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ABSTRACT

The role of white matter fibers in reading has been established by diffusion tensor imaging 

(DTI), but DTI cannot identify specific microstructural features driving these relationships. Neurite 

orientation dispersion and density imaging (NODDI), inhomogeneous magnetization transfer 

(ihMT) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT) 

can be used to link more specific aspects of white matter microstructure and reading due to their 

sensitivity to axonal packing and fiber coherence (NODDI) and myelin (ihMT and mcDESPOT). We 

applied principal component analysis (PCA) to combine DTI, NODDI, ihMT and mcDESPOT 

measures (10 in total), identify major features of white matter structure, and link these features 

to both reading and age. Analysis was performed for nine reading-related tracts in 46 

neurotypical 6-16 year olds. We identified three principal components (PCs) which explained 

79.5% of variance in our dataset. PC1 probed tissue complexity, PC2 described myelin and axonal 

packing, while PC3 was related to axonal diameter. Mixed effects models regressions did not 

identify any relationships between principal components and reading skill. Further Bayes factor 

analysis revealed that absence of relationships was not due to low power. PC1 suggested 

increases in tissue complexity with age in the left arcuate fasciculus, while PC2 suggested 

increases in myelin and axonal packing with age in the bilateral arcuate, inferior longitudinal, 

inferior fronto-occipital fasciculi, and splenium. Multimodal white matter imaging and PCA 

produce microstructurally informative, powerful principal components which can be used by 

future studies of development and cognition.
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1 - INTRODUCTION

Reading is a sophisticated skill with many constituent systems including vision, language, 

memory, and attention. White matter fibers play an important role in connecting these systems 

and facilitating coordinated processing across the reading network. Diffusion tensor imaging 

(DTI) is frequently used to investigate links between white matter and reading thanks to its 

sensitivity to white matter microstructural features. DTI studies have linked white matter to 

reading in a broad network of tracts including the arcuate, superior and inferior longitudinal, 

inferior fronto-occipital, and uncinate fasciculi, and the posterior corpus callosum [1-5], such that 

markers of increased white matter maturity correlate with improved reading scores. Additionally, 

longitudinal DTI studies show that maturation of reading-related tracts is related to 

improvements in reading ability [6-10]. White matter abnormalities have been observed in 

children with reading difficulties, most often in left temporo-parietal white matter [11-14] as 

language and reading networks are typically left lateralized [11, 15, 16]. Finally, changes in DTI 

measures are observed in reading-related white matter following reading interventions [17-19].

DTI studies have identified a network of white matter related to reading but cannot 

comment on the particular features of white matter microstructure driving these relationships. 

Fractional anisotropy (FA) and mean diffusivity (MD) describe total water diffusion and are 

simultaneously sensitive to many microstructural factors [20-23]. Newer techniques with 

increased specificity may be used to build upon DTI literature. Neurite orientation dispersion and 

density imaging (NODDI) produces the neurite density index (NDI) and orientation dispersion 

index (ODI) which are sensitive to axonal packing and tract coherence, respectively [24]. 

Inhomogeneous magnetization transfer (ihMT) and multicomponent driven equilibrium single-
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pulse observation of T1 and T2 (mcDESPOT) produce the quantitative ihMT (qihMT) and myelin 

volume fraction (VFm) measures respectively, both sensitive to myelin [25, 26]. Additionally, 

measures of axon volume and myelin volume such as NDI and VFm can be combined to produce 

the g-ratio, which describes the ratio of axon thickness to total fiber diameter [27]. These 

methods have been validated in in vitro studies [28-33], and they hold great potential to clarify 

our understanding of white matter development and links to reading.

Investigating multiple imaging measures in a univariate fashion, the typical practice in 

developmental studies to date, necessarily increases the required stringency of multiple 

comparisons corrections, thereby reducing the discriminating power of the analysis. One solution 

to preserve power and reduce comparisons is to collapse white matter measures into orthogonal 

components via principal component analysis (PCA). A framework using PCA for dimensionality 

reduction in white matter has been recently described [34], and resultant components were 

linked to age, suggesting developmental sensitivity. The goal of this study was to combine white 

matter imaging techniques (DTI, NODDI, ihMT, and mcDESPOT) to better understand 

relationships between brain structure and reading in a sample of healthy 6-16 year old children. 

Based upon the PCA results of Chamberland et al., we hypothesized that observed principal 

components would represent diffusion restriction and tissue complexity factors, and that these 

components would be linked to reading proficiency in reading-related tracts, such that 

indications of more myelin and axonal packing would be related to better reading performance.
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2 - METHODS

2.1 Participants

46 healthy participants aged 6-16 years (mean age: 11.0 ± 2.6 years, 24 males / 22 

females) were recruited as part of an ongoing study on adolescent brain development. Inclusion 

criteria were: 1) uncomplicated birth between 37-42 weeks’ gestation, 2) no history of 

developmental disorder, psychiatric disease, or reading difficulty, 3) no history of neurosurgery, 

and 4) no contraindications to MRI. 22 children (mean age: 13.3 ± 2.6 years, 11 males / 11 

females) returned 2 years after their initial visit for a second scan and cognitive assessment. All 

subjects provided informed assent and parents/guardians provided written informed consent. 

Gender was determined by parent report. This study was approved by the local research ethics 

board (ethics ID: REB13-1346).

2.2 Imaging

Subjects were scanned using a 32-channel head coil on a GE 3T Discovery MR750w (GE, 

Milwaukee, WI) system at the Alberta Children’s Hospital. Two diffusion-weighted datasets were 

acquired at b = 900 s/mm2 and 2000 s/mm2 using a spin-echo echo planar imaging sequence with 

TR/TE = 12s/88ms, 2.2 mm x 2.2 mm x 2.2 mm resolution, with 5 b = 0 s/mm2 volumes and 30 

gradient directions per volume, scan duration = 14:24 minutes. IhMT images used a 3D SPGR 

sequence: TR/TE = 10.46ms/2.18ms, 2.2mm x 2.2 mm x 2.2 mm resolution, flip angle 8, scan 

time 5:12 minutes. The sequence included a 5ms Fermi pulse with peak B1 of 45 mG and 5kHz 

offset prior to each excitation. The MT condition cycled between positive offset (+5kHz), dual 

offset (5kHz), negative offset (-5kHz), and dual offset. A 32 flip angle reference image with no 

MT pulse was acquired for quantification. For mcDESPOT, multi-flip angle 3D SPGR images ( = 
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3, 4, 5, 6, 7, 9, 13, and 18) were collected with TR/TE = 9.1ms/3.9ms, 1.7mm x 0.86mm x 

1.7mm resolution; IR-SPGR images were collected to correct for B1 inhomogeneity using 5 , 

TR/TE = 9.1ms/3.9ms, 2.29mm x 0.86mm x 3.4mm resolution; two multi-flip angle bSSFP images 

were collected at phase 0 and 180 to correct for B0 inhomogeneity, with  = 10, 13, 16, 20, 

23, 30, 43, and 60, TR/TE = 6.6ms/3.2ms, 1.7mm x 0.86mm x 1.7mm resolution. Total scan 

time for mcDESPOT was 16:35 minutes. T1-weighted anatomical images were also acquired, with 

TI = 600ms, TR/TE = 8.2ms/3.2ms, 0.8 mm x 0.8 mm x 0.8 mm resolution, scan duration 5:38. 

2.3 Image Processing

All images were visually inspected for quality assessment and processed separately using 

appropriate tools before being combined for principal component analysis. T1 images were 

processed through FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) for intensity 

normalization and brain extraction. ExploreDTI [35] was used for all DTI processing and analysis, 

including preprocessing for signal drift correction [36], brain extraction, eddy current and motion 

corrections [37, 38], and registration to skull-stripped T1 images to correct geometric distortions 

induced by echo-planar imaging. The REKINDLE model was used to produce FA, MD, radial 

diffusivity (RD), and axial diffusivity (AD) maps for each subject using the b = 900 s/mm² shell only 

[39]. Whole brain tractography was performed using constrained spherical deconvolution [40] 

with Lmax = 6, 2mm isotropic seed voxels, 1mm step size, 30 maximum angle of deviation and 

an acceptable streamline range of 50 to 500mm. Next, semiautomated tractography [41] was 

performed to segment the arcuate, inferior longitudinal (ILF), inferior fronto-occipital (IFOF), and 

uncinate fasciculi bilaterally, along with the splenium, as shown in Figure 1. A 11-year old female 

with high data quality was selected as the exemplar participant for this process; all regions were 
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drawn on this template brain and then registered to other participants’ data for tracking in native 

space [42]. Processed DTI data was exported to the NODDI Toolbox 

(http://www.nitrc.org/projects/noddi_toolbox) for calculation of isotropic (fiso) and intracellular 

(ficvf, or NDI) volume fractions and ODI.

Figure 1: Major, reading-related white matter tracts chosen as regions of interest. Whole brain 
tractography was performed via constrained spherical deconvolution, then tracts were 
segmented using deterministic semi-automated tractography in ExploreDTI. Regions of interest 
were investigated bilaterally, but only the left hemisphere is shown here.

Pseudo-quantitative ihMT maps (qihMT) and magnetization transfer ratio (MTR) maps 

were obtained from ihMT data using an in-house GE protocol as described in previous work [43]. 

Following MTR and qihMT image production, brain extraction was performed on MTR images 

using FSL’s BET2 tool [44], and resulting brain-extracted MTR image was used as a mask to 

produce a brain-extracted qihMT image.

mcDESPOT  SPGR, IR-SPGR, and bSSFP images were aligned to the SPGR image with the 

largest  then processed by fitting T1, T2, and volume fractions to three water compartments 

(myelin-bound, intra/extracellular, and free), along with exchange rates between myelin-bound 

and intra/extracellular water [45]. The myelin-bound water volume fraction from this fitting was 

used to produce VFm maps for each participant. G-ratio maps were computed using VFm, NDI, 

and fiso maps to calculate the fiber volume fraction (FVF) and g-ratio using the following two 

equations.

𝐹𝑉𝐹 = 𝑉𝐹𝑚 + (1 ‒ 𝑉𝐹𝑚)(1 ‒ 𝑓𝑖𝑠𝑜)𝑁𝐷𝐼

𝑔 ‒ 𝑟𝑎𝑡𝑖𝑜 =  (1 ‒ 𝑉𝐹𝑚)/𝐹𝑉𝐹

Following production of all measure maps, qihMT, MTR, VFm, NDI, and ODI maps were 

registered to b = 900 s/mm2 FA maps using Advanced Normalization Tools (ANTs) [46]. Default 
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parameters from antsRegistrationSyN.sh were used, with the –t s flag chosen to select rigid, 

affine, and deformable symmetric normalization transforms. Then, the mean FA, MD, AD, RD, 

NDI, ODI, MTR, qihMT, VFm, and g-ratio values were extracted for all 9 segmented tracts per 

participant. Additionally, along-tract analysis was performed for each tract in ExploreDTI [47, 48], 

to produce a profile of measure means for all ten measures at twenty equidistant segments per 

tract.

2.4 Reading Assessments

Reading was evaluated using the Wechsler Individual Achievement Test – Third Edition: 

Canadian [49]. Participants completed the Reading Comprehension, Word Reading, Pseudoword 

Decoding, and Oral Reading Fluency subtests. From these subtests, the Total Reading Composite 

Score was computed as a measure of general reading proficiency. This score combines 

phonological awareness, reading comprehension, and fluency.

2.5 Statistical Analysis

All statistical analysis was performed in R version 3.6.1 [50]. Along tract data for each 

subject’s first time point (10 measures x 9 tracts x 20 segments) was combined into a single table 

for principal component analysis. The format of this table has been described by Chamberland et 

al [34]. PCA was performed via the prcomp function (using the scale = 1 option to normalize each 

feature independently). A Kaiser-Meyer Olkin (KMO) test was used to assess sampling adequacy 

of PCA results [51]. Following PCA, input variable contributions to principal components along 

with correlations between variables within along-tract data were inspected to identify 

redundancy between variables. In the case of highly collinear measures (i.e., measures which 

contributed to PCA outputs in very similar fashions), the variable with highest correlations to all 
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other input measures was removed in order to improve stability of PCA computations [52] and 

the PCA was recomputed. Resultant principal components with eigenvalue > 1 were retained, 

while other components were discarded [53]. Varimax rotation was performed on component 

loadings (the rotations matrix output by prcomp) via the varimax function to aid in interpretation 

of principal components. Measures were considered meaningful contributors to a resultant 

principal component if they accounted for above average variance (>11.1%) in the component.

Following varimax rotation, longitudinal principal component weightings were calculated 

by multiplication of time point 2 along tract data by the rotation matrix output by varimax. Next, 

along tract weightings for principal components were averaged in each tract to produce mean 

principal component weightings for each subject in all 9 investigated tracts. Linear mixed effects 

models were computed via lmer to investigate relationships between principal components with 

Total Reading and age in each tract. Age models included age, gender, an age*gender interaction, 

and a random intercept per subject. If the age*gender interaction was not significant, it was 

removed and the model was rerun. Total Reading models for each tract included all retained 

principal components along with age, and gender if a gender effect was observed for any 

principal component. Restricted maximum likelihood was used for all models. Benjamini-

Hochberg false discovery rate (FDR) correction was used to correct for 27 comparisons (9 tracts 

x three principal components). Multiple comparisons corrections were conducted separately for 

age and Total Reading findings. Example formulas are provided below. Time point 1 data for each 

measure included in our final PCA was correlated with Total Reading via partial correlation in 

each region, controlling for age, and FDR correction was applied for 9 correlations across each 

measure.
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PC1 ~ Age + Gender + Age*Gender + (1|Subject)

Total Reading ~ PC1 + PC2 + PC3 + Age + Gender + (1|Subject)

Bayes factor analysis was performed via generalTestBF in the BayesFactor package for R 

[54] to supplement regression analysis by assessing the observed statistical power of models 

connecting retained principal components and Total Reading. Bayes factors output by 

generalTestBF were inverted to reflect the ratio of likelihood of the null hypothesis divided by 

the likelihood of a given model. A Bayes factor of greater than 3, indicating our data was 3 times 

more likely to be described by the null hypothesis than a given model, was considered evidence 

for the null hypothesis. A Bayes factor of less than 1/3, indicating that a model including our 

chosen predictors was 3 times more likely to explain our data than the null hypothesis condition, 

was considered evidence for the alternative hypothesis. Bayes factors between 1/3 and 3 were 

considered an indication of low power, such that neither evidence for the null or alternative 

hypotheses could be inferred [55].

3 – RESULTS

3.1 Principal component analysis

Figure 2 visualizes each included imaging metric in the splenium. Here we can see that 

measures with shared sensitivities vary similarly across the tract. For example, FA, RD, qihMT, 

and VFm are all similar to myelin and reach extreme values in the center of the splenium (highly 

positive for FA, qihMT, and VFm, highly negative for RD). 
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Figure 2: Multimodal imaging of white matter microstructure in the splenium. Measures from 
DTI, NODDI, MT, and mcDESPOT imaging can be contrasted to provide a multifaceted 
understanding of white matter structure.

MTR was removed from our principal component analysis due to high collinearity with 

qihMT (r² = 0.64). Three principal components were identified in our final model, which 

collectively explained 79.5% of variance (KMO test value = 0.53). Measures contributing greater 

than 11.1% variance (expected if all variables contributed uniformly) to a component following 

varimax rotation are visualized in Figure 3. Principal component (PC) 1 explained 37.5% of 

variance and was primarily composed of measures sensitive to tissue complexity: FA, AD, ODI, 

along with MD. PC2 explained 23.0% of variance and was composed of measures sensitive to 

myelin and axon packing: FA, MD, RD, and NDI. PC3 explained 19.0% of variance and was driven 

by measures sensitive to myelin and axonal diameter, VFm and g-ratio.

Figure 3: Resultant components from principal component analysis visualized in the left 
arcuate fasciculus. Correlations for measures which contribute greater variance than expected 
by chance (>11.1%) are included for each component. Panel A displays PCA results from all 9 
measures. Components in Panel A explained 79.5% of variance in our data (variance explained 
by each individual component is noted in brackets). Principal components were related to 
diffusion along a primary axis (PC1), myelin and axonal packing (PC2), and axon diameter (PC3). 
Panel B shows results from a secondary PCA with FA and MD removed. Principal components 
in Panel B explain 77.3% of variance, and clarify our interpretation of principal components.

As shown in Figure 3 panel A, FA and MD contributed strongly to PC1 and PC2 even after 

varimax rotation, likely because FA and MD are broadly sensitive to white matter structure. We 

removed FA and MD and recomputed PCA to interpret our principal components with increased 

clarity (results shown in Figure 3 panel B). This resulted in a model with three principal 

components that explained 77.3% of variance (KMO = 0.43), denoted as PCB. In this model, PC1B 

explained 36.6% of variance and was composed of RD, NDI, and qihMT. PC2B explained 22.7% of 

variance and was composed of VFm and g-ratio. Finally, PC3B explained 18.0% of variance and 
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was driven by AD and ODI. While removing FA and MD and running a reduced PCA model aided 

in interpretation of our principal components, mixed effects models regressions and Bayes factor 

analyses were conducted with the full PCA model including FA and MD.

3.2 Regression Models

Mixed effects models linking principal components to Total Reading scores are 

summarized in Table 1. No relationships were observed between principal components and Total 

Reading. To further investigate the absence of relationships between principal components and 

Total Reading, we followed up by running mixed effects models between principal components 

and subtest scores for Reading Comprehension, Word Reading, Pseudoword Decoding, and Oral 

Reading Fluency. No significant relationships were observed between principal components and 

reading subtest scores. Correlations between the initial measure set and Total Reading are 

summarized in Supplementary Table 1. No correlations were observed between individual 

measures and Total Reading scores.
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Table 1. Parameters for mixed effects models linking principal components to Total Reading 
(formula: Total Reading ~ PC1 + PC2 + PC3 + Age + (1|Subject)). 

Region R2 

(marginal)
df Predictor Estimate ± SE t p

Left arcuate 0.026 64 PC1 -1.17 ± 6.61 -0.18 0.860
PC2 5.26 ± 3.86 1.37 0.178
PC3 1.52 ± 2.89 0.53 0.601
Age -0.00  ± 0.00 -0.74 0.462

Right arcuate 0.022 64 PC1 -6.55 ± 5.42 -1.21 0.232
PC2 -0.13 ± 3.47 -0.04 0.970
PC3 -4.06E-2 ± 2.47 -0.02 0.987
Age -8.06E-4 ± 1.72E-3 -0.47 0.641

Left ILF 0.026 64 PC1 -5.19 ± 6.44 -0.81 0.424
PC2 -0.88 ± 4.06 -0.22 0.829
PC3 -3.34 ± 2.60 -1.28 0.207
Age 6.64E-5 ± 1.62E-3 0.04 0.968

Right ILF 0.034 64 PC1 6.06 ± 5.79 1.05 0.300
PC2 3.12 ± 3.87 0.81 0.423
PC3 0.89 ± 2.30 0.39 0.701
Age -7.32E-4 ± 1.64E-3 -0.45 0.656
Gender 1.37 ± 3.74 0.37 0.716

Left IFOF 0.052 64 PC1 0.75 ± 5.74 0.13 0.897
PC2 8.87 ± 5.01 1.77 0.081
PC3 -1.43 ± 2.61 -0.55 0.585
Age -0.00 ±0.00 -0.79 0.435

Right IFOF 0.046 64 PC1 -1.81 ±5.94 -0.30 0.762
PC2 6.47 ± 3.99 1.62 0.110
PC3 2.08 ± 2.65 0.78 0.436
Age -0.00 ± 0.00 -0.93 0.356

Left uncinate 0.087 64 PC1 -5.83 ± 5.43 -1.08 0.287
PC2 5.72 ± 4.34 1.32 0.192
PC3 -3.85 ± 1.94 -1.99 0.053
Age -3.78E-4 ± 1.59E-3 -0.24 0.813

Right uncinate 0.008 64 PC1 1.16 ± 6.18 0.19 0.852
PC2 2.54 ± 3.38 0.75 0.455
PC3 -0.49 ± 2.45 -0.20 0.844
Age -1.83E-4 ± 1.59E-3 -0.12 0.909

Splenium 0.035 64 PC1 7.28 ± 4.55 1.60 0.115
PC2 2.07 ± 2.50 0.83 0.410
PC3 1.45 ± 2.77 0.52 0.603
Age -0.00 ± 0.00 -0.28 0.778
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Table 2 summarizes models linking principal components to subject age and gender. A 

significant relationship between PC1 and age was observed in the left arcuate (t = -2.93, p = 

0.004). Increases in PC1 with age suggest that FA, MD, and AD increase with age while ODI 

decreases in the left arcuate, hinting at increased diffusion restrictions and tissue complexity. A 

similar relationship was observed in the right arcuate but this finding did not survive multiple 

comparisons corrections. Positive relationships between PC2 and age were observed in the 

bilateral arcuate (L: t = 3.70, p < 0.001; R: t = 3.66, p < 0.001), inferior longitudinal fasciculus (L: t 

= 2.75, p = 0.007; R: t = 3.05, p = 0.003), inferior fronto-occipital fasciculus (L: t = 3.21, p = 0.002; 

R: t = 3.80, p = 0.003), and splenium (t = 2.31, p = 0.024). Increases in PC2 reflect increases in FA 

and NDI, and decreases in MD and RD, suggesting increased axon packing and myelin with age. 

The gender main effect (t = -2.01, p = 0.049) and the age*gender interaction were significant for 

PC3 in the right inferior longitudinal fasciculus, but neither survived multiple comparisons 

corrections. Scatterplots are provided in Figure 4 to illustrate relationships between PC1, PC2 and 

age (panels B and C).

Figure 4: Scatterplots visualizing relationships between principal component 3 (PC3) and Total 
Reading in the left uncinate fasciculus (A), PC1 and age in the left uncinate (B) and PC2 and age 
in the left uncinate (C). Increases in PC1 indicate increased diffusion along a primary axis, while 
increases in PC2 indicate increased myelin and axon packing, thus relationships depicted in 
panels A and B could potentially reflect axonal maturation. No significant links between 
principal components and Total Reading were observed. The relationship between PC3 and 
Total Reading in the left uncinate was closest to our significance threshold.
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Table 2. Parameters for mixed effects models regressions linking principal components to age 
and gender (formula: PC ~ age + gender + age*gender + (1|Subject)). Significant effects that 
survive multiple comparisons are bolded and marked by an asterisk.
PC1: Tissue Complexity
Region R2 

(margin
al)

df Predictor Estimate ± SE t p

Left arcuate 0.141 66 Age 8.71E-5 ± 2.92E-5 2.98 0.004*
Gender 7.97E-2 ± 6.6E-2 1.21 0.234

Right arcuate 0.091 66 Age 7.80E-5 ± 3.55E-5 2.20 0.032
Gender 9.20E-2 ± 7.90E-2 1.16 0.251

Left ILF 0.005 66 Age 1.83E-5 ± 3.21E-5 0.57 0.571
Gender -1.29E-2 ± 7.81E-2 -0.17 0.870

Right ILF 0.031 65 Age 6.40E-6 ± 3.35E-5 0.19 0.849
Gender -5.56E-2 ± 8.40E-2 -0.66 0.513

Left IFOF 7.81E-5 66 Age 2.41E-6 ± 3.35E-5 0.07 0.943
Gender 6.89E-4 ± 7.89E-2 0.01 0.993

Right IFOF 0.025 66 Age 4.14E-5 ± 3.27E-5 1.26 0.211
Gender -2.78E-2 ± 7.85E-2 -0.36 0.725

Left uncinate 0.056 65 Age 5.82E-5 ± 3.42E-5 1.71 0.093
Gender 1.77E-2 ± 7.57E-2 -0.23 0.816

Right uncinate 0.050 66 Age 5.48E-5 ± 3.10E-5 1.77 0.082
Gender 3.40E-2 ± 6.99E-2 0.49 0.629

Splenium 0.003 66 Age 4.78E-7 ± 4.59E-5 0.01 0.992
Gender 4.53E-2 ± 0.13 0.36 0.724

PC2: Axon Packing and Myelin  
Region R2 (adj) df Predictor Estimate ± SE t p
Left arcuate 0.181 66 Age 1.85E-4 ± 5.00E-5 3.70 0.0004*

Gender -1.45E-2 ± 0.11 -0.13 0.894
Right arcuate 0.178 66 Age 1.95E-4 ± 5.34E-5 3.66 0.0005*

Gender -1.78E-2 ± 0.11 -0.15 0.878
Left ILF 0.108 66 Age 1.37E-4 ± 4.99E-5 2.75 0.0077*

Gender -3.08E-2 ± 0.11 -0.28 0.783
Right ILF 0.129 66 Age 1.53E-4 ± 5.01E-5 3.05 0.0033*

Gender -5.75E-2 ± 0.11 -0.50 0.617
Left IFOF 0.137 66 Age 1.23E-4 ± 3.82E-5 3.21 0.0021*

Gender -4.35E-2 ± 8.90E-2 -0.49 0.627
Right IFOF 0.195 66 Age 1.83E-4 ± 4.81E-5 3.80 0.0032*

Gender -9.65E-2 ± 0.11 -0.90 0.372
Left uncinate 0.074 66 Age -5.06E-5 ± 6.88E-5 1.38 0.173

Gender -0.81 ± 0.42 1.57 0.124
Right uncinate 0.025 66 Age 2.30E-5 ± 5.41E-5 0.42 0.673
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Gender 0.13 ± 0.12 1.11 0.274
Splenium 0.077 66 Age 2.05E-4 ± 8.87E-5 2.31 0.024*

66 Gender 7.22E-2 ± 0.21 0.35 0.731
PC3: Axon Diameter  
Region R2 (adj) df Predictor Estimate ± SE t p
Left arcuate 0.030 66 Age -7.78E-6 ± 6.93E-5 -0.11 0.911

Gender 0.20 ± 0.15 1.28 0.207
Right arcuate 0.025 66 Age -5.46E-5 ± 7.58E-5 -0.72 0.474

Gender 0.16 ± 0.16 1.00 0.324
Left ILF 0.055 66 Age 1.10E-4 ± 6.17E-5 1.79 0.080

Gender 9.28E-2 ± 0.13 0.74 0.465
Right ILF 0.098 66 Age -1.39E-4 ± 1.19E-4 -1.16 0.248

Gender -1.48 ± 0.74 -2.01 0.049
Age*Gender 3.92E-4 ± 1.68E-4 2.34 0.023

Left IFOF 0.029 66 Age 5.87E-5 ± 6.58E-5 0.89 0.377
Gender 0.14 ± 0.14 0.98 0.334

Right IFOF 0.020 66 Age 2.39E-5 ± 6.76E-5 0.35 0.725
Gender 0.14 ± 0.14 1.00 0.326

Left uncinate 0.096 66 Age 1.56E-4 ± 7.70E-5 2.02 0.047
Gender 0.26 ± 0.16 1.68 0.097

Right uncinate 0.064 66 Age 6.92E-5 ± 6.77E-5 1.02 0.310
Gender 0.25 ± 0.14 1.85 0.069

Splenium 0.040 66 Age -9.25E-5 ± 6.68E-5 -1.39 0.172
66 Gender 0.11 ± 0.14 0.81 0.423

3.3 Bayes Factor Analysis

Bayes factors analysis was conducted to evaluate Total Reading mixed effects models 

regressions. Results from this analysis are summarized in Table 3. Bayes factors including all 

principal components and age as covariates of Total Reading were greater than 3 in all regions, 

indicative of evidence for the null hypothesis.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2020. ; https://doi.org/10.1101/2020.05.04.076521doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076521
http://creativecommons.org/licenses/by/4.0/


17

Table 3. Bayes factors assessing the likelihood of the null hypothesis condition (no relationship 
between Total Reading scores and model components) versus the likelihood of the model 
condition (relationships between included components and Total Reading). A Bayes factor of 3—
indicating our sample data is 3 times more likely to be explained by the null condition than the 
model condition—or greater provides evidence for the null condition.
READING MODELS
Region Components Bayes Factor
Left arcuate PC1 + PC2 + PC3 + Age 9.43
Right arcuate PC1 + PC2 + PC3 + Age 8.93
Left ILF PC1 + PC2 + PC3 + Age 47.62
Right ILF PC1 + PC2 + PC3 + Age 20.83
Left IFOF PC1 + PC2 + PC3 + Age 11.76
Right IFOF PC1 + PC2 + PC3 + Age 9.35
Left uncinate PC1 + PC2 + PC3 + Age 19.23
Right uncinate PC1 + PC2 + PC3 + Age 19.23
Splenium PC1 + PC2 + PC3 + Age 10.42

4 – DISCUSSION

Using a multimodal microstructural MR dataset, we identified 3 principal components of 

white matter structure in reading-related tracts. These principal components represented tissue 

complexity, axon packing and myelin, and axon diameter. No significant relationships between 

principal components and Total Reading or components of reading skill were observed. Follow-

up Bayes factor analysis provided supplementary evidence for the null hypothesis in all 

investigated regions. PC1 was negatively linked to age in the left arcuate, and positive 

relationships between PC2 and age were found throughout the brain. We have shown that 

multimodal white matter imaging and PCA produce microstructurally informative, powerful 

principal components which can be used by future studies of development and cognition.

Principal component analysis identified three key components that explained a large 

proportion of variance (79.5%) in our dataset, and represented tissue complexity (axon 
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coherence), diffusion restriction (axonal packing and myelination), and axon diameter. PC1 

explained the largest amount of variance (37.5%). With significant contributions from FA, MD, 

AD, and ODI, PC1 probed diffusion anisotropy and was most influenced by axon integrity and 

coherence. PC2 explained 23.0% of variance and reflects myelin and axonal packing, as shown by 

heavy loadings on FA, MD, RD, and NDI. Finally, PC3 explained 19.0% of variance and is driven by 

VFm and g-ratio. PC3 likely corresponds to axon diameter as PC2 accounts for a large proportion 

of variance and contains several myelin-sensitive measures. Studies employing PCA with white 

matter imaging measures have identified similar principal components related to diffusion 

anisotropy and overall diffusivity [34, 56].  Our PCA expands upon previous findings by including 

non-diffusion measures from magnetization transfer and relaxometry. This allowed our 

multimodal PCA to identify a novel third component related to axon diameter. 

Shared information between white matter imaging metrics resulted in multiple principal 

components loading onto the same measures, in particular FA and MD. This was addressed in 

multiple ways. First, in the case of highly correlated variables, redundant variables were removed 

from PCA analysis. Next, varimax rotation minimized loading of multiple principal components 

onto the same variables, and helped to clearly illustrate differences between resultant principal 

components. Finally, re-running PCA without FA and MD resulted in a similar set of principal 

components accounting for 77.3% of variance and reinforcing our interpretation of the full model 

results. PC1B accounted for 36.6% of variance and was analogous to PC2 from the full model, with 

loadings onto RD, NDI, and qihMT. PC2B accounted for 22.7% of variance and loaded onto VFm 

and g-ratio, similar to PC3. Finally, PC3B accounted for 18.0% of variance and loaded onto AD and 

ODI, similar to PC1. Principal component analysis with varimax rotation is shown to be an 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2020. ; https://doi.org/10.1101/2020.05.04.076521doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076521
http://creativecommons.org/licenses/by/4.0/


19

effective way to collapse white matter imaging metrics into powerful, interpretable measures. 

Future studies employing this method should consider removal of broadly sensitive metrics such 

as FA and MD to improve specificity of resultant principal components.

Principal components were not significantly related to Total Reading in any investigated 

region. Bayes factors suggested the null hypothesis, no relationship between principal 

components and Total Reading, was substantially more likely than the alternative hypothesis in 

all regions. No relationships were identified in follow-up mixed effects models including principal 

components, age and scores from subtests included in the Total Reading composite score. 

Further, no correlations between initial measures and Total Reading were significant following 

multiple comparisons corrections. These findings suggest that gross relationships between white 

matter structural features and Total Reading ability are absent in typically developing 

adolescents, who tended to be skilled readers in our sample. Expansion of this analysis to a larger 

age range or comparison with a population with reading difficulty or dyslexia may provide a larger 

effect to assess, and is a promising direction for future multimodal investigations of white matter 

and reading. 

Despite a lack of broad relationships between key white matter features and reading, 

some findings here hint that more specific relationships may be present in our sample. While no 

relationships were significant, p-values < 0.1 suggest a larger sample may find significant 

relationships between PC2 or PC3 and Total Reading in the left IFOF and left uncinate, 

respectively. Left hemisphere ventral white matter supports reading processing in skilled readers, 

and left inferior frontal regions have been consistently highlighted as related to reading skill in 

previous studies [3, 6, 8-10]. Additionally, qihMT was correlated with Total Reading ability in the 
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bilateral arcuate fasciculus and ILF, the right IFOF and right uncinate fasciculus, and was trend 

level in the left IFOF. However, these findings did not survive multiple comparison corrections. 

Interestingly, qihMT was not significantly related to Total Reading in either the left IFOF or 

uncinate fasciculus, where trend level relationships with principal components were found. 

Trend level relationships between PC2, PC3, or qihMT and Total Reading provide some evidence 

for a link between axon diameter and myelin and adolescent reading. However, these 

relationships must be investigated and confirmed by future studies.

Links between principal components and age were identified throughout the brain. 

Relationships between PC2 and age were most prominent, found in all tracts except the uncinate 

fasciculus, and are visualized as scatterplots in Figure 4. Age-related trends tended to be similar 

between left and right hemispheres, suggesting that at the macro-scale, brain development is 

similar between hemispheres. This is in contrast to investigations of individual microstructural 

features, where increases in VFm were shown to be largely left-lateralized during adolescence 

[57]. PC2 findings may be driven by NDI, as NDI has been previously shown to be age-sensitive 

and increases bilaterally throughout adolescence [57-59]. One relationship between PC1 and age 

remained in the left arcuate following multiple comparisons. While axon coherence tends to be 

stable across adolescence [60-62], we show that changes may still be ongoing in some regions. 

Gender was related to PC3 in the right inferior longitudinal fasciculus such that males had higher 

values than females. Higher PC3 values reflect higher VFm and lower g-ratio values, thus the 

development of the right inferior longitudinal fasciculus may be further along in males. Studies 

of sex effects on white matter development have produced mixed results, suggesting either 

absence of or minor developmental effects during adolescence (for review see [63])., but large 
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longitudinal studies remain necessary to effectively assess sex and gender effects across 

development.

5 – CONCLUSIONS

Here, we have combined multimodal imaging techniques to assess white matter 

microstructure in reading-related white matter. Principal component analysis revealed three 

features of white matter microstructure which explained 79.5% of variance in our dataset. 

Principal components were related to tissue complexity, axon packing and myelin, and axon 

diameter, respectively. No significant relationships were observed between principal 

components and Total Reading, suggesting gross relationships between white matter structural 

features and reading are not present in typical adolescents. Some trend level results suggest 

minor roles for axon diameter and myelin in reading ability, but these findings must be confirmed 

by further research. Principal components are shown to be sensitive to age effects throughout 

the brain, and age findings were in line with previous studies applying PCA in white matter and 

other investigations of white matter microstructural development. Principal component analysis 

is an effective method to collapse multimodal sets of white matter imaging metrics into principal 

components which explain a large proportion of variance in white matter. Resultant principal 

components are age-sensitive and may prove useful to expand our understanding of links 

between white matter and reading in future studies. Use of such techniques to identify how 

white matter changes across the full developmental period, and how white matter structure is 

linked to various cognitive abilities, will provide an important baseline for future studies 

investigating developmental or cognitive disorders.
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