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ABSTRACT

The role of white matter fibers in reading has been established by diffusion tensor imaging
(DTI), but DTl cannot identify specific microstructural features driving these relationships. Neurite
orientation dispersion and density imaging (NODDI), inhomogeneous magnetization transfer
(ihMT) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT)
can be used to link more specific aspects of white matter microstructure and reading due to their
sensitivity to axonal packing and fiber coherence (NODDI) and myelin (ihMT and mcDESPOT). We
applied principal component analysis (PCA) to combine DTI, NODDI, ihMT and mcDESPOT
measures (10 in total), identify major features of white matter structure, and link these features
to both reading and age. Analysis was performed for nine reading-related tracts in 46
neurotypical 6-16 year olds. We identified three principal components (PCs) which explained
79.5% of variance in our dataset. PC1 probed tissue complexity, PC2 described myelin and axonal
packing, while PC3 was related to axonal diameter. Mixed effects models regressions did not
identify any relationships between principal components and reading skill. Further Bayes factor
analysis revealed that absence of relationships was not due to low power. PC1 suggested
increases in tissue complexity with age in the left arcuate fasciculus, while PC2 suggested
increases in myelin and axonal packing with age in the bilateral arcuate, inferior longitudinal,
inferior fronto-occipital fasciculi, and splenium. Multimodal white matter imaging and PCA
produce microstructurally informative, powerful principal components which can be used by

future studies of development and cognition.
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1- INTRODUCTION

Reading is a sophisticated skill with many constituent systems including vision, language,
memory, and attention. White matter fibers play an important role in connecting these systems
and facilitating coordinated processing across the reading network. Diffusion tensor imaging
(DTI1) is frequently used to investigate links between white matter and reading thanks to its
sensitivity to white matter microstructural features. DTI studies have linked white matter to
reading in a broad network of tracts including the arcuate, superior and inferior longitudinal,
inferior fronto-occipital, and uncinate fasciculi, and the posterior corpus callosum [1-5], such that
markers of increased white matter maturity correlate with improved reading scores. Additionally,
longitudinal DTl studies show that maturation of reading-related tracts is related to
improvements in reading ability [6-10]. White matter abnormalities have been observed in
children with reading difficulties, most often in left temporo-parietal white matter [11-14] as
language and reading networks are typically left lateralized [11, 15, 16]. Finally, changes in DTI
measures are observed in reading-related white matter following reading interventions [17-19].

DTI studies have identified a network of white matter related to reading but cannot
comment on the particular features of white matter microstructure driving these relationships.
Fractional anisotropy (FA) and mean diffusivity (MD) describe total water diffusion and are
simultaneously sensitive to many microstructural factors [20-23]. Newer techniques with
increased specificity may be used to build upon DTl literature. Neurite orientation dispersion and
density imaging (NODDI) produces the neurite density index (NDI) and orientation dispersion
index (ODI) which are sensitive to axonal packing and tract coherence, respectively [24].

Inhomogeneous magnetization transfer (ihMT) and multicomponent driven equilibrium single-
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pulse observation of T1 and T2 (mcDESPOT) produce the quantitative ihMT (qihMT) and myelin
volume fraction (VF,,) measures respectively, both sensitive to myelin [25, 26]. Additionally,
measures of axon volume and myelin volume such as NDI and VF,,, can be combined to produce
the g-ratio, which describes the ratio of axon thickness to total fiber diameter [27]. These
methods have been validated in in vitro studies [28-33], and they hold great potential to clarify
our understanding of white matter development and links to reading.

Investigating multiple imaging measures in a univariate fashion, the typical practice in
developmental studies to date, necessarily increases the required stringency of multiple
comparisons corrections, thereby reducing the discriminating power of the analysis. One solution
to preserve power and reduce comparisons is to collapse white matter measures into orthogonal
components via principal component analysis (PCA). A framework using PCA for dimensionality
reduction in white matter has been recently described [34], and resultant components were
linked to age, suggesting developmental sensitivity. The goal of this study was to combine white
matter imaging techniques (DTI, NODDI, ihMT, and mcDESPOT) to better understand
relationships between brain structure and reading in a sample of healthy 6-16 year old children.
Based upon the PCA results of Chamberland et al., we hypothesized that observed principal
components would represent diffusion restriction and tissue complexity factors, and that these
components would be linked to reading proficiency in reading-related tracts, such that

indications of more myelin and axonal packing would be related to better reading performance.
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2 - METHODS
2.1 Participants

46 healthy participants aged 6-16 years (mean age: 11.0 = 2.6 years, 24 males / 22
females) were recruited as part of an ongoing study on adolescent brain development. Inclusion
criteria were: 1) uncomplicated birth between 37-42 weeks’ gestation, 2) no history of
developmental disorder, psychiatric disease, or reading difficulty, 3) no history of neurosurgery,
and 4) no contraindications to MRI. 22 children (mean age: 13.3 * 2.6 years, 11 males / 11
females) returned 2 years after their initial visit for a second scan and cognitive assessment. All
subjects provided informed assent and parents/guardians provided written informed consent.
Gender was determined by parent report. This study was approved by the local research ethics
board (ethics ID: REB13-1346).

2.2 Imaging

Subjects were scanned using a 32-channel head coil on a GE 3T Discovery MR750w (GE,
Milwaukee, WI) system at the Alberta Children’s Hospital. Two diffusion-weighted datasets were
acquired at b =900 s/mm? and 2000 s/mm? using a spin-echo echo planar imaging sequence with
TR/TE = 12s/88ms, 2.2 mm x 2.2 mm X 2.2 mm resolution, with 5 b = 0 s/mm? volumes and 30
gradient directions per volume, scan duration = 14:24 minutes. IhMT images used a 3D SPGR
sequence: TR/TE = 10.46ms/2.18ms, 2.2mm x 2.2 mm x 2.2 mm resolution, flip angle 8°, scan
time 5:12 minutes. The sequence included a 5ms Fermi pulse with peak B1 of 45 mG and 5kHz
offset prior to each excitation. The MT condition cycled between positive offset (+5kHz), dual
offset (£5kHz), negative offset (-5kHz), and dual offset. A 32° flip angle reference image with no

MT pulse was acquired for quantification. For mcDESPOT, multi-flip angle 3D SPGR images (o =
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3°,4°,5°,6° 7°,9° 13°, and 18°) were collected with TR/TE = 9.1ms/3.9ms, 1.7mm x 0.86mm x
1.7mm resolution; IR-SPGR images were collected to correct for B; inhomogeneity using 5° a,
TR/TE =9.1ms/3.9ms, 2.29mm x 0.86mm x 3.4mm resolution; two multi-flip angle bSSFP images
were collected at phase 0° and 180° to correct for By inhomogeneity, with o = 10°, 13°, 16°, 20°,
23°, 30°, 43°, and 60°, TR/TE = 6.6ms/3.2ms, 1.7mm x 0.86mm x 1.7mm resolution. Total scan
time for mcDESPOT was 16:35 minutes. T1-weighted anatomical images were also acquired, with
Tl = 600ms, TR/TE = 8.2ms/3.2ms, 0.8 mm x 0.8 mm x 0.8 mm resolution, scan duration 5:38.
2.3 Image Processing

All images were visually inspected for quality assessment and processed separately using
appropriate tools before being combined for principal component analysis. T1 images were
processed through FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) for intensity
normalization and brain extraction. ExploreDTI [35] was used for all DTI processing and analysis,
including preprocessing for signal drift correction [36], brain extraction, eddy current and motion
corrections [37, 38], and registration to skull-stripped T1 images to correct geometric distortions
induced by echo-planar imaging. The REKINDLE model was used to produce FA, MD, radial
diffusivity (RD), and axial diffusivity (AD) maps for each subject using the b =900 s/mm? shell only
[39]. Whole brain tractography was performed using constrained spherical deconvolution [40]
with Lmax = 6, 2mm isotropic seed voxels, 1Imm step size, 30 maximum angle of deviation and
an acceptable streamline range of 50 to 500mm. Next, semiautomated tractography [41] was
performed to segment the arcuate, inferior longitudinal (ILF), inferior fronto-occipital (IFOF), and
uncinate fasciculi bilaterally, along with the splenium, as shown in Figure 1. A 11-year old female

with high data quality was selected as the exemplar participant for this process; all regions were
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drawn on this template brain and then registered to other participants’ data for tracking in native
space [42]. Processed DTl data was exported to the NODDI Toolbox
(http://www.nitrc.org/projects/noddi_toolbox) for calculation of isotropic (fis,) and intracellular
(ficur, or NDI) volume fractions and ODI.
Figure 1: Major, reading-related white matter tracts chosen as regions of interest. Whole brain
tractography was performed via constrained spherical deconvolution, then tracts were
segmented using deterministic semi-automated tractography in ExploreDTI. Regions of interest
were investigated bilaterally, but only the left hemisphere is shown here.

Pseudo-quantitative ihMT maps (qihMT) and magnetization transfer ratio (MTR) maps
were obtained from ihMT data using an in-house GE protocol as described in previous work [43].
Following MTR and gihMT image production, brain extraction was performed on MTR images
using FSL's BET2 tool [44], and resulting brain-extracted MTR image was used as a mask to
produce a brain-extracted gihMT image.

mcDESPOT SPGR, IR-SPGR, and bSSFP images were aligned to the SPGR image with the
largest o then processed by fitting T1, T2, and volume fractions to three water compartments
(myelin-bound, intra/extracellular, and free), along with exchange rates between myelin-bound
and intra/extracellular water [45]. The myelin-bound water volume fraction from this fitting was
used to produce VF,, maps for each participant. G-ratio maps were computed using VF,, NDI,

and fi,, maps to calculate the fiber volume fraction (FVF) and g-ratio using the following two

equations.

FVF =VFp+ (1-VFp)(1 - fiso)NDI

g - ratio = J(1 - VF,)) [FVF
Following production of all measure maps, qihMT, MTR, VF,,, NDI, and ODI maps were

registered to b = 900 s/mm? FA maps using Advanced Normalization Tools (ANTs) [46]. Default
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parameters from antsRegistrationSyN.sh were used, with the —t s flag chosen to select rigid,
affine, and deformable symmetric normalization transforms. Then, the mean FA, MD, AD, RD,
NDI, ODI, MTR, qihMT, VF,,, and g-ratio values were extracted for all 9 segmented tracts per
participant. Additionally, along-tract analysis was performed for each tract in ExploreDTI [47, 48],
to produce a profile of measure means for all ten measures at twenty equidistant segments per
tract.
2.4 Reading Assessments

Reading was evaluated using the Wechsler Individual Achievement Test — Third Edition:
Canadian [49]. Participants completed the Reading Comprehension, Word Reading, Pseudoword
Decoding, and Oral Reading Fluency subtests. From these subtests, the Total Reading Composite
Score was computed as a measure of general reading proficiency. This score combines
phonological awareness, reading comprehension, and fluency.
2.5 Statistical Analysis

All statistical analysis was performed in R version 3.6.1 [50]. Along tract data for each
subject’s first time point (10 measures x 9 tracts x 20 segments) was combined into a single table
for principal component analysis. The format of this table has been described by Chamberland et
al [34]. PCA was performed via the prcomp function (using the scale = 1 option to normalize each
feature independently). A Kaiser-Meyer Olkin (KMO) test was used to assess sampling adequacy
of PCA results [51]. Following PCA, input variable contributions to principal components along
with correlations between variables within along-tract data were inspected to identify
redundancy between variables. In the case of highly collinear measures (i.e., measures which

contributed to PCA outputs in very similar fashions), the variable with highest correlations to all
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other input measures was removed in order to improve stability of PCA computations [52] and
the PCA was recomputed. Resultant principal components with eigenvalue > 1 were retained,
while other components were discarded [53]. Varimax rotation was performed on component
loadings (the rotations matrix output by prcomp) via the varimax function to aid in interpretation
of principal components. Measures were considered meaningful contributors to a resultant
principal component if they accounted for above average variance (>11.1%) in the component.
Following varimax rotation, longitudinal principal component weightings were calculated
by multiplication of time point 2 along tract data by the rotation matrix output by varimax. Next,
along tract weightings for principal components were averaged in each tract to produce mean
principal component weightings for each subject in all 9 investigated tracts. Linear mixed effects
models were computed via Imer to investigate relationships between principal components with
Total Reading and age in each tract. Age modelsincluded age, gender, an age*gender interaction,
and a random intercept per subject. If the age*gender interaction was not significant, it was
removed and the model was rerun. Total Reading models for each tract included all retained
principal components along with age, and gender if a gender effect was observed for any
principal component. Restricted maximum likelihood was used for all models. Benjamini-
Hochberg false discovery rate (FDR) correction was used to correct for 27 comparisons (9 tracts
x three principal components). Multiple comparisons corrections were conducted separately for
age and Total Reading findings. Example formulas are provided below. Time point 1 data for each
measure included in our final PCA was correlated with Total Reading via partial correlation in
each region, controlling for age, and FDR correction was applied for 9 correlations across each

measure.
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PC1 ~ Age + Gender + Age*Gender + (1| Subject)

Total Reading ~ PC1 + PC2 + PC3 + Age + Gender + (1|Subject)

Bayes factor analysis was performed via generalTestBF in the BayesFactor package for R
[54] to supplement regression analysis by assessing the observed statistical power of models
connecting retained principal components and Total Reading. Bayes factors output by
generalTestBF were inverted to reflect the ratio of likelihood of the null hypothesis divided by
the likelihood of a given model. A Bayes factor of greater than 3, indicating our data was 3 times
more likely to be described by the null hypothesis than a given model, was considered evidence
for the null hypothesis. A Bayes factor of less than 1/3, indicating that a model including our
chosen predictors was 3 times more likely to explain our data than the null hypothesis condition,
was considered evidence for the alternative hypothesis. Bayes factors between 1/3 and 3 were
considered an indication of low power, such that neither evidence for the null or alternative

hypotheses could be inferred [55].

3 — RESULTS
3.1 Principal component analysis

Figure 2 visualizes each included imaging metric in the splenium. Here we can see that
measures with shared sensitivities vary similarly across the tract. For example, FA, RD, qihMT,
and VF,, are all similar to myelin and reach extreme values in the center of the splenium (highly

positive for FA, qihMT, and VF,,, highly negative for RD).
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Figure 2: Multimodal imaging of white matter microstructure in the splenium. Measures from
DTI, NODDI, MT, and mcDESPOT imaging can be contrasted to provide a multifaceted
understanding of white matter structure.

MTR was removed from our principal component analysis due to high collinearity with

gihMT (r? = 0.64). Three principal components were identified in our final model, which
collectively explained 79.5% of variance (KMO test value = 0.53). Measures contributing greater
than 11.1% variance (expected if all variables contributed uniformly) to a component following
varimax rotation are visualized in Figure 3. Principal component (PC) 1 explained 37.5% of
variance and was primarily composed of measures sensitive to tissue complexity: FA, AD, ODI,
along with MD. PC2 explained 23.0% of variance and was composed of measures sensitive to
myelin and axon packing: FA, MD, RD, and NDI. PC3 explained 19.0% of variance and was driven
by measures sensitive to myelin and axonal diameter, VF,, and g-ratio.
Figure 3: Resultant components from principal component analysis visualized in the left
arcuate fasciculus. Correlations for measures which contribute greater variance than expected
by chance (>11.1%) are included for each component. Panel A displays PCA results from all 9
measures. Components in Panel A explained 79.5% of variance in our data (variance explained
by each individual component is noted in brackets). Principal components were related to
diffusion along a primary axis (PC1), myelin and axonal packing (PC2), and axon diameter (PC3).
Panel B shows results from a secondary PCA with FA and MD removed. Principal components
in Panel B explain 77.3% of variance, and clarify our interpretation of principal components.

As shown in Figure 3 panel A, FA and MD contributed strongly to PC1 and PC2 even after
varimax rotation, likely because FA and MD are broadly sensitive to white matter structure. We
removed FA and MD and recomputed PCA to interpret our principal components with increased
clarity (results shown in Figure 3 panel B). This resulted in a model with three principal
components that explained 77.3% of variance (KMO = 0.43), denoted as PCg. In this model, PClg

explained 36.6% of variance and was composed of RD, NDI, and qihMT. PC2; explained 22.7% of

variance and was composed of VFm and g-ratio. Finally, PC3; explained 18.0% of variance and
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was driven by AD and ODI. While removing FA and MD and running a reduced PCA model aided
in interpretation of our principal components, mixed effects models regressions and Bayes factor
analyses were conducted with the full PCA model including FA and MD.
3.2 Regression Models

Mixed effects models linking principal components to Total Reading scores are
summarized in Table 1. No relationships were observed between principal components and Total
Reading. To further investigate the absence of relationships between principal components and
Total Reading, we followed up by running mixed effects models between principal components
and subtest scores for Reading Comprehension, Word Reading, Pseudoword Decoding, and Oral
Reading Fluency. No significant relationships were observed between principal components and
reading subtest scores. Correlations between the initial measure set and Total Reading are
summarized in Supplementary Table 1. No correlations were observed between individual

measures and Total Reading scores.
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Table 1. Parameters for mixed effects models linking principal components to Total Reading
(formula: Total Reading ~ PC1 + PC2 + PC3 + Age + (1|Subject)).

Region R? df  Predictor Estimate + SE t p
(marginal)
Left arcuate 0.026 64 PC1 -1.17+6.61 -0.18 0.860
PC2 5.26 £ 3.86 1.37 0.178
PC3 1.52+2.89 0.53 0.601
Age -0.00 £0.00 -0.74 0.462
Right arcuate 0.022 64 PC1 -6.55+5.42 -1.21 0.232
PC2 -0.13+£3.47 -0.04 0970
PC3 -4.06E-2 +2.47 -0.02 0.987
Age -8.06E-4 + 1.72E-3 -0.47 0.641
Left ILF 0.026 64 PC1 -5.19+6.44 -0.81 0.424
PC2 -0.88 £ 4.06 -0.22  0.829
PC3 -3.34 £ 2.60 -1.28  0.207
Age 6.64E-5 + 1.62E-3 0.04 0.968
Right ILF 0.034 64 PC1 6.06 £5.79 1.05 0.300
PC2 3.12+£3.87 0.81 0.423
PC3 0.89+2.30 0.39 0.701
Age -7.32E-4 + 1.64E-3 -0.45 0.656
Gender 1.37+3.74 0.37 0.716
Left IFOF 0.052 64 PC1 0.75+5.74 0.13 0.897
PC2 8.87+£5.01 1.77 0.081
PC3 -1.43+2.61 -0.55 0.585
Age -0.00 +£0.00 -0.79  0.435
Right IFOF 0.046 64 PC1 -1.81 £5.94 -0.30 0.762
PC2 6.47 +3.99 1.62 0.110
PC3 2.08 £2.65 0.78 0.436
Age -0.00 £ 0.00 -0.93 0.356
Left uncinate 0.087 64 PC1 -5.83+5.43 -1.08 0.287
PC2 5.72+4.34 1.32 0.192
PC3 -3.85+1.94 -1.99 0.053
Age -3.78E-4 + 1.59E-3 -0.24 0.813
Right uncinate 0.008 64 PC1 1.16 +6.18 0.19 0.852
PC2 2.54 £ 3.38 0.75 0.455
PC3 -0.49+£2.45 -0.20 0.844
Age -1.83E-4 + 1.59E-3 -0.12  0.909
Splenium 0.035 64 PC1 7.28 £4.55 1.60 0.115
PC2 2.07£2.50 0.83 0.410
PC3 1.45+2.77 0.52 0.603

Age -0.00 + 0.00 -0.28 0.778
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Table 2 summarizes models linking principal components to subject age and gender. A
significant relationship between PC1 and age was observed in the left arcuate (t = -2.93, p =
0.004). Increases in PC1 with age suggest that FA, MD, and AD increase with age while ODI
decreases in the left arcuate, hinting at increased diffusion restrictions and tissue complexity. A
similar relationship was observed in the right arcuate but this finding did not survive multiple
comparisons corrections. Positive relationships between PC2 and age were observed in the
bilateral arcuate (L: t = 3.70, p < 0.001; R: t = 3.66, p < 0.001), inferior longitudinal fasciculus (L: t
=2.75, p=0.007; R: t = 3.05, p = 0.003), inferior fronto-occipital fasciculus (L: t = 3.21, p = 0.002;
R:t=3.80, p = 0.003), and splenium (t = 2.31, p = 0.024). Increases in PC2 reflect increases in FA
and NDI, and decreases in MD and RD, suggesting increased axon packing and myelin with age.
The gender main effect (t =-2.01, p = 0.049) and the age*gender interaction were significant for
PC3 in the right inferior longitudinal fasciculus, but neither survived multiple comparisons
corrections. Scatterplots are provided in Figure 4 toillustrate relationships between PC1, PC2 and
age (panels B and C).

Figure 4: Scatterplots visualizing relationships between principal component 3 (PC3) and Total
Reading in the left uncinate fasciculus (A), PC1 and age in the left uncinate (B) and PC2 and age
in the left uncinate (C). Increases in PC1 indicate increased diffusion along a primary axis, while
increases in PC2 indicate increased myelin and axon packing, thus relationships depicted in
panels A and B could potentially reflect axonal maturation. No significant links between

principal components and Total Reading were observed. The relationship between PC3 and
Total Reading in the left uncinate was closest to our significance threshold.
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Table 2. Parameters for mixed effects models regressions linking principal components to age
and gender (formula: PC ~ age + gender + age*gender + (1|Subject)). Significant effects that
survive multiple comparisons are bolded and marked by an asterisk.

PC1: Tissue Complexity

Region R? df Predictor Estimate £ SE t p
(margin
al)
Left arcuate 0.141 66 Age 8.71E-5 + 2.92E-5 298 0.004*
Gender 7.97E-2 £ 6.6E-2 1.21 0.234
Right arcuate 0.091 66 Age 7.80E-5 £ 3.55E-5 2.20 0.032
Gender 9.20E-2 £ 7.90E-2 1.16 0.251
Left ILF 0.005 66 Age 1.83E-5 + 3.21E-5 0.57 0.571
Gender -1.29E-2 + 7.81E-2 -0.17 0.870
Right ILF 0.031 65 Age 6.40E-6 + 3.35E-5 0.19 0.849
Gender -5.56E-2 + 8.40E-2  -0.66 0.513
Left IFOF 7.81E-5 66 Age 2.41E-6 + 3.35E-5 0.07 0.943
Gender 6.89E-4 + 7.89E-2 0.01 0.993
Right IFOF 0.025 66 Age 4.14E-5 + 3.27E-5 1.26 0.211
Gender -2.78E-2+7.85E-2 -0.36 0.725
Left uncinate 0.056 65 Age 5.82E-5 + 3.42E-5 1.71  0.093
Gender 1.77E-2 + 7.57E-2 -0.23 0.816
Right uncinate  0.050 66 Age 5.48E-5 + 3.10E-5 1.77 0.082
Gender 3.40E-2 £ 6.99E-2 0.49 0.629
Splenium 0.003 66 Age 4.78E-7 + 4.59E-5 0.01 0.992
Gender 4.53E-2 £0.13 0.36 0.724
PC2: Axon Packing and Myelin
Region R?(adj) df Predictor Estimate + SE t p
Left arcuate 0.181 66 Age 1.85E-4 + 5.00E-5 3.70 0.0004*
Gender -1.45E-2 £ 0.11 -0.13 0.894
Right arcuate 0.178 66 Age 1.95E-4 + 5.34E-5 3.66 0.0005*
Gender -1.78E-2 £ 0.11 -0.15 0.878
Left ILF 0.108 66 Age 1.37E-4 + 4.99E-5 2.75 0.0077*
Gender -3.08E-2 £ 0.11 -0.28 0.783
Right ILF 0.129 66 Age 1.53E-4 + 5.01E-5 3.05 0.0033*
Gender -5.75E-2 £ 0.11 -0.50 0.617
Left IFOF 0.137 66 Age 1.23E-4 + 3.82E-5 3.21 0.0021*
Gender -4.35E-2 + 8.90E-2 -0.49 0.627
Right IFOF 0.195 66 Age 1.83E-4 + 4.81E-5 3.80 0.0032*
Gender -9.65E-2 £ 0.11 -0.90 0.372
Left uncinate 0.074 66 Age -5.06E-5+6.88E-5 1.38 0.173
Gender -0.81+0.42 1.57 0.124

Right uncinate  0.025 66 Age 2.30E-5 £ 5.41E-5 0.42 0.673
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Gender 0.13+0.12 1.11 0.274
Splenium 0.077 66 Age 2.05E-4 + 8.87E-5 231 0.024*
66 Gender 7.22E-2£0.21 0.35 0.731
PC3: Axon Diameter
Region R?(adj) df Predictor Estimate + SE t p
Left arcuate 0.030 66 Age -7.78E-6 £+ 6.93E-5 -0.11 0.911
Gender 0.20+0.15 1.28  0.207
Right arcuate 0.025 66 Age -5.46E-5 + 7.58E-5 -0.72 0.474
Gender 0.16 £0.16 1.00 0.324
Left ILF 0.055 66 Age 1.10E-4 £ 6.17E-5 1.79 0.080
Gender 9.28E-2 £0.13 0.74  0.465
Right ILF 0.098 66 Age -1.39E-4 +1.19E4 -1.16 0.248
Gender -1.48 £ 0.74 -2.01 0.049
Age*Gender 3.92E-4 +1.68E-4 2.34 0.023
Left IFOF 0.029 66 Age 5.87E-5 £ 6.58E-5 0.89 0.377
Gender 0.14+0.14 0.98 0.334
Right IFOF 0.020 66 Age 2.39E-5 + 6.76E-5 0.35 0.725
Gender 0.14+0.14 1.00 0.326
Left uncinate 0.096 66 Age 1.56E-4 £ 7.70E-5 2.02 0.047
Gender 0.26 £0.16 1.68 0.097
Right uncinate 0.064 66 Age 6.92E-5 £ 6.77E-5 1.02 0.310
Gender 0.25+0.14 1.85 0.069
Splenium 0.040 66 Age -9.25E-5+6.68E-5 -1.39 0.172
66 Gender 0.11+0.14 0.81 0.423

3.3 Bayes Factor Analysis

16

Bayes factors analysis was conducted to evaluate Total Reading mixed effects models

regressions. Results from this analysis are summarized in Table 3. Bayes factors including all

principal components and age as covariates of Total Reading were greater than 3 in all regions,

indicative of evidence for the null hypothesis.
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Table 3. Bayes factors assessing the likelihood of the null hypothesis condition (no relationship
between Total Reading scores and model components) versus the likelihood of the model
condition (relationships between included components and Total Reading). A Bayes factor of 3—
indicating our sample data is 3 times more likely to be explained by the null condition than the
model condition—or greater provides evidence for the null condition.

READING MODELS

Region Components Bayes Factor

Left arcuate PC1 + PC2 + PC3 + Age 9.43
Right arcuate PC1 +PC2 + PC3 + Age 8.93

Left ILF PC1 + PC2 + PC3 + Age 47.62
Right ILF PC1+ PC2 + PC3 + Age 20.83
Left IFOF PC1 + PC2 + PC3 + Age 11.76
Right IFOF PC1 + PC2 + PC3 + Age 9.35

Left uncinate PC1 +PC2 + PC3 + Age 19.23
Right uncinate PC1+ PC2 + PC3 + Age 19.23
Splenium PC1 + PC2 + PC3 + Age 10.42

4 — DISCUSSION

Using a multimodal microstructural MR dataset, we identified 3 principal components of
white matter structure in reading-related tracts. These principal components represented tissue
complexity, axon packing and myelin, and axon diameter. No significant relationships between
principal components and Total Reading or components of reading skill were observed. Follow-
up Bayes factor analysis provided supplementary evidence for the null hypothesis in all
investigated regions. PC1 was negatively linked to age in the left arcuate, and positive
relationships between PC2 and age were found throughout the brain. We have shown that
multimodal white matter imaging and PCA produce microstructurally informative, powerful
principal components which can be used by future studies of development and cognition.

Principal component analysis identified three key components that explained a large

proportion of variance (79.5%) in our dataset, and represented tissue complexity (axon
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coherence), diffusion restriction (axonal packing and myelination), and axon diameter. PC1
explained the largest amount of variance (37.5%). With significant contributions from FA, MD,
AD, and ODI, PC1 probed diffusion anisotropy and was most influenced by axon integrity and
coherence. PC2 explained 23.0% of variance and reflects myelin and axonal packing, as shown by
heavy loadings on FA, MD, RD, and NDI. Finally, PC3 explained 19.0% of variance and is driven by
VF,, and g-ratio. PC3 likely corresponds to axon diameter as PC2 accounts for a large proportion
of variance and contains several myelin-sensitive measures. Studies employing PCA with white
matter imaging measures have identified similar principal components related to diffusion
anisotropy and overall diffusivity [34, 56]. Our PCA expands upon previous findings by including
non-diffusion measures from magnetization transfer and relaxometry. This allowed our
multimodal PCA to identify a novel third component related to axon diameter.

Shared information between white matter imaging metrics resulted in multiple principal
components loading onto the same measures, in particular FA and MD. This was addressed in
multiple ways. First, in the case of highly correlated variables, redundant variables were removed
from PCA analysis. Next, varimax rotation minimized loading of multiple principal components
onto the same variables, and helped to clearly illustrate differences between resultant principal
components. Finally, re-running PCA without FA and MD resulted in a similar set of principal
components accounting for 77.3% of variance and reinforcing our interpretation of the full model
results. PClg accounted for 36.6% of variance and was analogous to PC2 from the full model, with
loadings onto RD, NDI, and qihMT. PC2; accounted for 22.7% of variance and loaded onto VF,,
and g-ratio, similar to PC3. Finally, PC3; accounted for 18.0% of variance and loaded onto AD and

ODI, similar to PC1. Principal component analysis with varimax rotation is shown to be an
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effective way to collapse white matter imaging metrics into powerful, interpretable measures.
Future studies employing this method should consider removal of broadly sensitive metrics such
as FA and MD to improve specificity of resultant principal components.

Principal components were not significantly related to Total Reading in any investigated
region. Bayes factors suggested the null hypothesis, no relationship between principal
components and Total Reading, was substantially more likely than the alternative hypothesis in
all regions. No relationships were identified in follow-up mixed effects models including principal
components, age and scores from subtests included in the Total Reading composite score.
Further, no correlations between initial measures and Total Reading were significant following
multiple comparisons corrections. These findings suggest that gross relationships between white
matter structural features and Total Reading ability are absent in typically developing
adolescents, who tended to be skilled readers in our sample. Expansion of this analysis to a larger
age range or comparison with a population with reading difficulty or dyslexia may provide a larger
effect to assess, and is a promising direction for future multimodal investigations of white matter
and reading.

Despite a lack of broad relationships between key white matter features and reading,
some findings here hint that more specific relationships may be present in our sample. While no
relationships were significant, p-values < 0.1 suggest a larger sample may find significant
relationships between PC2 or PC3 and Total Reading in the left IFOF and left uncinate,
respectively. Left hemisphere ventral white matter supports reading processing in skilled readers,
and left inferior frontal regions have been consistently highlighted as related to reading skill in

previous studies [3, 6, 8-10]. Additionally, qihMT was correlated with Total Reading ability in the
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bilateral arcuate fasciculus and ILF, the right IFOF and right uncinate fasciculus, and was trend
level in the left IFOF. However, these findings did not survive multiple comparison corrections.
Interestingly, gihMT was not significantly related to Total Reading in either the left IFOF or
uncinate fasciculus, where trend level relationships with principal components were found.
Trend level relationships between PC2, PC3, or qihMT and Total Reading provide some evidence
for a link between axon diameter and myelin and adolescent reading. However, these
relationships must be investigated and confirmed by future studies.

Links between principal components and age were identified throughout the brain.
Relationships between PC2 and age were most prominent, found in all tracts except the uncinate
fasciculus, and are visualized as scatterplots in Figure 4. Age-related trends tended to be similar
between left and right hemispheres, suggesting that at the macro-scale, brain development is
similar between hemispheres. This is in contrast to investigations of individual microstructural
features, where increases in VF,, were shown to be largely left-lateralized during adolescence
[57]. PC2 findings may be driven by NDI, as NDI has been previously shown to be age-sensitive
and increases bilaterally throughout adolescence [57-59]. One relationship between PC1 and age
remained in the left arcuate following multiple comparisons. While axon coherence tends to be
stable across adolescence [60-62], we show that changes may still be ongoing in some regions.
Gender was related to PC3 in the right inferior longitudinal fasciculus such that males had higher
values than females. Higher PC3 values reflect higher VF,, and lower g-ratio values, thus the
development of the right inferior longitudinal fasciculus may be further along in males. Studies
of sex effects on white matter development have produced mixed results, suggesting either

absence of or minor developmental effects during adolescence (for review see [63])., but large
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longitudinal studies remain necessary to effectively assess sex and gender effects across

development.

5 — CONCLUSIONS

Here, we have combined multimodal imaging techniques to assess white matter
microstructure in reading-related white matter. Principal component analysis revealed three
features of white matter microstructure which explained 79.5% of variance in our dataset.
Principal components were related to tissue complexity, axon packing and myelin, and axon
diameter, respectively. No significant relationships were observed between principal
components and Total Reading, suggesting gross relationships between white matter structural
features and reading are not present in typical adolescents. Some trend level results suggest
minor roles for axon diameter and myelin in reading ability, but these findings must be confirmed
by further research. Principal components are shown to be sensitive to age effects throughout
the brain, and age findings were in line with previous studies applying PCA in white matter and
other investigations of white matter microstructural development. Principal component analysis
is an effective method to collapse multimodal sets of white matter imaging metrics into principal
components which explain a large proportion of variance in white matter. Resultant principal
components are age-sensitive and may prove useful to expand our understanding of links
between white matter and reading in future studies. Use of such techniques to identify how
white matter changes across the full developmental period, and how white matter structure is
linked to various cognitive abilities, will provide an important baseline for future studies

investigating developmental or cognitive disorders.
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