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Abstract 41 

Untargeted mass spectrometry is employed to detect small molecules in complex biospecimens, 42 

generating data that are difficult to interpret. We developed Qemistree, a data exploration 43 

strategy based on hierarchical organization of molecular fingerprints predicted from 44 

fragmentation spectra, represented in the context of sample metadata and chemical ontologies. 45 

By expressing molecular relationships as a tree, we can apply ecological tools, designed around 46 

the relatedness of DNA sequences, to study chemical composition.  47 

Main 48 

Molecular networking1, introduced in 2012, was one of the first data organization approaches to 49 

visualize the relationships between fragmentation spectra for similar molecules from tandem 50 

mass spectrometry data in the context of metadata. It formed the basis for the web-based mass 51 

spectrometry infrastructure, Global Natural Products Social Molecular Networking2 (GNPS, 52 

https://gnps.ucsd.edu/) which sees ~200,000 new accessions per month. Molecular networking is 53 

used for a range of applications3 in drug discovery, environmental monitoring, medicine, and 54 

agriculture. While molecular networking is useful for visualizing closely related molecular 55 

families, the inference of chemical relationships at a dataset-wide level and in the context of 56 

diverse metadata requires complementary representation strategies. To address this need, we 57 

developed an approach that uses fragmentation trees4 and supervised machine learning5 to 58 

calculate all pairwise chemical relationships and visualizes it in the context of sample metadata 59 

and molecular annotations. We show that a chemical tree enables the application of various tree-60 

based tools, originally developed for analyzing DNA sequencing data6–9, for exploring mass-61 

spectrometry data. 62 

 63 

We introduce Qemistree, pronounced chemis-tree, a software that constructs a chemical tree 64 

from fragmentation spectra based on predicted molecular fingerprints10.  Molecular fingerprints 65 

are vectors where each position encodes a substructural property of the molecule. Recent 66 

methods allow us to predict molecular fingerprints from tandem mass spectra11–15. In Qemistree, 67 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.077636doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.077636
http://creativecommons.org/licenses/by-nc-nd/4.0/


we use SIRIUS16 and CSI:FingerID13 to obtain predicted molecular fingerprints. The users first 68 

perform feature detection17,18 to generate a list of observed ions, referred to as chemical features 69 

henceforth, to be analyzed by Qemistree (Fig. S1). SIRIUS then determines the molecular 70 

formula of each feature using the isotope and fragmentation patterns, and estimates the best 71 

fragmentation tree explaining the fragmentation spectrum. Subsequently, CSI:FingerID operates 72 

on the fragmentation trees using kernel support vector machines to predict molecular properties 73 

(2936 properties; Table S1). We use these molecular fingerprints to calculate pairwise distances 74 

between chemical features that are hierarchically clustered to generate a tree representing their 75 

structural relationships. Although alternative approaches to hierarchically cluster features based 76 

on cosine similarity of fragmentation spectra exist19–21, we use molecular fingerprints as it allows 77 

us to compare features based on a diverse range of structural properties predicted by 78 

CSI:FingerID. Additionally, as CSI:FingerID was shown to perform well for automatic in silico 79 

structural annotation22, we leverage it to search molecular structural databases to provide 80 

complementary insights into structures when no match is obtained against spectral libraries. 81 

Subsequently, we use ClassyFire23 to assign a 5-level chemical taxonomy (kingdom, superclass, 82 

class, subclass, and direct parent) to all molecules annotated via spectral library matching and in 83 

silico prediction.  84 

 85 

Phylogenetic tools such as iTOL24 can be used to visualize Qemistree trees interactively in the 86 

context of sample information and feature annotations for easy data exploration. The outputs of 87 

Qemistree can also be plugged into other workflows in QIIME 225 (many of which were 88 

originally developed for microbiome sequence analysis) or in R, Python etc. for system-wide 89 

metabolomic data analyses 6,7,9, 26. Qemistree is available to the microbiome community as a 90 

QIIME 2 plugin (https://github.com/biocore/q2-qemistree) and the metabolomics community as 91 

a workflow on GNPS2 (https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/). The 92 

chemical tree from the GNPS workflow can be explored interactively (e.g. 93 

https://qemistree.ucsd.edu/). 94 

 95 

To verify that molecular fingerprint-based trees correctly capture the chemical relationships 96 

between molecules, we generated an evaluation dataset with two human fecal samples, a tomato 97 

seedling sample, and a human serum sample. Mixtures of these samples were prepared by 98 
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combining them in gradually increasing proportions to generate a set of diverse but related 99 

metabolite profiles and untargeted tandem mass spectrometry was used to profile the chemical 100 

composition of these samples. Mass-spectrometry was performed twice using different 101 

chromatographic gradients causing a non-uniform retention time shift between the two runs. The 102 

data processing of these two experiments leads to the same molecules being detected as different 103 

chemical features in downstream analysis. In Figure 1a we highlight how these technical 104 

variations make the same samples appear chemically disjointed. 105 
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 106 

Figure 1: Qemistree mitigates aspects of technical artifacts by co-clustering structurally similar molecules 107 
across mass spectrometry runs. a) Sample (y-axis) by molecule (x-axis) heatmap of 2 fecal samples, tomato 108 
seedling samples, and serum samples in the evaluation dataset grouped by chromatography conditions. b) A 109 
chemical tree based on predicted molecular fingerprints representing the structural relationships between compounds 110 
detected in the evaluation dataset. Outer ring shows the relative abundance of molecules stratified by mass 111 
spectrometry run; inner ring shows the same stratified by fecal, serum and tomato samples in the evaluation dataset. 112 
Structurally similar molecules detected as different chemical features due to shift in retention time across mass 113 
spectrometry runs are clustered together; we highlight some examples of these artificially duplicated features around 114 
the tree. All structures shown are spectral reference library matches obtained from feature-based molecular 115 
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networking17 in GNPS: (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=efda476c72724b29a91693a108fa5a9d; 116 
Metabolomics Standard Initiative (MSI) level 3 annotation)27.  117 
 118 

Using Qemistree, we map each of the spectra in the two chromatographic conditions (batches) to 119 

a molecular fingerprint, and organize these in a tree structure (Fig. 1b). Because molecular 120 

fingerprints are independent of retention time shifts, spectra are clustered based on their chemical 121 

similarity. This tree structure can be decorated using sample type descriptions, chromatographic 122 

conditions, and spectral library matches obtained from molecular networking in GNPS. Figure 1 123 

shows that similar chemical features are detected exclusively in one of the two batches. 124 

However, based on the molecular fingerprints, these chemical features were arranged as 125 

neighboring tips in the tree regardless of the retention time shifts. This result shows how 126 

Qemistree can reconcile and facilitate the comparison of datasets acquired on different 127 

chromatographic gradients. 128 

 129 

We demonstrate the use of a chemical hierarchy in performing chemically-informed  130 

comparisons of metabolomics profiles. In standard metabolomic statistical analyses, each 131 

molecule is assumed unrelated to the other molecules in the dataset. Some of the pitfalls of this 132 

assumption are highlighted in Figure 2a. Consider a scenario where we want to compare samples 133 

1-3. An analysis schema that does not account for the chemical relationships among the 134 

molecules in these samples (Figure 2a, left), will assume that the sugars in samples 2 and 3 are as 135 

chemically related to the lipids in sample 1 as they are to each other. This would lead to the naive 136 

conclusion that samples 1 and 2, and samples 2 and 3 are equally distinct, yet they are not from a 137 

chemical perspective. On the other hand, if we account for the fact that sugar molecules are more 138 

chemically related to one another than they are to lipids, we can obtain a chemically-informed 139 

sample-to-sample comparison. Sedio and coworkers developed the chemical structural 140 

compositional similarity (CSCS) metric28 to account for relationships between molecules based 141 

on the similarity of their fragmentation spectra. While CSCS compares samples based on 142 

modified cosine scores obtained from molecular networking, we calculate chemical relationships 143 

based on structurally-informed molecular fingerprints. We express these relationships in the form 144 

of a hierarchy which enables the use of other tree-based tools for downstream data analyses. For 145 

example, in Figure 2a, we show that by using a tree of structural relationships between molecules 146 
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in samples 1-3, we can apply UniFrac9, a tree-informed distance metric and demonstrate that the 147 

composition of sample 1 is distinct from samples 2 and 3.  148 

 149 

150 

Figure 2: The pitfalls of assuming equal relatedness of molecules and the advantages of a chemical tree for 151 
sample comparison. a) A scenario where the goal is to compare the chemical composition in samples 1 152 
(sphingosine and phosphatidylcholine), 2 (glucose, galactose, and fructose), and 3 (sucrose and lactulose). When we 153 
do not account for the chemical relationships between the molecules, i.e. assume that the lipid molecules in sample 1154 
are equally related to the sugars in samples 2 and 3 (left), we conclude that samples 1, 2, and 3 are similarly distinct. 155 
If we account for sugar molecules being more chemically related to one another than sugars are to lipid molecules 156 
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(right), we can obtain a chemically-meaningful distance between samples. This is exemplified through a principal 157 
coordinates analysis (PCoA) of the computed UniFrac9 (tree-based) distances among samples; we see that samples 2 158 
and 3 are more similar to each other, and sample 1 which is chemically distinct is separated along the primary axis 159 
of variation, when distances are computed using the chemical tree. b, c) PCoA of samples in the evaluation dataset 160 
colored by chromatography conditions. PCoA plot using tree-agnostic (Bray-Curtis29) distances which do not 161 
account for the chemical relationship between features detected across chromatography conditions (b) and tree-162 
based (Weighted UniFrac9) distances which are based on the hierarchical relationships between molecules in the 163 
evaluation dataset (c).  164 
 165 

The importance of comparing samples by accounting for their molecular relatedness is 166 

highlighted when we contrast the results from ignoring the tree structure (Fig. 2b) to those which 167 

integrate it (Fig. 2c). With the structural context provided by Qemistree, the differences between 168 

replicates across batches are comparable to the within-batch differences (Fig. S2). The retention 169 

time shift in this dataset leads to a strong technical signal that obscures the biological 170 

relationships among the samples (permutational ANOVA; tree agnostic29 pseudo-F=120.75, 171 

p=0.001 vs. tree informed9 pseudo-F=18.2239, p=0.001). We observed and remediated a similar 172 

pattern originating from plate-to-plate variation in a recently published study investigating the 173 

metabolome and microbiome of captive cheetahs30 (Fig. S3). In this study, placing the molecules 174 

in a tree using Qemistree reduced the observed technical variation (Fig. S3 a, c), and highlighted 175 

the dietary effect that was expected (Fig. S3 b, d). These results show how systematic and 176 

spurious molecular differences can be mitigated in an unsupervised manner using chemically-177 

informed distance measures based on a tree structure.   178 

 179 

As a case study, we used Qemistree to explore chemical diversity in a set of food samples 180 

collected as a part of the Global FoodOmics initiative (http://globalfoodomics.org). We selected 181 

a diverse range of food ingredients to represent animal, plant, and fungal groupings31. We first 182 

performed feature-based molecular networking using MZmine17,18 to obtain spectral library 183 

matches for a subset of the chemical features (~20% annotated with cosine cutoff  > 0.7). 184 

Understanding the chemical relationships between different foods is challenging because most 185 

molecules within foods are unannotated. Using Qemistree, we collated GNPS spectral library 186 

matches and in silico predictions from CSI:FingerID to annotate ~91% of the chemical features 187 

(total 634 features after quality filtering) with molecular structures. Using ClassyFire23, we 188 

assigned a chemical taxonomy to 60% of these structures; the remaining 40% returned no 189 

ClassyFire taxonomy. Labeling annotations allowed us to retrieve subtrees of distinct chemical 190 

classes (Fig. 3a) such as flavonoids, alkaloids, phospholipids, acyl-carnitines, and O-glycosyl 191 
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compounds in food products. We propagated ClassyFire annotations of chemical features (tree 192 

tips) to each internal node of the tree and labeled the nodes by pie charts depicting the 193 

distribution in chemical superclasses (Fig. S4a) and classes (Fig. S4b) of its tips. The molecular 194 

fingerprint-based hierarchy of chemical features agreed well with ClassyFire taxonomy 195 

assignment, further demonstrating that molecular fingerprints can meaningfully capture 196 

structural relationships among molecules in a hierarchical manner. Furthermore, Qemistree 197 

coupled the chemical tree to sample metadata, revealing distinct chemical classes expected for 198 

each sample type. Branches representing acyl-carnitines were exclusively found in animal 199 

products (shades of blue; Fig. 3a). In contrast, honey, although categorized as an animal product, 200 

shared most of its chemical space with plant products, reflective of the plant nectar and pollen-201 

based diet of honey bees. We observed a clade of flavonoids in both plant products and honey 202 

(Figs. 3a, S4b), but no other animal-based foods. 203 
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Figure 3: A chemical hierarchy of food-derived compounds based on predicted molecular fingerprints. a) A 205 
chemical tree based on molecular fingerprints representing the structural relationships between chemical features 206 
(tree tips) detected in food products (single ingredient i.e. simple foods; N=119). The tree is pruned to only keep tips 207 
that were assigned a structural annotation (SMILES) by either MS/MS spectral library match or in silico using 208 
CSI:FingerID. All structures shown are spectral reference library matches obtained from feature-based molecular 209 
networking in GNPS: (https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ceb28a199d6b4f4fbf08490d9c96d631; 210 
MSI level 3 annotation27). The outer ring shows the relative abundance of each compound across a diverse range of 211 
food sources (panel a legend; parsed at ‘sample_type_group4’ of the Global FoodOmics Project ontology). We 212 
highlight clusters of compounds that are characteristic of specific food sources. For example, theobromine and 213 
caffeine are two closely related xanthine compounds (top center); they are primarily seen in teas (light green 214 
samples) and coffee beans (berry; purple). Similarly, acyl-carnitines and phospholipids (top right) are unique to 215 
different animal products (blues). We note that honey (highlighted in yellow), although annotated as an animal 216 
product, contains compounds that are primarily seen in plant sources (flavonoids, O-glycosyl compounds) and no 217 
other animal products. Flavonoids (top left) are observed in a range of fruit, vegetable, and honey samples (but no 218 
other animal products). (b-d) A hierarchy of the compounds observed in simple foods (above) and seven complex 219 
samples: two meals of orange chicken, a cooked cucumber and the sauce from a meal (schmorgurken), sour cream, 220 
blueberry kefir, and egg scramble with chorizo (N=126). The inner ring shows the relative abundance of each 221 
compound across simple animal products, plant products, fungi and algae (other) and the 7 complex foods (black). 222 
The absolute abundances of compounds in blueberry kefir (b), scrambled eggs with chorizo (c), and orange chicken 223 
(d) (outer bars) are overlaid on the tree to illustrate the shared and unique chemistry of complex foods. A compound 224 
subtree characteristic of each complex food in the tree is highlighted (black) and zoomed in (e-g). (e) A subtree 225 
showing the absolute abundance of acyl carnitines in blueberry kefir and its primary ingredients (blueberry and 226 
milk). Similar subtrees showing phosphoethanolamine in scrambled eggs with chorizo (f), and phosphocholine in 227 
orange chicken (g).   228 
 229 

While it is expected that a complex food such as blueberry kefir contains molecules from both 230 

blueberries and dairy, we can now visualize how individual ingredients and food preparation 231 

contribute to the chemical composition of complex foods. We noted that metabolite signatures 232 

that stem directly from particular ingredients, such as phosphoethanolamine from eggs, are 233 

present in egg scramble (Fig. 3c), but not in the other two foods highlighted (Fig. 3b and d). We 234 

can also observe the addition of ingredients in foods that were not listed as present in the initial 235 

set of ingredients. We were able to retrieve that there is black pepper in the egg scramble with 236 

chorizo and orange chicken, but that this signal is absent from the blueberry kefir (Fig. S5). 237 

 238 

We show that our tree-based approach coherently captures chemical ontologies and relationships 239 

among molecules and samples in various publicly available datasets. Qemistree depends on 240 

representing chemical features as molecular fingerprints, and shares limitations with the 241 

underlying fingerprint prediction tool CSI:FingerID. For example, fingerprint prediction depends 242 

on the quality and coverage of MS/MS spectral databases available for training the predictive 243 

models, and these will improve as databases are enriched with more compound classes. 244 

Qemistree is also applicable in negative ionization mode; however, less molecular fingerprints 245 
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can be confidently predicted due to less publicly available reference spectra, resulting in less 246 

extensive trees. 247 

 248 

In summary, we introduce a new tree-based approach for computing and representing chemical 249 

features detected in untargeted metabolomics studies. A hierarchy enables us to leverage existing 250 

tree-based tools, and can be augmented with structural and environmental annotations, greatly 251 

facilitating analysis and interpretation. We anticipate that Qemistree, as a data organization 252 

strategy, will be broadly applicable across fields that perform global chemical analysis, from 253 

medicine to environmental microbiology to food science, and well beyond the examples shown 254 

here.  255 

  256 
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Data availability  257 

The mass spectrometry data, metadata, and methods for the evaluation dataset have been 258 

deposited on the GNPS/MassIVE public repository2,33 under the accession number 259 

MSV000083306. The parameters used for molecular networking are available on GNPS: 260 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=efda476c72724b29a91693a108fa5a9d. The 261 

chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL24: 262 

https://itol.embl.de/tree/709513416494381587432576. 263 

The mass spectrometry data, metadata, and methods for Global Foodomics dataset have been 264 

deposited on the GNPS/MassIVE public repository2,33 under the accession number 265 

MSV000085226. The parameters used for molecular networking are available on GNPS: 266 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ceb28a199d6b4f4fbf08490d9c96d631. The 267 

chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL24: 268 

https://itol.embl.de/tree/13711034118313741584046018.  269 

Code availability 270 

All source code is publicly available under BSD-2-Clause on GitHub: 271 

https://github.com/biocore/q2-qemistree. Qemistree is also available as an advanced analysis 272 

workflow on GNPS: https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/ 273 
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