(Fig.|5lb). We find similar results at other ranges of v (see
Fig.|S4). Here, we focus on the control network (we show
results for other brain systems in Fig. and compar-
isons with other reported sub-divisions in Fig. , which
the clustering algorithm partitioned into three clusters
(Fig. plc). Each cluster was, internally, homogeneous
(Fig.|5ld) and was comprised of regions with distinct edge
community profiles (Fig. e). We show these profiles in
greater detail in Fig. |5|f-1.

Intuitively, we can think of these profiles as delineating
different patterns by which the activity of regions in the
control network and the rest of the brain co-fluctuates.
To map these patterns back to brain systems, we calcu-
lated the dominant edge community linking each of the
three control clusters to the eight canonical systems. We
depict these cluster-to-system links as hub and spoke di-
agrams in Fig. [Blj-I. At the center of each diagram is a
hub that represents the set of control regions assigned to
that cluster. Those regions are connected to each system
by spokes colored according to dominant edge commu-
nity. For instance, edges from control regions in cluster
1 to regions belonging to the salience/ventral attention
system tend to belong to the red edge community, while
edges linking that cluster to the visual network tend to
be cyan edge community.

Importantly, while this analysis suggests that there
exists distinct modes of coordination between control
regions and the rest of the brain, there are also some
patterns of edge communities shared across the multiple
clusters. Specifically, we found that nodes in the control
network tend to be linked to one another via the same
edge community (Figure. [fjn). On the other hand, the
edge community assignments of nodes in the control net-
work to dorsal attention, salience/ventral attention, and
visual networks are all highly variable.

Taken together, these findings indicate that the inter-
nal structure and complexity of edge communities varies
across systems. Building on observations from the pre-
vious section and in agreement with the extant litera-
ture, we find that the the greatest level of complexity are
located in the higher-order, heteromodal brain systems,
which are associated with a range of cognitive domains.
Our findings suggest that their polyfunctionality may be
engendered by the diversity of edge communities profiles.
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FIG. 4. Edge community similarity. (a) Edge communities reshaped into a node X node matrix. () We can treat the
columns and rows of this matrix as “profiles” for different regions, and compare nodes’ community labels to measure the
similarity of two profiles with respect to one another. Repeating this process for all pairs of nodes results in a similarity matrix
(¢). The average similarity between nodes within each brain system is highly variable. We find that control networks exhibit
low levels of overlap and are composed of nodes with heterogeneous edge community profiles (see panel d; individual points in
this panel correspond to the edge community similarity for pairs of brain regions within a given system). In contrast, we find
that sensorimotor networks (visual 4+ somatomotor) exhibit high levels of overlap, but are composed of nodes with homogeneous
edge community profiles. We can also visualize the heterogeneity of each system by projecting their mean internal similarity
onto the cortex (e). Note that similarity is greatest for visual and somatomotor systems.

Uncovering whole-brain communities from edge
community profiles

In the previous section, we used a multi-resolution
community detection algorithm to uncover the cluster
structure of edge communities within specific brain sys-
tems. Although these analyses revealed differences from
one system to another, they prevented us from discov-
ering patterns in edge communities at the whole-brain
level. For instance, if two nodes had identical edge com-
munity profiles but were assigned to different systems,
the previous analyses would be incapable of grouping
them together into the same cluster. To address these
limitations, we used the same algorithm as in the previ-
ous section to uncover multi-scale community structure
using whole-brain data. We found that clusters derived
from edge communities largely approximated known cog-
nitive systems. However, we also uncovered subtle yet
systematic differences between nodes’ assigned clusters
and their canonical system labels.

We applied a multi-resolution consensus clustering
algorithm to partition the cerebral cortex into non-
overlapping communities of different sizes (Fig. [Ga).
Here, we focus on an intermediate scale that resulted in
seven large clusters and multiple small clusters (which we

group into a separate cluster for convenience) (Fig. [6]p).
We note that the larger clusters tended to be stable
across the full range of v values. At an intermediate level
(0.4 < v < 0.5), nodes assigned to the detected clusters
were similar to one another (Fig. [blc), resulting in ho-
mogeneous edge community profiles (Fig. @d; we show
partitions derived at other resolutions in Fig. .

Broadly, the detected clusters were similar to known
brain systems (Fig. @e). To assess this correspon-
dence more directly, we computed the similarity (Jac-
card index) of each region’s assigned cluster and system.
Overall, the visual and somatomotor networks exhibited
greater than expected similarity while control, dorsal at-
tention, limbic, and temporparietal networks were more
dissimilar than expected (padgjustea = 0.0016; false dis-
covery rate fixed at 5%; Fig.[6]f). To better visualize the
overlap, we calculated the composition of each cluster in
terms of their assigned nodes’ system labels (Fig.[6lg). We
found that clusters 1, and 2 were almost uniformly com-
posed of regions from the visual and somatomotor sys-
tems. The other clusters were less homogeneous, and re-
ceived substantial contributions from multiple brain sys-
tems. Interestingly, cluster 8 (which was an aggregate of
all the small communities) included relatively few sen-
sorimotor nodes and was composed of regions from con-
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FIG. 5. Cluster structure of edge communities. (a) Pipeline for estimating system-specific multi-resolution clusters. (b)
We found that the systems with the greatest number of communities included control, default mode, and both dorsal and
ventral attention networks. In panels ¢ - n, we focus on the control network specifically. (¢) Co-assignment matrix ordered
by consensus communities. (d) The within-system similarity matrix ordered according to the three-cluster solution. (e) Edge
community profiles ordered according to clusters. Topographic representation of consensus clusters (f) and cluster centroids
(g-i). In each centroid plot, nodes are colored according to the mode of their edge community assignments emanating from
the control network. The brightness of nodes indicates “cluster homogeneity.” (5 - 1) Hub and spoke plots for each centroid
revealing the dominant edge community linking centroids to brain systems. Maximum affiliation of control nodes to any of the
10 edge communities aggregated by brain system (m) and displayed topographically (n).

trol, default mode, attention, limbic, and tempoparietal
systems. We performed a similar analysis, grouping the
detected clusters by brain systems (Fig. @h) We found
that visual and somatomotor systems were composed of
relatively few distinct clusters, whereas the other brain
systems were composed of nodes from multiple different
clusters.

Collectively, these results suggest that the similarity of
regions’ edge community profiles is largely aligned with
the brain’s known system-level organization. However,
we also find that differences between the two sets of labels
follow a distinct pattern. Misalignment tends to involve
regions typically assigned to heteromodal systems.

Edge community structure is subject-specific

To this point, all analyses have focused on relating
brain systems to edge communities using pooled, group-
representative data. These analyses uncovered shared
relationships, common across a small cohort of individu-
als. However, there remain several important unresolved
questions. For instance, to what extent are edge com-
munities variable across individuals? Are the edge com-
munity profiles of some regions and systems differentially
variable across individuals? Does variability of those fea-
tures reflect meaningful, subject-specific traits? Here, we
address these questions by detecting and comparing edge
communities within and between subjects and scans.

To address these questions, we performed three sep-
arate analyses. First, for each subject we concatenated
their scans and estimated their subject-specific consensus
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edge communities (Fig. a). Subjects’ edge communities
were more similar to group representative partition than
expected by chance (permutation test; p < 1073).

Visual inspection revealed that edge communities were
heterogeneous across subjects, suggesting that edge com-
munities might capture idiosyncratic and subject-specific
variation. To test this hypothesis, we estimated edge
communities for each subject and each scan (Fig. [7b).
If edge communities were unique to individual subjects,
then we would expect that imposing them on another
scan from the same subject would result in segregated
edge communities (strong internal eFC; weak external
eFC). On the other hand, imposing those edge parti-
tions onto eFC from a different individual would result
in reduced segregation. We tested this hypothesis by
systematically imposing each of the 100 edge partitions
onto eFC estimated from 10 subjects and their 10 scans
(100 scans in total) and calculated the “segregation”
score as a the mean within-community eFC minus the
mean between-community eFC (Fig. [Tle). As expected,
we found that segregation was greatest when we imposed
a partition back on the eFC used to estimate those edge
communities in the first place (Fig. d). Interestingly, we
also found the segregation was greater when we imposed
edge communities on eFC estimated from the same in-
dividual than on eFC estimated from other individuals
(Fig. d). These observations suggest that edge com-
munities capture meaningful, subject-specific patterns of
edge-edge interactions.

These analyses, however, did not reveal what parts of
the brain make subjects identifiable. Here, we address
this question by estimating the differential identifiability
associated with the edge community structure of every
brain region. Specifically, for a given scan and subject,
we can generate a vector region ¢’s similarity with re-
spect to all j # ¢ (Fig. e). We can then extract analo-
gous vectors from that subject’s other scans and from all
subjects’ and their respective scans. Calculating the ma-
trix of pairwise correlations, we compute the differential
identifiability as the mean within-subject similarity mi-
nus the mean between-subject similarity. We then repeat
this procedure for all regions.

This procedure generates a score for every brain re-
gion that describes, on average, how personalized and id-
iosyncratic its edge communities are. In Fig. [7]f, we show
those scores projected onto the cortical surface. Inter-
estingly, we find considerable variability across the cor-
tex in terms of identifiability, with regions in the control
network, along with temporparietal and dorsal attention
networks performing particularly well (Fig. @) We find
similar results using different numbers of communities
(see Fig. [Sg).

In summary, these results further implicate the con-
trol network, along with other areas in attentional and
temporparietal networks, as key drivers of individuality
in edge communities. Our work builds on a previously
established quantitative framework for tracking identifi-
able features of brain imaging and network data [43], and

extends this framework using edge connectivity data. In
doing so, we rely on a mapping of edge communities back
into a node-centric framework, thereby improving their
interpretability.

Overall, these findings suggest that edge communities
are highly personalized, and that this personalization can
be linked to the variability of edge communities associ-
ated with many different systems in general, but in par-
ticular the cognitive control network. These observations
agree with other recent studies reporting that control net-
works carry personalized information about subjects [44].
In summary, our findings underscore the inter-subject
variability of the brain’s community and system-level ar-
chitecture, complementing companion analyses of MSC
data using node-centric models of connectivity [29] B0].

DISCUSSION

In this paper, we investigated the configuration of edge
communities across canonical brain systems. We found
that all pairs of systems were linked to one another by at
least two edge communities and that the exact number
and diversity of such links varied by system. Focusing
only on within-system edges, we found that the variabil-
ity and diversity of edge communities comprising higher
order cognitive systems was greater than that of senso-
rimotor systems. We then used a data-driven clustering
algorithm to partition brain regions in each brain system
into multi-scale communities according to the similarity
of their edge community profiles. We found that the num-
ber of detected communities is greatest in heteromodal
systems and lowest in sensorimotor systems. Repeating
this analysis using data from the complete cerebral cor-
tex, we discovered that, overall, the detected clusters
resembled known brain systems. However, there were
also systematic discrepancies between system labels and
the detected clusters, revealing incongruity between clus-
ters derived from traditional nFC and those derived from
eFC. Finally, we show that edge community structure is
subject-specific and reproducible across multiple scans
of the same individual. This personalization is driven by
the edge community assignments of nodes located in con-
trol, default mode, dorsal attention, and temporparietal
networks.

Pervasive overlap and multiplexity

Many studies have partitioned brain regions based on
their functional connections, revealing a surprisingly con-
sistent set of communities that align well with activation
patterns and well-known brain systems [10] [IT} [T3], [45].
These observations suggest that assortative and segre-
gated communities may play an important role in the
emergence of functional specialization. Here, rather
than focus on partitions of brain regions into communi-
ties, we leveraged a recently-proposed edge-centric net-
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work model to partition connections into communities
[21122]. The resulting edge communities delineate groups
of functional connections whose valence and amplitude
co-fluctuate with one another over time. We speculate
that these co-fluctuation patterns may correspond to dis-
tinct modes of interregional communication.

A key question, then, was whether edge communities
were aligned with the boundaries of traditionally-defined
brain systems. That is, if we were to examine the com-
plete set of connections between regions in systems A and
B, would those connections co-fluctuate uniformly and be
assigned to a single edge community, or would they be
composed of several distinct patterns of co-fluctuation?
Phrased alternatively and in line with the hypothesis
that co-fluctuating edges reflect distinct modes of inter-
regional communication — do systems communicate with
one another through a single homogeneous mode or do
they communicate in parallel via a series of multiplexed
channels? Here, we addressed this question by counting
the number and distribution of edge communities link-
ing pairs of systems. In all cases, systems were linked
by multiple edge communities, although the number and
diversity varied considerably across system pairs. These
observations suggest that the brain exists in a state of

“pervasive overlap” [21], 25], where regions and systems
throughout the brain are linked to one another through
multiple edge communities.

Our findings have important implications for under-
standing brain function. In most studies, brain regions
are assigned to non-overlapping communities with dis-
tinct functional profiles [10, 11l 46]. Polyfunctionality
emerges from this caricature in the form of a small subset
of brain regions whose connectivity patterns span system
boundaries [19, [47]. On the other hand, we find that all
brain regions participate in many communities and the
functional connections bridging brain systems are asso-
ciated with a plurality set of community labels. These
observations suggest that overlapping function may be
a key organizing principle of brain networks, and a rule
rather than an exception.

Why, then, do we observe multiplexed, overlapping
community structure in the brain?  Why are the
same brain systems linked by dissimilar patterns of co-
fluctuation? Onme obvious possibility is that the current
system ontology does not fully capture the sub-divisions
and fine-scale structure of cortical architecture [48]. That
is, edge communities may reveal organization that is
obscured by or inaccessible using node-centric network
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(e) Pipeline for calculating regional differential identifiability.

(f) Topographic representation of regional

differential identifiability scores. (g) Regional differential identifiability scores aggregated by brain systems.

models. Another possibility is that edge communities
reflect a form of functional robustness and redundancy
[49]. That is, by communicating across multiple “chan-
nels” | brain systems reduce the likelihood that damage to
any one channel would result in a complete disruption of
communication and brain function [50H53]. Future work
is necessary to clarify the precise functional roles of mul-
tiplexed and overlapping communities.

Heterogeneity and system-specificity of edge
community profiles

Here, we examined edge communities from the per-
spective of brain regions by defining edge community
“profiles”. Focusing on profiles, we were able to map edge
communities from an unfamiliar and large m-dimensional
edge space back into a n-dimensional node space. By
studying the similarity of regions’ profiles to one another,

we were able to characterize the diversity of edge com-
munities among regions that make up traditional brain
systems. Using this approach, we generated region-by-
region similarity matrices for every system and clustered
them using a multi-resolution algorithm.

Interestingly, the internal structure of edge community
profiles varied across brain systems, with the regions in
sensorimotor systems exhibiting highly similar edge com-
munity profiles and regions in higher order, heteromodal
systems exhibiting greater variation. These observations
agree with current theories of cortical organization and
function. In terms of node-centric community structure,
sensorimotor systems are among the most functionally
segregated [10, 54] and occupy opposite positions along
smoothly varying functional gradients [55].

The same analysis pipeline was applied to similarity
matrices constructed using edge community profiles from
the entire cerebral cortex. Specifically, the detected com-
munities resembled known system-level divisions of cor-
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tex [38]. We found that regions associated with higher-
order brain systems were more likely to fragment and
form small (sometimes singleton) clusters with distinct
edge community profiles. Importantly, the detected clus-
ters were inhomogeneous and contained regions associ-
ated with multiple brain systems. Collectively, these
findings suggest that edge communities give rise to dis-
tinct regional profiles that are organized into clusters that
span traditional system-level boundaries.

Personalization of edge community structure

Most of this report focused on edge community
structure using composite edge time series assembled
from multiple subjects. Although analysis of group-
representative data can uncover patterns of eFC shared
across many individuals, it is poorly suited for uncovering
personalized and idiosyncratic features of eFC, which are
key elements necessary for biomarker generation [56, 57].
Addressing this limitation, we derived edge communities
for the ten individuals in the Midnight Scan Club dataset.
We found that subjects’ edge community structure was
idiosyncratic, so communities estimated from subject s
using data from scan ¢ did a good job describing edge
communities of the same subject on scan t' but a poor
job describing edge communities of any other subject.
Importantly, these idiosyncrasies arise from the commu-
nity assignments of edges associated with control, default
mode, dorsal attention, and temporoparietal networks.

These observations agree with other recent analysis of
MSC data, reporting high levels of personalization in
both cortical and subcortical networks [29] 30} 58], (9].
Like similar findings in larger populations [43] [44] our
findings implicate heteromodal association cortex as be-
ing both highly repeatable across scans of the same sub-
ject but maximally dissimilar across individuals. These
observations suggest that edge communities, which we
interpret as modes of temporally-resolved accounts of
ongoing communication between brain regions, are also
subject-specific and personalized. We further link the
personalization of edge community structure to the as-
signments of edges associated with higher-order cogni-
tive systems, including control, default mode, dorsal at-
tention, and temporoparietal networks. The findings
reported here align with other recent studies suggest-
ing brain network organization is highly individualized
[29, B0, 58] [60H62]. Collectively, these observations open
up the tantalizing prospect of more targeted and increas-
ingly personalized interventions in the future.

Future directions

Our work opens up several opportunities for future
studies, both methodological and applied. For instance,
are inter-individual differences in the number and di-
versity of edge communities between brain systems re-
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lated to behavioral, demographic, and clinical variables
of interest like a subject’s performance on a cognitively-
demanding task [7], their biological age [63], or their neu-
ropsychiatric state [8]? Similarly, future studies should
investigate individual differences in the composition and
sub-divisions of brain systems. For example, is the com-
plexity and heterogeneity of edge community profiles
within subjects’ control networks related to their perfor-
mance on tasks that require cognitive control, e.g. Stroop
or Navon tasks [32] [64]?

Other potentially fruitful opportunities for future stud-
ies include exploring subcortical [58] and cerebellar orga-
nization [65] with edge communities. These areas were
excluded from the present study, but could be investi-
gated in greater detail, yielding new insight into cortical-
subcortical interactions [66]. Relatedly, features derived
from edge-centric network models, including overlap-
ping communities, could be incorporated into parcella-
tion generation frameworks to create novel cortical par-
cellations [67].

Limitations

One overarching limitation surrounding this study con-
cerns the interpretability of eFC. While traditional nFC
is now largely accepted within the human neuroimag-
ing community and is frequently interpreted as a mea-
sure of interregional communication (although with many
caveats [68]), eFC is novel, high-dimensional, and may be
difficult to interpret. While this study attempts to form a
conceptual bridge between the system-level organization
of nFC and edge communities, future work is necessary
to clarify, in more precise terms, the relationship between
these two constructs.

A second limitation concerns the procedure for esti-
mating edge communities. Here, we use a k-means algo-
rithm that partitions edges into a fixed number of clusters
on the basis of their similarity (eFC) with respect to one
another. The motivation to use k-means as opposed to
other clustering algorithms stems from its computational
efficiency and the fact that eFC can be viewed as a dis-
tance metric, and can be used by the k-means algorithm
to estimate edge communities from edge time series di-
rectly. However, there exists a multitude of alternative
algorithms that could, in principle, be applied to edge
time series or eFC to estimate communities, including
the suite of graph clustering algorithms [20, [69], but also
time-series decompositions algorithms like independent
components analysis (ICA) [70], which has proven espe-
cially useful in the analysis of neuroimaging data [71].
Future studies should investigate the effect of clustering
algorithm on the character of detected edge communities.
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Conclusion

In summary, detailed analysis of edge functional con-
nectivity and edge communities revealed marked het-
erogeneity across brain systems and highly reproducible
and idiosyncratic patterns within subjects. These find-
ings help establish edge functional connectivity as a use-
ful representational framework and edge communities as
measures of potential interest for revealing novel brain-
behavior associations and individual differences in brain
organization.

MATERIALS AND METHODS

Datasets

The Midnight Scan Club (MSC) dataset [30] included
rsfMRI from 10 adults (50% female, mean age = 29.1
+ 3.3, age range = 24-34). The study was approved by
the Washington University School of Medicine Human
Studies Committee and Institutional Review Board and
informed consent was obtained from all subjects. Sub-
jects underwent 12 scanning sessions on separate days,
each session beginning at midnight. 10 rsfMRI scans per
subject were collected with a gradient-echo EPI sequence
(run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip
angle = 90°, 4 mm isotropic voxel resolution) with eyes
open and with eye tracking recording to monitor for pro-
longed eye closure (to assess drowsiness). Images were
collected on a 3T Siemens Trio.

Image preprocessing
MSC functional preprocessing

Functional images in the MSC dataset were pre-
processed using fMRIPrep 1.3.2 [72], which is based
on Nipype 1.1.9 [73]. The following description of
fMRIPrep’s preprocessing is based on boilerplate dis-
tributed with the software covered by a “no rights re-
served” (CCO) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 [74], ANTs 2.2.0, FreeSurfer 6.0.1, FSL
5.0.9, and AFNI v16.2.07. For more details about the
pipeline, see [the section corresponding to workflows in
fMRIPrep’s documentation.

The T1-weighted (T1lw) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection
[75, [76], distributed with ANTs, and used as Tlw-
reference throughout the workflow. The T1lw-reference
was then skull-stripped with a Nipype implementation of
the antsBrainExtraction.sh workflow. Brain surfaces
were reconstructed using recon-all [77], and the brain
mask estimated previously was refined with a custom
variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-
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matter using Mindboggle [78]. Spatial normalization to
the ICBM 152 Nonlinear Asymmetrical template ver-
sion 2009c [(9] was performed through nonlinear reg-
istration with antsRegistration, using brain-extracted
versions of both T1w volume and template. Brain tis-
sue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on
the brain-extracted T1w using FSL’s fast [80).
Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt
[81]. Fieldmap-less distortion correction was performed
by co-registering the functional image to the same-
subject Tlw image with intensity inverted [82] con-
strained with an average fieldmap template [83], im-
plemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [84] with 9 degrees of
freedom. Motion correcting transformations, field dis-
tortion correcting warp, BOLD-to-T1w transformation
and T1w-to-template (MNI) warp were concatenated and
applied in a single step using antsApplyTransforms us-
ing Lanczos interpolation. Several confounding time-
series were calculated based on this preprocessed BOLD:
framewise displacement (FD), DVARS and three region-
wise global signals. FD and DVARS are calculated
for each functional run, both using their implementa-
tions in Nipype [85]. The three global signals are ex-
tracted within the CSF, the WM, and the whole-brain
masks. The resultant NIFTI file for each MSC sub-
ject used in this study followed the file naming pattern
*_space-Tlw_desc-preproc_bold.nii.gz.

Image quality control

The quality of functional images in the MSC were
assessed using fMRIPrep’s visual reports and MRIQC
0.15.1 [86]. Data was visually inspected for whole brain
field of view coverage, signal artifacts, and proper align-
ment to the corresponding anatomical image.

Functional and structural networks preprocessing
Parcellation preprocessing

A functional parcellation designed to optimize both lo-
cal gradient and global similarity measures of the fMRI
signal [38] (Schaeferf00) was used to define 400 areas
on the cerebral cortex. These nodes are also mapped
to the Yeo canonical functional networks [I1I]. For the
MSC dataset, a Schaefer400 parcellation was obtained
for each subject using a Gaussian classifier surface at-
las [87] (trained on 100 unrelated Human Connectome
Project subjects) and FreeSurfer’s mris_ca_label func-
tion. These tools utilize the surface registrations com-
puted in the recon-all pipeline to transfer a group av-
erage atlas to subject space based on individual surface
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curvature and sulcal patterns. This method rendered a
T1w space volume for each subject. For use with func-
tional data, the parcellation was resampled to 2mm T1w
space.

Functional network preprocessing

Each preprocessed BOLD image was linearly de-
trended, band-pass filtered (0.008-0.08 Hz) [88], con-
found regressed and standardized using Nilearn’s
signal.clean, which removes confounds orthogonally
to the temporal filters [89]. The confound regression
employed [90] included 6 motion estimates, time series
of the mean CSF, mean WM, and mean global signal,
the derivatives of these nine regressors, and the squares
these 18 terms. Furthermore, a spike regressor was added
for each frame exceeding 0.5mm framewise displacement.
Following preprocessing and nuisance regression, resid-
ual mean BOLD time series at each node were recovered.
eFC matrices for each subject were computed and then
averaged across subjects, to obtain a representative eFC
matrix for each dataset.

Edge graph construction

Constructing networks from fMRI data (or any neu-
ral time series data) requires estimating the statistical
dependency between of time series. The magnitude of
that dependency is usually interpreted as a measure of
how strongly (or weakly) those voxels are parcels are
functionally connected to each other. By far the most
common measure of statistic dependence is the Pearson
correlation coefficient. Let x; = [z;(1),...,z;(T)] and
x; = [z;(1),...,2;(T)] be the time series recorded from
voxels or parcels ¢ and j, respectively. We can calculate
the correlation of ¢ and j by first z-scoring each time se-
ries, such that z; = %, where u; = % Yo i(t) and
0; = 75 >, [zi(t) — 1] are the time-averaged mean and
standard deviation. Then, the correlation of ¢ with j can
be calculated as: r;; = 77 >_,[2i(t) - z;(t)]. Repeating
this procedure for all pairs of parcels results in a node-by-
node correlation matrix, i.e. an estimate of FC. If there
are N nodes, this matrix has dimensions [N x N].

To estimate edge-centric networks, we need to modify
the above approach in one small but crucial way. Sup-
pose we have two z-scored parcel time series, z; and z;.
To estimate their correlation we calculate the mean their
element-wise product (not exactly the average, because
we divide by T'—1 rather than T'). Suppose, instead, that
we never calculate the mean and simply stop after calcu-
lating the element-wise product. This operation would
result in a vector of length T' whose elements encode the
moment-by-moment co-fluctuations magnitude of parcels
i and j. For instance, suppose at time ¢, parcels ¢ and j
simultaneously increased their activity relative to base-
line. These increases are encoded in z; and z; as positive

14

entries in the tth position, so their product is also posi-
tive. The same would be true if ¢ and j decreased their
activity simultaneously (because the product of negatives
is a positive). On the other hand, if i increased while j
decreased (or wvice versa), this would manifest as a nega-
tive entry. Similarly, if either ¢ or j increased or decreased
while the activity of the other was close to baseline, the
corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-
wise product of z; and z; can be viewed as encoding
the magnitude of moment-to-moment co-fluctuations be-
tween ¢ and j. An analogous vector can easily be cal-
culated for every pair of parcels (network nodes), result-
ing in a set of co-fluctuation (edge) time series. With
N parcels, this results in w pairs, each of length
T. From these time series we can estimate the sta-
tistical dependency for every pair of edges. We refer
to this construct as edge functional connectivity (eFC).
Let c;; = [2:(1) - 2;(1),...,2i(T) - 2;(T)] and cyp =
[2u(1)-2,(1), ..., %(T)-z;(T)] be the time series for edges
{i,7} and {u, v}, respectively. Then we can calculate eFC
as:

Zt Cij (t) - cuu(t) '
Vi i (0220 cun (1)

Here, the denominator is necessary to bound eFC to the
interval [—1,1].

eFCij,uv - (1)

Edge community detection algorithm

In our previous paper we developed a spectral method
for clustering eFC matrices [2I]. Although this algorithm
operated on a reduced rank version of eFC matrices, ob-
taining these lower rank data required first generating the
eFC matrix. In general, eFC matrices are much larger
than nFC matrices. This means that they take longer
to compute and much more memory. Here, we circum-
vent this issue by clustering the edge time series directly.
A parcellation of the brain into N regions results inn
M = N(N —1)/2 edges. So rather than generating an
M x M matrix, reducing its dimensionality, and then
clustering its low-dimensional representation, we simply
cluster the M x T time series (where T') is the number of
samples. We use a k-means clustering algorithm where
the distance metric is defined as (1 — eF'C')/2. Two per-
fectly correlated edge time series have a distance of 0
while two orthogonal edge time series would have a dis-
tance of 1.

We used this same algorithm to generate estimates of
edge communities at the scale of scans, subjects, and co-
hort. To generate subject-representative communities,
we concatenated edge time series from all of a subjects’
scans and clustered the concatenated time series. Simi-
larly, to generate group representative partitions, we con-
catenated scans from all subjects. At all scales, we re-
peated the clustering algorithm 250 times.
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Community overlap metrics

The clustering algorithm partitioned edges into non-
overlapping clusters. That is, every edge {i,j}, where
1,7 € {1,..., N}, was assigned to one of k clusters. In
this list of edges, each node appeared N — 1 times (we
excluded self-connections). Region 4’s participation in
cluster ¢ was calculated as:

1
Pie ="7N_7 Z 6(gi5, ) (2)
J#i
where g;; € {1,...,k} was the cluster assignment of

the edge linking nodes i and j and 6(z, y) is the Kronecker
delta, whose value is 1 if x = y and zero otherwise.

By definition, ) _p;c = 1, and we can treat the vector
p: = [pi1,---,Ppik] as a probability distribution. The en-
tropy of this distribution measures the extent to which
region ¢’s community affiliations are distributed evenly
across all communities (high entropy and high overlap)
or concentrated within a small number of communities
(low entropy and low overlap). We calculate this entropy
as:

hi == Diclog, Pic. (3)

To normalize this measure and bound it to the interval
[0,1], we divide by log, k. We refer to this measure as
community entropy and interpret this value as an index
of overlap.

Edge community similarity

When we cluster an eFC matrix, we assign each edge
to a single community. These edge communities can be
rearranged into the upper triangle of a N X N matrix,
X, whose element x;; denotes the edge community as-
signment of the edge between nodes i and j. The ith
column of X, which we denote as x; = [14,...,ZN;], en-
codes the community labels of all edges in which node ¢
participates. Note that we do not consider self-edges, so
the element z;; is left empty.

From this matrix, we can compare the edge commu-
nities of nodes i and j by calculating the similarity of
vectors x; and x;. Here, we measure that similarity as
the fraction of elements in both vectors with the same
community label. That is:

1
UF#i,j
Here, §(z,y) is the Kronecker delta, and takes on a

value of 1 when x and y have the same value, but is zero
otherwise. Note that the scaling factor is N — 2 because
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we ignore the self-connections z;; and x;;. Repeating this
comparison for all pairs of nodes generates the similarity
matrix, S = {s;;}.

Modularity maximization

In the main text, we computed system and whole-brain
edge community similarity matrices. To discover the
meso-scale structure of these matrices we used a multi-
scale modularity maximization algorithm [23], 40], @I].
Modularity maximization detects meso-scale structure
according to a simple principle: clusters are groups of
nodes whose actual connection weight is greater than
what we would expect by chance. This general frame-
work is flexible and, through parameterization can be
used to detect clusters of different sizes [39] and across
layers (time [91], subjects [92], frequencies [93]).

Formally, the modularity quality function is expressed
as:

Q(y) =Y _[Aij =7 - Pyld(0i, 05) ()
ij

where A;; is the observed weight of connections between
nodes ¢ and j, P;; is the expected weight under some
null model, v is a structural resolution parameter, and
0(x,y) is the Kronecker delta and is equal to 1 when the
community assignments of nodes ¢ and j, denoted as o;
and o, respectively, are identical and is equal to 0 oth-
erwise. The inclusion of the delta function means that
the double summation is over node pairs that fall within
communities. Thus, Q(v) measures the total weight of
within-community connections less their expected values.
The modularity maximization framework seeks to max-
imize the value of Q(v) by selecting nodes’ community
assignments.

Here we used a uniform null model, i.e. P;; =1 for
all node pairs. Combined with the resolution parameter,
v, communities detected under this null model represent
groups of nodes whose average similarity of edge commu-
nity profiles exceeds . Note that we selected this par-
ticular null model deliberately, as previous studies have
shown that it is especially well-suited for networks whose
weights reflect statistical measures of similarity or corre-
lation [40} [41]. We further note that this null model has
been used in previous studies [33], 94H97T].

In more detail, we selected 200 values of ~y, linearly-
spaced over the interval [0,1]. At each value, we ran
a Louvain-like algorithm to optimize modularity [98] [99].
Because this optimization algorithm is non-deterministic,
we performed 50 iterations at each value of v. We then
aggregated ~ values into 10 linearly-spaced intervals and,
within each interval, used to detected clusters to generate
a single representative set of clusters using a consensus
clustering algorithm [42]. Briefly, this algorithm involved
estimating the co-assignment matrix from the detected
clusters, whose elements indicate the fraction of times
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that nodes ¢ and j were assigned to the same cluster
across all partitions within that interval. We then cal-
culated the expected fraction (by randomly permuting
nodes’ community assignments independently for each
partition). The observed and expected co-assignment
values can be used to define a consensus modularity func-
tion that we optimized using the same Louvain-like algo-
rithm (1000 repetitions). If any of the 1000 partitions
were dissimilar, we recomputed a co-assignment matrix
and the expected co-assignment and repeated the algo-
rithm. These two steps — calculation of co-assignment
values and clustering — were repeated until convergence,
i.e. all detected partitions are identical. In practice, the
algorithm converged in three or fewer iterations.

Edge community segregation

In the main text, we described a procedure in which
we imposed edge community structure onto eFC matrices
and measured a quantity that we referred to as an index
of “segregation”. To calculate the segregation index, we
measured two quantities induced by edge communities:
eFCyithin and eFChepeen, which measure the average
eFC weight within and between edge communities. The
segregation index, then, is simply the difference in these
two quantities:
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Segregation = eF'Cyinin — eF Chetween- (6)

Because we define edge communities to be groups of edges
with similar co-fluctuation patterns, we expect eF'Cyithin

Differential identifiability

Suppose we had a dataset comprising many scans from
many subjects. We would say that subjects are “identi-
fiable” if, given a scan’s worth of data from one subject,
we could accurately identify other scans from the same
subject [44]. This intuition can be formalized using the
measure differential identifiability [43]:

Idiff = Lyithin — Ivetween- (7)

In this expression [ ;thin and Ipepween are the mean sim-
ilarities among scans from the same and different sub-
jects. Here, we measure similarity as the Pearson correla-
tion between regions’ edge community similarity vectors.
Thus, I4;;y measures how much more similar subjects
are to themselves then they are to other subjects.
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FIG. S1. Edge communities mapped into node-by-node matrices.
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FIG. S2. Edge community templates and classification with different numbers of edge communities. In the main
text we described a procedure for classifying edge community “templates” — system-level representations of edge communities —
as “cohesive” or “bridge” communities and further sub-classifying bridge communities as “processing” or “association” bridges.
The main text included results with the number of edge communities fixed at k& = 10. Here, we show results with different
numbers of edge communities, ranging from k = 2 to k = 15. (a) Edge community templates at different k. In panels b, ¢, and d,
we compare different features of edge templates and find evidence at all k of cohesive, bridge/processing, and bridge/association
communities. In panels b and ¢, we plot the fraction of edges associated with each edge community that fall within the same
system (y-axis in both plots) versus the fraction of edges linking heteromodal systems to themselves and to unimodal systems.
These plots emphasize the division between cohesive and bridge communities. In panel d, we focus only on between-system
edges and show that bridge communities fall along a spectrum with pure processing and association communities at either
extreme. We also find evidence of a small number of unimodal-to-unimodal edge communities made up of edges that link visual
and somatomotor systems to one another.
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FIG. S3. Mean within-in system similarity of edge communities profiles. In the main text, we showed that the
within-system similarity of edge communities was greater in sensorimotor systems than in higher order systems. Those results
were generated using a partition of the brain into £ = 10 edge communities. Here, we show that this general pattern persists
over a wide range of k. (a) Mean within-system similarity. (b) Rank-transform of mean within-system similarity.
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FIG. S4. Number of non-singleton communities arranged by system. In the main text we clustered brain regions
in every community based on the similarity of their edge community profiles to one another. The clustering algorithm was
multi-scale, resulting in different cluster resolutions (from coarse clusters in which all nodes were assigned to a single cluster,
to finer clusters where each node was assigned to its own singleton cluster). In the main text, we reported results at a single
resolution. Here, we show mean results over all ten resolutions. With the exception of extremely fine partitions, these results
are consistent with those presented in the main text. Namely, that higher-order cognitive systems are comprised of more
sub-clusters than primary sensory systems.
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FIG. S5. Sub-clusters derived from edge community profiles. We clustered regions belonging to eight brain systems
based on the similarity of their edge community profiles. In the main text we investigated sub-clusters of the control network
in more detail. Here, we show sub-clusters for all systems with the number of edge communities fixed at k = 10.
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FIG. S6. Comparison of detected sub-clusters with those from Schaefer/Yeo atlas. We compared the multi-scale
clusters reported in the text with partitions reported in [38]. We used the adjusted Rand index (ARI) as a measure of similarity.
Two identical partitions have an ARI equal to 1; two maximally dissimilar partitions have an ARI equal to 0. Here, we find
that ARI for any system and at any scale never exceeds a value of 0.46 (Salience, Ventral Attention when 0.4 < v < 0.5).
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FIG. S7. Whole-brain partitions generated using edge community similarity matrices with £ = 10. In the main
text, we described a partition of cerebral cortex into clusters based on the similarity of brain regions’ edge community profiles.
We reported clusters detected at a single resolution (0.4 < v < 0.5). Here, we show the full range of resolution. As in the main
text, we aggregated small communities under a single label (gray).
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FIG. S8. Similarity of Identifiability patterns across with different numbers of communities. In the main text
we showed that when the number of edge communities was fixed at k = 10, regional identifiability was peaked in association
cortex but lower in sensorimotor systems. We repeated that analysis with the number of communities ranging from k = 2 to
k = 15, resulting in an identifiability score for each brain region. We then compared these patterns of identifiability across
different numbers of communities and found that, on average, the similarity (Pearson correlation) was high: » = 0.96 + 0.05.
This observation suggests that over this range of k, the regions contributing to identifiability are highly similar.
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