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Abstract

Untargeted mass spectrometry is employed to detect small molecules in complex biospecimens,
generating data that are difficult to interpret. We devel oped Qemistree, a data exploration
strategy based on hierarchical organization of molecular fingerprints predicted from
fragmentation spectra, represented in the context of sample metadata and chemical ontologies.
By expressing molecular relationships as a tree, we can apply ecological tools, designed around

the relatedness of DNA sequences, to study chemical composition.

Main

Molecular networking®, introduced in 2012, was one of the first data organization approaches to
visualize the relationships between fragmentation spectra for ssimilar molecules from tandem
mass spectrometry datain the context of metadata. It formed the basis for the web-based mass
spectrometry infrastructure, Global Natural Products Social Molecular Networking? (GNPS,
https://gnps.ucsd.edu/) which sees ~200,000 new accessions per month. Molecular networking is
used for arange of applications® in drug discovery, environmental monitoring, medicine, and
agriculture. While molecular networking is useful for visualizing closely related molecular
families, the inference of chemical relationships at a dataset-wide level and in the context of
diverse metadata requires complementary representation strategies. To address this need, we
developed an approach that uses fragmentation trees* and supervised machine learning® to
calculate all pairwise chemical relationships and visualizes it in the context of sample metadata
and molecular annotations. We show that a chemical tree enables the application of various tree-

9

based tools, originally developed for analyzing DNA sequencing data®®, for exploring mass-

spectrometry data.

We introduce Qemistree, pronounced chemis-tree, a software that constructs a chemical tree
from fragmentation spectra based on predicted molecular fingerprints'®. Molecular fingerprints
are vectors where each position encodes a substructural property of the molecule. Recent

methods allow us to predict molecular fingerprints from tandem mass spectra™* ™. In Qemistree,
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we use SIRIUS™ and CSl:Finger|D™ to obtain predicted molecular fingerprints. The users first

perform feature detection’*®

henceforth, to be analyzed by Qemistree (Fig. S1). SIRIUS then determines the molecular

to generate alist of observed ions, referred to as chemical features

formula of each feature using the isotope and fragmentation patterns, and estimates the best
fragmentation tree explaining the fragmentation spectrum. Subsequently, CSI:FingerlD operates
on the fragmentation trees using kernel support vector machines to predict molecular properties
(2936 properties; Table S1). We use these molecular fingerprints to calculate pairwise distances
between chemical features that are hierarchically clustered to generate a tree representing their
structural relationships. Although alternative approaches to hierarchically cluster features based

on cosine similarity of fragmentation spectra exist***

, we use molecular fingerprints as it allows
us to compare features based on adiverse range of structural properties predicted by
CSl:FingerlD. Additionally, as CSl:FingerlD was shown to perform well for automatic in silico
structural annotation®, we leverage it to search molecular structural databases to provide
complementary insightsinto structures when no match is obtained against spectral libraries.
Subsequently, we use ClassyFire® to assign a 5-level chemical taxonomy (kingdom, superclass,
class, subclass, and direct parent) to al molecules annotated via spectral library matching and in

silico prediction.

Phylogenetic tools such asiTOL?* can be used to visualize Qemistree trees interactively in the
context of sample information and feature annotations for easy data exploration. The outputs of
Qemistree can also be plugged into other workflows in QIIME 2% (many of which were
originally devel oped for microbiome sequence analysis) or in R, Python etc. for system-wide

metabolomic data analyses 6,7,9,26

. Qemistree is available to the microbiome community as a
QIIME 2 plugin (https://github.com/biocore/g2-gemistree) and the metabolomics community as

aworkflow on GNPS? (https://ccms-ucsd.github.i o/ GNPSDocumentation/gemistreg/). The

chemical tree from the GNPS workflow can be explored interactively (e.g.
https.//gemistree.ucsd.edu/).

To verify that molecular fingerprint-based trees correctly capture the chemical relationships
between molecules, we generated an evaluation dataset with two human fecal samples, atomato

seedling sample, and a human serum sample. Mixtures of these samples were prepared by
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99  combining them in gradually increasing proportions to generate a set of diverse but related
100  metabolite profiles and untargeted tandem mass spectrometry was used to profile the chemical
101  composition of these samples. Mass-spectrometry was performed twice using different
102  chromatographic gradients causing a non-uniform retention time shift between the two runs. The
103  dataprocessing of these two experiments leads to the same molecules being detected as different
104  chemical featuresin downstream analysis. In Figure 1awe highlight how these technical

105  variations make the same samples appear chemically digjointed.
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Figure 1. Qemistree mitigates aspects of technical artifacts by co-clustering structurally similar molecules
across mass spectrometry runs. a) Sample (y-axis) by molecule (x-axis) heatmap of 2 fecal samples, tomato
seedling samples, and serum samples in the evaluation dataset grouped by chromatography conditions. b) A
chemical tree based on predicted molecular fingerprints representing the structural relationships between compounds
detected in the evaluation dataset. Outer ring shows the relative abundance of molecules stratified by mass
spectrometry run; inner ring shows the same stratified by fecal, serum and tomato samples in the evaluation dataset.
Structurally similar molecules detected as different chemical features due to shift in retention time across mass
spectrometry runs are clustered together; we highlight some examples of these artificially duplicated features around
the tree. All structures shown are spectral reference library matches obtained from feature-based molecular
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116  networking® in GNPS: (https://gnps.ucsd.edu/ProteoSA Fe/status,j spAask=ef dad 76¢72724b29291693a108f a529d;
117  Metabolomics Standard Initiative (MSl) level 3 annotation)?’.
118

119  Using Qemistree, we map each of the spectrain the two chromatographic conditions (batches) to

120 amolecular fingerprint, and organize these in atree structure (Fig. 1b). Because molecular

121  fingerprints are independent of retention time shifts, spectra are clustered based on their chemical
122  similarity. Thistree structure can be decorated using sample type descriptions, chromatographic
123  conditions, and spectral library matches obtained from molecular networking in GNPS. Figure 1
124  showsthat similar chemical features are detected exclusively in one of the two batches.

125 However, based on the molecular fingerprints, these chemical features were arranged as

126  neighboring tipsin the tree regardless of the retention time shifts. This result shows how

127  Qemistree can reconcile and facilitate the comparison of datasets acquired on different

128  chromatographic gradients.

129

130 We demonstrate the use of a chemical hierarchy in performing chemically-informed

131  comparisons of metabolomics profiles. In standard metabolomic statistical analyses, each

132  moleculeis assumed unrelated to the other molecules in the dataset. Some of the pitfalls of this
133  assumption are highlighted in Figure 2a. Consider a scenario where we want to compare samples
134 1-3. An analysis schemathat does not account for the chemical relationships among the

135 moleculesin these samples (Figure 2a, |eft), will assume that the sugarsin samples 2 and 3 are as
136  chemically related to the lipidsin sample 1 asthey are to each other. Thiswould lead to the naive
137  conclusion that samples 1 and 2, and samples 2 and 3 are equally distinct, yet they are not from a
138 chemical perspective. On the other hand, if we account for the fact that sugar molecules are more
139 chemically related to one another than they are to lipids, we can obtain a chemically-informed
140  sample-to-sample comparison. Sedio and coworkers developed the chemical structural

141  compositional similarity (CSCS) metric®® to account for relationships between molecules based
142  onthesimilarity of their fragmentation spectra. While CSCS compares samples based on

143  modified cosine scores obtained from molecular networking, we calculate chemical relationships
144  based on structurally-informed molecular fingerprints. We express these relationships in the form
145  of ahierarchy which enables the use of other tree-based tools for downstream data analyses. For

146  example, in Figure 2a, we show that by using atree of structural relationships between molecules
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in samples 1-3, we can apply UniFrac®, atree-informed distance metric and demonstrate that the

composition of sample 1 isdistinct from samples 2 and 3.
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Figure 2: The pitfalls of assuming equal relatedness of molecules and the advantages of a chemical tree for
sample comparison. a) A scenario where the goal isto compare the chemical compositionin samples 1
(sphingosine and phosphatidylcholine), 2 (glucose, galactose, and fructose), and 3 (sucrose and lactulose). When we
do not account for the chemical relationships between the molecules, i.e. assume that the lipid moleculesin sample 1
are equally related to the sugars in samples 2 and 3 (left), we conclude that samples 1, 2, and 3 are similarly distinct.
If we account for sugar molecules being more chemically related to one another than sugars are to lipid molecules
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157  (right), we can obtain a chemically-meaningful distance between samples. Thisis exemplified through a principal
158  coordinates analysis (PCoA) of the computed UniFrac® (tree-based) distances among samples; we see that samples 2
159  and 3 aremoresimilar to each other, and sample 1 which is chemically distinct is separated along the primary axis
160  of variation, when distances are computed using the chemical tree. b, ) PCoA of samples in the evaluation dataset
161  colored by chromatography conditions. PCoA plot using tree-agnostic (Bray-Curtis™) distances which do not

162  account for the chemical relationship between features detected across chromatography conditions (b) and tree-

163  based (Weighted UniFrac®) distances which are based on the hierarchical relationships between moleculesin the
164  evaluation dataset (C).

165

166  Theimportance of comparing samples by accounting for their molecular relatedness is

167  highlighted when we contrast the results from ignoring the tree structure (Fig. 2b) to those which
168 integrateit (Fig. 2c). With the structural context provided by Qemistree, the differences between
169  replicates across batches are comparable to the within-batch differences (Fig. S2). The retention
170  time shift in this dataset leads to a strong technical signal that obscures the biological

171  relationships among the samples (permutational ANOVA; tree agnostic® pseudo-F=120.75,

172 p=0.001 vs. tree informed® pseudo-F=18.2239, p=0.001). We observed and remediated a similar
173  pattern originating from plate-to-plate variation in a recently published study investigating the
174  metabolome and microbiome of captive cheetahs™ (Fig. S3). In this study, placing the molecules
175 inatreeusing Qemistree reduced the observed technical variation (Fig. S3 a, ¢), and highlighted
176  thedietary effect that was expected (Fig. S3 b, d). These results show how systematic and

177  spurious molecular differences can be mitigated in an unsupervised manner using chemically-
178 informed distance measures based on atree structure.

179

180 Asacase study, we used Qemistree to explore chemical diversity in a set of food samples

181  collected asapart of the Global FoodOmics initiative (http://globalfoodomics.org). We selected

182  adiverse range of food ingredients to represent animal, plant, and fungal groupings™. We first
183  performed feature-based molecular networking using MZmine'"*8 to obtain spectral library
184  matchesfor a subset of the chemical features (~20% annotated with cosine cutoff > 0.7).

185 Understanding the chemical relationships between different foods is challenging because most
186  molecules within foods are unannotated. Using Qemistree, we collated GNPS spectral library
187 matches and in silico predictions from CSI:FingerID to annotate ~91% of the chemical features
188  (total 634 features after quality filtering) with molecular structures, Using ClassyFire™, we

189  assigned achemical taxonomy to 60% of these structures; the remaining 40% returned no

190 ClassyFire taxonomy. Labeling annotations allowed us to retrieve subtrees of distinct chemical
191 classes (Fig. 3a) such as flavonoids, alkaloids, phospholipids, acyl-carnitines, and O-glycosyl
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192 compoundsin food products. We propagated ClassyFire annotations of chemical features (tree
193  tips) to each internal node of the tree and labeled the nodes by pie charts depicting the

194  digribution in chemical superclasses (Fig. S4a) and classes (Fig. $S4b) of itstips. The molecular
195 fingerprint-based hierarchy of chemical features agreed well with ClassyFire taxonomy

196  assignment, further demongtrating that molecular fingerprints can meaningfully capture

197  structural relationships among moleculesin a hierarchical manner. Furthermore, Qemistree
198  coupled the chemical tree to sample metadata, revealing distinct chemical classes expected for
199  each sample type. Branches representing acyl-carnitines were exclusively found in animal

200  products (shades of blue; Fig. 3a). In contrast, honey, although categorized as an animal product,
201  shared most of its chemical space with plant products, reflective of the plant nectar and pollen-
202  based diet of honey bees. We observed a clade of flavonoidsin both plant products and honey
203  (Figs. 3a, $4b), but no other animal-based foods.
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205  Figure3: A chemical hierarchy of food-derived compounds based on predicted molecular fingerprints. a) A
206  chemical tree based on molecular fingerprints representing the structural relationships between chemical features
207  (treetips) detected in food products (single ingredient i.e. simple foods; N=119). The tree is pruned to only keep tips
208  that were assigned astructural annotation (SMILES) by either MS/M S spectral library match or in silico using

209  Cdl:FingerID. All structures shown are spectral reference library matches obtained from feature-based molecular
210  networking in GNPS: (https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=ceb28a199d6b4f 4f bf 08490d9c96d631;
211 MSI level 3 annotation®”). The outer ring shows the relative abundance of each compound across a diverse range of
212  food sources (panel alegend; parsed at ‘sample_type groupd’ of the Global FoodOmics Project ontology). We
213 highlight clusters of compounds that are characteristic of specific food sources. For example, theobromine and
214  caffeine aretwo closely related xanthine compounds (top center); they are primarily seen in teas (light green

215  samples) and coffee beans (berry; purple). Similarly, acyl-carnitines and phospholipids (top right) are unique to
216  different animal products (blues). We note that honey (highlighted in yellow), although annotated as an animal

217 product, contains compounds that are primarily seen in plant sources (flavonoids, O-glycosyl compounds) and no
218 other animal products. Flavonoids (top |eft) are observed in arange of fruit, vegetable, and honey samples (but no
219 other animal products). (b-d) A hierarchy of the compounds observed in simple foods (above) and seven complex
220  samples: two meals of orange chicken, a cooked cucumber and the sauce from ameal (schmorgurken), sour cream,
221  blueberry kefir, and egg scramble with chorizo (N=126). The inner ring shows the relative abundance of each

222 compound across simple animal products, plant products, fungi and algae (other) and the 7 complex foods (black).
223  The absolute abundances of compounds in blueberry kefir (b), scrambled eggs with chorizo (c), and orange chicken
224  (d) (outer bars) are overlaid on the tree to illustrate the shared and unique chemistry of complex foods. A compound
225  subtree characteristic of each complex food in the tree is highlighted (black) and zoomed in (e-g). () A subtree
226  showing the absolute abundance of acyl carnitines in blueberry kefir and its primary ingredients (blueberry and
227 milk). Similar subtrees showing phosphoethanolamine in scrambled eggs with chorizo (f), and phosphocholine in
228  orange chicken (g).

229

230  Whileit is expected that a complex food such as blueberry kefir contains molecules from both

231  blueberries and dairy, we can now visualize how individual ingredients and food preparation

232  contribute to the chemical composition of complex foods. We noted that metabolite signatures
233  that stem directly from particular ingredients, such as phosphoethanolamine from eggs, are

234  present in egg scramble (Fig. 3c), but not in the other two foods highlighted (Fig. 3b and d). We
235  can also observe the addition of ingredients in foods that were not listed as present in theinitial
236  set of ingredients. We were able to retrieve that there is black pepper in the egg scramble with
237  chorizo and orange chicken, but that this signal is absent from the blueberry kefir (Fig. S5).

238

239  We show that our tree-based approach coherently captures chemical ontologies and relationships
240  among molecules and samplesin various publicly available datasets. Qemistree depends on

241  representing chemical features as molecular fingerprints, and shares limitations with the

242  underlying fingerprint prediction tool CSI:FingerlD. For example, fingerprint prediction depends
243  onthe quality and coverage of MS/M S spectral databases available for training the predictive
244  models, and these will improve as databases are enriched with more compound classes.

245 Qemistreeis aso applicable in negative ionization mode; however, less molecular fingerprints
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246  can be confidently predicted due to less publicly available reference spectra, resulting in less
247  extensivetrees.

248

249  In summary, we introduce a new tree-based approach for computing and representing chemical
250 features detected in untargeted metabolomics studies. A hierarchy enables us to leverage existing
251  tree-based tools, and can be augmented with structural and environmental annotations, greatly
252 facilitating analysis and interpretation. We anticipate that Qemistree, as a data organization

253  strategy, will be broadly applicable across fields that perform global chemical analysis, from
254  medicine to environmental microbiology to food science, and well beyond the examples shown
255  here.

256
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257  Dataavailability

258 The mass spectrometry data, metadata, and methods for the evaluation dataset have been
259 deposited on the GNPS/MassIVE public repository*®® under the accession number
260 MSV000083306. The parameters used for molecular networking are available on GNPS:
261  https://gnps.ucsd.edu/ProteoSA Fe/status.j spXask=efdad 76c72724b29a91693a108faba9d.  The
262 chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL?:
263  https://itol.embl.de/tree/709513416494381587432576.

264  The mass spectrometry data, metadata, and methods for Global Foodomics dataset have been

265 deposited on the GNPS/MassIVE public repository”®® under the accession number
266 MSV000085226. The parameters used for molecular networking are available on GNPS:
267  https://gnps.ucsd.edu/ProteoSA Fe/status.j sp?task=ceb28a199d6b4f4fbf08490d9c96d631.  The
268  chemical hierarchy generated by Qemistree (version 2020.1.2) is available on iTOL*:
269  https://itol.embl.de/tree/13711034118313741584046018.

270  Codeavailability

271  All source codeis publicly available under BSD-2-Clause on GitHub:

272 https://github.com/biocore/g2-gemistree. Qemistree is also available as an advanced analysis
273  workflow on GNPS: https://ccms-ucsd.github.io/ GNPSDocumentation/gemistree/
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