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Abstract

Intra-host evolved tumor virus variants have provided insights into the risk, pathogenesis and
treatment responses of associated cancers. However, the intra-host variability of Kaposi sarcoma-
associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma (KS), has not been explored at the
whole viral genome level. An accurate and detailed description of KSHV intra-host diversity in whole KSHV
genomes from matching tumors and oral swabs from Ugandan adults with HIV-associated KS was obtained
by deep, short read sequencing, using duplex unique molecular identifiers (dUMI) — random double-
stranded oligonucleotides that barcode individual DNA molecules before library amplification. This
allowed suppression of PCR and sequencing errors down to ~10°/base. KSHV genomes were assembled
de novo, and identified rearrangements were confirmed by PCR. 131-kb KSHV genome sequences,
excluding major repeat regions and averaging 2.3 x 10* reads/base, were successfully obtained from 23
specimens from 9 individuals, including 7 tumor-oral pairs. Sampling more than 100 viral genomes in at
least one specimen per individual showed that KSHV genomes were virtually homogeneous within
samples and within individuals at the point mutational level. Heterogeneity, if present, was due to point
mutations and genomic rearrangements in tumors. In 2 individuals, the same mutations were found in
distinct KS tumors. The K8.1 gene was inactivated in tumors from 3 individuals, and all KSHV genomic
aberrations retained the region surrounding the first major internal repeat (IR1). These findings suggest

that lytic gene alterations may contribute to KS tumorigenesis or persistence.

Author summary

Kaposi sarcoma (KS) is a leading cancer in sub-Saharan Africa and in those with HIV co-infection.
Infection by Kaposi sarcoma-associated herpesvirus (KSHV) is necessary for KS, yet why only few KSHV

infections develop into KS is largely unknown. While strain differences or mutations in other tumor viruses
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are known to affect the risk and progression of their associated cancers, whether KSHV genetic variation
is important to the natural history of KS is unclear. Most studies of KSHV diversity have characterized only
~4% of its 165-kb genome and may have been impacted by PCR or cloning artifacts. Here, we performed
highly sensitive, single-molecule sequencing of whole KSHV genomes in paired KS tumors and oral swabs
from 9 individuals with KS. We found that KSHV genomes were virtually identical within individuals, with
no evidence of quasispecies formation nor multistrain infection. However, KSHV genome aberrations and
inactivating mutations appeared to be a common, tumor-associated phenomenon, with some mutations
shared by distinct tumors within an individual. Certain regions of the KSHV genome featured prominently
among tumor-associated mutations, suggesting that they are important contributors to the pathogenesis

or persistence of KS.

Introduction

Kaposi Sarcoma (KS) is one of the most common cancers of HIV-infected individuals [1,2], with the
burden of disease disproportionately borne by people in sub-Saharan Africa [3]. A gamma herpesvirus,
Kaposi sarcoma-associated herpesvirus (KSHV), is the etiologic agent of KS and consistently detected in
tumor tissues [4,5]. KSHV also can be shed in saliva, thought to be a primary mode of transmission [6—8].
Only a small fraction of KSHV infections progress to KS, and the factors contributing to KS pathogenesis
are poorly understood. The development of KS is associated with HIV infection and immunosuppression
[9], but others factors, including KSHV genome variation, may contribute to differential outcomes of KSHV

infection.

Studies of other human oncogenic viruses reveal that viral genetic variation or de novo mutations
may be important to their pathogenicity, as is the case for cancers associated with human papilloma

viruses and Merkel cell polyomavirus [10]. Epstein Bar virus (EBV), another gamma-herpesvirus like KSHV,
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is associated with a variety of neoplasms. In EBV infections, intra-host evolved viruses may have a role in
pathogenesis of associated cancers [11-13]. Additionally, EBV strains isolated from nasopharyngeal
carcinoma (NPC) biopsies have unique genomic [14,15] and phenotypic [16—18] variations compared to
other strains and isolates from geographically clustered individuals without cancer [19]. NPC-associated
strains were also found to have increased tropism for epithelial- versus B-cells [16,20]. These findings
suggest that viral genetic heterogeneity can affect EBV virulence. Whether KSHV genetic variation can

similarly influence KS pathogenesis or manifestation is unknown.

KSHV encodes oncogenes that dysregulate cell cycle, cell-to-cell adhesion, inflammation and
angiogenesis [21-24], and heterogeneity in these genes might result in differences in KSHV infection
outcomes and clinical manifestations. For example, polymorphisms in the microRNA region of KSHV have
been correlated with the development of multicentric Castleman disease and KSHV-associated
inflammatory cytokine syndrome with and without KS [25]. The K1 gene, the most variable KSHV gene, is
conventionally used for KSHV strain subtyping. Subtype A has been associated with more aggressive KS
than subtype C [26,27], while subtype B has been associated with better KS prognoses [28]. However,

correlations of KSHV genetic subtypes with virulence has not been consistently observed [29-32].

KSHV whole genome sequences provide a far more comprehensive picture of KSHV diversity than
the KSHV variable regions alone. Most of the publicly available KSHV genomes have been reported in only
the last 5 years [33-37], and they demonstrated that polymorphisms in the ~130-kb KSHV non-repeat
genomic region outside of the K1 gene contribute much more to KSHV diversity than the 0.9 kb hyper-
variable K1 gene by itself [33,34]. KSHV genomes are, moreover, replete with signatures of recombination
[36], potentially complicating disease risk association solely with K1 subtypes. Principal component
analysis of 70 KSHV genomes, all from different individuals, failed to reveal strain specificity for the

development of KS [36].


https://doi.org/10.1101/2020.05.04.076638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076638; this version posted May 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 5 of 43
89 Whether KSHV results in significant intra-host diversity is unclear. Some studies examining KSHV in
90 different compartments or multiple clones from a single individual have reported KSHV quasispecies,
91  multi-strain infections [38—42] and intra-host evolution [37,40,43], while only a single persisting strain is
92  typically found within individuals with AIDS-associated KS [44—47]. The existence of KSHV intertypic
93 recombinants [36,44,48-50] indicate that co-infection of divergent KSHV strains must be occurring at least

94  sporadically.

95 The assessment of intra-host diversity can be easily biased by artifacts introduced during sample
96 preparation and when sequencing from PCR products [45]. Short read, next generation sequencing can
97 have high error rates due to PCR misincorporation, end-repair artifacts, insufficient sequencing depth,
98 and DNA damage from long, repeated high-temperature incubations during PCR and enrichment reactions
99 [51-54]. These methodological limitations can undermine interpretation of observed intra-host KSHV

100 variations.

101 To accurately assess KSHV intra-host polymorphisms associated with KS tumors and detect minor
102 KSHV sequence variants, we sequenced KSHV genomes using a highly sensitive short-read sequencing
103 method termed “duplex sequencing” [55]. This method incorporates duplex unique molecular identifiers
104 (duMI), which are double-stranded strings of random base pairs to barcode individual DNA molecules
105 before PCR amplification and RNA-bait enrichment [55]. By utilizing dUMI-consensus reads of each DNA
106 molecule in a sample library, PCR-associated errors are reduced to ~107, revealing the original sequence
107  variation within a sample library [55]. In the present study, we report the results of duplex sequencing of

108  whole KSHV genomes in paired tumors and oral swabs of 9 Ugandan adults with HIV-associated KS.

109

110 Methods

111 Study Cohort and Specimen collection.
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112 Specimens were obtained from participants enrolled in the “HIPPOS” Study, an ongoing prospective
113  cohort study, begun in 2012, of KS patients initiating treatment at the Uganda Cancer Institute (UCI) in
114  Kampala, Uganda. This protocol was approved by the Fred Hutchinson Cancer Research Center
115 Institutional Review Board, the Makerere University School of Medicine Research and Ethics Committee
116  (SOMREC), and the Uganda National Council on Science and Technology (UNCST). All participants provided

117 written informed consent.

118 Participants were eligible for the HIPPOS study if they were >18 years of age with biopsy-proven KS,
119  and ART- and chemotherapy-naive at enrollment. Participants attended 12 study visits over a one-year
120  period and received treatment for KS consisting of ART and chemotherapy (combination bleomycin and
121  vincristine or paclitaxel) per standard protocols by UCI physicians. At each visit, participants received a

122  detailed physical exam to assess clinical response using the ACTG KS response criteria [56].

123 Participants provided plasma samples at each visit for KSHV, CD4 and HIV viral load testing, and in
124  addition, provided up to 9 biopsies of KS lesions before, during, and after KS treatment. KS tumor biopsies
125  were obtained using 4mm punch biopsy tools after cleaning the skin with alcohol, and either snap-frozen
126  at the clinic site and stored in liquid nitrogen (LN2) or placed in RNAlater and stored at -80°C. Study
127  clinicians collected swabs of the oral mucosa at each study visit and participants self-collected oral swabs
128 at home for 1 week after the visit after education on the sample collection technique, as has been
129 previously validated by our group in Uganda [57]. Briefly, a Dacron swab is inserted into the mouth and
130  vigorously rubbed along the buccal mucosa, gums, and hard palate. The swab is then placed in 1 mL of
131 filter-sterilized digestion buffer [58] and stored at ambient temperature [59] before being placed at -20°C

132 for storage.

133


https://doi.org/10.1101/2020.05.04.076638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076638; this version posted May 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 7 of 43
134  DNA preparation. DNA was extracted from 300uL homogenized tumor lysates using the AllPrep DNA/RNA
135 Mini Kit (QIAGEN, Cat. # 80204) and eluted into 100uL EB Buffer. For oral swab specimens, DNA was
136  extracted from the swab tip eluate using the QlAamp Mini Kit (Qiagen, Cat.# 51304) following the
137  manufacturer’s protocol. Purification of DNA from saliva stabilized in RNAprotect® Saliva Reagent (Qiagen)
138  was performed following the manufacturer’s protocol with the following modifications: there was no
139 initial pelleting or PBS wash, 20 uL proteinase K was used per 200 uL specimen, and DNA was eluted in 50

140 pL water. DNA was quantified using a NanoDrop™ 1000 Spectrophotometer (ThermoScientific).

141

142 PCR. All PCR preparations were done in a PCR-clean room, except for the addition of control templates.
143 PCR was conducted using the PrimeSTAR GXL kit (Takara, Cat. # RO50B) with ThermaStop™ (Thermagenix)
144  added. Cycling conditions were: 98°C for 2 mins; 35 cycles of 98°C for 10 secs, 60-65°C (depending on
145 primer) for 15 secs, 68°C for 1min/kb; 68°C for 3 mins and then hold at 4°C. Primer sequences are listed

146 in S1 Table.

147

148 Copy number quantification. KSHV genome copy numbers were quantified by digital droplet PCR (ddPCR)
149 using the QX200™ Droplet Generator and Reader (Bio-Rad), with ddPCR™ SuperMix for Probes No dUTP
150 (Bio-Rad, Cat. # 186-3024). Primers and probes were designed (S1 Table) to detect 4 KSHV-unique genes
151 K2/vIL-6, ORF16/vBCL-2, ORF50/RTA and ORF73/LANA (Fig 1A), and the KSHV genome copy numbers
152 reported were the average of the 4 measures. 420 ng BCBL-1 cell line DNA diluted 1:10,000, about 475
153 genome copies, was used as positive control. 1 ng human genomic DNA (Bioline, Cat. # BIO-35025) was
154  used as negative control, and water as a no template control. Cycling conditions were: 95°C for 10 mins;

155 40 cycles of: 94°C for 30 secs, 56°C for 30 secs, 60°C for 1 min; one cycle at 98°C 10 for mins, and then
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156  hold at 12°C. The KSHV on-target percent was calculated using the copy number quantification by ddPCR

157 normalized to the total nucleic acid concentration.

158

159  UMI-addition and library preparation (Fig 2). To obtain ~500-bp DNA fragments, 10-20 ng/uL of DNA
160 extract in 100 pL chilled TLE buffer (10mM Tris, pH8.0, 0.1mM EDTA) was sheared using a Bioruptor™
161  (Diagenode) on high power for up to 15 min. Fragment sizes were assessed on 1.5% agarose gels. Sheared
162 DNA was bead-purified using 1.2X volume of Agencourt AMPure XP Beads (Beckman Coulter Cat. # A63880)
163 and eluted in 50 pL water. Library preparation (end repair, A-tailing and adapter-ligation) was performed
164 using the KAPA HyperPrep Library Preparation Kit (Cat. # KR0961/KK8503). Double-stranded DNA adapters
165 contained a random 12-bp dUMI sequence and a defined 5-bp spacer sequence added to lllumina TruSeq
166  adaptor sequences [60] (S1 Fig). Subsequently, DNA was bead-purified with 1X volume of beads and

167  elutedin 50 pL water.

168 DNA libraries were subjected to pre-enrichment amplification with primers mws13 & mws20 (S1
169  Table, S1 Fig) and KAPA HiFi Hot Start polymerase. PCR conditions were: 95°C 4 mins; 5-8 cycles of 98°C
170 20 sec, 60°C 45 sec, 72°C 45 sec; 72°C 3 mins, 4°C hold. If the bead-purified elution from the end repair
171 and adapter step had more than 240 ng total, it was divided into 50 pL PCR reactions of <240 ng and
172 pooled after amplification. PCR products were then bead-purified as above with 1.2X volume beads and
173 elution in 100 plL water, quantified with Nanodrop, and their sizes assessed using a Bio-analyzer (Agilent

174  DNA 7500) or Qiaxcel (QIAGEN AM420).

175

176  Library enrichment & sequencing. Biotinylated RNA baits for enriching KSHV sequences in the library were
177  those designed in [61] and were obtained from Agilent, Inc. (Santa Clara, CA). The design was a 120-bp,

178 12X tiling of the genome of KSHV isolate GK18 (Genbank ID: AF148805.2). The diversity of the bait library
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179 was further increased by including K1, ORF75, K15, ORF26 and TR sequences of strains JSC-1 (Genbank ID:
180 GQ994935.1), DG1 (Genbank ID: JQ619843.1), BC-1 (Genbank ID: U75698.1), BCBL-1 (Genbank ID:
181 HQ404500.1), Sau3A (Genbank ID: U93872.2), and all Western and African strain sequences in [29,33]
182  (Genbank ID: AF130259, AF130266, AF130267, AF130281, AF130305, AF133039, AF133040, AF133043,
183 AF133044, AF151687, AF171057, AF178780, AF178810, AF220292, AF220293, AY329032, KT271453,
184 KT271454, KT271455, KT271456, KT271457, KT271458, KT271459, KT271460, KT271461, KT271462,

185 KT271463, KT271464, KT271465, KT271466, KT271467, KT271468).

186 Target enrichment was performed using SureSelect Target Enrichment Kit v1.7 (Agilent) with all
187 suggested volumes reduced by half. DNA hybridized to biotinylated-RNA baits was captured with
188 streptavidin beads (Dynabeads MyOne Streptavidin T1, Invitrogen) and resuspended in 20uL water. The
189 DNA-streptavidin bead mixture was used directly in post-enrichment PCR amplification with primers
190 mws13 and mws21, the latter of which includes a sample index sequence (S1 Table, S1 Fig). The PCR cycle
191  number ranged from 10-16, with products monitored every 2 to 3 cycles on a TapeStation (Agilent) to
192  ensure correct fragment sizes (~¥500bp). When over-amplification resulted in library fragment sizes much
193 larger than expected, a single “reconditioning” PCR cycle with fresh reagents was done [62]. PCR products
194  were cleaned using 1.2X volume AMPure XP beads and the eluted DNA library was sequenced using
195 Illumina HiSeq 2500 with 100-bp paired end reads. For some tumor samples with low KSHV copy numbers

196 and all oral swab samples, a second library enrichment was performed.

197

198 De novo assembly of sample-consensus genomes. Initially, a sample-consensus KSHV genome (Fig
199  2) was generated de novo from paired-end reads of each sample using custom scripts (S2 Fig,

200  https://github.com/MullinsLab/HHV8-assembly-SPAdes). At this stage, the first 17-bp from read ends

201  weretrimmed to remove dUMI sequences. Next, reads were subjected to windowed quality filtering using
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202  sickle pe [63] with a quality threshold of 30 and a window size 10% of read length. Filtered reads were
203  aligned to a human genome (GRCh38 p12, GenBank GCA_000001405.27) using bwa mem [64]. Unmapped
204  reads were used as input into the de novo assembler SPAdes v3.11.1 [65], with the setting -k
205 21,35,55,71,81. This oftentimes yielded 3 to 4 scaffolds that together encompassed the entire 131-kb
206 unique sequence regions of KSHV, bounded by the major repeat regions: Internal Repeat 1 (IR1), Internal
207 Repeat 2 (IR2), LANA central repeat and Terminal Repeats (TR) (Fig 1A). Next, all scaffolds over 500 bp
208 were aligned using bwa mem to the genome of reference KSHV strain GK18. From the aligned scaffolds a
209 draft genome was generated in Geneious (Biomatters, Ltd) with manual correction as needed. To finish
210  the assembly, GapFiller v1.1 [66] was used, setting bwa as the aligner and filtered paired-end reads as the
211 input library. The genomes were annotated in Geneious from the GK18 reference, also adding the T1.4
212  annotation based on [67]. The major repeat regions were masked with Ns since they were poorly resolved

213 by assembly of short reads that can map to multiple locations within the repeat regions.

214

215  Variant identification from dUMI-consensus reads. Paired-end reads, including their dUMI sequence tags,
216  were mapped by bwa to sample-consensus genomes (Fig 2) using a Makefile adapted from [60]

217  (https://github.com/MullinsLab/Duplex-Sequencing). Briefly, all reads mapping to the same genomic

218  position were collapsed by single strand UMlIs (sUMI) to make sUMI-consensus reads (S2 Fig).
219 Complementary UMI tags from opposing strands were matched to create dUMI-consensus reads,
220 removing nearly all PCR polymerase misincorporation and chimera artifacts. Nine bases from both read
221 ends were then trimmed to minimize read end artifacts. Discrepancies between mapped dUMI-consensus
222 reads and the sample-consensus genomes were manually inspected and corrected in Geneious as needed.
223 Only the remaining discrepancies were considered to be sequence variants that existed prior to PCR

224  amplification.
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225 All genome and subgenome sequence alignments were done using MAFFT [68] [algorithm FFT-NS-i
226  x1000, scoring matrix 1PAM/k=2], and all phylogenetic trees were inferred using RAXML [69] (-f d, GTR
227 gamma, N=100 starting trees), using a representative KSHV genome from each individual. The

228 NeighborNet phylogenetic network was generated using SplitsTree5, excluding gap sites [70].

229 Consensus genome sequences were deposited in GenBank (Accession numbers: XXX) with

230 coordinates of rearrangements, when present, indicated.

231

232 Integration analysis. Systematic searches for KSHV integration into the human genome were done in two
233 ways. First, each library was searched using local BLASTN against both human and KSHV sequences and
234 then using the Perl script SummonChimera [71] to extract coordinates of potential integration sites.
235 Second, a sample-consensus KSHV genome was appended as an extra chromosome to the human genome
236  reference GRCh38 p12. The appended human genome reference was used to map sUMI consensus reads
237  via Speedseq [72] to generate alignment files with only discordant or split reads. These were input into
238 LUMPY for structural variant analysis [73]. Human chromosomes linked to KSHV sequences were taken to

239  be putative integration sites.

240

241  Results

242 Assessment of the dUMI sequencing protocol with a KSHV infected cell line

243 As part of the optimization of the dUMI-sequencing protocol, KSHV genome sequences were first
244  obtained from an early passage of BCBL-1, a KSHV-infected PEL cell line [74]. BCBL-1 cells were grown as
245 previously described [75]. After DNA extraction, KSHV sequences corresponded to ~0.16% of the total

246 DNA using a ddPCR assay for ORF73 and T0.7-K12, and normalized by comparison to the human gene
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POLG. Following a single round of bait capture, the fraction of sequence reads corresponding to KSHV

from BCBL-1 DNA extracts (i.e., the “on-target” level), was 15.6%, corresponding to 173-fold enrichment.

Sequencing of the BCBL-1 KSHV genome produced a mean coverage of >10,000 reads per base
excluding the repeat regions. Collapsing raw reads by identical sUMI to generate sUMI-consensus reads
results in a mean of 2,552 sUMI reads per base. When collapsed further into consensus sequences derived
from both strands, a mean of 286 dUMI reads per base was obtained that was essentially free of PCR
errors (Table 1; Fig 2B). Since each dUMI tags a unique DNA molecule before PCR, the number of unique
dUMI tags indicates the number of unique viral templates sequenced [55,76]. Using this measure, 286

also approximates the number of KSHV genomes sampled from BCBL-1.
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Table 1. Origin and processing results from specimens for KSHV genome analysis.

% On-target -
Plasma HIV 04T sample o 8 Times Fold Mean read Mean dUMI Genome I?ngth #
PtID Age Sex RNA cells/pL Sample ID Tvpe Pre- Post- enriched enrichment  coverage consensus read (excluding
(copies/mL) P enrichment  enrichment g coverage repeats and Ns) v
nfa nfa n/a n/a n/a BCBL-1 cell line 0.09% 15.61% 1x 173 7,586 286 132,676
U003-C Tumor 0.37% 7.15% 1x 1,925 15,635 259 131,292
- 0, 0,
U003 25 M 759,635 45 U003-01 Oral swab <0.01% 35.20% 2x 2,919,559 47,445 7 131,102
U003-02 Oral swab 0.03% 31.60% 2x 120,023 63,258 292 131,129
U003-03 Oral swab <0.01% 41.90% 2x 1,007,251 58,467 41 131,143
u004-Cc Tumor 0.16% 17.20% 1x 10,567 18,787 32 131,277
uoo4 37 M 277,655 85 uo004-D Tumor 0.17% 75.10% 1x 45,228 58,120 1,263 131,237
U004-01 Oral swab 0.01% 18.90% 2x 335,500 36,466 55 131,277
u007-B Tumor 0.06% 86.90% 2x 137,642 67,373 1,040 131,352
uoo7 26 M 91,096 136
U007-01 Oral swab 0.01% 27.60% 2x 402,068 41,922 198 131,126
U008-B Tumor 0.49% 16.97% 1x 3,470 19,553 644 131,142
U008 56 M 860,937 488 u008-D Tumor 0.40% 29.98% 2x 7,534 25,341 188 131,102
U008-01 Oral swab <0.01% 23.50% 2x 846,462 46,611 111 131,116
U020-B Tumor 0.70% 1.47% 1x 210 12,774 154 131,102
U020-C Tumor 0.03% 34.38% 2x 98,720 15,438 0 131,471
U020 27 M 118,191 370
U020-01 Oral swab <0.01% 77.30% 2x 3,090,161 7,807 80 131,115
U020-02 Oral swab <0.01% 51.40% 2x 3,702,047 6 0 128,518
U023 33 F 338,285 191 U023-01 Oral 0.01% 2.70% 2X 25,189 19,877 1 131,122
U030-C Tumor 1.35% 15.68% 1x 1,162 36,741 468 131,282
Uuo3o 40 ™M 100,184 70
U030-01 Oral swab <0.01% 5.40% 2x 196 9,402 0 128,676
U032-B Tumor 0.03% 43.50% 2x 127,887 66,595 854 131,266
U032 23 F 587,149 274
U032-01 Oral <0.01% 7.70% 2x 4,422,546 7,303 1 130,842
U034-B Tumor 0.14% 84.40% 2x 41,282 71,473 1,653 131,248
u034-C Tumor 0.13% 30.70% 2X 22,056 17,074 126 131,088
uo34 47 F 130,375 237
U034-01 Oral swab <0.01% 7.30% 2X 3,073,915 7,635 2 130,754
U034-02 Oral swab <0.01% 6.00% 2X 6,411,538 4,087 1 130,884
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258 Eighty-one base positions (0.06%) in the BCBL1 consensus KSHV genome had detectable variants in
259  dUMI-consensus reads, and the average frequency of minor variants was 1.35%. No variant exceeded 14%
260  of the total dUMI-consensus reads at any position (Fig 1C). No doubling of read coverage was found within

261  the 19-kb genomic region previously reported in the BCBL-1-derived KSHV recombinant clone BAC-36 [77].

262 The consensus, de novo-assembled KSHV genome in BCBL-1 had 3 differences from the published
263 BAC-36 sequence: a C2>A change in the noncoding sequence before ORF K5 (BAC-36 position 24,630), 2
264 additional Gs in a homopolymer run at BAC-36 position 25,210), and a synonymous T->C change in the K7
265 gene (BAC-36 position 28,409). No variant bases were found in dUMI-consensus reads at the equivalent
266 positions, indicating that the 3 BAC-36 sequence variants were not present in this passage of the BCBL-1

267 line at detectable levels (i.e., <1 copy per 286 genomes).

268

269  KSHV sequence derivation from tumor tissues and oral swabs

270 KSHV genome sequences were successfully obtained from samples provided by 9 participants with
271 HIV-associated KS, including 12 KS tumors and 11 oral swabs. (Table 1). The representation of KSHV DNA
272 in a sample was determined by ddPCR analysis of KSHV genes vIL-6, vBCL-2, RTA and LANA (Fig 1A) and
273 provided as the percentage “on-target” KSHV DNA. These levels ranged from 0.03% to 1.35% (median
274 0.17%) in tumors, while most oral swab samples were below 0.01% on-target (Table 1). Following one
275 enrichment with RNA baits, KSHV DNA corresponded to a median of 1.3% on-target, a >6,000-fold increase,
276 and after a second enrichment a median of 24.2% on-target was obtained, for a total of 120,000-fold

277  enrichment (Table 1).

278 Median total read coverage across KSHV genomes was 22,000 for tumors and 38,000 for oral swab
279  samples. After collapsing mapped reads by dUMI, the median read coverage, corresponding to the

280 number of viral genomes assessed, was 364 for tumors and 7 for oral swabs (Table 1, S3A-B Fig). Tumor
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281  sample U032-B had the highest number of genomes analyzed at 1,653. We set the lowest number of reads
282  accepted for confident assignment of variant frequencies to be 100 (S4A Fig); below this number dUMI-
283  consensus read coverage was judged to be too sparse. U020-C was an exception because its low mean
284  dUMI-consensus read coverage was due to most of the KSHV genome being deleted, as discussed below.
285 For other samples with mean dUMI-consensus read coverage below 80, all from oral swabs, the dUMI-
286  consensus reads generated were insufficient to cover the entire KSHV genome, although whole KSHV
287  genomes could be assembled from raw reads. Overall, read coverage was relatively uniform along the

288 KSHV genome for most tumors (S3A Fig) and all adequately sampled oral swabs (S3B Fig).

289 Very few point mutations were found in dUMI-consensus reads from either tumors (Fig 3A) or oral
290 swabs (Fig 3B). Excluding the major repeat regions, the number of positions with a detectable intrasample
291  variant base ranged from 2 — 218 (<0.01 — 0.17%) (Table 1). These frequencies were lower or comparable
292  to those in the BCBL-1 cell line (Table 1). The sample-consensus genome was generally the only KSHV
293  sequence present in each sample, hence, there was no evidence for the existence of quasispecies [78].
294 However, in contrast to that observed in BCBL-1 viral genomes, clinical samples had detectable variation

295 in long homopolymer runs.

296 Artifacts resulting from the end-repair step in DNA library preparation, which precedes the
297 application of dUMI tags, cannot not be corrected by duplex sequencing [55,60,79]. Hence, 9 bases were
298 removed from ends of dUMI-consensus reads before analyses, and this substantially reduced the variation
299 observed in the raw data (data not shown). The minor base variants remaining in all samples revealed a
300 preponderance of C2>A and G->T substitutions (S4B Fig) as well as differences in homopolymer run
301 lengths (Fig 3A & B). Most minor variants were supported by only one dUMI-consensus read. Overall,
302 there was an inverse relationship between mean variant frequency and mean dUMI-consensus read

303  coverage (S4A Fig). Thus, true minor variant frequencies could be even lower than reported here.
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304

305 KSHV genomes were virtually identical at the point mutational level between tumors and oral swab

306 samples from the same individual

307 Intra-individual single nucleotide differences between tumor and oral swab samples ranged in
308 number from 0 — 2 across the entire ~131-kb genomes, not counting the major repeat regions. Notably,
309 there were almost no intra-individual polymorphisms in the KSHV hypervariable gene K1 (Fig 3A-B). Hence,

310 no evidence for minor KSHV variants or multi-strain infections was found in these individuals.

311 KSHV genomes were distinct across the 9 participants, with sequence differences ranging from 3.06-
312 4.85%. These genomes corresponded to K1 subtypes A5, B1 and C3 (S5A Fig) and K15 alleles P and M (S5B
313 Fig). While K1 and K15 are the most variable KSHV genes, polymorphisms along the rest of the genome
314  have been reported to contribute more in aggregate to the total diversity of KSHV [33,34,36]. Consistent
315  with this, maximum-likelihood phylogenetic trees using entire KSHV genomes (S5C Fig) were topologically
316 distinct from those of K1 or K15. Moreover, due to numerous signatures of recombination in the
317  evolutionary history of KSHV [36,48], differing phylogenies across sections of the KSHV genome may be
318  better represented by a phylogenetic network (S5D Fig), in which higher degrees of conflict result in a

319 more web-like structure rather than a tree.

320

321 Aberrant KSHV genome structures in tumors

322 Among the 12 tumor-derived KSHV genomes examined, 7 had anomalous read coverage that shifted
323 abruptly once or twice along the viral genome (S3A Fig). In contrast, oral swab KSHV genomes from the
324  same individuals had uniform read coverage. This argues against preferential target capture by RNA baits
325  or other biases. Enrichment and sequencing in some were repeated, and the distinctive read coverages

326  were reproduced. Split reads accumulated at the points of abrupt shifts in read coverage and remained
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327  after collapsing all reads by their dUMI consensus, which removes PCR chimera artifacts. Individual
328 anomalies observed are detailed below, along with any additional evidence showing that these

329  represented real structural aberrations in viral genomes:

330  Tumor 003-C. Read coverage in U003-C was high (average of 15,635) and uniform across the KSHV
331 genome except for a 6-bp gap within the K8.1 gene intron up to the first base of the second K8.1 exon (Fig
332 4A). No read indicated a deletion, nor was any read found with its mate pair located across the 6-bp gap.
333 This region was PCR amplified from unsheared U003-C tumor DNA using conserved primers flanking the
334  gap (Fig4B), and no PCR product was detectable. In contrast, an intact K8.1 intron sequence was amplified

335  and sequenced from the oral swab of the same participant (Fig 4C).

336 De novo assembly revealed that the reverse complement of TR sequences continued from the
337  deleted K8.1 intron sequences of U003-C (Fig 4B). The K8.1-TR junctions were confirmed by PCR with
338  primers flanking the junctions (Fig 4D) and Sanger sequencing. Inversion of the 60-kb 3’ half of the U003-C

339 genome, starting inside K8.1, is a parsimonious explanation for the breakpoints.

340  Tumor U004-D. The first 3kb, from K1 to the end of gene ORF4, had 1.5X read coverage compared to the
341 rest of the KSHV genome (S3A Fig). However, no split reads or chimeric read pairs were found to explain

342 this result from a genome rearrangement or deletion.

343  Tumor U008-B and D. UO08-B had 1.7X greater read coverage over a 14.8-kb segment from inside K3 to
344  inside ORF19 (GK18 reference positions 19,168 to 33,980, Fig 5A), including IR1 (masked). This was
345 corroborated by ddPCR quantitation of vBCL-2, inside the 1.7X coverage region, with 1.7 — 1.9-fold higher

346  gene copy number in the tumor compared to vIL-6, RTA and LANA (Table 2).

347
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Table 2. Gene copy numbers in tumor DNA.

Sample viL-6 vBCL-2 RTA LANA
u003-C N/A N/A N/A 9,664
U003-o01 127 100 120 135
U003-02 1,298 1,238 1,452 1,628
uU003-03 191 184 169 199
uo04-C 1,243 1,274 1,205 998
uo04-D 4,433 4,466 4,543 4,290
u004-o1 117 128 120 112
uo07-B 4,433 4,466 4,543 4,290
uo07-o1 376 356 322 344
u008-B 19,140 33,629 19,910 19,195
u008-D 24,360 34,755 12,737 17,189
U008-o01 129 136 119 138
U020-B 49,600 55,850 4,550 5,500
u020-C 3,658 5,033 145 139
u020-o01 254 231 234 248
U020-02 100 183 123 225
u023-o1 62 57 50 66
U030-C N/A N/A N/A 59,730
U030-o1 2 5 5 7
U032-B 476 520 494 466
U032-o1 9 0 2 0
u034-B 1,920 1,887 1,870 1,793
uo034-C 13,083 13,335 8,148 6,552
U034-o1 9 6 9 7
U034-02 6 11 0 1

N/A, did not quantify

Inferring from split reads, the 14.8-kb segment was translocated to inside IR2 (to GK18 position
119,496, Fig 5D). This was confirmed in the unsheared tumor DNA extract by PCR and Sanger sequencing
using primers spanning the breakpoint (Fig 5D & E, lanes 4 & 5). Other primer pair combinations were
tested to see if there were DNA species with the 14.8-kb segment inverted, deleted in place, duplicated

in tandem or rearranged in other ways. None generate detectable PCR products except for primer pairs
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355  showing that the 14.8-kb segment also exists in the native configuration (Fig 5E). Thus, the 14.8-kb

356 segment was copied into IR2 but had not been deleted from its original location.

357 In a parallel study of viral transcriptomes [80], abundant expression of a chimeric Kaposin transcript
358  fused to the 14.8-kb segment was found in tumor U008-B, consistent with the viral genome structure we
359 observed. Another tumor from the same participant, U008-D (Fig 5B), had 100% nucleotide identity and

360  was confirmed to have the same duplication and breakpoint junctions (Fig 5F).

361 Tumor U020-B. Read coverage abruptly dropped 12.8-fold over the last ~90 kb of the KSHV genome in
362 this tumor (Fig 6A). This was consistent with ddPCR quantitation, with vIL-6 and vBCL-2 gene amplicons
363 having 9.0 — 12.3-fold higher levels than RTA and LANA (Table 2). The coverage shifted before the end of
364  ORF25 (GK18 position 46,615) and reads at this breakpoint continue into TR sequences ~90 kb
365  downstream (Fig 6C). Thus, U020-B appeared to have KSHV genome variants with a ~90-kb deletion, or
366  formally, a 12.8X amplification of a 46-kb subgenomic region. No U020-B tumor DNA remained to allow

367  confirmation of this breakpoint.

368  Tumor U020-C. This tumor from participant U020 had (30-fold) shift in read coverage and different
369  breakpoints inside ORF11 and ORF18 (Fig 6B). ddPCR quantitation demonstrated gene copy numbers of
370 vIL-6 and vBCL-2 amplicons to be 25 — 36-fold higher than for RTA and LANA (Table 2). The spike in read
371 coverage occurred over a 16.2 kb region (GK18 positions 16,942 to 33,011). Again, chimeric reads were
372 found at either ends of this region continuing into TR sequences (Fig 6D), indicating fusion with the TR
373 (Fig 6E). Junction fragment-specific PCR and Sanger sequencing confirmed the 3’ junction (Fig 6G, lane 5).
374 No PCR product was produced from the other putative breakpoint junction, TR-ORF11 (Fig 6F, lane 4
375 primers in K2 and TR). However, the latter result is likely due to GC-rich TR sequences being largely
376  unsuitable for primer binding. Many potential forward TR primers paired with a functional reverse TR

377  primer (Fig 6F, lane 5) yielded no PCR product when a control BCBL-1 DNA was used as template.
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378  Tumor U030-C. A uniform >30,000 reads/position was observed throughout most of the KSHV genome.
379 However, coverage dropped or was missing within the K15 gene (S3A Fig). The remaining K15 sequences
380 corresponded to the K15 M-allele, which is less common than the P allele but was included in our RNA
381  bait design (GenBank U75698). PCR amplification and Sanger sequencing of this region showed that the
382 U030-C tumor did contain some copies of the entire M-allele K15 sequence. The U030-C sample-
383 consensus genome was finished with this sequence, but no reads mapped to the gaps in K15. In the
384 parallel RNAseq study of the same participants, transcripts of K15 were lacking in U030-B and C, despite

385 being produced in all other tumor samples [80].

386

387  The same aberrant KSHV genomes are found in multiple lesions from the same individual

388 When breakpoint junction sequences marking an aberrant KSHV genome were confirmed by PCR in
389  a tumor, PCR primers across those breakpoints were used to screen for the same structures in other
390 available tumors from the same individual. In the case of U008-B and U008-D, full-length genome
391 sequencing showed that they had the same 14.8 kb subgenomic sequence duplicated in IR2 (Fig 5F). These
392 two tumors were biopsied from distinct lesions on the left leg (S6 Fig; S2 Table). Nested PCR screening for
393 this breakpoint junction sequence in 6 other distinct lesions (S2 Table) from this individual showed that

394  no other tumors had this duplication (not shown).

395 In contrast, four additional tumors tested from participant U003 had the same inversion breakpoints
396 as tumor U003-C (Fig 7). Moreover, no intact K8.1 sequences were detected in 2 of these 4 tumors by
397 nested PCR of the region spanning the K8.1 intron gap (Fig 7). These biopsies came from distinct lesions
398 intheleftleg (S2 Table). Lastly, in participant U020, the ORF18-TR junction sequences found spanning the

399 U020-C genomic deletion was not detected in the 2 other tumors tested.

400
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Mutations in sample-consensus KSHV genomes from tumors impacted protein coding sequences

Among the 7 participants with KSHV sequences from at least one oral swab and one tumor, sample-

consensus KSHV genomes were identical in the oral and tumor samples of 2 participants and differed in 4

others. In the remaining participant, U004, the sample-consensus KSHV genome in one tumor was

identical to that in oral but the second tumor had mutations. The mutations unique to tumors were

typically nonsynonymous point mutations resulting in highly dissimilar residues or other mutations likely

to disrupt their expression (Table 3).

Table 3. Unique KSHV mutations observed in tumors compared to oral swabs from the same individual

Sample ID Tumor-specific differences
u003-C K12 synonymous mutation within miR-K10
genomic inversion starting at K8.1
u004-C NONE
uoo4-D ORF32 nonsynonymous mutation R56Q
K15 nonsynonymous mutation A290P
28-nt deletion within the K8.1 promoter
3-kb segment duplication from before K1 to after ORF4
u007-B NONE
u008-B duplication of 14.8 kb segment around IR1 into IR2
- breakpoints inside K3 & ORF19
- genes duplicated: ORF70, K4.1, K4.2, K5, K6, K7, ORF16, ORF17, ORF17.5, ORF18
uo08-D same as UO08-B
U020-B ORF25 nonsynonymous mutation Q594K
genomic deletion connecting end of ORF25 coding sequence to TR sequences, 47 kb remaining
U020-C ORF11 nonsynonymous mutation T396P
K3 nonsynonymous mutation F88L in transmembrane domain
K8.1 nonsense mutation at start of 2nd exon
genomic deletion leaving only 16 kb segment surrounding IR1 connected to TR sequences
- breakpoints inside ORF11 and ORF18
- ~30X coverage for: K2, ORF2, K3, ORF70, K4, K4.1, K4.2, K5, K6, K7, ORF16, ORF7, ORF17.5
U032-B ORF63 nonsynonymous mutation T848A
U034-B NONE
U034-C NONE



https://doi.org/10.1101/2020.05.04.076638
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076638; this version posted May 4, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Page 22 of 43
408 Several tumor-unique mutations or genome aberrations occurred in structural genes (S3 Table), and
409  frequently involved the K8.1 gene, which encodes an envelope glycoprotein. The U003 inversion
410  breakpoint cleaved the K8.1 gene. U004-D had an R56Q mutation in its ORF32 tegument protein coding
411  sequence, as well as a 28-nt deletion in the promoter region of K8.1 (S7A Fig). The deletion was after the
412 K8.1 core promoter sequence [81], but encompassed the K8.1 transcription start site [82]. The ORF25
413 major capsid protein in U020-B had a Q594K mutation, in addition to the U020-B genomic deletion that
414 started downstream of ORF25. U020-C had a nonsense mutation at the beginning of the second K8.1 exon.

415 Finally, U032-B had a T848A mutation in ORF63, a tegument protein.

416 The only intra-host synonymous point mutation observed was in ORF K12 of U003-C (GK18 position
417 118,082). This C to T change occurred within the oncogenic microRNA K10 (miR-K10) sequence in the
418 Kaposin A transcript. The three oral swab samples from this participant maintained the consensus C at
419  this position (S7B Fig), whereas the 4 other tumors from this participant examined had T at this position,
420  with tumor U003-G having a minor population of viruses with the consensus C (S7C Fig). Among published

421 KSHV genomes, only ZM106 (GenBank KT271458), also derived from a KS tumor, had a T at this position.

422

423 Lack of evidence for integration of KSHV sequences into human chromosomes

424 No de novo-assembled scaffolds, split reads or improperly-paired read mappings suggested any
425 instance of KSHV sequences fused to human DNA. Nevertheless, attempts were made to systematically
426 search for human-KSHV chimeric sequences. The methods employed were those used to screen for all
427 integrated herpesviruses sequences in public databases [83] and EBV integration sites in in primary gastric
428  and nasopharyngeal carcinomas [84]. The KSHV genome inversions, duplications and deletions described

429  above were detected by LUMPY with high confidence values. In contrast, putative breakpoints that joined
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430  human and KSHV sequences were supported by only tens of reads, about 2 orders of magnitude lower in

431  number, and often involved LANA repeats into low-complexity human repeat sequences.

432

433  Co-infection with EBV detected predominantly in oral swabs

434 Some scaffolds during de novo assembly correspond to EBV sequences. Nearly all oral swab samples
435 yielded multiple EBV-mapping scaffolds up to 73 kb, with no region of the EBV genome over-represented.
436 In contrast, EBV-sequences were detected in only 5 of 12 tumors, and in all cases were sequences flanking
437  the EBNA-1 repeat (S8 Fig). The proportion of reads mapping to EBV in oral swabs ranged from 0 - 33%,
438 median 1.8%, whereas in tumors the range was from 0 - 0.5%, median 0.002% (S4 Table). No other

439 eukaryote viruses were identified, including HIV, with which every participant was known to be infected.

440

441  Discussion

442 This study is the first to explore KSHV intra-host diversity at the whole genome level and provided an
443 unprecedented level of precision to herpesvirus genome sequence analysis in clinical specimens,
444 with >100 essentially error-free genome sequences obtained from most tumors. KSHV genomes were
445  obtained from 11 oral swabs and 12 KS tumors of 9 Ugandan adults with KS. By incorporating dUMI, PCR
446  misincorporation errors and template switching artifacts were substantially eliminated, permitting
447  detection variants as infrequent as 0.01% and a theoretical error rate of 1/10°, or approximately the DNA

448  replication error rate in eukaryotic cells [55].

449 There were no signs of KSHV quasispecies, consistent with large dsDNA viruses having the lowest
450 mutation rates among viruses [85]. Less than 0.01% of all base positions in the 131-kb KSHV genomes

451  (excluding the major repeat regions) were found to have a detectable variant, typically supported by only
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452  one dUMI-consensus read. This exceedingly low intra-sample variation is within the published resolution
453  of duplex sequencing [55]. While there are reports of intra-host KSHV variability in certain KSHV-endemic
454 populations [38], in children [43], in iatrogenic settings [39—41] and in blood of AIDS-KS patients [42],
455  these findings were arrived at by Sanger sequencing of PCR amplicon clones of hypervariable regions in
456 K1 or other genes. Such protocols are more likely to detect errors that occurred during PCR. Our study
457 found virtually no intra-sample or intra-host diversity even at K1 in the 9 individuals examined.
458 Recombination is evident in the evolutionary history of KSHV [36,44,48,49]; hence, co-infections by

459 multiple KSHV strains must occur, if sporadically.

460 The most striking observation in this study was the frequency and tumor-specificity of aberrant KSHV
461  genomes, summarized in Figure 8. Up to 7 of the 12 KS tumors examined had major inversions, deletions
462  or duplications comprising the majority of KSHV genomes in those tumors. In stark contrast, no aberrant
463  genome structures were found in oral swabs. It is unclear whether the tumor-specific mutations observed
464  were required for tumorigenesis or tumor persistence, or whether they were a consequence of localized
465  genomic instability known to occur in tumors [86], but several observations suggest that these changes
466  were not random. Rearrangement breakpoints and other mutations almost always occurred inside coding
467 sequences of lytic genes (Tables 3 & $3), with many truncating protein coding sequences. These mutations
468 may have been selected for, if for instance expressing these proteins exposed host cells to immune
469  targeting. Mutations that disrupt genes may also indicate that those genes were not necessary for
470 sustaining tumorigenic growth. Conversely, regions of the KSHV genome that were duplicated,
471 conspicuously intact or translocated next to strong promoters (as in 008-B and 008-D) may point to KSHV

472  genes that are influential in driving tumor cell proliferation.

473 The genomic region around IR1 featured prominently in genomic rearrangements in 4 tumors,
474  potentially leading to their over-expression relative to other KSHV genes. For example, tumors U008-B

475  and U008-D had a 14.8-kb portion of their genomes, from inside K3 to ORF19, duplicated into within IR2
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476  (Fig 5). In a parallel RNAseq study, tumor U008-B had been found to abundantly express a chimeric
477  transcript of the 14.8 kb section fused to IR2 sequences transcribed from a strong latency-associated
478  promoter [80]. Distinct deletions were observed in tumors U020-B and U020-C from another participant,
479  but the genomic regions retained, aside from TR sequences, again included the IR1 region (Fig 6). There is
480 evidence to suggest that KSHV lytic gene expression is crucial to KS pathogenesis [87], and that residual
481  lytic gene expression plays a role in latent KSHV persistence in vivo [88]. IR1 is one of the origins of lytic
482 replication, and transcripts around IR1 are among the most highly expressed in KS tumors [80]. These
483 include two long non-coding RNAs that have indispensable roles during lytic reactivation of KSHV, T1.4
484 [67,89,90] and PAN [91-93]. PAN has been shown to interact with promoters of cellular genes involved in
485 inflammation, cell cycle regulation and metabolism, and exogenous expression of PAN alone enhanced
486  cell growth phenotypes [94]. Recently, virally-encoded circular RNAs encoded within PAN were discovered
487  to be abundant in clinical samples and were inducible in KSHV-infected cell lines [95-97]. Other non-
488  coding transcripts are potentially expressed from this region but their biological significance is unknown
489 [93,98]. Finally, most ORFs encoded in the 14.8-kb retained region are intermediate-early or delayed-early
490 lytic genes that may have functions in subverting adaptive (K5/MIR2) [99,100] or innate immunity

491 (K4/vCCL-2, K4.1/vCCL-3, K4.2 and K6/vCCL-1)[100-103], and apoptosis (K7 and ORF16/vBCL-2) [100,103].

492 Other than genomic rearrangements, sample-consensus KSHV genomes in tumors and oral swabs
493 within the same individuals differed by at most two point mutations or a short deletion. No mutations
494  occurred in intergenic regions, and almost all were nonsynonymous changes resulting in highly dissimilar
495 amino acids. Notably, the sole intra-host synonymous mutation found occurred inside K12/Kaposin A of
496 tumor UO003-C (GK18 position 118,082), within the embedded microRNA miR-K10. The oral swab
497  counterpart maintained the database consensus. Expression of the Kaposin A transcript is tumorigenic
498 [104] and a single base change has been observed to abolish this effect [105], although a different

499 mutation was observed here.
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500 The late lytic gene K8.1 was found to be mutated in KS tumors from 3 individuals. U003-C had an
501 inversion breakpoint at the K8.1 intron, U004-D had a 28-bp deletion ending at 4 bases upstream of the
502 first K8.1 exon, and U020-C had a nonsense mutation at the start of the second K8.1 exon (Fig 8).
503 Furthermore, intact K8.1 gene sequences were undetectable by PCR in most of participant 003’s tumors
504  tested (Figs 4C & 7). Truncations in K8.1 had been reported previously, all from KS tumor isolates. The
505 original GK18 isolate had a 74-bp deletion at the 3’ end (see GenBank ID AF148805 K8.1 annotation); the
506  Zambian isolate ZM124 (GenBank ID: KT271466) had a 25-nt deletion resulting in a frameshift and
507 premature stop [33]; finally, Japanese isolate Miyako1 has a stop codon early in its first exon (see GenBank
508 ID LC200586 miscellaneous annotation). Collectively, these findings suggest selection pressure against

509 K8.1 expression in tumors.

510 Gene K8.1 encodes an envelope glycoprotein that interacts with heparin sulfate for attachment [106—
511 109]. It is not required for entry into endothelial [107] or 293 cells [110], although it had recently been
512  shown to be necessary for infection of primary and cultured B-cells [111]. The K8.1 protein is often used
513  asan indicator of the late Iytic stage and is among the most immunogenic KSHV proteins [112-114]. It is
514  therefore conceivable that the preponderance of K8.1 mutations might be due to potent immune

515 targeting of cells expressing K8.1 glycoproteins.

516 Some of the aberrant KSHV genomes we observed would be unable to produce infectious virions, yet
517  the same viral genome rearrangements were sometimes found in multiple lesions. All 5 tumors tested of
518 Participant U003 had the K8.1-TR junction present, but intact K8.1 sequence was detectable by PCR in
519 only 3 (Fig 7). Participant U008 had the same sequence duplication in 2 distinct tumor lesions (Figs 5 &
520  S6). Thus, spread of these mutated genomes could have occurred by tumor metastasis or with a helper

521 virus.
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522 Detection of aberrant KSHV genomes is not without precedent. The first whole genome sequence of
523 KSHV published reported a 33-kb portion of the KSHV unique central region duplicated into the TR region
524  [115]. A study of 16 tumor-derived KSHV whole genomes from Zambia reported 4 that had regions with
525  3-fold more coverage than the sample average, although these were not examined [33] . A PCR screen for
526  some KSHV genes showed that some KS tumors and KSHV-infected B-cell lines can harbor deleted KSHV
527  genomes [116], and one such B-cell line proliferated faster than the parental BCBL-1 line [116]. The
528 infecting KSHV had an 82-kb deletion from the 5’ end of its genome, was lytic replication-incompetent,

529 and could be packaged by a helper virus.

530 The LANA protein tethers the KSHV episome and is required for maintaining KSHV latency and for
531 latent replication of TR sequence-containing plasmids [117,118], but the deleted 020-B and 020-C
532  genomes had the entire latency locus, including LANA, missing. Remaining intact KSHV genomes in the
533  same cell could be supplying LANA, as latently infected cells frequently harbor multiple KSHV copies per

534  cell [118,119], and KSHV episomes are inherited by daughter cells in clusters [120].

535 Two remaining observations of note in this study were that, in contrast to larger studies of EBV in
536 tumors [84,121], we found no integrations of KSHV into human chromosomal DNA. Secondly, our cohort
537  was infected also with EBV, as seen in the abundance of sequence reads corresponding to EBV especially
538 in oral swabs. Tellingly, the rare EBV sequences found in tumors were consistently of EBNA-1, whose GC-
539 rich repeat domain has nucleotide homology to LANA repeats [122] and hence were probably co-captured

540 by the RNA baits. No sequences of HIV or other eukaryote viruses were detected.

541 In summary, highly accurate deep sequencing of whole KSHV genomes in paired oral swab and KS
542  tumors from individuals with advanced KS were virtually identical at the point mutational level. Where
543  there were differences, the oral viruses had the database consensus genotype while tumor viruses had

544  novel mutations. KS tumors can harbor KSHV with genomic aberrations or other mutations that may alter
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lytic gene expression, and these viral mutations can be shared by distinct KS tumors within an individual.
Our study points to associations with KS tumors of the region surrounding IR1 and the K8.1 gene. As
inactivating mutations seem to be a frequent feature of tumor-derived KSHV, whole genome or targeted

sequencing may reveal more viral genomic regions important to the pathogenesis or persistence of KS.
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918 Figure Legends

919

920  Figure 1. KSHV genomes in BCBL-1 cells have low point mutational diversity. (A) Schematic

921 representation of a linear KSHV genome, with genes colored in green and the major repeat regions in
922 orange. The locations of the K1, vIL-6, vBCL-2, RTA, LANA and K15 genes used for genome quantitation
923  areindicated. (B) Raw (light blue), sUMI-consensus (blue) and dUMI-consensus (dark blue) read

924  coverage along the de novo assembled, BCBL-1 KSHV genome. Major repeat regions were masked (gray
925 columns). (C) Bubble plot of minor sequence variants. Each bubble represents a position within the

926  genome at which a variant base or indel was detected, colored by whether they were predicted to be
927 silent or protein-altering mutations. Mutations likely to be silent included synonymous and intergenic
928  point mutations, while protein-altering mutations included non-synonymous, nonsense and frameshift
929  mutations. Bubble height represents variant base frequency among dUMI-consensus reads at that

930  position. Vertical grey columns represent the masked repeat regions.

931

932 Figure 2. Workflow for analyzing intra-host KSHV genome diversity from clinical samples. Each study
933 participant contributed KS tumors and oral swabs. Sequencing libraries were prepared from DNA

934  extracts from each sample with adaptors containing duplex Unique Molecular Identifiers (dUMIs).

935 Adaptor-labelled DNA libraries were enriched using biotinylated RNA baits homologous to KSHV

936 sequences. Captured DNA was PCR-amplified to levels sufficient for lllumina HiSeq sequencing. For most
937 samples, libraries were subjected to a second round of enrichment and PCR amplification. Upon

938  sequencing, whole KSHV genomes were first assembled de novo from each sample without the use of
939  dUMIs. The sample-specific genomes generated (sample-consensus) were then used as reference to

940  map the consensus of reads with identical dUMI-tags (i.e., dUMI-consensus reads).
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941

942 Figure 3. Point mutational diversity in KSHV genomes from tumors and oral swabs. Bubble plots of
943 minor sequence variants remaining after removal of PCR errors, in KSHV genomes from tumors (A) and
944  oral swabs (B). Each bubble represents a variant base or indel, colored by whether they were predicted
945  to be silent or protein-altering mutations. Silent mutations include synonymous and intergenic point
946 mutations, while protein-altering mutations included non-synonymous, nonsense and frameshift

947 mutations. Hollow circles represent mutations occurring in homopolymer runs. Bubble heights

948 represent the frequency of the variant base among dUMI-consensus reads at that position. Vertical gray
949 columns represent the masked repeat regions. The region containing the K1 gene is indicated with

950  arrows at the bottom of the figure.

951

952 Figure 4. KSHV genomes in the U003-C tumor harbor a deletion within the K8.1 gene. (A) Read

953  coverage of the U003-C KSHV genome, showing a 6-bp gap (red arrow) where no read pairs were

954  mapped. (B) Cartoon of the de novo-assembly sequences generated at either side of the gap, both

955  ended within the K8.1 gene intron and continued into terminal repeat (TR) sequences. Green and yellow
956 arrows show the directions of the K8.1 gene and terminal repeat sequences, respectively. Blue arrows
957 show the position of PCR primers used to confirm breakpoint junctions, with the expected PCR product
958 sizes. (C) PCR products generated from U003-C tumor DNA using primers flanking the gap. The 443-bp
959 PCR product expected if the K8.1 gene intron was intact was not detected from U003-C (left column),
960  whereas the expected band was detected in tumor U007-B (right column) from another person. (D)
961 Hemi-nested PCR of U003-C tumor DNA for the K8.1-TR (left) and TR-K8.1 (right) junctions produced
962 products of the predicted sizes. These structures were confirmed by Sanger sequencing (data not

963  shown). No K8.1-TR or TR-K8.1 junction fragment was produced from BCBL-1 DNA. The light bands at
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964  the TR-K8.1 lane under BCBL-1 were found to be amplicons generated from the forward primer
965  sequence (indicated with * in panel B) overlapping with K8.1; this primer was used since the rest of the

966  connected TR sequence was GC-rich and unsuitable for primer design.

967

968 Figure 5. KSHV genomes in two tumors from participant U008 had a 14.8-kb region flanking Internal
969  Repeat 1 (IR1) duplicated and translocated to Internal Repeat 2 (IR2). Total, sUMI and dUMI-consensus
970  read coverage of tumor B (A) and D (B) genomes from individual U008. (C) Annotations of the region
971  with 1.5-2X read coverage, with genes in green, repeat regions in orange, and long non-coding RNAs in
972 red. Many reads on the edge of this region continue into IR2 (red arrows). Annotations are from the

973 KSHV reference strain GK18. (D) Cartoon showing the duplication of the 14.8 kb region into IR2 and the
974 PCR primers used to examine the genomic rearrangement in unsheared tumor DNA extracts from

975  tumors U008-B and U008-D. PCR products produced from primer pairs numbered in D from U008-B and
976 BCBL-1 (E) and in U008-D (F). All visible bands were excised from the agarose gel and sequenced,

977  confirming the junction sequences. Primer pairs # 9-12 produced no PCR products discernible on an

978 agarose gel and are not shown here.

979

980 Figure 6. KSHV genomes in U020-B and U020-C have large, distinct deletions. Total and dUMI-

981  consensus read coverages of U020-B (A) and U020-C (B) KSHV genomes. GK18 reference annotations in
982  the high-coverage regions of U020-B (C) and U020-C (D). (E) Cartoon showing the region encompassing
983 the high coverage region of U020-C viral genomes, leaving a 16.5-kb region connected to TR. (F) PCR
984  primers used to examine the deletions. Primers to unique genomic sequences are in blue, while primers
985  torepeat sequences are in orange. (G) PCR products produced from primer pairs numbered in E, with

986 DNA from U020-C and BCBL-1 as templates. Bands from lanes 1, 2 and 5 were excised from the agarose
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987  gel and sequenced. Attempts to sequence the light bands in U020-C #7 and #9 were unsuccessful. Row
988 11 primers, in which the forward primer binds to unique genomic sequences preceding the TR, yielded

989 no discernible product (not shown).

990

991 Figure 7. KSHV genome structures in participant U003. Junction sequences marking the genomic

992 aberration in U003-C were detected in all 4 other tumors tested, while intact K8.1 sequences were

993 detected in only 2. The cartoon shows the breakpoints in the K8.1 intron of U003-C extending into TR
994  sequences, along with PCR primers used to confirm the genome structure. PCR products from other
995 tumors of participant U003 and from the BCBL-1 cell line are shown. All visible bands were excised from

996  the agarose gel and their structures confirmed by Sanger sequencing.

997

998  Figure 8. Schematic representation of the 5 aberrant KSHV genomes discovered in KS tumors. Specific

999 details and evidence for each are referred to in the text and in Table 3.

1000

1001  S1 Figure. dUMI-adaptors and primers for duplex sequencing. During library preparation, sheared DNA
1002 fragments were A-tailed and ligated with forked, double-stranded oligonucleotides containing Illumina
1003 TruSeq universal adaptor sequences, 12-random base pairs as dUMI and spacer sequences. The adapted
1004 DNA libraries were PCR amplified before enrichment with primers mws13 and mws20, which bind to
1005 Illumina Truseq adaptors. Primer mws21 containing sample index ID for multiplex sequencing was used

1006  for PCR following enrichment. DNA libraries post processing are shown at the bottom.

1007

1008  S2 Figure. Workflow of genome assembly and variant analysis. KSHV genomes were first assembled de
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1009  novo from sequence reads of each sample, before being used as reference for mapping their respective
1010  dUMI-consensus reads. See details in the Methods section. Discrepancies in bases between the sample-

1011  consensus genome and mapped dUMI-consensus reads were taken to be real intra-sample variants.

1012

1013  S3 Figure. Read coverage. Raw (light blue), sUMI (blue) and dUMI-consensus (dark blue) read coverage
1014 in log scale along the de novo assembled, sample-consensus KSHV genomes in tumors (A) and oral
1015 swabs (B) examined in this study. Major repeat regions were masked with inserted Ns in all sample-

1016 consensus genomes.

1017

1018  S4 Figure. Potential sequencing artifacts. (A) KSHV intrasample variant frequency as a function of read
1019  coverage. Sample variant frequencies were estimated (Table 1) when at least 100 viral genomes were
1020 sampled. (B) Minor variants detected in dUMI-consensus reads of all samples, by type of base

1021 substitution.

1022

1023 S5 Figure. KSHV phylogenetic relationships by variable regions K1 and K15 and by whole genomes.
1024  Phylogenetic trees of (A) K1 genes, (B) K15 genes and (C) whole genomes from this study and of select
1025 genomes from other publications. K1 and K15 subtypes are indicated to the right of the K1 (A) and K15
1026  (B) trees. (D) A neighbor-net phylogenetic network of all published KSHV genomes to date, color-coded
1027 by genome types proposed in [36]: P1 in green, P2 in blue, N in purple, M1 in red and M2 in maroon. All

1028 de novo-assembled genomes from this study are in bolded italics.

1029

1030  S6 Figure. U008-B and U008-D were from distinct lesions on the left leg. U008-B biopsy was obtained
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1031  from lesions in the upper thigh, while U008-D was biopsied from a large lesion on the knee.

1032

1033  S7 Figure. Mutations of KSHV genomes in tumors from participants 004 and 003. (A) Alignment of
1034  KSHV genomes from Participant 004, showing a 28-bp deletion in the K8.1 promoter in U004-D. U004-D
1035  and U004-C are from tumors while U004-01 is from an oral swab. (B) The only intra-host synonymous
1036  mutation found in this study, within miR-K10 in participant 003. (C) Sequence chromatograms of miR-
1037 K10 in other tumors of participant U003, with a T in all tumors and a mixture of T and the database

1038 consensus C in a minority of viruses in U003-G.

1039

1040 S8 Figure. Scaffolds of EBV sequences produced in 4 KS tumors map to the EBNA-1 gene. A portion of
1041  the EBV genome is illustrated with an example of the 2 scaffolds (grey striped bars) generated from the
1042 reads of 4 KS tumors. Vertical stripes inside the gray bars indicate mismatches to the EBV reference

1043  (GenBank ID: DQ279927).

1044

1045
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