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Abstract

Background: The origin of sex differences in prevalence and presentation of neuropsychiatric
and behavioral traits is largely unknown. Given established genetic contributions and correlations
across these traits, we tested for a sex-differentiated genetic architecture within and between

traits.

Methods: Using genome-wide association study (GWAS) summary statistics for 20
neuropsychiatric and behavioral traits, we tested for differences in SNP-based heritability (h?) and
genetic correlation (rg<1) between sexes. For each trait, we computed z-scores from sex-stratified
GWAS regression coefficients and identified genes with sex-differentiated effects. We calculated
Pearson correlation coefficients between z-scores for each trait pair, to assess whether specific
pairs share variants with sex-differentiated effects. Finally, we tested for sex differences in

between-trait genetic correlations.

Results: With current sample sizes (and power), we found no significant, consistent sex
differences in SNP-based h?. Between-sex, within-trait genetic correlations were consistently
high, although significantly less than 1 for educational attainment and risk-taking behavior. We
identified genome-wide significant genes with sex-differentiated effects for eight traits. Several
trait pairs shared sex-differentiated effects. The top 0.1% of genes with sex-differentiated effects
across traits overlapped with neuron- and synapse-related gene sets. Most between-trait genetic
correlation estimates were similar across sex, with several exceptions (e.g. educational

attainment & risk-taking behavior).

Conclusions: Sex differences in the common autosomal genetic architecture of neuropsychiatric
and behavioral phenotypes are small and polygenic, requiring large sample sizes. Genes with
sex-differentiated effects are enriched for neuron-related gene sets. This work motivates further

investigation of genetic, as well as environmental, influences on sex differences.
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Introduction

Despite widespread evidence of sex differences across human complex traits, including
neuropsychiatric and behavioral phenotypes [1], the etiology of these differences remains poorly
understood. Accumulating evidence suggests that sex differences in complex human phenotypes
are likely to include a genetic component beyond that contributed by sex chromosomes and
hormones [2-5]. Understanding the biological basis of sex differences in human disease,
including neuropsychiatric disorders and traits, is critical for developing sex-informed diagnostics
and therapeutics and realizing the promise of precision medicine [4]. Moreover, genetic variants
with sex-differentiated effects across multiple traits may influence patterns of comorbidity for
neuropsychiatric disorders and related behavioral traits, suggesting the need for cross-disorder

genetic analyses to be evaluated in the context of sex-specific effects [6—-11].

Neuropsychiatric and behavioral phenotypes are generally characterised by a complex and highly
polygenic etiology [12]. Many of these traits share common variant genetic risks [13,14]. Specific
genetic loci with pleiotropic effects are known to impact risk for multiple related neuropsychiatric
and behavioral phenotypes [12]. However, it is not yet known whether these pleiotropic effects

are consistent across females and males.

Recent studies have begun to investigate sex-differentiated genetic effects for a number of
neuropsychiatric traits (see references in Table 1). Given evidence of phenotypic sex differences
in prevalence and presentation, as well as genetic correlations across these traits [13], we set out
to systematically test the hypothesis that neuropsychiatric and behavioral phenotypes with
evidence of sex differences have a partially sex-differentiated autosomal genetic architecture that
may be shared across traits. In this study, we have characterized the: (1) sex-dependent genetic
architecture for a range of neuropsychiatric and behavioral traits, (2) degree of shared genetic
architecture between males and females within each phenotype, and (3) sex-specific patterns of

genetic effects shared across traits; see Figure 1 for an overview of the analyses.
Methods & Materials
Datasets

We collected sex-stratified GWAS meta-analysis summary statistics for 20 neuropsychiatric and
behavioral traits (see Table 1 & Supplemental Text), chosen based on data availability. See
Table S1 for information about data availability. We used a broad definition of brain-based human

complex traits, given the overwhelming evidence of shared genetic effects across such traits [13].
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We used results from European-only meta-analyses to minimize any bias that may arise from
ancestry differences, and because sufficiently large sex-stratified summary data of other

ancestries are not currently available for the majority of these traits.
Estimating sex-specific SNP-based heritability

For each trait, we calculated sex-specific observed scale SNP-based heritability (h?) using linkage
disequilibrium (LD) score regression (LDSC) with pre-computed European ancestry LD scores
(excluding SNPs in the HLA/MHC region; chr6:25-34M) [15]. For 11 binary traits, we also
estimated SNP-based h? on the liability scale, using sex-specific population prevalence rates from
two sources, as described below. For comparison, we also used a second method, LDAK-
SumHer [16], to estimate SNP-based h? using the LDAK (LD-adjusted kinships) heritability

model.

Sex-specific trait prevalence

We obtained sex-specific trait prevalence estimates from the USA and cumulative incidence rates
from Denmark. The US-based estimates were derived from a hospital-based cohort of 752,436
patients who meet a medical home definition for Vanderbilt University Medical Center and whose
de-identified electronic health record (EHR) is in the clinical research database [17]; see Tables
S2 & S3 for details. The medical home is a heuristic definition aimed at reducing the influence of
missing data. Individuals meeting the medical home definition must have at least 5 ICD codes
assigned on unique days over the span of at least 3 years. We used estimates based on adults
(age >18 years), except for ADHD & ASD, which included pediatric patients. To estimate
prevalence of each phenotype (Supplementary Table 2), we included individuals with at least
one ICD code for each phenotype as the numerator, and ‘medical home’ hospital population as
the denominator. However, hospital-based population prevalence estimates may be biased due
to over-representation of individuals with more severe health-related conditions and higher levels
of comorbidity. Additionally, these prevalence estimates may not generalize to populations
outside of the USA. Therefore, we also used sex-specific cumulative incidence rates at age 50
years, based on individuals identified through inpatient and outpatient care in Denmark [18], as
well as childhood-specific (age <18 years) estimates for the 2 neurodevelopmental disorders in
our analyses (ADHD & ASD), based on a more recent Danish study, as the discovery GWAS for

these traits were based on samples of mostly children [19]; see Table S2.

Statistical analysis of sex differences
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For traits with non-zero SNP-based h? estimates (i.e. where confidence intervals did not overlap
with zero) in both sexes, we tested whether these sex-specific SNP-based h? estimates were
significantly different, by calculating z-scores using Equation 1 (below), and obtaining
corresponding p-values from a normal distribution. We corrected for multiple tests using a
Bonferroni correction for N=12 independent tests (N=5 continuous traits and N=7 binary traits that

were non-zero in both sexes and were converted to the liability scale; p-value threshold = 0.0042).

STAT ¢, —STAT

— score = emale male
¢ B SE>  +SE-
female+ male

Equation 1, where STAT can be any statistic for which we want to assess the difference
between the sexes, including SNP-based h?, r,, and GWAS betas; SE is the standard error for
the statistic. This test will be well calibrated as long as STAT/SE is normally distributed and the
test statistics are independent between sexes, and will be conservative if the statistics are

positively correlated.
Estimating genetic correlations

We used LDSC to estimate genetic correlations (rg): 1) between sexes, within each trait and 2)
between each trait pair, within sex (see Figure 1). For between-sex, within-trait correlations, we
tested the null hypothesis that ry was significantly lower than 1 using a one-tailed test compared
to a normal distribution (z=(1-rq)/SE). We applied a Bonferroni correction to account for multiple
tests (p<0.0031 based on 16 traits). Next, we tested whether the between-trait ry estimates were
different for males (rgu) and females (rgr), by using a z-score approximation based on block
jackknife to estimate the standard error of rgu-rgr in LDSC. As with other LDSC analyses, this
approach is robust to sample overlap. We applied a false discovery rate (FDR) correction to the
results to account for multiple tests, given the large number of non-independent genetic
correlations across phenotypes, which would make a Bonferroni correction overly conservative.

Genetic correlations were visualized using the Python package Networkx [20] and matplotlib [21].
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Between-sex, within-trait genetic heterogeneity

For each SNP in the sex-stratified GWAS of each trait, we assessed between-sex, within-trait
heterogeneity using z-scores (which are correlated with Cochran's Q statistic but provide
directionality of the effect) as in Equation 1. This test quantifies the difference in SNP association
effect size between the sexes, similar to, although not the same as, an interaction test [22]. Given
that only summary statistics from sex-stratified GWAS were available, the analysis of sex

differentiated genetic effects was limited to the z-score approach.
Sharing of variants with sex-differentiated effects across traits

To assess which traits share variants with sex-differentiated effects (i.e. variants at the extreme
ends of the z-score distribution), we assessed the Pearson correlation coefficient between z-
scores (i.e. the differences of betas from male-only and female-only GWAS) for pairs of traits.
Given that there are many non-independent observations, due to SNPs in LD, we used a block
jackknife approach to estimate the significance of the Pearson correlation [23,24]. SNPs were
assigned to one of 1000 contiguous blocks based on their genomic position. For each pair of
traits, Pearson correlation was calculated on the full set of z-scores and then recalculated after

each block was removed, thus estimating the jackknife error and p-values.

Gene-based analysis, functional mapping and gene-set enrichment analysis of genes with

sex-differentiated effects

We used the Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)
SNP2GENE web tool [25], to perform gene-based analysis and positional mapping of variants to
genes. Z-scores computed for each trait were used as an input. For the gene-based analysis
implemented via generalized-gene set analysis of GWAS data (MAGMA) [26] in FUMA, we used
the default setting in which SNPs are mapped to genes if they fall within a window spanning 10kb
before the start and after the end positions for the gene. In this analysis, the mean of the chi?
statistic for the SNPs in a gene is calculated and the p-value is obtained from a known
approximation of the sampling distribution [27,28]. The genome-wide significance threshold is

defined as 0.05 / number of genes to which the SNPs are mapped.

After mapping SNPs to genes, we filtered the top 0.1% (with the lowest -log1o(p-value) from the
gene-based MAGMA analysis) as genes with sex-differentiated effects for each trait and
combined these sets across phenotypes. We selected 0.1% as the cut-off in order to test a set of

genes with the greatest sex difference in effects, that did not exceed ~2000 genes, which is an
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input cut-off for the Gene Set Enrichment Analysis (GSEA) tool. We also tested 0.5% as a
sensitivity check, which results in similar genes sets, but picks up a broader set of genes given a
larger list of genes. Next we computed a gene set overlap analysis using GSEA

(https://software.broadinstitute.org/gsealindex.jsp) on the combined set of genes with sex-

differentiated effects with collection C5 (GO biological process, GO cellular component, and GO
molecular functions) from MSigDB to investigate which gene sets may contribute to phenotypic

differences observed for the neuropsychiatric and behavioral traits.
Results
Sex-stratified SNP-based h? estimates and assessment of sex differences

Sex-specific SNP-based h? estimates using LDSC are presented in Figure 2, with details provided
in Table S4. Several traits (post-traumatic stress disorder (PTSD) & recurrent major depressive
disorder (recurrent MDD) in males and autism spectrum disorder (ASD) & alcohol dependence in
females) did not have sufficient power (or may have been affected by a high degree of
heterogeneity) and we did not detect a polygenic signal using LDSC and therefore sex differences
could not be assessed. Thus, although we report sex difference estimates for all traits in Table
S4, these cannot be reliably interpreted for ASD, recurrent MDD, alcohol dependence, and PTSD,
since one of the sexes exhibited a near zero or negative SNP-based h? estimate. The liability
scale SNP-based h? estimates using population prevalence from the USA and cumulative
incidence from Denmark were highly correlated (r?=0.97, p=5.1x107"%); see Figure S1. Age at first
birth of child was the only trait with a significant sex difference (after multiple testing correction;
p<0.0042) in SNP-based h? estimates (females: SNP-based h?=0.052, SE=0.004; males: SNP-
based h?=0.113, SE=0.010); (z-score=-5.81, p=6.43x10").

Observed scale SNP-based h? estimates based on LDAK-SumHer were somewhat higher than
those obtained in LDSC and moderately correlated with them (r?=0.53, p=4.4x10* for all traits,
r’=0.73, p=4.1x10" excluding traits for which SNP-based h? could not be reliably estimated in
LDSC, i.e. PTSD & recurrent MDD in males and ASD & alcohol dependence in females); see
Table S5 and Figures S1 & S2 for details. Higher estimates from the LDAK model relative to the
LDSC model have been previously observed for a variety of traits [16,29]. In contrast to LDSC
results, age at first birth did not show a significant sex difference after multiple testing correction
(z-score=1.94, p=0.052), with an effect in the opposite direction to that observed using LDSC.
Using LDAK, the liability scale (adjusted based on each population) SNP-based h? estimates
differed by sex for the following traits: recurrent MDD (US: z-score=-4.57, p=4.81x10°; DK: z-
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score=-4.36, p=1.33x107?°), ASD (US: z-score=2.94, p=0.0033; DK: z-score=3.28, p=0.0011), and
schizophrenia (DK: z-score=-3.16, p=0.0016). These results were not observed using LDSC, and
indeed SNP-based h? could not be estimated reliably in LDSC for ASD in females or recurrent
MDD in males. The biggest discrepancies between estimates obtained from LDSC and LDAK

were for the traits with the smallest sample sizes (see Figure S3).

The SNP-based h? results for ADHD and ASD were similar albeit somewhat higher for both LDSC
and LDAK when using estimates based on a Danish child-specific study [19], compared to using

prevalence estimates from the whole Danish population [18]; see Tables S4 and S5.
Between-sex, within-trait genetic correlation analysis

We quantified the genetic correlation between males and females for each trait (excluding the
four traits where SNP-based h? could not be estimated in both sexes); see Figure 3 and Table
S$6. We found moderate to high genetic correlations for all traits (rg = 0.68 — 1.21); these all differed
significantly from zero and we also detected a significant difference from 1 for risk-taking behavior:
rq(se)=0.81(0.04) and educational attainment: ry(se)=0.92(0.02), after correcting for multiple tests
(p<0.0031), suggesting a modest degree of common variant heterogeneity in males and females

for these phenotypes.
Between-sex, within-trait heterogeneity across variants

To assess sex differences in genetic effects of common variants, for each trait we computed z-
scores and corresponding p-values for each SNP, using Equation 1. Figure S4 shows the
quantile-quantile (QQ) plots of the z-score p-values for all traits. While the difference in the beta
estimates between males and females did not reach genome-wide statistical significance (5x10°
8) for any given SNP, we did observe deviation from the expected null distribution (Figure S4) for
ADHD, lifetime cannabis use, MDD, number of children born, and schizophrenia. Figure 4A
shows a Miami plot for female-only (top) and male-only (bottom) lifetime cannabis use GWAS,
where we observed several associations that are stronger in females (e.g. on chromosomes 3, 6,
16 and 18). Since cohorts for lifetime cannabis use are of very similar size the power to detect

association in both sexes is similar.

A gene-based analysis in FUMA revealed several traits with genome-wide significant genes with
sex-differentiated effects. Gene-based analysis Manhattan plots are shown in Figure S5. Traits
with significant gene associations include alcohol consumption (gene: PELI2), alcohol
dependence (ADAM23), anxiety (PRKCH and KLHDC4), lifetime cannabis use (MYOF), number

10
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of children born (GLB1L2), neuroticism (EXTL2), risk-taking behavior (HFE2 and AGO2), and
schizophrenia (SLTM). Interestingly, SLTM gene, which is highly expressed in cerebellum (GTEx
Portal, www.gtexportal.org), was also identified in a gene-based gene-by-sex interaction for

schizophrenia and across schizophrenia, bipolar disorder, and MDD disorders [30].
Shared sexually-differentiated effects across traits

To assess whether specific pairs of traits share sex-differentiated effects, for each pair of traits
we calculated the Pearson correlation coefficient between each trait's SNP z-scores for sex-
differentiated effects. Figure 4B shows a matrix of Pearson correlation coefficients for pairs of
traits. We find small to moderate, but significant, correlations of z-scores for several traits.
Interestingly, we find that the correlation of z-scores between MDD and recurrent MDD s high,
but not equal to 1 (Pearson correlation coefficient = 0.77, p<0.001), indicating that there are both
shared and trait-specific variants with sex-differentiated effects for these two definitions of MDD.
Furthermore, we find cross-trait sharing of sex-dependent genetic effects between ASD and

ADHD and also bipolar disorder and schizophrenia, to name a few examples.
Gene set overlap analysis of genes with sex-differentiated effects across traits

To investigate the biological function of the genes harboring SNPs with sex-differentiated genetic
effects, we selected the top 0.1% of genes from each trait (Table S7), resulting in 349 genes that
were mapped for GSEA. The gene sets overlapping genes with sex-differentiated effects (FDR
g-value < 0.01) are listed in Table S8. Interestingly, the gene sets significantly enriched for genes
with sex-differentiated effects (FDR g-value < 0.01) included neurogenesis, regulation of neuron
projection development, signaling receptor binding, regulation of neuron differentiation, neuron

differentiation, and neuron development, and synapse maturation gene sets.
Between-trait, within-sex genetic correlation analysis

The genetic correlation results are presented as network plots (Figure 5) and heatmaps (Figure
S6). The overall pattern of between-trait genetic correlations was similar in males and females
(Figure 5B, C). We detected several significant sex differences in between-trait genetic
correlations; see Table 2 and Figure 5A for top results and Table S9 for full details. The genetic
correlation (rg) between educational attainment and risk-taking behavior was positive in females
but negative in males, while for lifetime cannabis use and neuroticism, the correlation was
negative in females but positive in males. The magnitude of ryg was significantly greater in females

than males for a number of traits (e.g. risk-taking behavior & schizophrenia) and significantly

11


https://doi.org/10.1101/2020.05.04.076042
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076042; this version posted May 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

smaller in females than males for several trait pairs (e.g. number of children born & risk-taking
behavior). However, for a number of these trait pairs, the estimated ry in one sex did not
significantly differ from zero (see Table S9), suggesting that either there was no significant genetic
correlation between a given pair of traits in one sex or the power to estimate this effect was too

low.
Discussion

We investigated sex differences in the genetic architecture of 20 neuropsychiatric and behavioral
traits, using sex-stratified autosomal GWAS summary statistics. We used three complementary
approaches, including estimation of SNP-based heritability, genetic correlation, and heterogeneity
analyses, to evaluate sex differences within traits and across pairs of traits. As expected, most
common autosomal genetic effects are shared across sexes. However, a number of notable sex

differences were detected.

For a large number of traits and cross-trait pairs, we detected no consistent evidence of sex
differences in SNP-based heritability and the genetic correlations between males and females
were moderate-to-high (mostly rg>0.8). The phenotypes that showed sex differences were among
those with the largest available sample sizes, indicating that large sample sizes make the
detection of sex differences more likely and consequently, the lack of significant sex differences
for a given phenotype may be due to small sample sizes. For example, a recent analysis of
schizophrenia, bipolar disorder and MDD with a larger sample size has revealed significant
associations for schizophrenia and MDD [30]. We found that some pairs of genetically correlated
traits also share sex-differentiated associations (e.g. ASD and ADHD; bipolar disorder and
schizophrenia). Taken together, these findings suggest that sex differences in the genetic
architecture of neuropsychiatric and behavioral traits exist, but are small and polygenic. They
further support the hypothesis that SNPs with sex-differentiated genetic effects for one trait are
also likely to exhibit sex-differentiated effects in phenotypically associated traits [31,32].
Moreover, we found that the genes with the most sex-differentiated effects across all traits are

enriched for neuron- and synapse-related gene functions.

For two specific traits with well-powered GWAS (educational attainment and risk-taking behavior),
several interesting results emerged. Both educational attainment and risk-taking behavior
demonstrated similar SNP-based h? in males and females, indicating that there was no
appreciable difference in the overall burden of genetic factors accounting for phenotypic variance

in each sex. Also, neither trait demonstrated an excess of variants with sex-differentiated effects,
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showing that (at current sample sizes) there were few detectable sex differences in SNP effects
for either trait. However, while the genetic correlation between males and females was high
(educational attainment: 0.92(0.02), as previously reported [33]; risk-taking behavior: 0.81(0.04)),
it was significantly less than 1 for both traits. Moreover, these two traits were positively genetically
correlated with each other (r;=0.19) in females but negatively correlated in males (rg=-0.14).
These results may be explained by circumstances in which there exists a large number of SNPs
with very small sex-differentiated effects, which we remain underpowered to detect at individual
loci, but can observe in analyses of cumulative sex differences. An alternative possibility is that
there are sex differences in ascertainment and measurement of these two phenotypes (e.g. males
and females interpreting the question about being a risk-taker differently), thus resulting in
analysis of slightly different traits in males and females. In general, ascertainment effects (e.g.
potential recruitment and participation biases) and measurement issues (e.g. phenotyping biases)
should be carefully considered in future genetic studies of sex differences. Many of the GWAS of
behavioral traits are based on data from UK Biobank (which is an older sample of relatively
healthier and wealthier individuals compared to the general UK population) [34], whereas the

case-control neuropsychiatric traits are frequently ascertained from clinical populations.

These observations have important implications for the future of sex differences research.
Although the majority of genetic effects for neuropsychiatric and behavioral traits are similar for
males and females, sex-differentiated genetic effects can be identified. The full characterization
of these effects will require larger sample sizes than for detection of main effects because of
reduced statistical power in assessing the interaction between sex and genotype. We expect that
as sample sizes increase, sex differences will emerge but will be small in magnitude, reflecting
the polygenic architecture of the phenotypes and the sex differences. Furthermore, the large sex
differences in prevalence of psychiatric disorders are unlikely to be explained entirely by sex
differences in common genetic associations or global burden of autosomal genetic factors.
Additional studies investigating the interaction between cumulative genetic effects (including non-
autosomal and rare variation) and the environment (e.g. hormonal and social factors) will be

needed to understand the origins of these differences.
Limitations and Considerations

We focused on neuropsychiatric and behavioral traits with available sex-stratified GWAS
summary statistics. The comprised cohorts were of European ancestry and due to limited data

we were unable to assess and compare results across ancestry. Furthermore, lack of access to
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genotype-level data restricted our analyses to methods developed for summary statistics. We
also note that our analyses can be impacted by the number of cases and controls and the ratio of
females to males in each cohort (e.g. [35,36]). Indeed, estimation of SNP-based h? relies on
several important assumptions (e.g. regarding the underlying genetic architecture and number of
causal variants per LD block) [15,16] and can be influenced by many factors (e.g. sex-specific
population prevalences, gender-dependent ascertainment methods for cases and controls,
different sample sizes in males and females) [37-39]. Accurate estimation of sex-specific
population prevalences is complex given that there could be sex differences in referral, with
under-diagnosis in one sex (e.g. as is the case for ADHD [40]). To account for the difficulties in
estimation of SNP-based h?, we used two different methods (LDSC & LDAK) and prevalence
estimates from two different populations (Denmark & USA). Estimates based on the two different
population prevalence estimates were highly correlated, but there were substantial differences in
estimation based on either LDSC or LDAK, likely due to the different model assumptions related
to genetic architecture; the biggest discrepancies were for the traits with the smallest sample sizes
(see Figure S5); the true SNP-based h? estimate is likely to fall in between these estimates.
Furthermore, it is likely that some of the GWAS summary statistics may have included data from
‘super-screened’ and unscreened controls, which may have biased upwards the genetic

correlation estimates [41].

The most direct method to identify SNPs with sex-dependent effects is to perform a genotype-by-
sex interaction test. However, this requires individual-level genotype data. A sex-stratified
analysis followed by a difference test, such as the z-score used here, is equivalent to a genotype-
by-sex interaction test when there is no interaction between covariates (e.g. PCs, age) and the
strata (e.g. male and female), and the trait variances are equivalent in the two strata [22]. If those
assumptions hold, then our stratified analyses will be conservative. Conversely, if those
assumptions are violated then our stratified analysis will be robust to those covariate interactions
and differences in residual variances when evaluating whether the common variant effects are
heterogeneous across sex. Subsequent testing in larger cohorts may illuminate whether these
assumptions are violated and their impact on the interpretation of variants with sex-differentiated

effects.

Another important limitation of our study is that we only assessed the genetic effects on the
autosomes. The sex chromosomes are very frequently excluded from GWAS, due to special

consideration required for quality control and analyses, with many methods not allowing for the
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inclusion of sex chromosomes, and summary statistics were not available for the present

analyses.
Conclusion

Through within- and between-trait analyses, we find evidence of sex-dependent autosomal effects
for several neuropsychiatric and behavioral phenotypes among European ancestry cohorts.
However, the effects are small and polygenic and therefore larger samples are needed for
identifying such effects and understanding their functional contribution to complex traits.
Furthermore, studies of sex differences taking into account non-autosomal and rare genetic
variants, as well as environmental and hormonal influences, including ethnic and cultural

differences are also needed.
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Tables

Table 1: Summary of analyzed datasets of neuropsychiatric and behavioral traits

# of # of # of # of M:F
Phenotype (full name) Acronym | Female | Female Male Male case Sample type Reference
Cases Controls Cases Controls ratio

Attention-deficit hyperactivity disorder ADHD 4,945 16,246 14,154 17,948 2.86 Clinical case-control [35]
Alcohol dependence ALCD 2,504 6,033 5,932 9,412 2.37 Clinical case-control [42]
Anxiety disorders ANX 3,148 191,005 1,813 165,175 0.58 General population (UK) [43]
Autism spectrum disorder ASD 7,498 24,309 30,168 32,417 4.02 Clinical case-control [32,44]
Bipolar disorder BD 10,879 14,226 7,406 13,573 0.68 Clinical case-control [30]
Cannabis use (ever) CUE 17,244 71,742 17,414 50,737 1.01 General population (UK) N/A
Insomnia INS 19,521 39,846 12,863 40,776 0.66 General population (UK) [45]
Major depressive disorder MDD 10,711 | 11,745 | 5021 | 11,226 | 047 C"n'ci';j:_‘i:rﬂfg:at'on (30]
Major depressive disorder N/A* 13,492 180,661 7,156 159,832 0.53 General population (UK) [43]
Major depressive disorder recurrent MDDR 6,739 8,949 2,934 8,162 0.44 Clinical case-control [30]
Obsessive compulsive disorder 0OCD 1,525 4,307 1,249 2,789 0.82 Clinical case-control [46]
Post-traumatic stress disorder PTSD 968 2,457 585 4,025 0.60 Clinical case-control [47]
Risk-taking behavior RTB 32,285 143,678 51,392 100,984 1.59 General population (UK) [48]
Schizophrenia Scz 9,854 16,785 18,366 17,122 1.86 Clinical case-control [30]
Smoking (current) SMKC 16,995 176,392 20,093 146,226 1.18 General population (UK) [43]
Smoking (previous) SMKP 62,305 131,082 65,245 101,074 1.05 General population (UK) [43]
Phenotype Acronym # of Females # of Males r?;i:) Sample type Reference
Alcohol use ALCC 59,088 53,088 0.90 General population (UK) [49]
Alcohol use N/A* 85,800 55,120 0.64 General population [50]
Age at first birth AFB 189,656 48,408 0.26 General population [51]
Educational attainment EA 182,286 146,631 0.80 General population [52]
Number of children ever born NEB 225,230 103,909 0.46 General population [51]
Neuroticism NEU 144,660 142,875 0.99 General population (UK) [33]

* These summary statistics were not used for analysis (see Supplemental Text for details).
PGC: Psychiatric Genomics Consortium; iPSYCH: The Lundbeck Foundation Initiative for Integrative Psychiatric Research.
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Table 2: Top results of sex differences in cross-trait genetic correlation estimates

Females Males Sex difference
Trait 1 Trait 2
re SE g-valueg re SE g-valueg z-score g-value

EA RTB 0.187 0.033 6.38x10® -0.144 0.033 4.29x10° -8.353 7.98x10°%°
AFB RTB -0.035 0.046 0.52 -0.344 0.054 1.23x10° -4.906 5.58x10°

EA NEU -0.22 0.029 1.72x1013 -0.064 0.029 0.051 4421 3.94x10*
CUE NEU -0.142 0.055 0.022 0.124 0.054 0.044 3.866 3.32x103
NEB RTB 0.116 0.063 0.12 0.413 0.074 1.43x107 3.582 8.19x103
ALCC EA 0.276 0.047 2.52x10® 0.043 0.049 0.47 -3.53 8.30x103
scz SMKC 0.034 0.045 0.52 0.214 0.046 1.54x10° 3.301 0.013
ALCC SMKC 0.013 0.058 0.86 0.292 0.069 8.97x10° 3.326 0.013

BD MDD 0.565 0.079 4.95x101? 0.057 0.142 0.74 -3.367 0.013
RTB scz 0.326 0.043 3.13x103 0.157 0.038 1.07x10* -3.088 0.024
AFB NEU -0.173 0.037 1.44x10° -0.028 0.048 0.63 2.95 0.035

Z-scores were calculated using Equation 1. AFB: Age at first birth; ALCC: Alcohol use; BD: Bipolar disorder; CUE: Cannabis use
(ever); EA: Educational attainment; MDD: Major depressive disorder; NEB: Number of children ever born; NEU: Neuroticism; RTB:
Risk-taking behavior; SCZ: Schizophrenia; SMKC: Smoking (current).
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Figures

Trai Between-sex, within-trait
rait 1 « SNP-based hZ? difference
* Deviation of r, from 1
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Figure 1. Schematic illustration of the key analyses used to investigate between-sex, within-trait
and between-trait, within-sex differences.
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Figure 2. Estimates of sex stratified SNP-based heritability (h?) on (A) the observed scale for
continuous traits, and the liability scale, using population prevalence based on (B) DK
(Denmark) and C) the USA. Estimates were obtained from LDSC. Points represent the
estimated SNP-based h? in males (blue) and females (red), while bars represent standard errors
(SE) of the SNP-based h? estimates. Significant sex difference in heritability is denoted with an
asterisk, as follows: * p<0.0042 (adjusted p-value threshold corrected for multiple testing using
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Bonferroni). # denotes traits for which significance in difference is not interpretable due to
negative or non-significant from zero SNP-based h? value for one of the measurements.
Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity disorder; AFB:
Age at first birth; ALCC: Alcohol use; ALCD: Alcohol dependence; ANX: Anxiety disorders; ASD:
Autism spectrum disorders; BD: Bipolar disorder; EA: Educational attainment; INS: Insomnia;
MDD: Maijor depressive disorder; MDDR: Major depressive disorder recurrent; NEB: Number of
children ever born; NEU: Neuroticism; OCD: Obsessive compulsive disorder; PTSD: Post-
traumatic stress disorder; SCZ: Schizophrenia.
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Figure 3. Within-trait, between-sex genetic correlation (ry) estimates using LDSC. Points
represent the estimated ry and bars represent standard errors (SE) of the ry estimates.
Significant deviation from 1 is denoted with an asterisk, as follows: * p<0.0031 (adjusted p-value
threshold corrected for multiple testing using Bonferroni). Phenotype abbreviations are as
follows: ADHD: Attention-deficit hyperactivity disorder; AFB: Age at first birth; ALCC: Alcohol
use; ANX: Anxiety disorders; BD: Bipolar disorder; CUE: Cannabis use (ever); EA: Educational
attainment; INS: Insomnia; MDD: Major depressive disorder; NEB: Number of children ever
born; NEU: Neuroticism; OCD: Obsessive compulsive disorder; RTB: Risk-taking behavior;
SCZ: Schizophrenia; SMKC: Smoking (current); SMKP: Smoking (previous).


https://doi.org/10.1101/2020.05.04.076042
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076042; this version posted May 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

>

Female

v
3
3
>
&
s
S
o
8
Trait 1
O O Q & <
L o & L & » @ K @ & & & o &
B R R R R R A A R R R AR A
sukps O 001 007 001 0 -001 001 013 002 002 0 0 001 003 0 0 004 O -024
sMkci 0 001 002 0 002 001 0 006 003 001 O 000 O O 0O O 006 O
sczi 003 0 0 004 O 002 048 0 O O 005 004 O O 002 -001 001
Rt O 0 004 0 0O 0 001 -005 002 0 0 0 002 003 001 0
prspd 001 0 0 002 0 -001 001 O O 0 001 001 O O 001
oo © 0 0 002 0O 0O 003 O 0 0 001 002 0 0
NeUl 0 0 0 001 009 001 001 0 -003 009 001 0 -001
nesd O <019 001 001 001 O 0 001 -001 001 0 0
Moo 001 0 0 003 0 -003 011 O 0 -001 .
o~
= yop 001 0O 0 003 0 -003 041 O O 0
; e wx e
Ns. O 001 0 0 001 0 0O 0 -004
el O 003 004 0 001 0 0 -002
CUE{ 001 0 004 0 0 -001 -001
Bp{ 002 0 0 003 0 -001
Asp{ 038 0 0 003 -001
anxd 0 001 001 0
AcD| 004 0 0
Acc{ O 0
AFg+ 001

Pearson correlation coefficient

-1.0 -0.5 0.0 05 1.0


https://doi.org/10.1101/2020.05.04.076042
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076042; this version posted May 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 4. Sharing of variants with sexually-differentiated effects between-traits. (A) Miami plot
for female-only (top) and male-only (bottom) GWAS for cannabis use (ever); female cases:
N=17,244; male cases: N=17,414. For each SNP, we computed z-scores using Equation 1. (B)
Matrix of Pearson correlation coefficients for pairs of traits. We performed Pearson correlation of
z-scores and a block jackknife approach to estimate the significance of the correlation for all
pairs of traits. Asterisks indicate the estimated significance of the coefficients, as follows: *
p<0.05, **p<0.01, ***p<0.001. Color coding represents positive (red) or negative (blue)
correlation. Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity
disorder; AFB: Age at first birth; ALCC: Alcohol use; ALCD: Alcohol dependence; ANX: Anxiety
disorders; ASD: Autism spectrum disorders; BD: Bipolar disorder; CUE: Cannabis use (ever);
EA: Educational attainment; INS: Insomnia; MDD: Major depressive disorder; MDDR: Major
depressive disorder recurrent; NEB: Number of children ever born; NEU: Neuroticism; OCD:
Obsessive compulsive disorder; PTSD: Post-traumatic stress disorder; RTB: Risk-taking
behavior; SCZ: Schizophrenia; SMKC: Smoking (current); SMKP: Smoking (previous).
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Figure 5. (A) A network plot showing between-trait genetic correlations with a significant sex
difference as computed by a z-score. The edge color represents the absolute value of the z-
score for the difference in genetic correlation between the same two phenotypes in females vs.
males. Only pairs of traits with an FDR corrected g<0.05 sex difference are shown.

(B & C) Between-trait, within-sex genetic correlation analysis. Network plots for genetic
correlation estimates (ry) for pairs of traits in (B) males and (C) females, where each node
represents a trait, and the edge represents positive (red) or negative (blue) genetic correlation.
The thickness of the edge represents -log10(g-value) of correlation significance. Only genetic
correlations with FDR corrected g<0.05 are shown.

Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity disorder; AFB:
Age at first birth; ALCC: Alcohol use; ANX: Anxiety disorders; ASD: Autism spectrum disorders;
BD: Bipolar disorder; CUE: Cannabis use (ever); EA: Educational attainment; INS: Insomnia;
MDD: Maijor depressive disorder; NEB: Number of children ever born; NEU: Neuroticism; OCD:
Obsessive compulsive disorder; RTB: Risk-taking behavior; SCZ: Schizophrenia; SMKC:
Smoking (current); SMKP: Smoking (previous).
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