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ABSTRACT 

 Alkb homolog 7 (ALKBH7) is a mitochondrial α-ketoglutarate dioxygenase required for necrotic 

cell death in response to DNA alkylating agents, but its physiologic role within tissues remains unclear. 

Herein, we show that ALKBH7 plays a key role in the regulation of dialdehyde metabolism, which impacts 

cardiac survival in response to ischemia-reperfusion (IR) injury. Using a multi-omics approach, we do not 

find evidence that ALKBH7 functions as a prolyl-hydroxylase. However, we do find that mice lacking 

ALKBH7 exhibit a significant increase in glyoxalase I (GLO-1), a dialdehyde detoxifying enzyme. Consistent 

with increased dialdehyde production, metabolomics analysis reveals rewiring of metabolic pathways 

related to the toxic glycolytic by-product methylglyoxal (MGO), as well as accelerated glycolysis and 

elevated levels of MGO protein adducts, in mice lacking ALKBH7. Consistent with roles for both necrosis 

and glycative stress in cardiac IR injury, hearts from male but not female Alkbh7-/- mice are protected 

against IR, although somewhat unexpectedly this protection does not appear to involve modulation of 

the mitochondrial permeability transition pore. Highlighting the importance of MGO metabolism for the 

observed protection, removal of glucose as a metabolic substrate or pharmacologic inhibition of GLO-1 

both abrogate cardioprotection in ALKBH7 deficient mice. Integrating these observations, we propose 

that ALKBH7 plays a role in the regulation of glyoxal metabolism, and that protection against necrosis 

and IR injury bought on by ALKBH7 deficiency originates from hormetic signaling in response to elevated 

MGO stress. 
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INTRODUCTION 

 The α-ketoglutarate (α-KG) dioxygenases are a diverse enzyme superfamily, whose primary 

biochemical function is the addition of hydroxyl (–OH) to protein or nucleic acid substrates.1 The family 

includes the TET 5-methylcytosine hydroxylases, the EGLN prolyl-hydroxylases that regulate hypoxia 

inducible factor (HIF), and the JmjC domain-containing histone demethylases. All α-KG dioxygenases use 

α-KG and O2 as biochemical substrates and generate succinate as product. The AlkB homologs (ALKBHs) 

are a distinct family of nine α-KG dioxygenases that are homologs of E. coli AlkB.2 The bacterial AlkB 

enzyme catalyzes demethylation of DNA damaged by alkylating agents, via hydroxylation of the 

methylated DNA followed by spontaneous decomposition to release formaldehyde and recover the DNA 

base.3,4 Many eukaryotic ALKBHs have been shown to act on DNA or RNA substrates, including 

mammalian ALKBHs 1-3, 5, 8 and FTO.5-8 The subject of this investigation is ALKBH7, a poorly 

characterized mitochondrial α-KG dioxygenase which has no known substrates. 

In contrast to a role in DNA repair or RNA modification, structural studies have revealed ALKBH7 

lacks a critical nucleotide recognition lid required for binding DNA or RNA.9 Moreover, A study of 

mitochondria from several tissues of Alkbh7-/- mice showed no differences in mtDNA modifications (6-

methyladenine, 5-methylcytosine, etc.) vs. wild-type (WT) at young ages, although Alkbh7-/- mtDNA did 

accumulate more modifications in old-age.10 Together these observations suggest ALKBH7 may not play 

significant roles in either the repair of known AlkB substrates, or in oxidizing as-yet unknown nucleic acid 

substrates. Similarly, efforts to identify potential protein substrates of ALKBH7 have not yielded insight 

to its function, with both a yeast-2-hybrid screen and several large mitochondrial protein:protein 

interaction databases not reporting any ALKBH7-binding proteins.11-14 

While the nucleic acid or protein substrate(s) of ALKBH7 remain(s) unclear, previous studies using 

RNAi or genetic ablation in human cells have found that ALKBH7 is required for programmed necrosis 

induced by DNA alkylating agents.15 Moreover, Alkbh7-/- mice exhibit protection against alkylation-

induced cell death in certain tissues.16 Notably this phenotype is only observed in males, even though 

Alkbh7 is not a sex-linked gene. Furthermore, the Alkbh7-/- mouse exhibits obesity due to defective fatty 

acid β-oxidation,17 and an Alkbh7 mis-sense mutation (R191Q) has been linked to prostate cancer.18 

However, it is unknown how these phenotypes are linked to the biochemical function of ALKBH7 as an 

α-KG dioxygenase. 

The heart is a mitochondria-rich tissue, and cardiomyocyte necrosis plays a key role in cardiac 

pathology such as that occurring in ischemia-reperfusion (IR) injury.19 As such, the requirement for 
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ALKBH7 in other models of necrosis15 makes the protein a potential target for the modulation of cell 

death in response to IR injury. Herein, focusing on heart tissue we employed a multi-omics approach to 

elucidate ALKBH7 biology, finding that hearts from Alkbh7-/- mice are protected against IR injury. We also 

find that a core component of this protected phenotype is hormetic signaling, resulting in a rewiring of 

metabolism in response to elevated glycative stress. These findings imply potential therapeutic utility 

for ALKBH7 inhibitors to prevent necrosis in IR and other conditions. 

 

RESULTS 

The complete original data used to generate all figures in the main document and supplement 

are contained in a spreadsheet available at DOI: 10.6084/m9.figshare.12200273 (DOI reserved, 

unembargoed upon publication). 

 

Proteomic analysis to identify ALKBH7 substrates suggests it is not a prolyl-hydroxylase. 

Several members of the α-KG dioxygenase superfamily possess prolyl-hydroxylase activity, and 

ALKBH7 is known to auto-hydroxylate on Leucine 110, suggesting it has hydroxylase activity.9 To 

investigate the hypothesis that ALKBH7 may be a prolyl-hydroxylase, a tandem-mass-tag (TMT) 

proteomic approach was employed to identify potential targets, assuming such targets would contain 

less hydroxyproline (P-OH) in Alkbh7-/- vs. WT samples. Using heart tissue from Ablkbh7-/- and WT mice 

(Fig. S1), a total of 451 P-OH containing peptides were identified, and their abundances normalized to 

those of their 238 parent proteins. Differential analysis, applying thresholds of ±1.5-fold change and 

p<0.05 for significance, revealed only a handful of peptides with altered P-OH (volcano plot Fig. 1A, top 

5 up/down hits in Fig. 1B). Only one peptide showed significantly less P-OH: the β-oxidation enzyme 

hydroxyacyl-CoA dehydrogenase (Hadh gene). 

It is reported that Alkbh7-/- mice are obese and harbor a baseline defect in β-oxidation of long-

chain fatty acids such as oleate, which can be overcome when stimulated by fasting.17 To determine β-

oxidation levels in the heart, a mostly fat-burning organ, Seahorse XF analysis of isolated cardiomyocytes 

from Alkbh7-/- and WT mice was undertaken, revealing a small but significant decrease in oleate 

oxidation at baseline, with this effect disappearing upon stimulation of maximal respiration (Fig. S2). 

Although HADH is primarily involved in the β-oxidation of short chain fatty acids, we hypothesized based 

on P-OH proteomic data and the obese phenotype that prolyl-hydroxylation of HADH may regulate its 

activity. However, western blotting showed no alteration in HADH protein levels between WT and 
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Alkbh7-/- (Fig. 1B), and activity assays of both short-chain HADH (Hadh gene) and long-chain HADH 

(Hadha gene) revealed no differences between genotypes (Fig. 1D). As such, we consider it unlikely that 

prolyl-hydroxylation by ALKBH7 is an underlying cause of defective β-oxidation in the Alkbh7-/- mouse. 

To identify potential ALKBH7 binding partners, a FLAG-tag pull-down interactome experiment 

was performed, under either baseline or DNA alkylation stress conditions. As Table S1 shows, several 

mitochondrial heat shock proteins were identified as ALKBH7 interactors, despite no such proteins being 

differentially hydroxylated (Fig. 1A). This finding is in agreement with a recent antibody-based 

immunoprecipitation study which suggested a role for ALKBH7 in proteostasis,20 although the functional 

significance of this for necrosis is unclear (see Fig. S8 and related text). An additional protein hit was the 

NDUFS7 subunit of respiratory complex I, which the BioPlex interactome database also reports as an 

ALKBH7 interacting protein.21 However, enzyme assays in heart and liver mitochondria from WT and 

Alkbh7-/- mice revealed no differences in the activities of complex I and several other key mitochondrial 

enzymes (Fig. S3), suggesting no role for ALKBH7 in regulating complex I function.  Overall, consistent 

with a general paucity of ALKBH7 binding proteins,11-14 we consider it unlikely that the necrosis function 

of ALKBH7 is due to prolyl-hydroxylation or the binding and modulation of mitochondrial heat shock 

proteins or respiratory complexes. 

 

Proteomic abundance analysis in Alkbh7-/- indicates re-wiring of glyoxal metabolism. 

In parallel with analysis of P-OH, the TMT proteomic experiment also yielded relative abundance 

values for 3,737 proteins in Alkbh7-/- and WT hearts, with a volcano plot (Fig. 2A) revealing several 

differences which may underlie the metabolic phenotype of the knockout animals.A The lipid droplet 

protein perilipin-5, which signals via Sirt1/PPAR-α to drive mitochondrial biogenesis and fat oxidation,22 

was 25% lower in Alkbh7-/- vs. WT. In addition, fructose-1,6-bisphosphatase 2 (FBP2/PFK2) was 31% 

lower in Alkbh7-/- vs. WT, a finding typically associated with acceleration of glycolysis.23 

In addition, a highly significant (p=0.00006) 1.6-fold elevation was seen in lactoylglutathione 

lyase (glyoxalase I, GLO-1) in Alkbh7-/- vs. WT. This observation was confirmed by enzymatic activity assay 

(Fig. 2B) and by western blot (Fig. 2D/E), with a similar activity difference also observed in Alkbh7-/- vs. 

WT liver tissue (Fig. S3). GLO-1 is part of the dialdehyde detoxification pathway that handles toxic 

 
A Although ALKBH7 itself appears in the proteomic data set, this is not an indication of improper deletion. The original 
knockout targeted exons 2-5 containing the active site, whereas the peptides found here were in exon 1. While we cannot 
exclude the possibility of dominant negative effects due to an inactive truncation product, limited experiments with 
heterozygous animals (not shown) did not reproduce any phenotypes observed in homozygous knockouts. 
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metabolites such as the glycolytic by-product methylglyoxal (MGO), recycling it to D-lactate, thus 

avoiding the generation of advanced glycation end products (Fig. 2F).24 No change was seen in the 

activity of the companion enzyme GLO-2 in Alkbh7-/- (Fig. 2C). The only other protein significantly 

upregulated in Alkbh7-/- was heme binding protein 1 (Hebp1), and notably a recent study found both 

GLO-1 and Hebp1 were upregulated in Alzheimer’s disease,25 suggesting these proteins may share a 

common upstream regulator. Overall, despite extensive proteome coverage, a surprisingly small number 

of proteins (4) were up- or down-regulated in Alkbh7-/- heart. 

Although ALKBH7 is generally thought to be mitochondrial, several of the differences observed 

between WT and Alkbh7-/- heart were cytosolic proteins, including GLO-1. In this regard, western blotting 

(Fig. S1) showed immunoreactivity for ALKBH7 in the cytosolic compartment (uncontaminated by the 

mitochondrial marker ANT-1) as well as in mitochondria, suggesting ALKBH7 may not be exclusively 

mitochondrial. The relative importance of these sub-populations of ALKBH7 in driving necrosis or other 

phenotypes is currently unclear. 

 

Metabolomics analysis in Alkbh7-/- confirms rewired glyoxal metabolism. 

To further probe metabolism in Alkbh7-/- hearts, a steady-state metabolomics analysis was 

undertaken (Fig. 3A), which revealed perturbations in several key metabolites related to MGO stress.  

The antioxidants carnosine and glutathione (GSH) were both significantly lower in Alkbh7-/-, consistent 

with their being utilized in the detoxification of MGO.26 As noted above (Fig. 2F), GLO-2 recycles GSH 

consumed by GLO-1, so an elevation in GLO-1 activity without a concomitant upregulation of GLO-2 

would be predicted to result in GSH depletion. Furthermore, numerous metabolites in the lower half of 

glycolysis were elevated in Alkbh7-/-, suggesting acceleration of this pathway (Fig. 3B). To test this 

hypothesis directly, 13C-glucose tracing was employed to measure glycolytic flux in perfused mouse 

hearts,27 and the results in Fig. 3C show that glycolytic flux was indeed faster in Alkbh7-/-. Further 

evidence for elevated MGO stress in Alkbh7-/- was seen in the form of elevated MGO protein adduct 

levels in both cytosol and mitochondria (Fig. 3D-F). Together these data suggest the Alkbh7-/- heart 

experiences elevated glycative stress, potentially driving a hormetic response. 

 

Loss of ALKBH7 protects the heart from ischemia-reperfusion (IR) injury. 

In addition to metabolic effects, a key phenotype resulting from Alkbh7 ablation is protection 

against necrosis.15 In seeking links between glyoxal metabolism and necrosis, it is notable that both 
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glycative stress and necrosis are implicated in the pathology of cardiac IR injury.28-30 In addition, a 

mitochondrially-targeted MGO scavenging molecule was recently shown to protect the heart against IR 

injury.31 To test the hypothesis that loss of ALKBH7 may protect against IR, perfused hearts from WT and 

Alkbh7-/- mice were subjected to IR injury (25 min. global ischemia, 60 min. reperfusion). As shown in 

Fig. 4A/B, male Alkbh7-/- hearts exhibited significantly improved post-ischemic functional recovery and 

significantly lower infarct size (an indicator of necrosis) compared to WT. Consistent with sexual 

dimorphism in the necrosis effects of ALKBH7,16 no protection against IR injury was observed in hearts 

from female Alkbh7-/- mice (Fig. S5). 

Both hormetic signaling (e.g., via Nrf-2) and several paradigms of cardioprotection are known to 

decline with age. 32-35 In addition GLO-1 activity declines with age,24 and the Glo1 gene contains an Nrf-

2 inducible antioxidant response element.36 As such, agreeing with the observed cardioprotection in the 

Alkbh7-/- mouse originating via hormetic signaling, we also found that protection against IR injury was 

lost in aged male Alkbh7-/- mice (Fig. S6). Together, these results suggest that ALKBH7 may play a role in 

necrosis by regulating MGO metabolism, and its ablation triggers a hormetic signaling response that 

endows protection against IR in the heart. 

 

Acute pharmacologic ALKBH inhibition elicits cardioprotection. 

The activity of α-KG dioxygenases can be inhibited by D- or L- isomers of the non-canonical 

metabolite 2-hydroxyglutarate (2-HG),37 with L-2-HG inhibiting ALKBHs more potently than D-2-HG.38,39 

In addition, acute administration of the generic α-KG dioxygenase inhibitor dimethyloxalylglycine was 

shown to confer protection against hypoxic injury in cardiomyocyte model of IR.40 Since genetic ablation 

of ALKBH7 was cardioprotective, we thus hypothesized its pharmacologic inhibition may serve a similar 

purpose. As Fig. S7 shows, administration of L-2-HG as its dimethyl ester (a common delivery strategy 

for dicarboxylates) was cardioprotective in WT hearts, eliciting enhanced functional recovery and lower 

infarct size (albeit the latter non-significant). While L-2-HG is known to have multiple targets, these data 

suggest the development of more specific ALKBH7 inhibitors may be a promising therapeutic strategy 

for IR injury. 

 

Cardioprotection in Alkbh7-/- is not due to the mitochondrial unfolded protein response. 

We recently showed that activation of the mitochondrial unfolded protein response (UPRmt) is 

sufficient to induce cardioprotection against IR injury.41 The genes encoding LonP1 and ClpP, two 
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mitochondrial proteases involved in UPRmt signaling,42 are also located on mouse chromosome 17 

adjacent to the Alkbh7 gene. In addition, a recent proteomic study proposed a role for ALKBH7 in 

mitochondrial proteostasis,20 and our pull-down experiment identified several mitochondrial heat-shock 

proteins as potential ALKBH7 interactors (Table S1). Furthermore, the related protein ALKBH1 has been 

shown to partially localize to mitochondria, and its knock-down induces a UPRmt.43 As such, we 

hypothesized constitutive UPRmt activation might underlie the cardioprotective effects of ALKBH7 

ablation. However, western blotting (Fig. S8) showed only small increases in LonP1 and ClpP protein in 

Alkbh7-/- (the former non-significant), and a significant decrease in HSP60 (Hspd1) protein. We also did 

not find any UPRmt target proteins upregulated in our proteomics analysis (Fig. 2). Overall these 

observations suggest that modulation of the UPRmt is not a key mechanism by which ALKBH7 regulates 

necrosis. 

 

Cardioprotection in Alkbh7-/- is not via the mitochondrial permeability transition pore. 

A core component of the necrotic cell death machinery is the mitochondrial permeability 

transition (PT) pore, which is regulated by the cis/trans prolyl-isomerase cyclophilin D (CypD, ppif).44 

Parallels between CypD and ALKBH7 function have previously been speculated.9 In addition, although 

somewhat counter-intuitive, it has been shown that MGO can inhibit the PT pore,45 and our data suggest 

Alkbh7-/- mice experience greater MGO stress (Figs. 2,3). Thus, we hypothesized ALKBH7 may regulate 

the PT pore. However, an osmotic swelling PT pore assay in isolated cardiac mitochondria from WT and 

Alkbh7-/- mice revealed only a slight blunting of pore opening in Alkbh7-/- (Fig. 5A/B). In addition, pore 

opening in both genotypes was inhibited by CypD inhibitor cyclosporin A, suggesting no differences in 

the underlying ability of CypD to regulate the pore. An isolated mitochondrial Ca2+ handling assay (Fig. 

5C-E) showed a slight elevation in the amount of Ca2+ required to trigger the pore in Alkbh7-/-, and no 

difference in Ca2+ uptake kinetics. Furthermore, blue-native gel analysis of ATP synthase multimers, 

which are postulated to contribute to the composition of the PT pore,46 showed no differences between 

Alkbh7-/- and WT (Fig. S9). Together these findings suggest the mitochondrial PT pore is not a central 

mechanism by which ALKBH7 regulates necrosis. 

 

Rewiring of glyoxal metabolism underlies cardioprotection in Alkbh7-/-. 

Several paradigms of cardioprotection against IR injury have been linked to elevated glycolysis.27 

To test the requirement for elevated glycolysis in the protected phenotype of Alkbh7-/-, hearts were 
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perfused in the absence of glucose (i.e., fat as the only metabolic substrate). While no difference in 

baseline function was observed, Fig. S10 shows that removal of glucose abrogated cardioprotection in 

Alkbh7-/-. Contrary to observations with a rich substrate mix (Fig. 4), infarct size was significantly greater 

in glucose-free-perfused Alkbh7-/- hearts vs. WT. 

To further probe the requirement for elevated GLO-1 in cardioprotection, the GLO-1 inhibitor S-

p-Bromobenzylglutathione cyclopentyl diester (SBB-GSH-CpE) was administered to hearts prior to 

ischemia. As Fig. 6 shows, 1 µM SBB-GSH-CpE had no effect on WT hearts (c.f. Fig. 4), but completely 

abrogated cardioprotection in Alkbh7-/- hearts. Separate experiments to assay GLO-1 enzyme activity in 

SBB-GSH-CpE treated hearts (not shown) indicated this protocol resulted in 34 ± 8% GLO-1 inhibition 

(mean ± SD). A significant depression of cardiac function was observed immediately upon SBB-GSH-CpE 

administration to Alkbh7-/- hearts, with no effect in WT (Fig. 6A). Due to its higher baseline level of MGO 

stress (Fig. 3D-F), the Alkbh7-/- heart is likely more dependent on GLO-1 activity and may therefore be 

hypersensitized to its inhibition. This finding suggests an important role for anti-glycation enzymes such 

as GLO-1 in cardiac functional homeostasis. In this regard, the mitochondrial protein DJ-1 has been 

shown to function as a glyoxal detoxifying enzyme,47 and was also recently shown to confer 

cardioprotection.48,49 However, no differences in the levels of DJ-1 were observed in Alkbh7-/- hearts (Fig. 

6C), suggesting that hormetic signaling in Alkbh7-/- is somewhat specific to GLO-1 and may not engage 

other detoxification pathways. 

 

DISCUSSION 

Summarizing the current findings, a comprehensive analysis of the Alkbh7-/- mouse heart 

suggests ALKBH7 is not a functional prolyl-hydroxylase that regulates mitochondrial activity, and that its 

role in necrosis involves rewiring of MGO metabolism. We propose a scheme to link these events as 

outlined in Fig. 6D. Specifically, ALKBH7 loss triggers a mild defect in fat oxidation and an elevated rate 

of glycolysis, possibly via perilipin 5 and fructose-1,6-bisphosphatase 2. The resulting glycative stress 

triggers rewiring of glyoxal metabolism, in particular GLO-1 induction, as a hormetic response which 

endows the added benefit of protection against IR injury. Mitochondrial PT pore opening does not 

appear to play a significant role in protecting Alkbh7-/- heart. The relative position of GLO-1 as a 

downstream consequence of altered metabolism or as a driver of it, is highlighted by a recent systems 

genetic analysis which identified Glo1 as an important gene in the regulation of lipid metabolism.50  

While it is possible that the fat oxidation defect observed in Alkbh7-/- mice is downstream of GLO-1, our 
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evidence favors a hormetic response of GLO-1 to glycative stress downstream of a fat-to-glucose switch 

as the more likely scenario. 

A surprising finding herein was that GLO-1 was upregulated in Alkbh7-/- mice without 

concomitant upregulation of its companion enzyme GLO-2. The GLO-1/GLO-2 system (Fig. 2F) typically 

recycles GSH, and as predicted Alkbh7-/- mice exhibited depleted GSH levels. While such a finding might 

cast focus on oxidative stress as a phenotypic driver in Alkbh7-/-, recent discoveries have implicated the 

GLO-1/GLO-2 system in epigenetic signaling. Specifically, the product of GLO-1, S-lactoylglutathione 

(SLG), has been shown to mediate the lactylation of lysine residues,51 including in histones,52  which may 

represent a link between metabolism and gene regulation. As such, it is possible that SLG levels may be 

elevated in Alkbh7-/-, which could drive epigenetic changes that underlie the phenotypes of the 

knockout. 

The origins of the sexual dimorphism in necrosis and IR injury in Alkbh7-/- mice remain unclear. In 

this regard, a recent study identified S-nitrosoglutathione reductase (GSNO-R) as a potential modulator 

of IR injury in male vs. female mice53. Notably GSNO-R can function as a formaldehyde dehydrogenase, 

and formaldehyde is a product of the DNA demethylation reaction carried out by many ALKBHs. As such, 

it is possible the role of ALKBH7 in necrosis may involve generation of formaldehyde, such that ALKBH7 

deletion in males is protective by lowering the levels of this metabolite, whereas females have elevated 

GSNO-R levels so are already conditioned to lower formaldehyde levels. 

The results herein may also provide insight to the complex biology of the diabetic heart. The 

incidence and progression of cardiac pathology such as heart failure is significantly worse in diabetes, 

and this is thought to be partly due to elevated glycative stress.54,55 However, somewhat paradoxically 

the diabetic heart is relatively protected against acute IR injury.56-58 As such, it is interesting to speculate 

whether the mechanisms of ischemic tolerance seen in the Alkbh7-/- heart, stemming from hormetic 

GLO-1 upregulation, may also apply to the diabetic heart. An additional ramification of the current 

results may be in the area of cancer biology, where there has been interest in the potential use of GLO-

1 inhibitors to target metabolic vulnerabilities of cancer cells. 51,59  The apparent cardiotoxic effects of 

SBB-GSH-CpE (Fig. 6) suggest that caution may be required in the use of such drugs to ensure they do 

not elicit cardiac toxicity. 

Although the precise biologic function and substrates of the ALKBH7 enzyme remain unknown, it 

is tempting to speculate that the native function of the enzyme may be in the repair of glycative adducts, 

such that its deletion drives the responses seen herein to limit formation of such adducts. Overall, our 
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findings highlight the importance of MGO homeostasis in the heart and suggest novel therapeutic targets 

for protection of tissues against IR injury. Further work is required to elucidate the signaling mechanisms 

that link the biochemical function of ALKBH7 to MGO metabolism. 
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ABBREVITATED METHODS (for full methods see online supplement) 

Animals & materials 

Alkbh7-/- mice on a C57BL/6J background16,17 were bred conventionally (WT x KO), PCR genotyped 

at weaning, and maintained according to the “NIH Guide” (8th edition, 2011) on an IACUC approved 

protocol. Since murine Alkbh7-/- phenotypes are only seen in males, primarily male mice were used 

(except where indicated), with littermate wild-type controls, at of 8-12 weeks (young) or 1.5 years (old).  

All procedures were performed following administration of heparin (250 units) and tribromoethanol 

anesthesia (200mg/kg ip). All chemicals and reagents were from Sigma-Aldrich unless otherwise noted. 

Dimethyl-L-2-hydroxyglutarate was synthesized stereo-specifically60 and purified via silica column 

chromatography. 
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Isolated perfused hearts 

Rapidly extirpated hearts were retrograde (Langendorff) perfused at 4 ml/min. with 37°C Krebs-

Henseleit buffer (KHB) gassed with 95% O2/5% CO2, and left ventricular pressure measured via a 

transducer-linked water-filled balloon, as described.27 Following 15 min. equilibration, ischemia-

reperfusion (IR) injury comprised 25 min global non-flow ischemia plus 60 min. reperfusion. Hearts were 

then sliced and stained with triphenyltetrazoliumchloride for infarct quantitation. KHB contained 5 mM 

glucose, 1.2 mM lactate, 0.5 mM pyruvate and 100 µM palmitate (conjugated to BSA) as metabolic 

substrates, unless indicated. The following experiments were conducted: (i) IR alone: WT and Alkbh7-/- 

hearts subjected to IR in 3 cohorts: young males, young females, old males. (ii) GLO-1 inhibitor IR: Young 

male WT and Alkbh7-/- hearts were subjected to IR, with 1 µM SBB-GSH-CpE delivered for 10 min. prior 

to ischemia. A small number of SBB-GSH-CpE treated WT hearts were snap-frozen without ischemia, for 

measurement of GLO-1 activity. (iii) Glucose-free IR: Young male WT and Alkbh7-/- hearts were perfused 

with KHB containing palmitate-BSA alone (no glucose, lactate, pyruvate) and subjected to IR injury. (iv) 

Proteomics & steady-state metabolomics: Young male WT and Alkbh7-/- hearts were perfused for 15 min. 

then snap-frozen and stored at -80°C until analysis.  (v) Metabolic flux: Young male WT and Alkbh7-/- 

hearts were perfused with KHB. Following equilibration, glucose in KHB was replaced with 5 mM [U-13C] 

glucose, and perfusion continued for 5 min., followed by snap-freezing and storage at -80°C until analysis. 

(vi) Dimethyl L-2-hydroxyglutarate plus IR: Young male WT hearts were subjected to IR, with 10 µM DM-

L-2-HG delivered for 20 min. prior to ischemia. 

 

Isolated mitochondrial experiments 

Mouse heart or liver mitochondria were isolated by differential centrifugation in sucrose based 

media essentially as described.61,62 Protein was determined by the Lowry method.63 Mitochondrial 

permeability transition (PT) pore opening, induced by 100 µM CaCl2, was measured via 

spectrophotometric light scatter at 520 nm, as described.64 Mitochondrial Ca2+ handling in response to 

pulses of 10 µM CaCl2, was assayed via fluorescence of Ca2+-green-5N as described.65 

 

Proteomics 

 WT and Alkbh7-/- hearts were perfused, snap-frozen, and shipped on dry ice. Proteomic analysis 

was performed essentially as described.66 In brief, samples were extracted in laurylmaltoside, reduced 
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with dithiothreitol, alkylated with iodoacetamide, digested with trypsin, and peptides labeled with 

Tandem Mass Tag (TMT) reagents (Thermo #90110 and #A37724). Following detergent removal and 

desalting, samples were fractionated by basic reverse-phase HPLC (C18), and fractions were analyzed by 

LC-MS/MS using an Orbitrap Fusion Lumos Tribid instrument (Thermo) with an Ultimate 3000 Nano-

HPLC inferface (Thermo). The instrument operated in data-dependent acquisition mode (DDA) using 

fourier transform (FT), scanning peptide precursors in the range 300-2000 m/z (12 ppm tolerance) and 

fragment ions at 100-2000 m/z (0.05 Da tolerance). Raw spectra were processed and searched within 

Proteome Discoverer 2.2 software (PD2.2, Thermo) using Sequest HT and Mascot algorithms and the 

Swiss Prot mouse database. Identified peptides were filtered for < 1% false discovery rate (FDR) using 

the Percolator algorithm in PD 2.2. Final lists for protein identification and quantitation were filtered by 

PD 2.2 with at least 2 unique peptides per protein identified with medium confidence. This method 

yielded 3,737 proteins with average 29% sequence coverage. Filtering for P-OH containing peptides 

yielded 451 peptides originating from 238 proteins. The abundance of each P-OH containing peptide was 

normalized to abundance of its parent protein, to quantify relative hydroxylation between WT and 

Alkbh7-/-. 

 

Identification of ALKBH7 binding partners 

C-terminal FLAG-tagged human ALKBH7 was cloned into pcDNA3.1 (Invitrogen) for transient 

transfection (48 hr.) of HEK 293T cells. Following 1 hr. treatment with 1 mM methyl methanesulfonate 

(MMS) or vehicle, cell extracts were prepared as previously described.67 ALKBH7 interacting proteins 

were immunoprecipitated using anti FLAG M2 resin (Sigma), eluted with FLAG peptide, and separated 

by SDS-PAGE. Subsequent steps were performed by the MIT Center for Cancer Research Biopolymers 

Laboratory (https://ki.mit.edu/sbc/biopolymers). Excised gel bands were reduced, alkylated, trypsin-

digested and desalted prior to analysis using an Agilent model 1100 Nanoflow HPLC coupled by 

electrospray ionization to a Thermo LTQ ion-trap mass spectrometer. Protein identification was 

performed using the Sequest algorithm. 

 

Metabolomics 

WT and Alkbh7-/- hearts were perfused, snap-frozen, pulverized, and metabolites serially 

extracted in 80% aqueous methanol. LC-MS/MS analysis employed a Synergi Fusion RP C18 column 

(Phenomenex) with an acetonitrile elution ramp, coupled to a Thermo Quantum TSQ triple-quadrupole 
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mass spectrometer (Thermo) as previously described.27,68 Metabolite identification was based on 

retention time plus a custom SRM library built using purchased standards, with confirming fragment ions 

at up to 4 different collision energies (mass tolerance 0.05 Da). Data were analyzed using XCalibur Qual 

Browser (Thermo), with relative metabolite content normalized to the sum of all metabolites in a run. 

For measurement of glycolytic flux, hearts perfused with [U-13C] glucose were snap frozen, 

extracted, and analyzed as per steady state metabolomics, with a custom SRM library used to quantify 

isotopologues of glycolytic metabolites. Fractional saturation with 13C label was calculated with 

correction for natural 13C abundance, as described previously.27,68 

 

Western blotting & blue-native electrophoresis 

Hearts from male WT and Alkbh7-/- mice were fractionated as previously described,69 and protein 

content determined by the Lowry method.63 Following SDS-PAGE and transfer to 0.2 µm nitrocellulose, 

membranes were probed with antibodies against ALKBH7, HSPD1, LONP1, CLPP, methylglyoxal adducts, 

GLO-1, HADHSC, DJ-1, and ANT1. Chemiluminescent detection (KwikQuant, Kindle Bioscience) employed 

HRP-linked secondary antibodies, and sample loading was normalized to Ponceau S staining of 

membranes immediately after transfer. Analysis of mitochondrial super-complexes by blue-native PAGE, 

and complex V in-gel activity assay, were accomplished essentially as described.70 

 

Cardiomyocyte isolation and Seahorse respirometry 

Ca2+ tolerant primary adult cardiomyocytes were isolated as previously described.61,68 and plated 

at 2000/well on XF96 V3-PS plates (Agilent, Santa Clara CA). Oxygen consumption rate (OCR) was 

measured with a Seahorse XF96 extracellular flux analyzer (Agilent) in media containing 100 μM BSA-

conjugated oleate, at baseline and following sequential injections of (i) FCCP plus oligomycin, (ii) 

etomoxir, (iii) antimycin A plus rotenone, for the calculation of baseline and maximally stimulated fat 

oxidation. 

 

Enzyme assays 

Enzyme activities were determined in isolated mitochondria and cytosol from hearts and livers 

of WT and Alkbh7-/- mice, as indicated. Mitochondria were freeze/thawed 3x. Complex I was measured 

spectrophotometrically at 340 nm as the rotenone-sensitive, coenzyme Q1-linked oxidation of NADH, as 

previously reported.71 Complex II was measured spectrophotometrically at 60 nm as the rate of 
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succinate-driven, thenoyltrifluoroacetone (TTFA)-sensitive, co-enzyme Q2-linked reduction of 

dichlorophenolindophenol (DCPIP) as previously reported.72 α-Ketoglutarate dehydrogenase was 

measured spectrophotometrically at 340 nm as the α-ketoglutarate-dependent, 2-Keto-3-methyl-

valerate (KMV) sensitive reduction of NAD+, as described.73 Citrate synthase was measured 

spectrophotometrically at 412 nm as the oxaloacetate and Acetyl CoA-linked production of 2-nitro-5-

thiobenzoate (TNB) from 5,5'-dithiobis-(2-nitrobenzoic acid, DTNB).74 The activity of short chain and long 

chain specific isoforms 3-HydroxyacylCoA dehydrogenase (HADH) was measured spectrophotometrically 

at 340 nm as the corresponding 3-oxoacyl CoA-linked oxidation of NADH, following literature 

procedure.75,76 3-ketopalmitoyl CoA was used for long chain HADH and acetoacetyl CoA for short chain 

HADH. Glyoxalase I (GLO-1) activity was measured spectrophotometrically at 240 nm as the rate of 

formation of S-D-lactoylglutathione (SLG) from the hemithioacetal adduct pre-formed in situ by 

incubation of methylglyoxal and glutathione, as reported.77 Glyoxalase II (GLO-2) activity was measured 

spectrophotometrically at 240 nm as the rate of hydrolysis of SLG, as reported.77 

 

Statistics 

 For all experiments, a single N (biological replicate) was considered to be the material arising 

from a single animal. N ranged from 3 to 17 depending on experiment, and is indicated in each figure or 

legend. Statistical significance was assessed by ANOVA with post-hoc Student’s t-test. Where 

appropriate (comparisons between littermate paired samples), paired t-tests were used. Whenever 

possible experiments were performed in a blinded manner. 
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Figure 1. Proteomic analysis of prolyl-hydroxylation in WT vs. Alkbh7-/-. Hearts from young male WT or Alkbh7-/- mice were 
analyzed by tandem mass tag LC-MS/MS as per the methods. Abundance of each P-OH peptide was normalized to the 
abundance of its parent protein. (A): Volcano plot showing relative levels of 451 P-OH containing peptides. X-axis shows Log10 
of fold change (Alkbh7-/- / WT) and Y-axis shows Log10 of significance (paired t-test, N=5). Proteins crossing thresholds (gray 
lines) in upper left or right quadrants are labeled. (B): Table showing the top 5 P-OH containing peptides exhibiting increased 
or decreased relative abundance in Alkbh7-/- vs. WT. Table shows raw abundance of each P-OH peptide, abundance of the 
parent protein, and normalized abundance of the P-OH peptide. Annotated sequences highlight the hydroxylated proline 
residues in red. (C): Western blot showing abundance of HADH-SC (Hadh) in WT or Alkbh7-/- heart mitochondria with 
quantitation below, normalized to protein loading determined by Ponceau S stained membrane. (D): Spectrophotometric 
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activity assays of short-chain and long-chain HADH in WT or Alkbh7-/- heart mitochondria. Bar graphs in panels C/D show 
means ± SE, N=3-5, with p-values (paired t-test) shown above error bars. 
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Figure 2. Proteomic analysis of protein abundance in WT vs. Alkbh7-/-. Hearts from young male WT or Alkbh7-/- mice were 
analyzed by tandem mass tag LC-MS/MS as per the methods. (A): Volcano plot showing relative levels of 3,737 proteins. X-
axis shows Log10 of fold change (Alkbh7-/- / WT) and Y-axis shows Log10 of significance (paired t-test, N=5). Proteins crossing 
thresholds (gray lines) in upper left or right quadrants are labeled. (B): Activity of GLO-1 in WT or Alkbh7-/- heart cytosol. (C): 
Activity of GLO-2 in WT or Alkbh7-/- heart cytosol. (D): Western blot showing abundance of GLO-1 in WT or Alkbh7-/- heart 
cytosol, with Ponceau stained membrane below. (E): Quantitation of GLO-1 blot, normalized to protein loading. Bar graphs 
in panels B/C/E show means ± SE, N=4-5, with p-values (paired t-test) shown above error bars. (F): Schematic showing the 
methylglyoxal detoxification system and its relationship to glycolysis. Abbreviations: AGEs: Advanced glycation end products, 
GSH: glutathione. MGO: methylglyoxal. 
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Figure 3. Metabolomics analysis in WT vs. Alkbh7-/-. Hearts from young male WT or Alkbh7-/- mice were analyzed by LC-
MS/MS based metabolomics as per the methods. (A): Volcano plot showing relative levels of 90 metabolites in the steady 
state. X-axis shows Log10 of fold change (Alkbh7-/- / WT) and Y-axis shows Log10 of significance (paired t-test, N=8-17 depending 
on metabolite). Metabolites crossing thresholds (gray lines) in upper left or right quadrants are labeled. A pathway impact 
analysis is shown in Fig. S4. (B): Schematic showing glycolysis and its relationship to methylglyoxal (MGO). Metabolites 
quantified in 13C-flux measurements (panel C) are highlighted blue. (C): 13C-glucose flux measurements of glycolytic activity 
in Alkbh7-/- vs. WT hearts. Y-axis shows fractional saturation (F-SAT) of each metabolite within 5 min. from exogenously 
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delivered [U-13C] glucose. Note: UDP-Glc-Nac is shown on separate axes for clarity. (D/E): Western blot showing abundance 
of MGO-adducts in Alkbh7-/- and WT heart cytosol (D) or mitochondria (E). Ponceau stained membranes are shown below. 
(F): Quantitation of MGO adduct content from blots, normalized to protein loading. Bar graphs in panels C/F show means ± 
SE, N=4-5, with p-values (paired t-test) shown above error bars. 
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Figure 4. Response to ex-vivo cardiac ischemia-reperfusion (IR) injury in WT vs. Alkbh7-/-. Hearts from young male WT and 
Alkbh7-/- mice were Langendorff perfused and subjected to 25 min. ischemia plus 60 min. reperfusion. (A): Cardiac function 
assessed by left ventricular balloon pressure transducer. Graph shows the product of heart rate multiplied by left ventricular 
developed pressure, as a percentage of the initial (pre-ischemic) value. (B): Post IR staining with TTC for quantitation of 
myocardial infarct size. Representative TTC-stained heart slices are shown, with pseudo-colored mask images used for 
quantitation by planimetry (red = live tissue, green = infarct). Data are quantified below, with individual data points to shown 
N, and means ± SE. p-values (paired t-test) are shown above error bars. 
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Figure 5. Mitochondrial PT pore & Ca2+ handling in WT vs. Alkbh7-/-. (A): Opening of the mitochondrial PT pore was assayed 
spectrophotometrically in isolated cardiac mitochondria from young male WT and Alkbh7-/- mice. Average traces are shown, 
with addition of 100 µM Ca2+ to initiate PT pore opening and swelling indicated by the arrow. Dotted lines indicate the 
presence of the PT pore inhibitor cyclosporin A (CsA). Error bars are omitted for clarity. (B): Quantitation of pore opening, as 
the change in swelling (absorbance at 520 nm) in 5 min. Data are means ± SE, N=7, with significance between groups (unpaired 
t-test) shown above error bars. (C): Mitochondrial Ca2+ handling assayed by Ca2+ green-5N fluorescence. Isolated cardiac 
mitochondria from young male WT and Alkbh7-/- mice were incubated with Ca2+ green-5N to indicate extra-mitochondrial 
[Ca2+]. Pulses of 10 µM Ca2+ were added at ~2 min. intervals as indicated by arrows. Representative traces are shown. (D): 
Quantitation of the number of Ca2+ pulses tolerated by mitochondria before PT pore opening occurred (as indicated by a 
sharp upward deflection in the Ca2+ green-5N trace). (E): Quantitation of the initial rate of mitochondrial Ca2+ uptake, 
calculated from the downward slope in Ca2+ green-5N fluorescence on the first 3 Ca2+ pulses. Bar graphs in panels B/D/E show 
means ± SE, N=5-7, with p-values (unpaired t-test) shown above error bars. 
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Figure 6. Blockade of cardioprotection in Alkbh7-/- by GLO-1 inhibition. Hearts from young male WT and Alkbh7-/- mice were 
Langendorff perfused and subjected to IR injury as in Figure 4, with delivery of 1 µM SBB-GSH-CpE for 10 min. prior to 
ischemia. (A): Cardiac function assessed by left ventricular balloon pressure transducer. Graph shows the product of heart 
rate multiplied by left ventricular developed pressure, as a percentage of the initial value. A significant drop in cardiac function 
was observed upon drug infusion in Alkbh7-/- only (see arrow and p-value). (B): Post IR staining with TTC for quantitation of 
myocardial infarct size. Representative TTC-stained heart slices are shown, with pseudo-colored mask images used for 
quantitation by planimetry (red = live tissue, green = infarct). Data are quantified below, with individual data points to shown 
N, and means ± SE. p-values (paired t-test) are shown above error bars. (C): Western blot showing abundance of DJ-1 in 
Alkbh7-/- and WT heart mitochondria. Ponceau stained membrane and quantitation are shown below. Bar graph shows means 
± SE, N=4, with p-values (paired t-test) shown above error bars. (D): Schematic showing proposed events that connect loss of 
ALKBH7 to cardioprotection. Via mechanisms that may include downregulation of Perilipin 5 and F-1,6-BPase 2, loss of 
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ALKBH7 causes a shift in metabolism away from fatty acid oxidation (FAO) toward elevated glycolysis. The consequent 
elevation in MGO leads to hormetic induction of GLO-1, which can then protect against subsequent glycative stress such as 
that seen in IR injury. Direct or indirect effects of ALKBH7 on the PT pore appear to play only a minor role in cardioprotection. 
The potential role of GLO-1 as a regulator of the metabolic shift toward glycolysis is also shown. 
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