

1 Global mapping of *Salmonella enterica*-host protein-protein 2 interactions during infection

3 Philipp Walch^{*1,2}, Joel Selkirk^{*1}, Leigh A. Knodler^{3,4}, Mandy Rettel⁵, Frank Stein⁵, Keith
4 Fernandez^{1,6}, Cristina Viéitez^{1,7}, Clément M. Potel¹, Karoline Scholzen¹, Matthias Geyer⁸,
5 Klemens Rottner^{9,10}, Olivia Steele-Mortimer⁴, Mikhail M. Savitski^{1,5}, David W. Holden¹¹,
6 Athanasios Typas^{1,12}‡.

7
8 ¹ European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117
9 Heidelberg, Germany

10 ² Candidate for joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences,
11 69120 Heidelberg, Germany

12 ³ Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State
13 University, Pullman, WA, USA

14 ⁴ Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT
15 59840, USA

16 ⁵ European Molecular Biology Laboratory (EMBL), Proteomics Core Facility, Meyerhofstrasse 1,
17 69117 Heidelberg, Germany

18 ⁶ current affiliation: Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of
19 Medical Sciences, Cornell University, New York, NY 10065, USA

20 ⁷ European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom.

21 ⁸ Institute of Structural Biology, University of Bonn, Germany

22 ⁹ Division of Molecular Cell Biology, Zoological Institute, Technische Universitaet, Braunschweig,
23 Germany

24 ¹⁰ Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany

25 ¹¹ MRC Centre for Molecular Bacteriology and Infection, Imperial College London, United Kingdom

26 ¹² European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit,
27 Meyerhofstrasse 1, 69117 Heidelberg, Germany

28

29 * these authors contributed equally to this work

30 ‡ to whom correspondence should be addressed: athanasios.typas@embl.de

31 **Summary**

32 Intracellular bacterial pathogens inject effector proteins into host cells to hijack diverse cellular
33 processes and promote their survival and proliferation. To systematically map effector-host
34 protein-protein interactions (PPIs) during infection, we generated a library of 32 *Salmonella*
35 *enterica* serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-
36 tagged effector proteins, and quantified PPIs in macrophages and epithelial cells by Affinity-
37 Purification Quantitative Mass-Spectrometry. Thereby, we identified 25 previously described
38 and 421 novel effector-host PPIs. While effectors converged on the same host cellular
39 processes, most had multiple targets, which often differed between cell types. Using reciprocal
40 co-immunoprecipitations, we validated 13 out of 22 new PPIs. We then used this host-
41 pathogen physical interactome resource to demonstrate that SseJ and SseL collaborate in
42 redirecting cholesterol to the *Salmonella* Containing Vacuole (SCV) via NPC1, PipB directly
43 recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin
44 bundling by directly phosphorylating formin-like proteins.

45

46 **Key words**

47 protein-protein interactions, bacterial pathogen, effectors, actin bundling, cholesterol
48 trafficking, PDZD8, FMNL, NPC1

49 **Introduction**

50 To usurp host defenses, pathogens produce and secrete proteins that directly intercept and
51 modify the endogenous host cell machinery. For intracellular pathogens, this becomes even
52 more important, as they need to actively evade detection by cytoplasmic host innate immune
53 receptors and establish a favorable intracellular niche to ensure their proliferation (Cunha and
54 Zamboni 2013). In turn, the host has evolved mechanisms to overcome such molecular insults.
55 This evolutionary arms race has driven many pathogens to develop remarkably diverse
56 arsenals of effector proteins, as in the case of the bacterial pathogen *Legionella pneumophila*
57 which secretes >300 effectors (Schroeder 2017). Host-pathogen protein-protein interactions
58 (PPIs) are thereby manifold and play a pivotal role in shaping infection outcomes.
59

60 Discovering the host targets of effectors has traditionally been the first step to investigate the
61 role of single effectors in infection. The development of methodologies for global PPI profiling
62 in single organisms has also opened the doors for systematically mapping host-pathogen
63 interfaces (Shah et al. 2015). Both global yeast two-hybrid studies (Uetz et al. 2006; Blasche
64 et al. 2014; Calderwood et al. 2007; Shapira et al. 2009) and affinity-tag purification/mass
65 spectrometry (AP/MS) screens (Jäger, Cimermancic, et al. 2011; Penn et al. 2018; Sontag et
66 al. 2016; D'Costa et al. 2019) have been employed to systematically map PPIs at the bacterial-
67 and viral-host interfaces. Initial global PPI efforts often resulted in high false-positive rates in
68 the identification of effector interaction partners and generated skepticism in the community
69 for such studies (Stynen et al. 2012; Rajagopala, Hughes, and Uetz 2009). However, as
70 methodologies and data analysis advanced, large-scale studies are now playing a more active
71 role in resolving the picture of relevant PPIs at the host-pathogen interface. One such case
72 constitutes HIV infection, where more than a thousand PPIs had been reported in literature for
73 just a handful of viral proteins, based on targeted approaches (Jäger, Gulbahce, et al. 2011).
74 Systematic AP-MS resolved the picture, identifying the strong and relevant physical
75 interactions (Jäger, Cimermancic, et al. 2011) and fueled a plethora of mechanistic insights
76 into HIV biology (Chou et al. 2013; Jäger, Kim, et al. 2011). Despite their power, such studies
77 are still limited in their capacity to faithfully recapitulate the infection environment. Until now,
78 PPIs have typically been probed within mammalian cells in which a single effector is
79 overexpressed at a time, in the absence of the pathogen, or by using *in vitro* setups where
80 lysates are passed through columns with immobilized effectors. Besides using non-
81 physiological levels of the effector, such experiments also poorly reflect the infection state *in*
82 *vivo* due to the absence of infection-relevant rewiring of the host proteome and the presence
83 of additional effectors, which may promote or hinder interactions. Therefore, methods that
84 probe host-pathogen PPIs in the infection context are still in high demand.
85

86 To identify effector-host PPIs in their native infection context, we developed a proteomics-
87 based methodology to extract *Salmonella enterica* serovar Typhimurium (STm)-delivered
88 effectors directly from infected cells and quantify their interacting protein partners. Although
89 STm is perhaps the best-studied intracellular bacterial pathogen, we still lack a good
90 understanding of the 34 known effectors that are translocated by its two T3SS, with less than
91 half of them having known host targets (Ramos-Morales 2012; Schleker et al. 2012; LaRock,
92 Chaudhary, and Miller 2015; Jennings, Thurston, and Holden 2017). We constructed a library
93 of 32 chromosomally-tagged effectors translocated into the host cytoplasm by both T3SS1
94 (encoded on *Salmonella* pathogenicity island 1 (SPI-1)) and T3SS2 (encoded on SPI-2)
95 (Jennings, Thurston, and Holden 2017; Ramos-Morales 2012), and used it to profile effector-

96 host PPIs across two different, relevant cell lines, HeLa and RAW264.7. Thereby, we were
97 able to reconstruct the most comprehensive STm-host interactome to date, spanning a total
98 of 15 effectors and 421 novel PPIs, and displaying a high degree of intracellular connectivity.
99 The accuracy of this resource was verified by the detection of 25 previously described PPIs,
100 as well as by validating novel interactions using reciprocal pulldowns. Network analysis
101 revealed that diverse effectors targeted host proteins with related functions, with several
102 effectors converging on the same process, and in some cases even interacting. Despite this,
103 most effectors had multiple targets, often in unrelated host cellular processes. Whereas
104 several PPIs were detected in both cell lines tested, most PPIs were specific to the cellular
105 context. Capitalizing on this resource, we further resolve the effector interplay between SseJ
106 and SseL in cholesterol trafficking, demonstrate that PipB directly recruits the endoplasmic
107 reticulum (ER) tethered protein PDZD8 to the STm-containing vacuole (SCV), and discover
108 that the effector kinase SteC promotes actin bundling via interactions with formin-like proteins
109 (FMNL). Overall, we provide a new method for probing host-pathogen PPIs in a physiological
110 context, and a rich resource that can be used for the discovery of novel STm infection
111 mechanisms.

112 **Results**

113 **Affinity-purification quantitative mass-spectrometry (AP-QMS) for mapping the host**
114 **targets of *Salmonella* effectors during infection.**

115 To systematically map the PPI landscape between STm effectors and mammalian host
116 targets, we generated a library of 32 tagged-effector STm 14028s strains, i.e. nearly all the
117 known effector proteins translocated by T3SS1 and T3SS2 (see Table S1). To mimic the
118 infection context and ensure physiological effector dosage to the host-cell cytoplasm *via* an
119 active T3SS, we introduced an in-frame C-terminal Strep(2x)-TEV-FLAG(3x) (STF) tag onto
120 the endogenous chromosomal locus of the effector. One exception to this cloning strategy was
121 SifA, where a C-terminal STF tag would otherwise have inactivated the prenylation motif
122 (Reinicke et al. 2005). In this case, we inserted the STF tag into an internal site known to
123 preserve SifA function (Brumell, Goosney, and Finlay 2002) using a two-step cloning process
124 (see Experimental Procedures). Strains expressing chromosomally tagged effectors were
125 then tested for effector expression and translocation to the host cytoplasm during infection of
126 epithelial or macrophage cells, two relevant cell types for STm infection (LaRock, Chaudhary,
127 and Miller 2015). As expected, effector expression and translocation were most robustly
128 detected at later stages of infection (Figure S1), when intracellular STm loads were high. We
129 detected a total of 20 effectors (2 from T3SS1, 12 from T3SS2 and 6 from both) being injected
130 at significant levels into the Tx-100 soluble fraction of host cells – this fraction contains the
131 host cytoplasm and organelles, but not the nucleus and intact STm. These 20 effectors were
132 then used in large-scale infections for AP-QMS analysis (Figure 1A, Table S1).

133
134 To be able to compare our dataset with previous global STm-host PPI studies (Sontag et al.
135 2016; D'Costa et al. 2019) and targeted studies (summarized in (LaRock, Chaudhary,
136 and Miller 2015; Jennings, Thurston, and Holden 2017)), we tested PPIs in two commonly used
137 cell lines for STm infections: HeLa and RAW264.7, which are of distinct cellular and
138 organismal origin (human epithelial and murine macrophages, respectively). We performed
139 FLAG-immunoprecipitation at 20 hours post infection (hpi) under both native (for stable
140 interactions) and cross-linking conditions (for transient interactions) using the cell permeable
141 and reducible cross-linker DSP (Figure 1A). To ensure reproducible quantification of bait and
142 prey proteins relative to background, pulldown eluates were combined in groups of 10 (layout
143 consisting of 9 distinct effector pulldown eluates and one untagged background control) and
144 analyzed in a single 10-plex Tandem Mass Tag (TMT (Werner et al. 2014)) in biological
145 triplicates (Figure 1A). Only proteins identified with at least two unique peptides and found in
146 at least two biological replicates were used for further analysis (Figure 1B). We verified
147 replicate reproducibility (Figure S2A), corrected batch effects, imputed missing values
148 between runs and normalized the median values across each run to ensure accurate sample
149 comparison (Experimental Procedures; Figure 1B). We calculated specific protein enrichment
150 by comparing protein abundance (signal sum) in each TMT channel relative to the median
151 abundance (signal sum) within each TMT10 run for each protein (Figure 1B), which was more
152 robust than comparing to the untagged background strain (Figure S2B), and displayed data
153 as volcano plots (Figures S3-S6). The entire dataset for both cell lines is summarized in Table
154 S2. We detected the bait protein for 13 effectors in both RAW264.7 and HeLa cells, with
155 significant interactions for 12 effectors in RAW264.7 and 9 in HeLa cells. Due to the 20 hpi
156 time point, T3SS2 effectors were, as expected, more readily detected. The resulting hits for
157 each bait (fold change (FC) ≥ 1.2 ; False Discovery Rate (fdr) ≤ 0.01 , after adjusting stringency
158 for hits in both native and cross-linked conditions and capping the number of hits per effector;

159 see Experimental Procedures) are reported in Table S3 and were used to build PPI networks
160 (Figure 1B).

161
162 Across the 2 cell lines and 15 effectors, we detected 462 non-redundant PPIs. Of these, 446
163 PPIs were effector-target, 15 were the baits themselves and 1 was a clear contaminant (IgG-
164 heavy chain). Of the 446 effector-target PPIs; 421 were effector-host (25 previously reported
165 (Table S4), and 396 new) and 25 were effector-bacterial protein interactions. Of those
166 effectors where PPIs were detected, on average, each effector had 19.7 PPIs in RAW
167 macrophages and 26.4 PPIs in HeLa cells. This suggests that the majority of effectors display
168 promiscuous protein-binding inside host cells. Overall, our AP-QMS method robustly captures
169 previously observed STm effector-host PPIs, while identifying many new ones.

170
171 **Salmonella effectors target diverse host processes in macrophages and epithelial cells**
172 Using the significant interactions we detected by AP-QMS, and known human, murine or
173 bacterial protein functional interactions (Table S5, STRING DB version 11 (Szklarczyk et al.
174 2019)), we built two separate PPI networks in RAW264.7 and HeLa cells (Figures 2A and 3A;
175 Experimental Procedures). The networks contained a number of previously characterized
176 PPIs, such as SseJ directly interacting with the host Rho GTPase proteins RhoA and RhoB
177 (Ohlson et al. 2008) in RAW264.7 and HeLa cells (RhoB was not detected even as background
178 in HeLa cells, likely due to low abundance), but the majority of interactions reported were new
179 (Figures 2B and 3B). In total, we detected 25 previously reported interactions (Table S4): e.g.
180 PipB2-KLC1/2, PipB2-KIF5B, SseL-OSBP and Ssel-ACADM (Sontag et al. 2016; Henry et al.
181 2006; Auweter et al. 2012) in the two cell lines. We failed to capture some well-described PPIs,
182 such as that of SifA-SKIP (Jackson et al. 2008; Diacovich et al. 2009; Zhao et al. 2015) or
183 AvrA-MKK7 (Jones et al. 2008; Du and Galán 2009). False negatives are common in AP-MS
184 protocols (Verschueren et al. 2015) and can have multiple causes (see Discussion). In
185 addition, several of the new interactions may be indirect and mediated *via* another host protein
186 (piggybacking is a common issue of AP approaches; (Nesvizhskii 2012; Teng et al. 2015)),
187 which would explain effectors binding to multiple host proteins of the same process.

188
189 Rather than effectors interacting exclusively with a single host protein, we detected several
190 effectors co-purifying with many host targets, such as PipB2, which had 59 in RAW264.7 cells
191 and 48 PPIs in HeLa cells (Figure S7A). This implies that pleiotropic effectors may be the norm
192 in bacterial pathogens, rather than the exception (Takahashi-Kanemitsu, Knight, and
193 Hatakeyama 2020; Hamon et al. 2012). For example, SteC, a well-known STm effector with
194 kinase activity, has been previously implicated in actin remodeling around the SCV (Poh et al.
195 2008). Here, SteC displayed several PPIs with host proteins related to mRNA splicing in both
196 cell types, suggesting a potential, additional regulatory role in host-transcript splicing.

197
198 To check whether effectors target specific biological processes, in addition to overlaying
199 human or murine functional interactions in the networks (Figures 2A and 3A), we performed
200 GO-term enrichment on their targets (Figures 2C and 3C, Table S6). Ion transport and vesicle-
201 mediated transport or fusion were among the most enriched targets in both cell lines (Figures
202 2C, 3C and S7B). The former stemmed mainly from interactions of PipB2 and SseJ with Small
203 Solute Carrier proteins and ATP-dependent transporters, and the latter from interactions with
204 many STm effectors. Other processes were specific to the cell line. Cytoskeleton-dependent
205 transport, occurring mostly through the interaction of SspH1 and SspH2 with myosins, and
206 lipid transport were specifically enriched in macrophages (Figure 2A and 2C, Table S6). Both

207 processes were previously described to play important roles in SCV maintenance (Wasylska
208 et al. 2008; Nawabi, Catron, and Haldar 2008; Arena et al. 2011). In contrast, oxidation of
209 organic compounds and respiration were prominent in epithelial cells, mainly due to
210 interactions of SseJ, as well as specific interactions to RAB proteins (SifB, SseJ and PipB2)
211 and to the SNARE complex (SifA; Figures 3A and C). These host machineries have been
212 implicated in STm infection before (Stévenin et al. 2019; Kyei et al. 2006; Rzomp et al. 2003;
213 Stein, Müller, and Wandinger-Ness 2012), however physical interactions *via* these specific
214 effectors were not previously reported.

215
216 A notable feature of both PPI networks was that several effectors converged on the same host
217 protein complexes/processes with myosins, ion transport, cholesterol transport, 40S ribosome
218 and the T-complex being the most prominent hubs targeted by more than one effector (Figures
219 2A and 3A). In some cases, multiple effectors targeted the exact same host protein, such as
220 myosin MYH9, which was bound by SspH1, SspH2, GogB and SifA in RAW264.7 cells (Figure
221 2A). This highlights the potential for effector co-operation on the same host cellular process
222 (Figure S7C), which may occur simultaneously or in a parallel fashion. Interestingly, we also
223 observed a number of effector-effector interactions (GogB-AvrA, PipB-SifA). Although some
224 may be indirect and mediated through common host targets, this reinforces the notion that
225 effectors converge on the same host processes and work cooperatively to hijack them. For
226 example, both AvrA and GogB are known to impose an anti-inflammatory effect on host cells
227 during STm infection. AvrA dampens JNK signaling via MKK7 (Du and Galán 2009), thereby
228 reducing apoptosis (Jones et al. 2008), whereas GogB acts on NFkB by inhibiting degradation
229 of IFkB (Pilar et al. 2012). Even though no common target for these two effectors has been
230 described, the finding that they physically interact indicates a direct collaboration of AvrA and
231 GogB in the regulation of inflammation.

232
233 One advantage of systematic studies is that common contaminants of pull-downs can be
234 identified and normalized out during data analysis (see Experimental Procedures). This allows
235 identification of specific interactions with targets that would normally be disregarded. For
236 example, we detected 25 effector-bacterial PPIs in macrophage cells, e.g. PipB-DnaK, PipB-
237 GroEL, PipB-STM14_3767 (Figure 2B). In order to exclude the possibility that these PPIs are
238 due to partial bacterial lysis during infection or harvesting, which results in bacterial
239 cytoplasmic proteins contaminating the host cytoplasmic fraction, we validated the presence
240 of GroEL in the host cytoplasm during infection using a GroEL polyclonal antibody. Consistent
241 with previous reports showing GroEL is secreted by *Bacillus subtilis*, *Helicobacter pylori* and
242 *Francisella novicida* (Yang et al. 2011; González-López et al. 2013; Pierson et al. 2011;
243 McCaig, Koller, and Thanassi 2013), we detected GroEL within the host lysate (Figure S8).
244 This cannot simply be explained by bacterial lysis, as another abundant bacterial protein,
245 RecA, was only detected in the bacterial cell pellet. This suggests that GroEL is secreted into
246 host cells during infection and could play a role in effector functionality in the host cytoplasm.
247 We obtained similar results for STM14_3767, a putative acetyl CoA hydrolase (Figure S8).

248
249 In summary, we recovered both previously identified PPIs and a plethora of new ones. Most
250 STm effectors have multiple host targets, but in general, effectors converge to target the same
251 processes in the host. Based on common host targets, we were able to draw new associations
252 between specific effectors, which we anticipate will promote a deeper understanding of the
253 complex interplay between effectors during infection.

254

255 **Strong interactions can be validated by reciprocal pull downs on the host target**
256 The majority of PPIs we identified were cell line-specific (418/446, Figure 4A), which prompted
257 us to investigate the underlying reasons for such differences (Figure S9, Table S7). About one
258 third of the PPIs that were detected specifically in one cell type were due to the lack of
259 detectable expression of that protein in the other cell line (Figure S9H, I, K and L). However,
260 most cell-type specific PPIs had similar abundance in both cell lines (Figure S9G,J). The
261 remaining differences can be due to false negatives and/or reflect differences in infection cycle
262 in epithelial cells and macrophages – STm can escape and proliferate in the cytoplasm of
263 epithelial cells, but not of macrophages (Knodler et al. 2010; Castanheira and García-Del
264 Portillo 2017). Taken together, these results indicate that effector-host PPIs are largely cell-
265 type specific, and only partially due to differences in protein expression.
266
267 Several PPIs were specifically identified in the presence of the crosslinker (Figures 2A, 3A
268 and 4A). For example, SifA interacted with VPS39 and RBM10 only after crosslinking in both
269 cell types, suggesting that these interactions may be transient. The only partial, though highly
270 significant overlap (p -value < 0.0001, Fisher's exact test) between native and crosslinked data
271 could have additional reasons: a) loss in the efficiency of bait pulldown after crosslinking; b)
272 increased background/poorer signal-to-noise in crosslinking experiment (Figure S2, S9C and
273 F); c) differences in sample preparation and increased incubation times impacting the recovery
274 of PPIs; and d) false negatives due to stringent thresholds, although our analysis tried to rectify
275 this. A number of interactions were conserved across backgrounds and pulldown conditions,
276 indicating strong interactions. We suspect that PPIs found in at least three of the four
277 conditions indicate false negatives in the fourth condition. Among the conserved interactions,
278 several were novel, e.g. SteC-FMNL1, PipB2-ATP1A1, PipB2-ANXA1, SseJ-CD44, SseL-
279 SACM1L or PipB-GroEL.
280
281 To assess the validity of our newly identified interactions, we selected a subset of 12 host
282 targets, which amounted to 22 distinct effector-host protein interactions – 37 PPIs taking into
283 account all different conditions (native vs. cross-linked, cell line) – and sought to validate their
284 interactions with the respective *Salmonella* effectors reciprocally (Table S8). The host targets
285 were selected to span both weak and strong enrichment scores, as well as varying degrees
286 of conservation of interactions throughout the different conditions tested (Figure 4B and C,
287 Table S8). To test for reciprocal interactions, we pulled down on the host protein during STm
288 infection using specific antibodies (see Experimental Procedures). In total, we could
289 successfully pulldown 7 out of the 12 host target proteins, covering 13 of the 22 distinct PPIs
290 (or 22 of the 37 tested conditions). In these cases, we could successfully recapitulate the
291 orthogonal pulldown of the STm effector for 8 out of the 13 possible PPIs (61.5%) in at least
292 one condition (13 of all the possible 22 conditions, i.e. 59.1% could be validated). We used a
293 non-cognate STm effector of similar translocation level as a negative control (Figure 4B-D,
294 summarized in Table S8). Note that these pulldowns were performed in a cell population
295 containing 20-40% infected cells. Furthermore, even in infected cells the protein levels of
296 translocated STm effectors are much lower than that of host proteins (Selkirk et al. 2018).
297 Consequently, the majority of the target protein is unbound by the STm effector, either
298 because the target protein comes from uninfected cells or because it is in large excess over
299 the effector. Consistent with such an increased difficulty in capturing effector-host protein
300 interactions by pulling down on host proteins, we observed that stronger PPIs (higher fold
301 changes in screen) were more readily verifiable via reciprocal pulldowns (Figure 4C). In
302 summary, we could recapitulate most of the newly identified effector-host protein interactions

303 we tested using an orthogonal, but less sensitive approach. This suggests that many of the
304 interactions we report here are also occurring during infection.

305
306 **SseJ and SseL cooperate to regulate intracellular cholesterol trafficking via NPC1**
307 From our AP-QMS analysis, we identified “phospholipid metabolic process” and “positive
308 regulation of vesicle fusion” as enriched GO-terms in RAW264.7 macrophages, and
309 “regulation of vesicle-mediated transport” in HeLa cells, all of which comprise proteins involved
310 in lipid and more specifically, in cholesterol trafficking. Host proteins required for cholesterol
311 trafficking including OSBP, NPC1, VAPA/B, SACM1L were associated with multiple effectors.
312 These interactions were predominantly mediated by the effectors SseJ, SseL and PipB2 in
313 both HeLa cells (Figure 3A and S7B) and RAW264.7 macrophages (Figure 2A and S7B). As
314 SseJ esterifies cholesterol (Nawabi, Catron, and Haldar 2008), we probed more carefully its
315 connection with cholesterol transport by performing AP-QMS after crosslinking in HeLa cells
316 in triplicate, and analyzed the samples with the corresponding untagged controls in the same
317 TMT run (all results are summarized in Table S9). Combining all replicates into a single TMT
318 run increases the sensitivity in detecting low abundant PPIs (because sample complexity is
319 greatly reduced compared to multiplexing with 9 other pulldowns). This enabled us to detect
320 a PPI between SseJ and the effector SseL (Figure 5A), which is in line with recent evidence
321 demonstrating functional cooperation between these two effectors to promote SCV stability
322 via interactions with OSBP (Kolodziejek et al. 2019), a lipid transfer protein that controls
323 cholesterol/PI4P exchange between the ER and Golgi (Mesmin et al. 2017). Consistently,
324 OSBP co-purified with SseJ and SseL in both cell lines (Figures 2A, 3A and 5A).
325

326 In addition to detecting the recently reported SseJ-OSBP interaction (Kolodziejek et al. 2019),
327 we observed an interaction between SseJ and the Niemann-Pick disease type C1 protein
328 (NPC1) (Figure 5A). NPC1 plays a critical role in cholesterol trafficking (Pfeffer 2019). We thus
329 wondered whether SseJ and SseL alter cholesterol trafficking via NPC1. To probe this and
330 validate the roles of SseJ and SseL in this process, we infected HeLa cells with wildtype and
331 mutant STm and stained with filipin at 12 hpi. Filipin stains unesterified cholesterol and is
332 commonly used to assess the intracellular distribution of cholesterol (Maxfield and Wüstner
333 2012; Wilhelm et al. 2019). Cholesterol was recruited to the SCV upon infection with wildtype
334 STm (Figure 5B and C). We assessed co-localization between cholesterol and the SCV by
335 calculating the ratio between filipin signal at the site of the SCV and the overall filipin signal
336 per cell. This means that a random cholesterol distribution throughout the cell results in a ratio
337 of 1, stronger co-localization in values >1 and exclusion of filipin at the SCV in values <1. This
338 ratio was reduced strongly upon infection with an Δ sseJ mutant (wildtype median = 2.62 and
339 Δ sseJ = 1.64). Infection with Δ sseL bacteria also reduced cholesterol accumulation at the
340 SCV, albeit to a lesser extent (median = 2.11). Interestingly, the double Δ sseJ Δ sseL mutant
341 and the SPI-2 secretion system null mutant (Δ sseV) resulted in low SCV cholesterol
342 accumulation comparable to Δ sseJ bacteria (Figure 5C), suggesting cholesterol accumulation
343 at the SCV is largely driven by SseJ.
344

345 In order to explore the role of NPC1 in this process, we infected NPC1 KO cells with wildtype
346 STm. This resulted in cholesterol accumulation at the SCV comparable to that observed in
347 wildtype HeLa cells, despite NPC1 KO cells exhibiting pronounced endosomal cholesterol
348 accumulation, as previously reported (Tharkeshwar et al. 2017). Wildtype STm was able to
349 overcome this aberrant endosomal cholesterol localization in NPC1 KO cells and accumulated
350 cholesterol at the SCV at similar levels to those detected in wildtype HeLa cells. Interestingly,

351 the Δ SseL mutant no longer conferred reduced cholesterol accumulation compared to wildtype
352 HeLa cells. This suggests that the minor role of SseL in SCV cholesterol accumulation
353 operates *via* NPC1. Infection with Δ SseJ or Δ SseJ Δ SseL mutants further aggravated the
354 absence of cholesterol from the SCV relative to that observed in wildtype HeLa cells (Figure
355 5C). Taken together, these findings suggest a complex interplay between SseJ and SseL, and
356 multiple host target proteins (e.g. NPC1, OSBP) to modulate cholesterol trafficking during
357 infection. While the mild impact of SseL-mediated recruitment of cholesterol to the SCV
358 requires NPC1, this is likely not caused by direct physical interaction, but rather through a
359 functional dependence and indirect interactions with OSBP and SseJ (Figure 5D).

360

361 **PipB interacts with PDZD8 and recruits it to the SCV**

362 We identified a strong interaction between PipB and the PDZ-domain containing protein 8
363 (PDZD8) in both HeLa and RAW264.7 cells (Figure 2A, 3A and 4A). PDZD8 is a paralog of
364 the ERMES (ER-mitochondria encounter structure) component Mmm1 and was recently
365 shown to play a functional role at ER-mitochondrial contact sites by regulating Ca^{2+} dynamics
366 in neurons (Wideman et al. 2018; Hirabayashi et al. 2017). We were able to verify this
367 interaction *via* ectopic expression of EGFP-tagged PipB in HeLa cells and MS identification of
368 PDZD8. PDZD8 did not co-IP with EGFP-PipB2, its effector ortholog (Figure S10), thus
369 demonstrating the specificity of the PipB-PDZD8 interaction.

370

371 We then sought to map the PipB-PDZD8 PPI and its cellular localization during infection.
372 Ectopic expression of EGFP-PipB resulted in co-localization with PDZD8 at the ER, based on
373 the ER resident marker protein disulphide-isomerase (PDI) (Figure 6A). To examine the
374 PDZD8-PipB interaction in an infection context and after PipB translocation, we infected
375 PDZD8-myc expressing HeLa cells with STm Δ pipB bacteria expressing PipB-2HA *in trans*.
376 We observed a striking accumulation of PDZD8 specifically at the SCV, but not on *Salmonella*-
377 Induced Filaments (SIFs), based on its partial overlap with PipB-2HA and the SCV/Sif marker
378 protein, LAMP2 (Figure 6B). Recruitment of PDZD8 to the SCV was PipB-specific, as PDZD8-
379 myc was not recruited to the SCV upon infection of HeLa cells with Δ pipB2 pPipB2-2HA
380 bacteria (Figure 6C). These findings demonstrate that PipB specifically recruits PDZD8 to the
381 SCV during infection (see also Figure S10).

382

383 In order to map the PDZD8-PipB interaction in further detail, we created a series of PipB and
384 PDZD8 truncations and tested their ability to interact by yeast two hybrid (Y2H). For PipB,
385 truncating the C-terminal 20 amino acids (Δ 272-291) resulted in disruption of PipB-PDZD8
386 binding (Figure 6D). The last 20 amino acids alone, however, were not sufficient for the
387 interaction with PDZD8, as deletion of the N-terminal 188 amino acids (Δ 1-188) also disrupted
388 PDZD8 binding. As for PDZD8, a critical segment within its C-terminal 224 amino acids (Δ 930-
389 1154) that contains a predicted coiled-coil domain was required for the interaction with PipB
390 (Figure 6D). We verified the importance of the C-terminus of PipB in mediating the interaction
391 with PDZD8 by transfecting HeLa cells with EGFP-effector fusions. Consistent with the Y2H
392 data, endogenous PDZD8 co-immunoprecipitated with PipB and not PipB2, whereas deletion
393 of the C-terminal 22 amino acids of PipB abolished its interaction with PDZD8 (Figure 6E).
394 These results illustrate an important role for the C-terminal domains of PipB and PDZD8 in
395 mediating their physical interaction. This concurs with the previous observation that the
396 functional divergence of PipB and PipB2 is due to sequence divergence in their extreme C-
397 termini (Knodler and Steele-Mortimer 2005).

398

399 **SteC targets FMNL1 to promote actin polymerization**

400 We identified a novel PPI between the effector kinase SteC and a formin-line protein, FMNL1,
401 which is highly expressed in macrophages (Yayoshi-Yamamoto, Taniuchi, and Watanabe
402 2000). In all conditions and cell lines tested, FMNL1 co-purified with SteC and this PPI was
403 also verified by reciprocal pulldowns in both HeLa and RAW264.7 cells (Figure 4). To examine
404 whether the SteC-FMLN1 PPI is the result of a direct PPI between these two proteins, we
405 purified full-length SteC, a catalytic inactive mutant SteC_{K256H} and the N-terminal domain of
406 FMNL1₁₋₃₈₅, and tested for complex formation by size-exclusion chromatography. SteC and
407 FMNL1 alone migrated as multimeric species (Figure 7A; blue and orange traces,
408 respectively), but when pre-incubated together, a portion of FMNL1₁₋₃₈₅ co-migrated with SteC
409 forming a higher molecular weight complex (Figure 7A; green trace). This was also true for
410 SteC_{K256H}. Thus, SteC directly binds to the N-terminus of FMNL1 independent of its kinase
411 activity.

412

413 We then asked whether FMNL1 is a direct substrate of SteC. To test this, we performed an *in*
414 *vitro* kinase assay in the presence of [³²P]-γ-ATP. Consistent with previous reports, SteC was
415 capable of auto-phosphorylation (Poh et al. 2008). In addition, when combined with FMNL1₁₋₃₈₅,
416 SteC, but not the catalytically inactive SteC_{K256H}, phosphorylated FMNL1 (Figure 7B). To
417 identify the specific FMNL residues that are phosphorylated by SteC, we performed
418 phosphoproteomics after an *in vitro* kinase assay for both FMNL1 and FMNL2, using SteC_{K256H}
419 as negative control. Thereby we identified the SteC auto-phosphorylation sites and several
420 phosphosites in similar domains of both FMNL proteins (Table S10), many located in the
421 flexible loop of the armadillo repeat region (Figure 7C). Among other sites, S171 (FMNL2) and
422 an equivalent site in FMNL1 (S184) were phosphorylated. This site has previously been shown
423 to induce binding to Rho-family GTPase and FMNL regulator Cdc42 (Kühn et al. 2015).

424

425 SteC is required to induce actin bundling around the STm microcolony in 3T3 fibroblasts (Poh
426 et al. 2008; Odendall et al. 2012; Imami et al. 2013). We therefore postulated that FMNL
427 proteins may be required for this phenotype as they are known to promote actin polymerization
428 (Bai et al. 2011; Heimsath and Higgs 2012; Block et al. 2012). Since FMNL1 had been
429 considered to be most abundant in hematopoietic cells and low in expression in 3T3 fibroblasts
430 (Kage, Winterhoff, et al. 2017), cells disrupted in the more ubiquitous FMNL2 and FMNL3
431 were used. As shown before (Odendall et al. 2012), actin bundling around the SCV was strictly
432 dependent on SteC in 3T3 fibroblasts (Figure 7D). Interestingly, actin bundling around STm
433 microcolonies was diminished in FMNL2/3 knockout fibroblasts no matter whether we infected
434 with STm wildtype or ΔsteC (Figure 7E), suggesting that SteC acts *via* FMNLs. Despite both
435 STm strains not being able to induce substantial actin bundling in the absence of FMNL2 and
436 FMNL3, there was still some residual bundle formation by SteC. We therefore examined more
437 closely the expression of FMNL subfamily proteins in 3T3 cells using a newly available
438 FMNL1-specific antibody. While FMNL2 and FMNL3 were abundant in control and absent in
439 FMNL2/3 knockout cell lines, as expected, we could also detect a high molecular weight
440 variant of FMNL1 in both cell lines (Figure S11). We suspect that the residual SteC-dependent
441 actin bundling observed in FMNL2/3 knockouts can be ascribed to this FMNL1 expression.
442 Taken together, these results demonstrate that SteC directly interacts with and phosphorylates
443 FMNL subfamily formins. This could result in FMNLs binding to Cdc42 and inducing actin
444 bundling at sites of STm microcolony formation (Figure 7F; see also Discussion).

445 **Discussion**

446 In this work, we describe 421 novel PPIs, along with 25 previously described PPIs, between
447 15 different STm effectors after infection of two host cell lines (epithelial and macrophage).
448 These interactions were identified during infection and physiological expression levels, using
449 a quantitative proteomics-based approach (AP-QMS). We capitalized on the genetic
450 tractability of STm and generated a library of 32 C-terminally tagged T3SS1 and T3SS2
451 effector strains (except SifA), which can be used in the future to probe different infection
452 conditions (e.g. SPI-1 ON), cellular activation states (e.g. interferon- γ priming), spatiotemporal
453 dynamics of effector localization and PPIs, and cell types (e.g. dendritic cells, intestinal
454 epithelial cells). The majority of interactions we observed were cell type-specific (418 PPIs),
455 with only 28 PPIs being conserved across the two cell-types. Although the stringency of our
456 methodology may account for some of the differences, the differential expression levels of
457 host targets (see Figure S9 and S11 for different FMNLs) and the different infection trajectories
458 in epithelial cells and macrophages are more likely the reasons for this discrepancy. Most
459 effectors co-purified with multiple host targets, several of which were related in function,
460 uncovering an interconnected network of potentially overlapping functionalities between
461 effectors. The functional relevance of this resource is exemplified by three vignettes of novel
462 infection biology in cholesterol trafficking, organelle organization and actin rearrangements.
463 The data provided can function as a rich resource for further investigating the complex
464 interconnection between STm and host defense.

465
466 Several endeavors to map STm-host PPIs have been undertaken in the past (Auweter et al.
467 2011; Sontag et al. 2016). However, all were conducted outside the context of infection and
468 typically after overexpression of an individual STm effector inside host cells. For example, one
469 of the first systematic studies in the field, Auweter et al. ectopically expressed a panel of 13
470 effectors in HEK-293T cells and expressed and purified 11 effectors in *E. coli*. AP-MS in HEK-
471 293T cells or HEK-cell lysates revealed 15 effector-target interactions, two of which (SseJ-
472 RhoA and SseL-OSBP) (Auweter et al. 2011) were also identified in our study. In the report
473 by Sontag et al., eight STm effectors were tested *in vitro* using AP-MS on purified effectors
474 and RAW264.7 cell lysates (Sontag et al. 2016). Three of the effectors from this study are
475 shared with our current study (SseL, SspH1 and Ssel, also called SrfH), where for Ssel, two
476 interactions could be seen in both studies i.e. Ssel-Gm9755 and Ssel-ACADM. Interestingly,
477 Sontag et al. identified various SLC proteins as targets of Ssel and GtgA. We, however,
478 detected several solute carrier proteins (SLCs) as targets of PipB2 and SseJ e.g. SLC25A5
479 and SLC25A11. It is plausible that SLCs are common targets of multiple STm effectors. SLCs
480 have been linked to innate immunity, cytokine release, as well as bacterial and viral infections
481 (Awomoyi 2007; Singh et al. 2016; Nguyen et al. 2018). It is thus conceivable that STm may
482 modify SLC function to improve uptake into the host cell or to modulate inflammation. More
483 recently, BioID was used to study effector-host interactions by tagging a panel of five effectors
484 (PipB2, SseF, SseG, SifA, SopD2) with the biotin ligase BirA and overexpressing fusion
485 proteins in HeLa cells by plasmid-based transfection (D'Costa et al. 2019). In the same study,
486 the authors used AP-MS after ectopic effector expression. Although we tagged these same 5
487 effectors, due to limiting levels of translocated protein, we only assessed PipB2 and SifA by
488 AP-QMS. Comparing the two studies, there is some overlap in host-protein targets: 4 proteins
489 for SifA and 16 for PipB2, which are summarized alongside other previously described
490 interactions in Table S4. The overexpressed effectors, the absence of an infection context and
491 the stringent thresholds may account for the differences between the two studies. The authors

492 did, however, find enriched processes (e.g. ion transport, SNARE complex, lipid metabolism,
493 actin-related), which are congruent with our observations (Figure 2C, 3C and S7B), thus
494 providing further validity of the importance of these processes in infection. Taken together,
495 although there is some overlap between our study and past studies performed outside an
496 infection context and for smaller sets of effectors, many of the PPIs are unique to our study
497 and likely represent interactions that can only be captured in the context of infection.
498

499 Although our effector library contains a large number of known effectors, current effector
500 knowledge may largely underestimate the full repertoire of proteins translocated or secreted
501 by STm during infection (Li et al. 2018; Niemann et al. 2011). Recent proteomic methodologies
502 have enabled unbiased profiling of secretomes of intracellular pathogens during infection
503 (Mahdavi et al. 2014), and will be vital for uncovering the full repertoire of STm effectors
504 translocated during infection. As more effectors are verified, they can be easily incorporated
505 into this library and screened for PPIs.
506

507 Tagging can impede function or localization of some effectors, as previously shown for SifA
508 (Brumell, Goosney, and Finlay 2002) – therefore, we adjusted the tagging strategy for SifA
509 here. It will be important to assess whether the C-terminal modification introduced into these
510 strains impacts effector translocation and function. We probed expression and translocation
511 for all effectors, and we could detect 20 effectors in the host cytoplasm (28 were expressed).
512 Although some of the remaining 12 may fail to translocate due to their C-terminal tag, we find
513 it more likely that they are not translocated in sufficient amounts in the cell lines and/or time-
514 points probed here. Introduction of a C-terminal tag may have led, in some cases, to poor
515 stability/expression of otherwise abundant effectors, such as SseF and SseG. Of the 15
516 translocated effectors we could reproducibly detect by AP-QMS, there were 5 effectors for
517 which we were unable to detect significantly enriched targets in at least one of the tested cell
518 lines (GogB, SspH1, SspH2, SseK1 in HeLa cells and SlrP in RAW264.7 cells). In addition to
519 tags compromising PPIs with host targets, other explanations could include promiscuous or
520 transient interactions (many STm effectors are enzymes) or non-proteinaceous targets (lipid,
521 DNA/RNA, metabolites) (Nawabi, Catron, and Haldar 2008; Knodler et al. 2009; McShan et
522 al. 2016). In general, our inability to detect some PPIs rigorously described in literature, such
523 as SifA-SKIP (Jackson et al. 2008; Diacovich et al. 2009; Zhao et al. 2015) or AvrA-MKK7
524 (Jones et al. 2008; Du and Galán 2009), could be due to tagging, conditions (20 hpi, stringent
525 pull-downs) and cell lines used, MS-limitations (abundance or detection of prey) or false
526 negatives of the method.
527

528 In order to capture transient PPIs, we used the crosslinker DSP, which resulted in both gains
529 and losses of PPIs detected. In addition to transient interactions, these differences may be
530 due to altered protein background, stringent thresholds for hit calling, competition for binding
531 of targets, and differences in the experimental workflow. Past efforts to capture transient
532 interactions have employed BirA-based approaches combined with formaldehyde crosslinking
533 or AP-MS (stable complexes) combined with BiOID (transient or proximal PPIs) to capture
534 effector interactions (Mousnier et al. 2014; D’Costa et al. 2019). Combining such methods with
535 our approach to map to host-pathogen PPIs during infection will likely add another layer of
536 spatiotemporal complexity underlying host-pathogen PPIs. In addition, the use of catalytically
537 inactive mutants of effector proteins may enhance the ability to capture target molecules.
538 Combining pull-down approaches with lipidomics or metabolomics (Maeda et al. 2013; Saliba
539 et al. 2014), may help to identify non-proteinaceous effector targets.

540
541 Several functionally related clusters were identified as targets of single or multiple effectors in
542 our screen. One of these processes was cholesterol trafficking, which was mainly targeted by
543 SseL, SseJ and PipB2 through interactions with a number of proteins involved in this process:
544 OSBP, VAPA, SACM1L, PI4K2A, NPC1 and ANXA1. These links are in line with previous
545 reports (Wyles, McMaster, and Ridgway 2002; Auweter et al. 2012; Mesmin et al. 2017;
546 Kolodziejek et al. 2019). In this study, we provide supporting molecular evidence for the
547 functional cooperation between the two effectors SseJ and SseL (Kolodziejek et al. 2019).
548 Both are required to accumulate unesterified cholesterol at the SCV, which presumably makes
549 it more stable (Kolodziejek et al. 2019). In NPC1 knockout cells however, the role of SseL, is
550 fully mitigated, whereas the role of SseJ becomes dominant. These data suggest that SseJ
551 and SseL cooperate to maintain cholesterol at the SCV through opposing effects that require
552 NPC1. Interestingly, both SseJ and NPC1 localize to SIFs during infection (Ohlson et al. 2005;
553 Drecktrah et al. 2008). It remains to be tested whether NPC1 recruitment to SIFs requires
554 SseJ and/or SseL. Further work will also be required to elucidate the detailed molecular
555 interactions that occur between SseL and SseJ and the proteins orchestrating cholesterol
556 transport between organelles. Deletion of both *sseJ* and *sseL* has recently been shown to
557 increase the fraction of cytoplasmic STm, indicating a role of these two effectors and the
558 associated lipid trafficking in stabilization of the SCV (Kolodziejek et al. 2019).
559
560 We also identified a strong interaction between PipB and the host target PDZD8, a protein
561 recently shown to be required for ER-mitochondrial and ER-lysosomal organelle contact sites
562 in neurons, and for regulating Ca^{2+} levels therein (Hirabayashi et al. 2017). PDZD8
563 accumulates in contact sites between the ER and late endosomes/lysosomes in non-human
564 primate kidney Cos-7 cells, together with Rab7 (Guillén-Samander, Bian, and De Camilli
565 2019). Interestingly, Rab7 was also enriched in PipB pulldowns, but remained just below our
566 stringent significance thresholds (Table S2). We show that PipB binds to the C-terminal coiled-
567 coil domain of PDZD8, which is the same region that mediates the Rab7-PDZD8 interaction
568 (Guillén-Samander, Bian, and De Camilli 2019). In addition, PDZD8 has been identified as a
569 moesin binding protein that impairs intracellular replication of Herpes Simplex Virus infection
570 through regulation of the cytoskeleton (Henning et al. 2011). This connection to the
571 cytoskeleton had also been described outside of the infection context (Bai et al. 2011). It is
572 tempting to speculate that PipB promotes organelle tethering between the SCV, late
573 endosomes/lysosome and the ER through interactions with Rab7 and PDZD8.
574
575 One of the strongest and most abundant interactions we detected was that between SteC and
576 FMNL1. The kinase SteC had been linked to actin rearrangements during infection by
577 modulation of MAPK signaling and HSP70 (Odendall et al. 2012; Imami et al. 2013). Yet, the
578 effect attributed to SteC exceeded these interaction partners, indicating a missing piece in the
579 rewiring of host cytoskeletal remodeling by SteC. We identified FMNL subfamily formins as
580 the host targets which bound SteC *in vivo* and *in vitro*. We could further show that SteC
581 phosphorylates these formins *in vitro* at S171 (FMNL2; S184 for FMNL1) and at residues in
582 the same functional region, which promote interactions with Cdc42 and thereby actin
583 polymerization (Kühn et al. 2015). Thus, our current model is that SteC directly binds to and
584 phosphorylates FMNL proteins, promoting their interaction with Cdc42 and the recruitment of
585 the complex to the SCV to stimulate actin polymerization (Figure 7F). In agreement with this
586 model, we observed Cdc42 to co-purify with SteC and FMNL1 in macrophages (Figure 2A).
587 However, dominant negative versions of Cdc42 were shown in the past to still allow SPI-2-

588 dependent actin assembly (Unsworth et al. 2004). Further work will be required to elucidate
589 whether SteC has different specificity for different FMNL subfamily members, the molecular
590 events triggered by binding and phosphorylation of FMNLs by SteC, including the level of
591 involvement of Cdc42, and whether the SteC-FMLN binding and regulation are linked to the
592 previously reported modulation of MAPK signaling by SteC (Odendall et al. 2012).

593
594 There are many stronger interactions in our study that await further characterization. For
595 example, we found a functional group comprised of the Rab GTPases Rab10, Rab13 and
596 Rab14, targeted by SifB and PipB2 in HeLa cells. Rab10, Rab13 and Rab14 are involved in
597 ER dynamics (English and Voeltz 2013), transport of surface proteins to the cell membrane
598 (Wang et al. 2010; Sano et al. 2008; Sun et al. 2010), tight junction assembly *via* regulation of
599 PKA signaling (Köhler, Louvard, and Zahraoui 2004) and TGN-associated recycling (Nokes et
600 al. 2008; Junutula et al. 2004; Kitt et al. 2008). Furthermore, all three Rab proteins have been
601 linked to various bacterial infectious diseases (Stein, Müller, and Wandinger-Ness 2012), such
602 as intracellular survival of *M. tuberculosis* (Kyei et al. 2006), and *Chlamydia* species (Rzomp
603 et al. 2003). Interrogation of Rab-dependent vesicular trafficking may provide new insights into
604 STm pathogenesis, especially as several Rab proteins (e.g. Rab29, Rab32) have been
605 implicated in intracellular pathogenicity in the human-adapted pathogen, *Salmonella enterica*
606 serovar Typhi (Spanò, Liu, and Galán 2011; Baldassarre et al. 2019).

607
608 In conclusion, we aimed to bridge a technological gap common to host-pathogen PPI studies,
609 which were until now performed exclusively in non-physiological conditions. Our study can be
610 a starting point for more systematic and unbiased studies of host-pathogen PPIs in a native
611 infection context, providing a better understanding of the degree and nature of effector
612 cooperation, which is of high relevance in bacterial pathogens with large effector arsenals.
613 Understanding how pathogens and pathobionts directly modify host pathways *via* secreted
614 proteins will uncover new insights into the diversity and evolution of pathogenicity, as well as
615 provide novel tools and targets to modulate immune responses.

616 **Acknowledgements**

617 We thank W. Annaert (VIB, KU-Leuven) for the NPC1 knockout cells, B. Bukau (ZMBH
618 Heidelberg) for the GroEL antibody, and F. Kage (Dartmouth Geisel School of Medicine,
619 Hanover, USA) for advice on FMNL2/3 knockout cells. PW was supported by the EMBL
620 International PhD Programme (EIPP) fellowship and JS and CP partially by fellowships from
621 the EMBL Interdisciplinary Postdoc (EIPOD) programme under Marie Skłodowska-Curie
622 Actions COFUND (grant number 291772). KR was supported through intramural funds from
623 the Helmholtz Society. This work was funded by EMBL core funding.

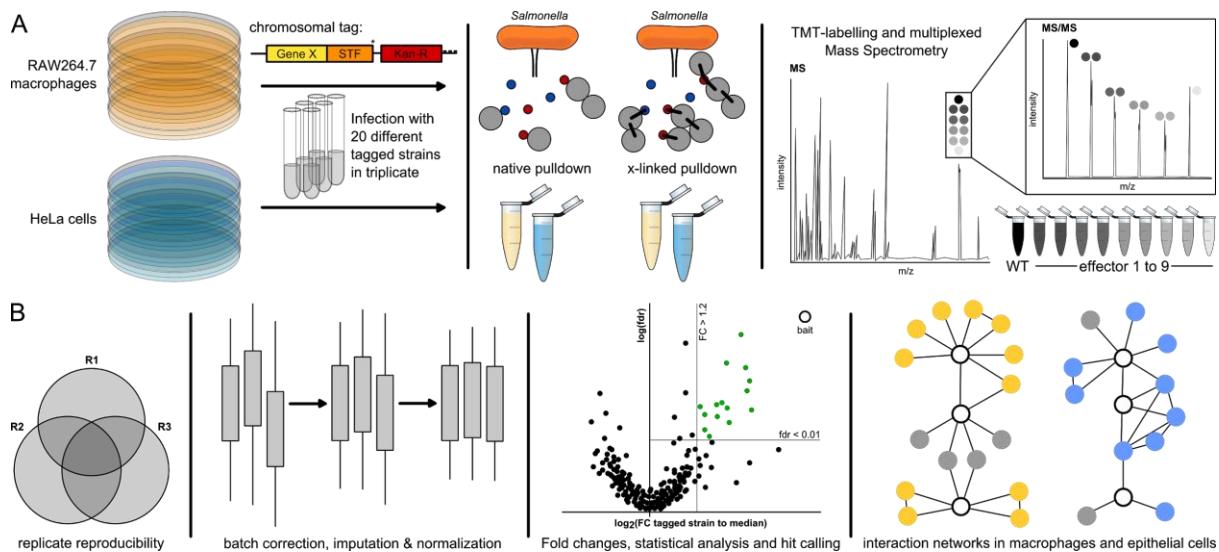
624 **Author contributions**

625 Conceptualization: AT, JS, PW. Bacterial Strain creation: JS, KF, PW, KS. Proteomics sample
626 preparation: PW, MR, JS, KF. Proteomic data analysis: FS and PW, with input from JS, MMS
627 and AT. Network analysis: PW. Biochemistry and cell Biology: PW, JS, LAK, KS. Kinase
628 assay: CV and PW. Phosphoproteomics: CP. Experimental design: AT, JS, PW, LAK, MG,
629 KR, OSM, DH. Reagent provisions: DH, KR, MG, MMS. Manuscript writing: JS, PW, AT with
630 input from all authors. Figures: PW, JS, LAK, CV, CP. Supervision: AT, JS, DH, MMS & OSM.

631 **Data availability**

632 All raw AP-QMS and phosphoproteomic data has been deposited at ProteomeXchange
633 (<http://www.proteomexchange.org/>).

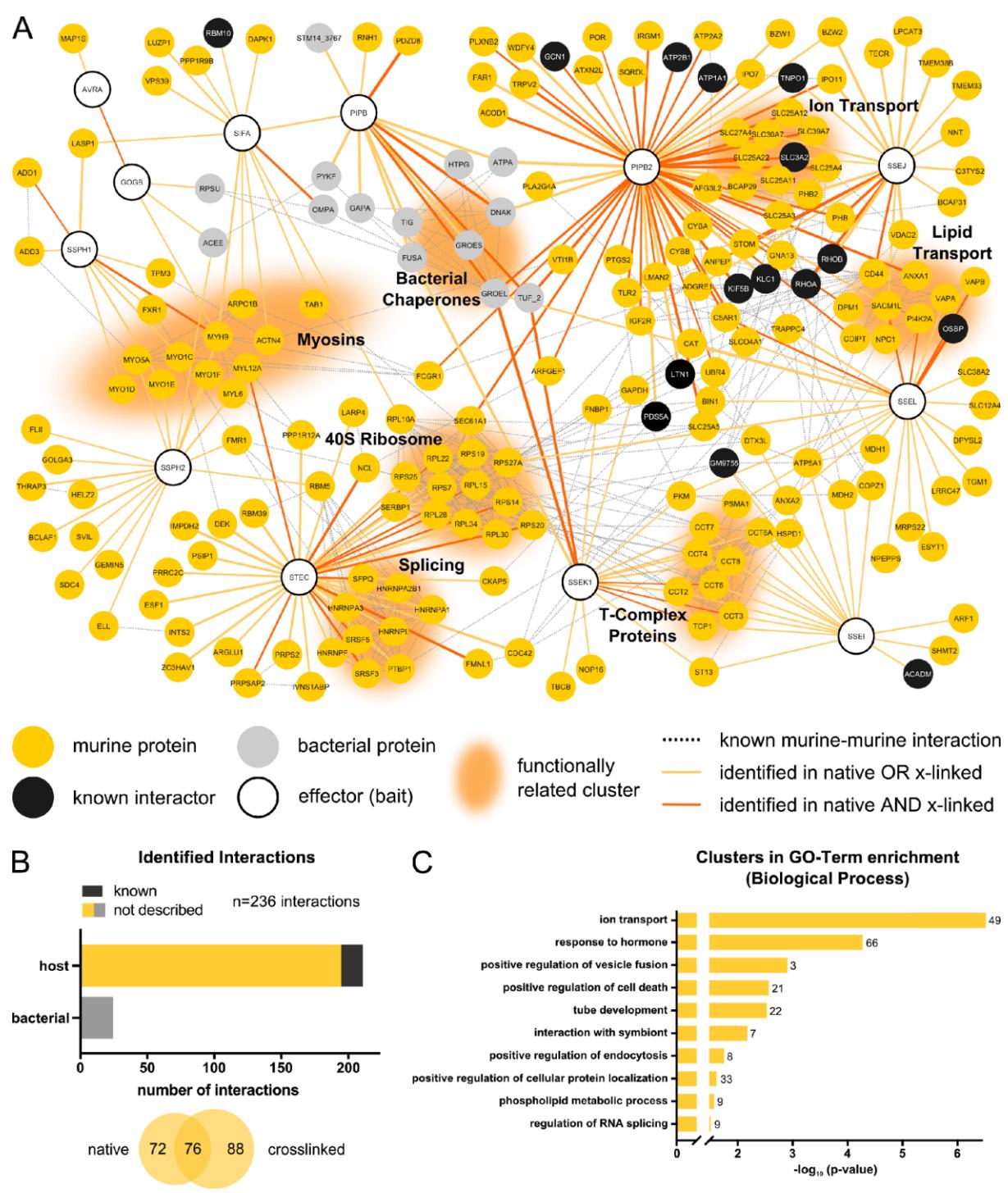
634 **Code availability**


635 The code and pipelines used for data analysis are available upon request.

636 **Declaration of interest**

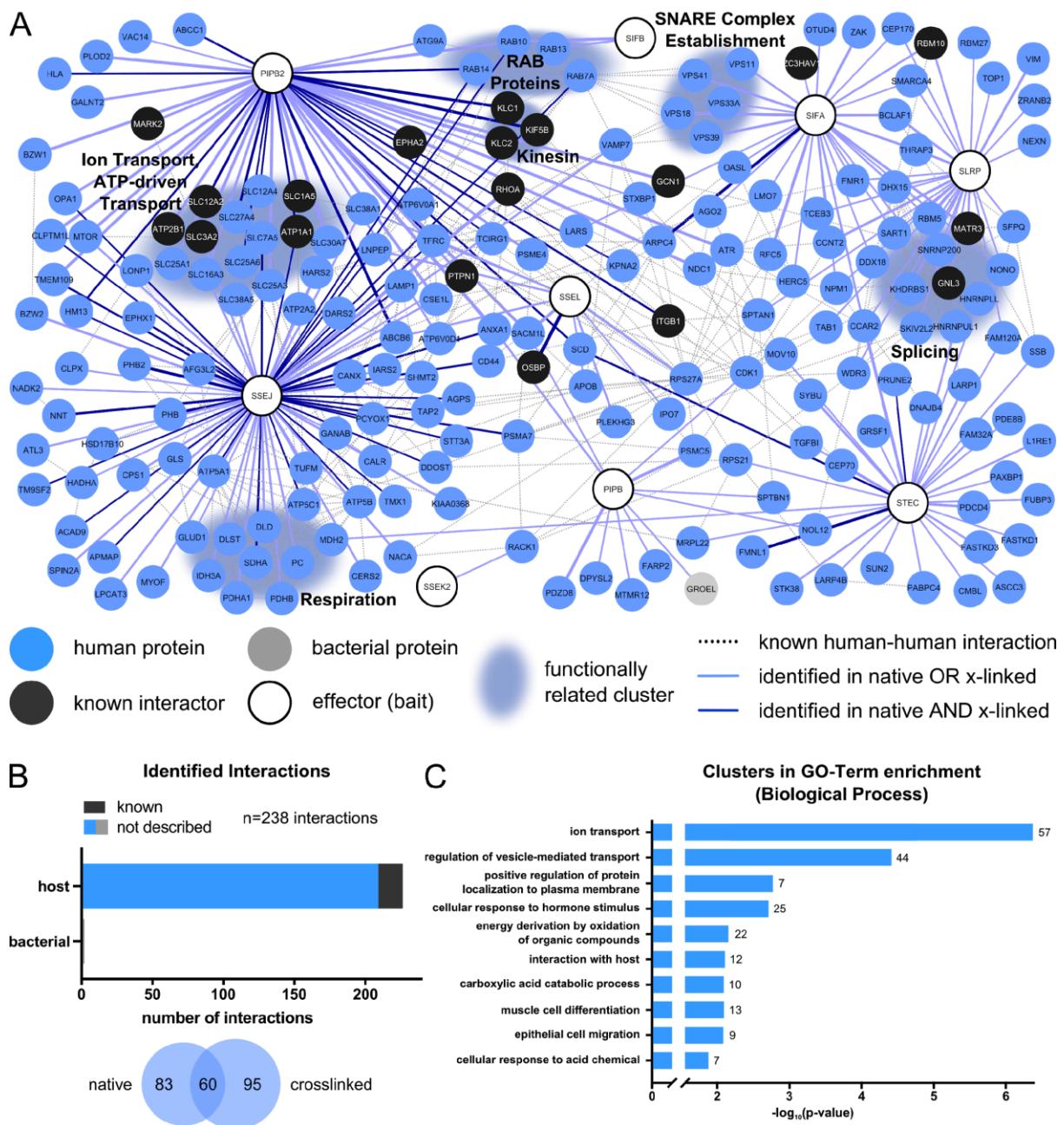
637 The authors declare no competing interests.

638 **Figure legends**

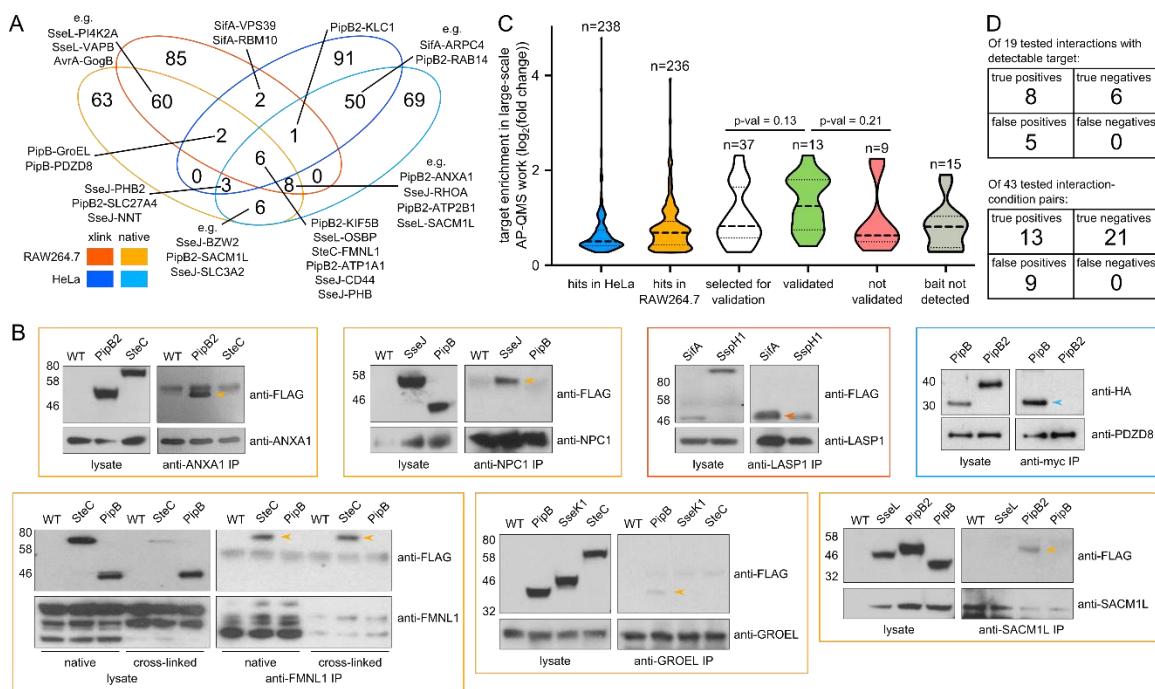

639

640

641 **Figure 1. AP-QMS pipeline for mapping effector-host protein interactions during**
642 **Salmonella infection.**

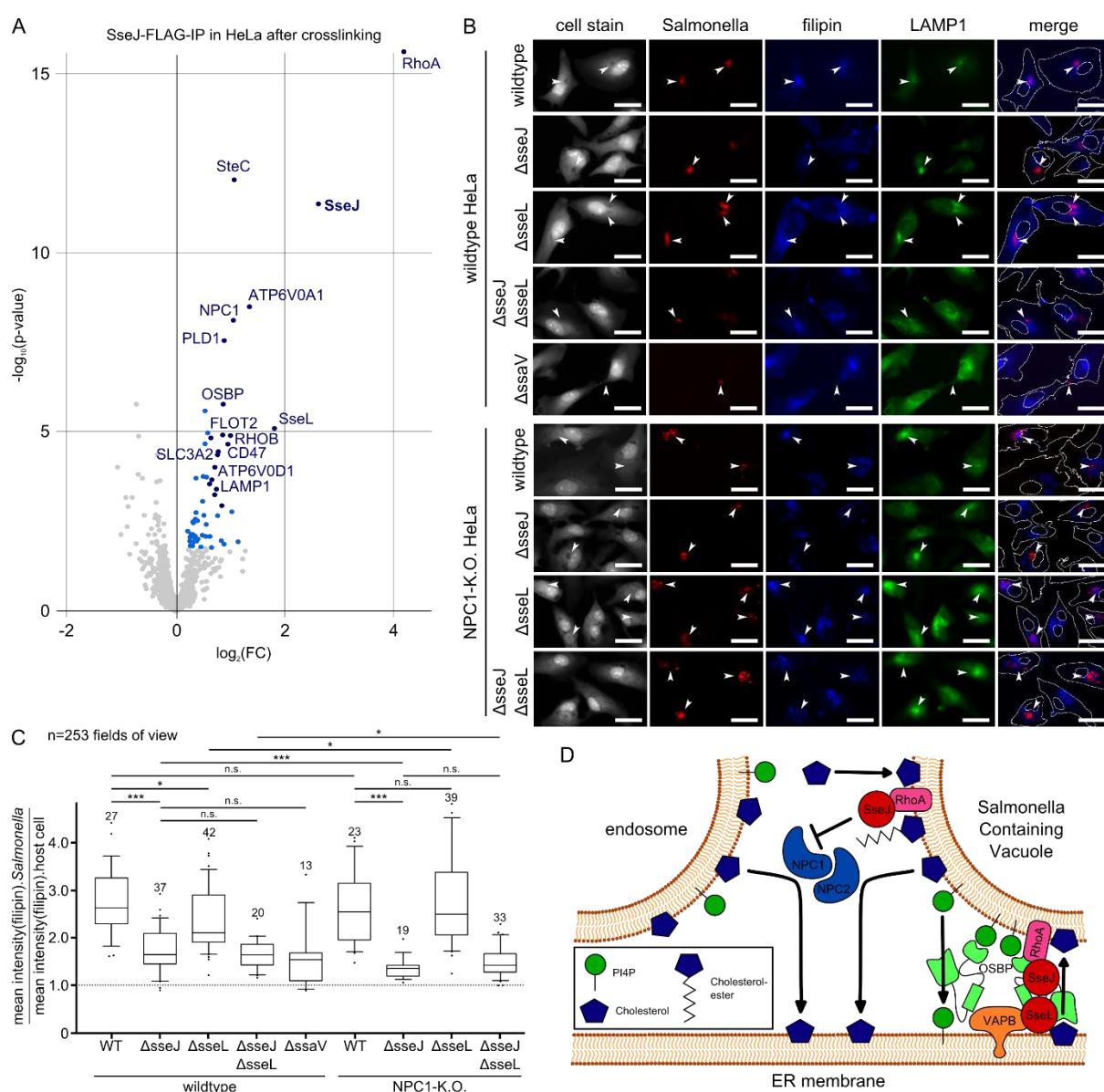

643 (A) *Salmonella enterica* Typhimurium 14028s (STm) strains engineered to express C-
644 terminally tagged effectors with STF – FLAG(2x)-TEV-STREP(3x), or internally STF-tagged
645 SifA, were used to infect HeLa and RAW264.7 cells at a MOI ~100:1 in three biological
646 replicate experiments. At 20 hpi, cells were washed with PBS, half of the samples were treated
647 with DSP crosslinker for 2h and lysed, and the other half were directly lysed. Lysates
648 containing injected effectors were used for anti-FLAG pulldown and competitively eluted with
649 FLAG peptide. Crosslinked samples were quenched prior to harvesting. Eluates from the
650 pulldowns were reduced, alkylated, cleaned up, digested by trypsin and combined in a TMT-
651 10plex labelling run. We combined elutions from nine different STF-tagged effectors and one
652 untagged wildtype background control (see Experimental Procedures for more information).
653 (B) Only proteins quantified with at least two unique peptides and identified in at least two out
654 of the three biological replicates were used in analysis. Data was checked for reproducibility
655 between replicates (Figure S2A); batch effects were removed using the Limma package,
656 variance was normalized and missing values were imputed (see Experimental Procedures).
657 Differential expression was calculated with respect to the median of the replicate (Figure S2B).
658 A protein was annotated as a 'hit' when the false discovery rate (fdr) was < 1% and exhibited
659 a fold increase of at least 20%. We further refined this list by loosening the fdr requirement to
660 < 5% if a PPI passed the FC requirement in both conditions (native and crosslinked).
661 Subsequently, only the strongest 20 PPIs per effector with respect to FC or fdr, as well as
662 PPIs detected in both the native and crosslinked pulldowns, were kept for the final hit list. All
663 analyzed data, or hits only, are listed in Table S2 and S3, respectively. Volcano plots of all
664 pulldowns can be found in Figures S3-6. PPI networks were built from hits passing the above
665 thresholds and known host functional interactions.

666 **Figure 2. STM effector-host target physical interactions in RAW264.7 macrophages.**


667 (A) Network of PPIs identified between 12 STM effectors and their target proteins in
 668 RAW264.7 cells at 20 hpi. Note, only effectors that were identified as bait in AP-QMS and that
 669 had target proteins passing the criteria described in Figure 1B are depicted in this network.
 670 Host proteins from RAW264.7 cells are shown in gold (interaction not yet described) or black
 671 (previously identified interactions; see Table S4). STM proteins that were identified in
 672 pulldowns are depicted in grey. The color of the edge between two nodes denotes the
 673 conditions interaction captured, the edge thickness is proportional to the fold change (Log_2).
 674 Functionally related clusters are grouped and annotated accordingly. The network was
 675 generated using Cytoscape version 3.7.2 (Shannon et al. 2003). Murine-murine, as well as
 676

677 bacterial-bacterial functional interactions were extracted from the built-in STRING DB version
678 11 (Szklarczyk et al. 2019) protein query for *Mus musculus* and *Salmonella* with a confidence
679 cutoff of 0.7.
680 (B) Overview of identified PPIs in RAW264.7 cells at 20 hpi. Hits are grouped according to
681 whether they are of murine or STm origin (upper histogram), or according to whether they
682 were detected in native or cross-linked pulldown samples (lower Venn diagram).
683 (C) GO-term analysis for biological processes which are enriched among all identified PPI
684 partners. GO-term clusters are ordered according to the significance of their enrichment
685 (negative logarithmic, Benjamini-Hochberg corrected for multiple testing) (Benjamini and
686 Hochberg 1995; Bindea et al. 2009) and top 10 GO-clusters are displayed. n signifies the
687 number of proteins present in the respective cluster. Enrichments were normalized to the
688 combined background proteome from AP-QMS experiments. A full list of identified
689 enrichments can be found in Table S6.

691 **Figure 3. STm effector-host target physical interactions in HeLa cells.**


692 (A) Network of PPIs identified between 9 STm effectors and their target proteins in HeLa cells
693 at 20 hpi. The same requirements and thresholds as described in Figure 2A were applied to
694 select the nodes in the network. Host proteins from HeLa cells are displayed in blue
695 (interaction not yet described) or black (previously identified interaction). STm proteins that
696 were identified in pulldowns are depicted in grey. Edge formatting and network generation
697 were performed as described for Figure 2A, with the exception that human data from STRING
698 were used for generating functional interactions between host proteins.
699 (B) Overview of identified PPIs in HeLa cells at 20 hpi - as in Figure 2B.
700 (C) GO-term analysis for biological processes which are enriched among all identified
701 interaction partners – performed and shown as in Figure 2C.

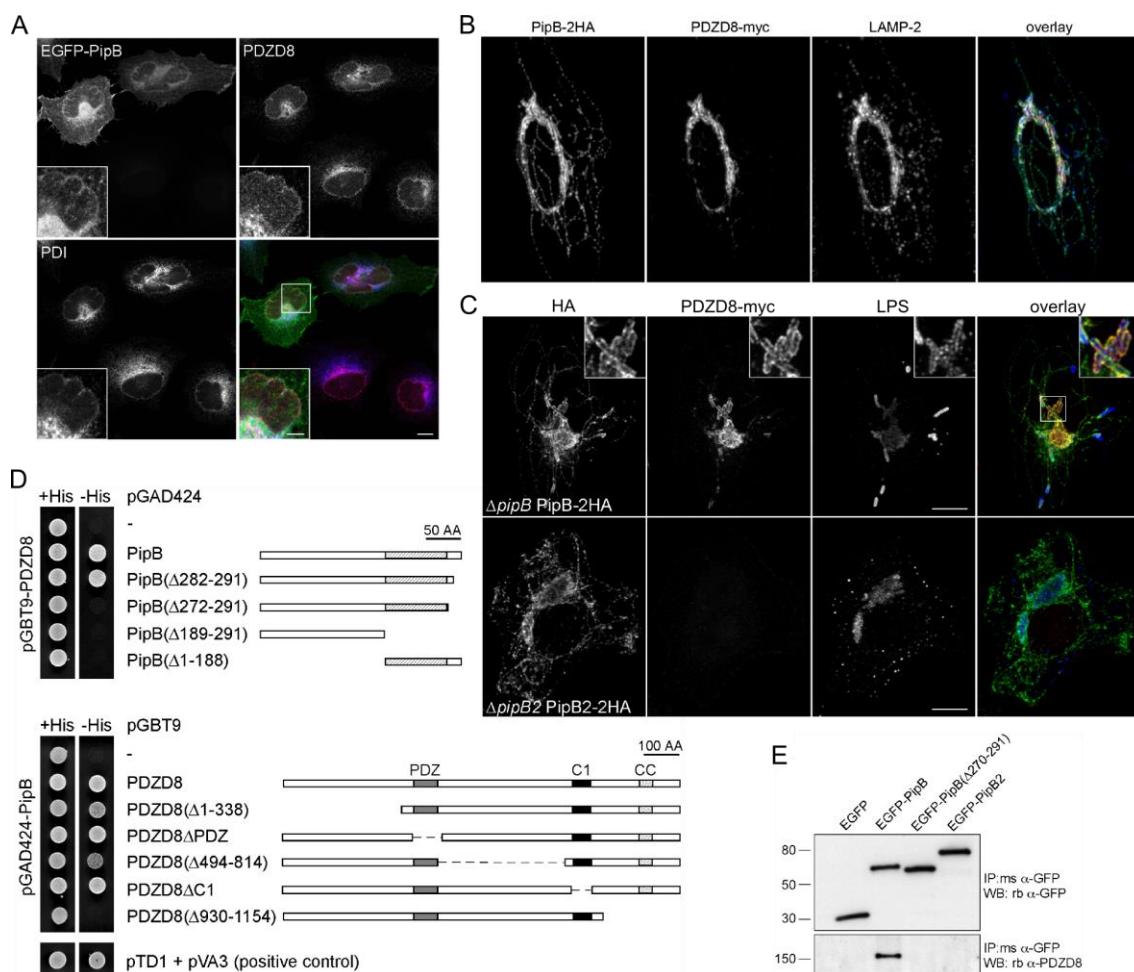
702

703 **Figure 4. Comparison of *Salmonella* interactomes in RAW264.7 and HeLa cells, and**
 704 **reciprocal PPI validation.**

705 (A) Venn diagram comparison of PPIs across the two cell lines and conditions.
 706 (B) Reciprocal pulldowns using antibodies specific to host targets were used to validate PPIs
 707 detected in the AP-QMS screen. Antibodies to host proteins were added to Triton-X100 (0.1%)
 708 solubilized and centrifuged host cell lysates infected with indicated tagged effector strains for
 709 20 h. Antibodies were then bound to Protein A/G beads, washed and eluted by boiling in
 710 Laemmli buffer. Effectors with similar expression levels were used in parallel pulldowns as
 711 negative controls. The PipB-PDZD8 reciprocal pulldown was performed by infection of HeLa
 712 cells expressing transfected myc-tagged PDZD8 with STm Δ pipB cells expressing PipB-2HA
 713 in *trans*; Δ pipB2 expressing PipB2-2HA in *trans* was used as a negative control. For each
 714 reciprocal pulldown, two independent experiments were performed, except for LASP1 and
 715 GroEL pulldowns, which were performed once. Pulldown results were visualized by western
 716 blots with an antibody against the epitope tag fused to STm effector (anti-FLAG or anti-HA).
 717 One exemplary blot per interaction is shown, all blots and raw images are located in the
 718 Supplementary Material. Colored box around the Western Blot image indicates the cell
 719 background and condition tested. Validated interactions are indicated by arrows.
 720 (C) Violin plots of \log_2 fold enrichments in AP-QMS for all effector-target proteins selected to
 721 be tested by reciprocal pulldowns using the host protein as bait (white), those that could
 722 (green) or could not (red) be validated, and those where the bait was not detected in the
 723 reciprocal pulldown (grey). Dotted lines indicate median (bold) and interquartile range (light).
 724 For significance testing, two-sided T-test with Welch correction was used, p-values are
 725 indicated. For comparison, the enrichments of all interactions identified in HeLa cells (blue)
 726 and RAW264.7 (orange) are shown. All tested interactions, their fold enrichments, as well as
 727 the respective results of reciprocal pulldowns are summarized in Table S8.
 728 (D) Tables summarizing the validation outcome with respect to the total number of assessed
 729 interactions. In the first table, interactions are considered irrespective of condition or cell line,
 730 i.e. an interaction is validated if it can be reproduced in at least one condition/cell line, in the
 731 second case each cell line and condition is taken as separate experiment.

732

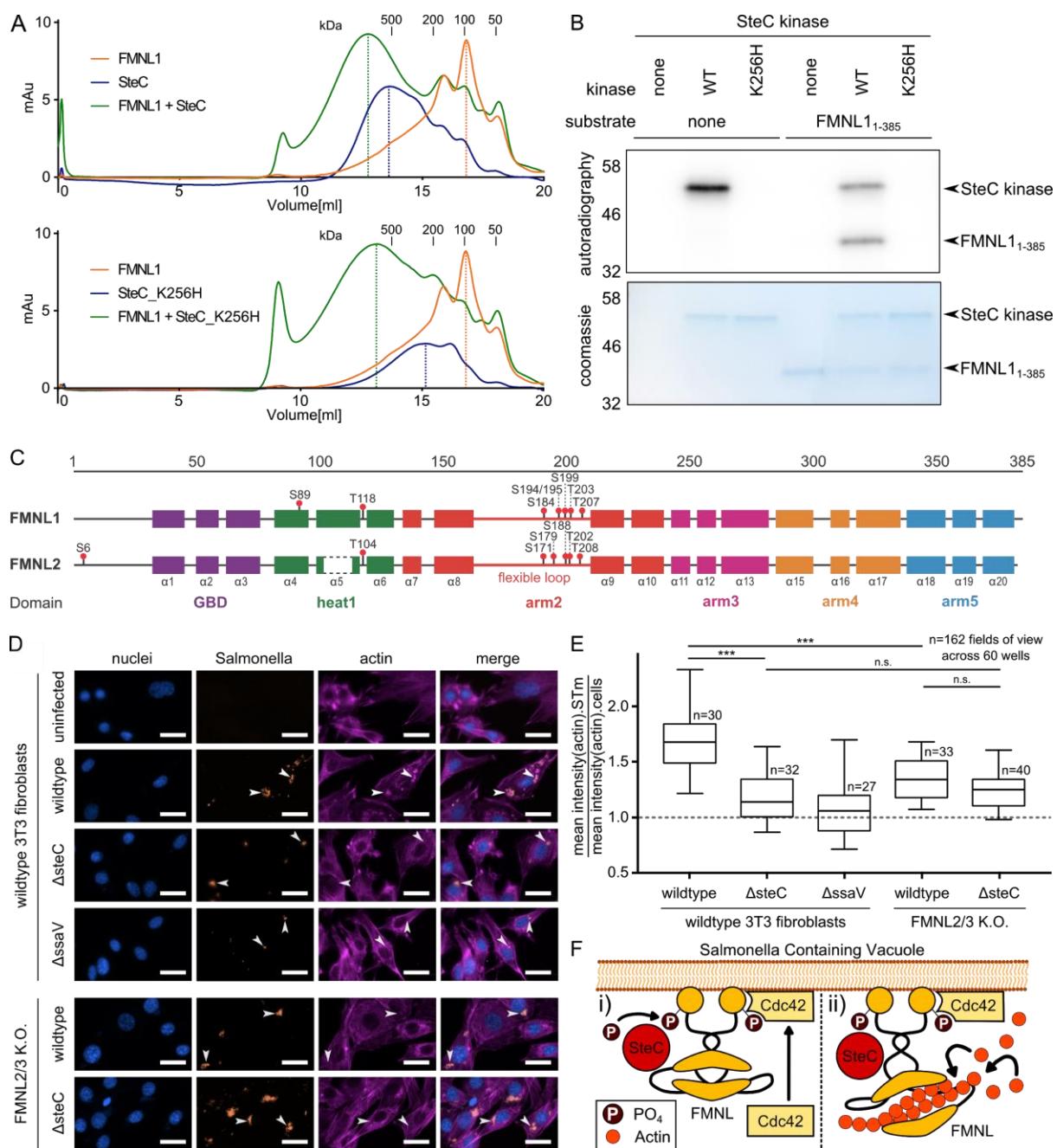
733 **Figure 5. SseJ and SseL influence intracellular cholesterol trafficking.**


734 (A) Volcano plot showing enrichments after crosslinked pulldown of STF-tagged SseJ in HeLa
 735 cells at 20 hpi compared to untagged control (wildtype infection). Three replicates for SseJ-
 736 STF and wildtype were measured in a single TMT run. Dark blue: FC > 1.5, p-value < 0.001;
 737 light blue: FC > 1.2, p-value < 0.01. Apart from the bait (SseJ), previously described interaction
 738 partners RhoA and OSBP, a number of new host targets, and the STm effectors SseL and
 739 SteC are significantly enriched. All hits are summarized in Table S9.

740 (B) Representative microscopy images (20x magnification) at 12 hpi with mCherry-expressing
 741 STm strains in HeLa cells (wildtype and NPC1-knockout). Draq5 staining is displayed in grey,
 742 STm in red, filipin (stains unesterified cholesterol) in blue and LAMP1 in green. Arrows indicate
 743 the location of STm microcolonies across the fluorescence channels. The last column displays
 744 a merge of mCherry and filipin signals, with the outlines of the cell periphery and the nuclei
 745 drawn in white. Scale bar: 30 μ m.

746 (C) Quantification of B. A total of 253 manually inspected fields of view across two independent
 747 experiments with four technical replicates in each run, were analyzed. For quantification, the
 748 average filipin intensity in regions of co-localization of intracellular STm with LAMP1 staining

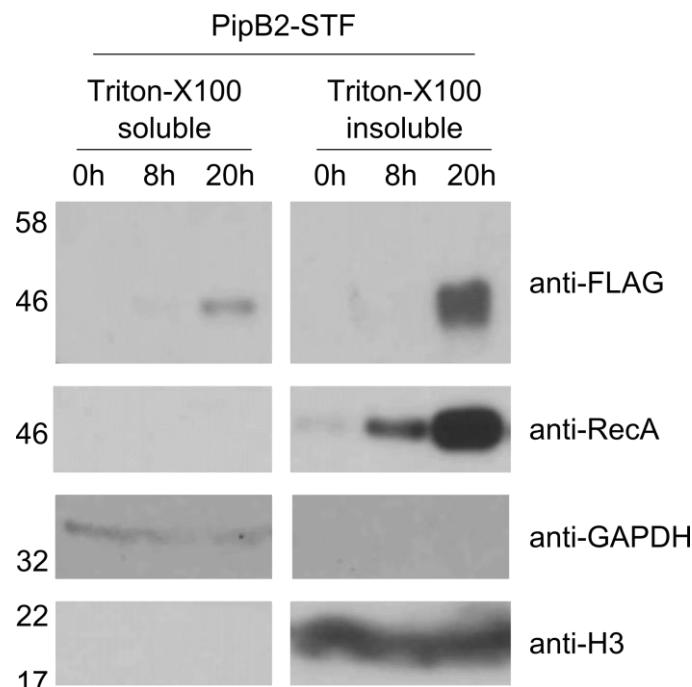
749 (to exclude cytosolic bacteria) was divided by the average filipin intensity measured within the
750 cell mask. The analysis was performed by field view (n shown in boxplots). Field of views
751 contained on average 20 infected cells. Boxplots (median and interquartile range) with
752 whiskers spanning Q10 to Q90 are displayed. For statistical analysis, T-test with Welsh
753 correction was used and significance indicated as follows ***: p-value < 0.001, *: p-value <
754 0.05, n.s.: not significant (p-value > 0.05).


755 (D) Model of the interdependence of SseJ, SseL and cellular targets in cholesterol trafficking
756 during infection. NPC1 and NPC2 are involved in recycling cholesterol from endosomes, as
757 well as presumably from the SCV, thereby replenishing the pool of cholesterol in other
758 compartments, such as the ER. The presence of cholesterol in the ER membrane provides a
759 substrate pool for OSBP, which transports cholesterol to the TGN (and presumably to the
760 SCV) in exchange for PI4P. This directional cholesterol trafficking is presumably enhanced
761 mainly by SseJ, and to a lesser extent by SseL. In addition to its binding to OSBP, SseJ, which
762 localizes to the SCV in a RhoA-dependent manner, has been shown to bind cholesterol
763 independently of other factors (Nawabi, Catron, and Haldar 2008), which is in line with our
764 finding that SseJ is the primary effector in cholesterol recruitment to the SCV. The role of SseL
765 in enhancing cholesterol trafficking to the SCV is NPC1-dependent, but does not necessarily
766 rely on direct PPI.

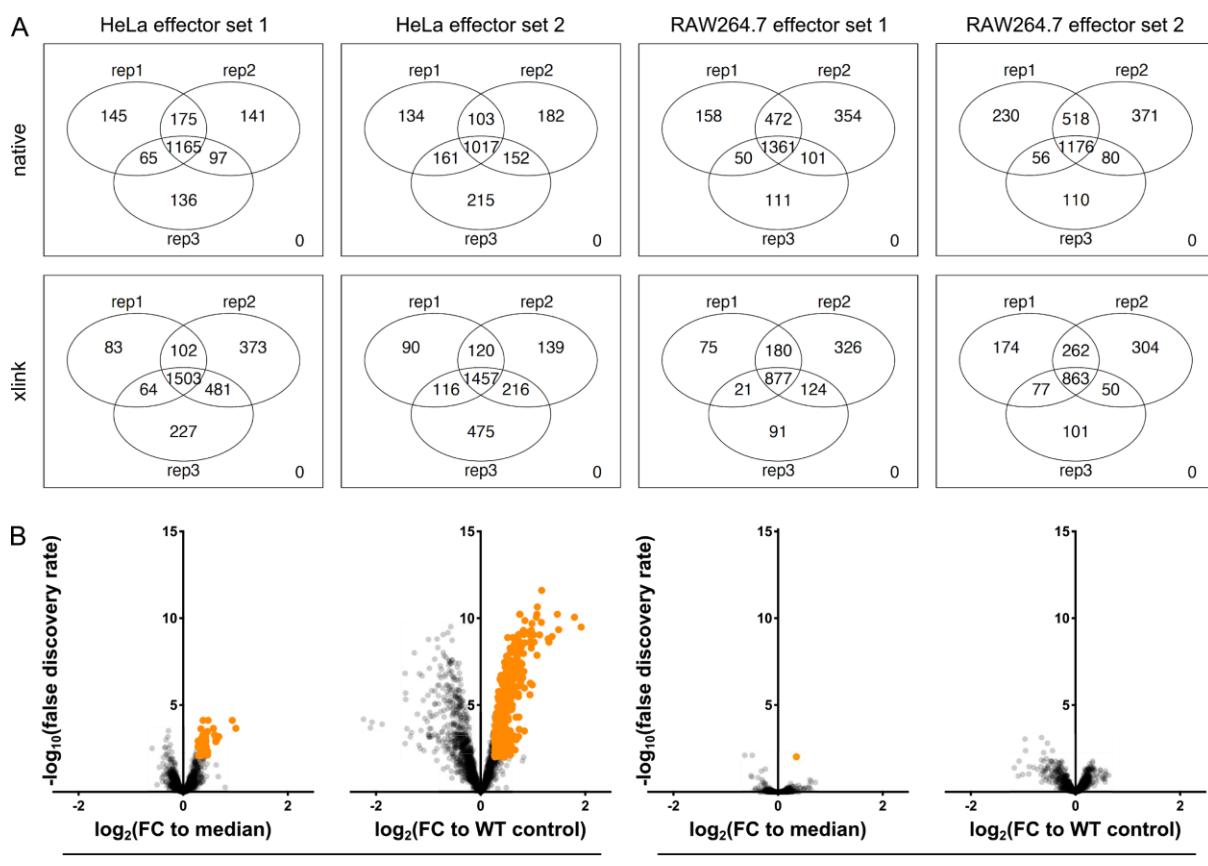
767

768 **Figure 6. PipB recruits PDZD8 to the SCV during infection.**

769 (A) Immunofluorescence microscopy of EGFP-PipB, endogenous PDZD8 (stained with
770 antibody) and Protein Disulphide-Isomerase (PDI) shows co-localization of these proteins at
771 the ER after transfection of HeLa cells. Main scale bar: 5 μm, and the inset: 2 μm.
772 (B) Fluorescence microscopy image showing that HA-tagged PipB localizes to the SCV and
773 SIFs, as shown by staining for LAMP-2. HeLa cells were transfected with PDZD8-myc and
774 infected with STm Δ pipB, carrying a plasmid expressing PipB-2HA, and imaged at 12 hpi.
775 PDZD8 co-localizes at the SCV surface, yet not along the SIFs. Scale bar: 5 μm.
776 (C) Fluorescence microscopy of HA-tagged PipB and PipB2 with myc-tagged PDZD8 and LPS
777 to stain *Salmonella*. HeLa cells transfected with PDZD8-myc and infected with STm Δ pipB
778 pPipB-2HA or Δ pipB2 pPipB2-2HA, 12 hpi. Localization of PDZD8 to the SCV is dependent
779 on PipB expression *in trans*, but not PipB2. Scale bar: 5 μm.
780 (D) Yeast two hybrid assay with truncated versions of PipB or PDZD8. Direct interaction
781 between the two proteins, as indicated by growth in -His conditions, is abolished by deletion
782 of the 20 amino acid C-terminus of PipB. Numbers indicate the deleted residues. In PDZD8,
783 deletion of the PDZ- or C1-domains does not impair interaction with PipB, but deletion of the
784 225 C-terminal amino acids does.
785 (E) Western Blot after immunoprecipitation from HeLa cells transfected with EGFP, EGFP-
786 PipB, EGFP-PipB(Δ 270-291) and EGFP-PipB2 fusions. Anti-GFP immunoprecipitation was
787 analyzed by immunoblotting for endogenous PDZD8 using anti-PDZD8 peptide antibodies and
788 anti-GFP antibodies. The PipB-PDZD8 interaction requires the last 20 amino acids of PipB.
789 PipB2 was used as negative control to test the PipB-PDZD8 interaction specificity.

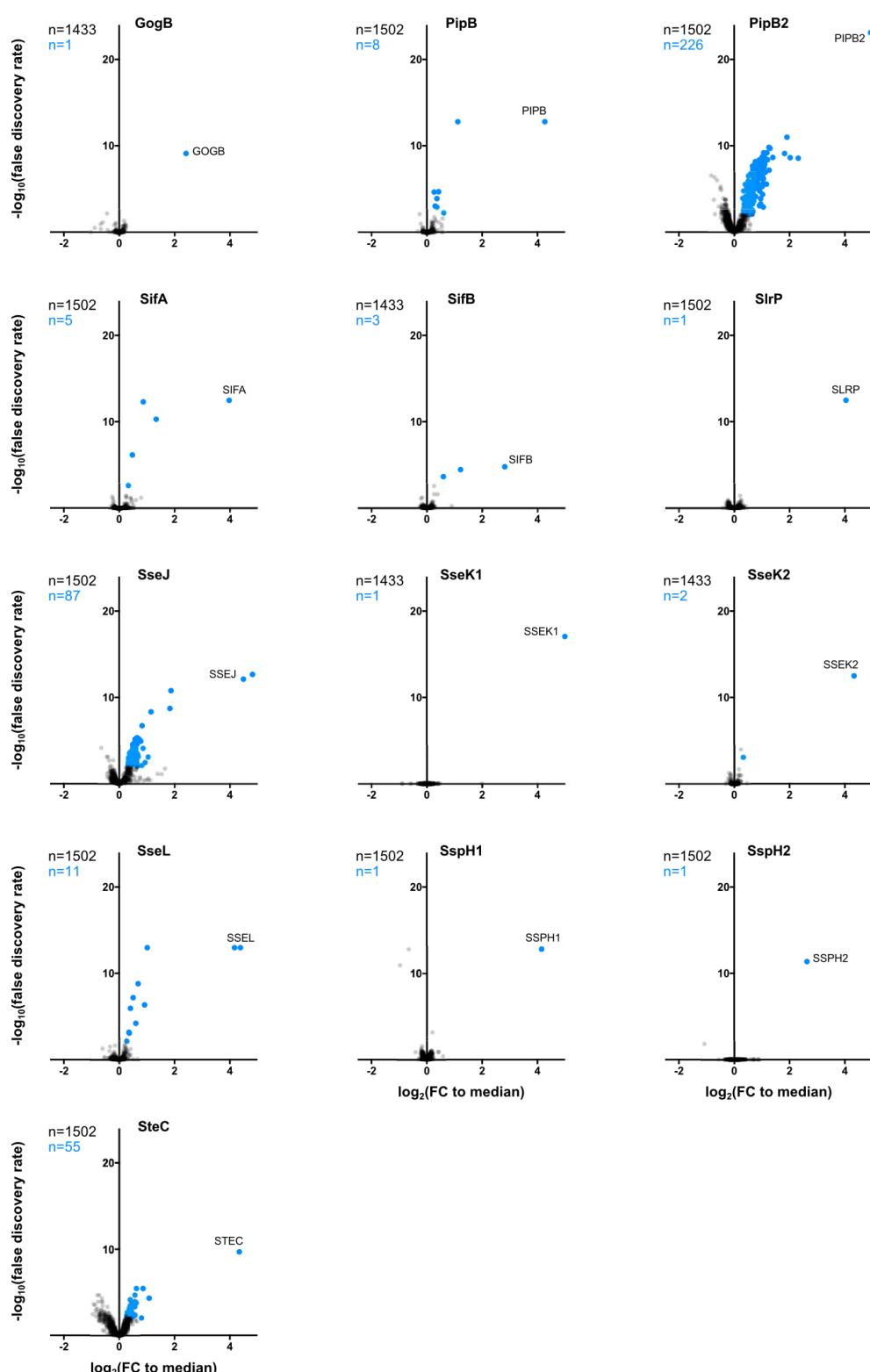

791 **Figure 7. SteC directly targets FMNL proteins to promote actin cytoskeleton**
792 **rearrangements.**

793 (A) Size exclusion chromatograms obtained from purified recombinant FMNL1₁₋₃₈₅ (orange
794 traces), SteC (blue trace, upper panel) or catalytically inactive SteC_{K256H} (blue trace, lower
795 panel). Pre-incubation of FMNL1₁₋₃₈₅ with SteC (green trace, upper) or SteC_{K256H} (green trace,
796 lower). A shift in elution volume in the mixed sample compared to the individual purified
797 proteins, as indicated by the dotted lines demonstrates direct interaction of both SteC and
798 SteC_{K256H} to FMNL1. Retention times corresponding to specific molecular weights were
799 determined using Bio-rad protein standard (1.35 - 670 kDa).

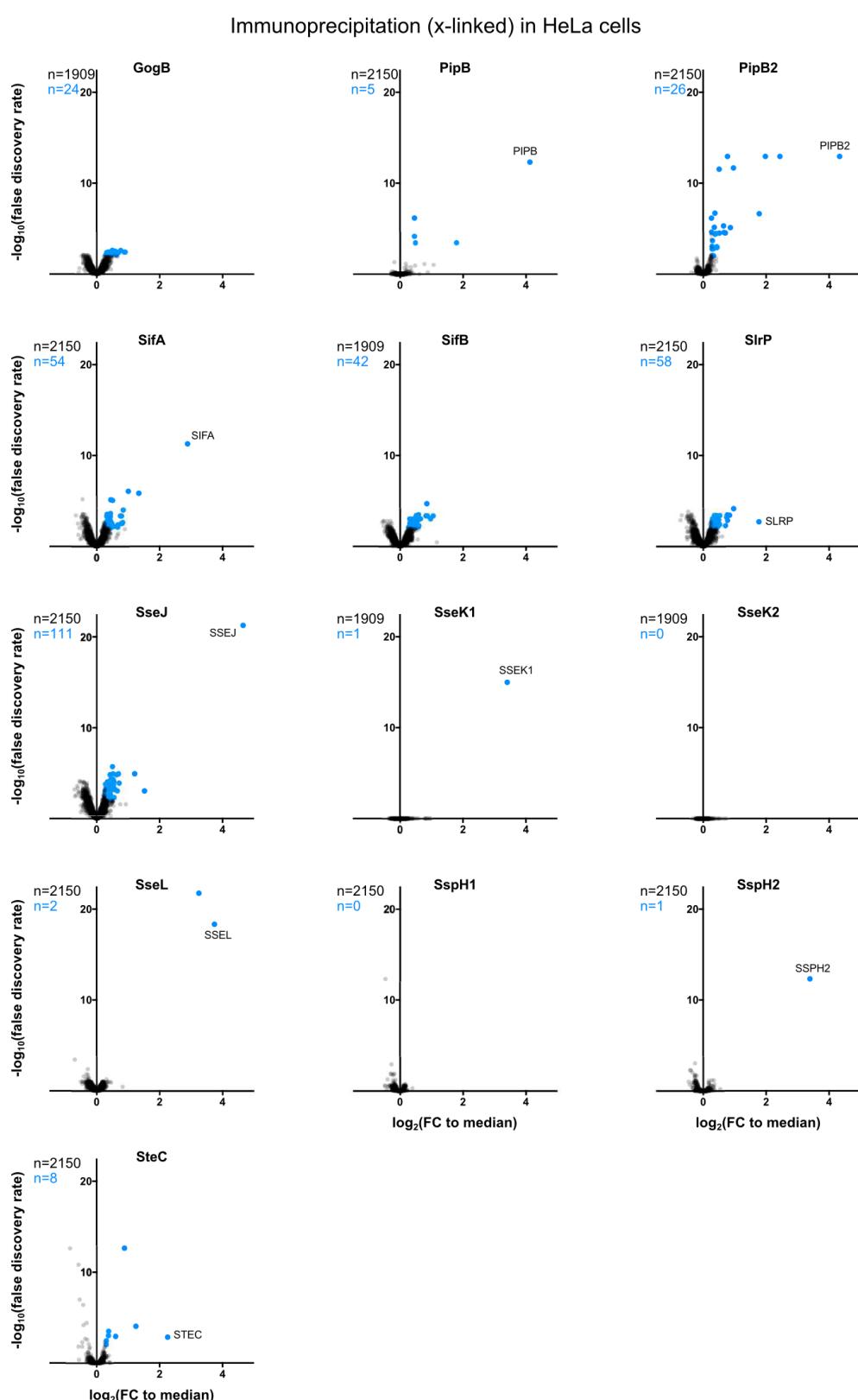

800 (B) Autoradiography after *in vitro* kinase assay. FMNL1₁₋₃₈₅ was purified and incubated with
801 purified SteC kinase, as well as SteC_{K256H} in the presence of radioactively labelled [³²P]-γ-ATP.
802 Samples were separated by SDS-PAGE, transferred to a PVDF membrane and imaged in a

803 phosphoimager. Protein inputs were similar as shown by Coomassie blue staining. Only
804 catalytic active SteC is capable of autophosphorylation, as well as phosphorylating FMNL1 *in*
805 *vitro* (bands indicated by arrows).
806 (C) Protein maps of FMNL1 and FMNL2, including functional regions and secondary structure
807 elements, as well as phosphosites identified in the *in vitro* kinase assay, followed by
808 phosphoproteomics. Comparison between the two maps shows that phosphorylation by SteC
809 occurs mostly in the flexible loops of FMNL1 and FMNL2. Results are summarized in table
810 S10 (also SteC autophosphorylation sites).
811 (D) Representative fluorescence microscopy images after infection of 3T3 fibroblasts (8 hpi)
812 with different mCherry-expressing STm strains. Images were obtained after staining with DAPI
813 (blue) and phalloidin (purple). Data from three independent experiments for FMNL2/3
814 knockout cells (in all experiments, both clones, 9.10 and 46.20 described in (Kage, Steffen, et
815 al. 2017) were used, each in 20 wells per experiment), and two independent experiments for
816 wildtype 3T3 fibroblasts spanning 162 fields of view (20 infected cells on average per view).
817 Representative images are shown, and corresponding quantification is displayed in E. Arrows
818 indicate intracellular STm microcolonies, as well as their position in other fluorescence
819 channels. Scale bar: 30 μ m.
820 (E) Quantification of average actin signal intensity at the site of STm microcolonies divided by
821 overall average actin signal intensity as a measure of co-localization between actin and STm.
822 A total of 162 fields of view across 60 wells were analyzed and are here displayed as boxplots.
823 Boxplots are drawn as in Fig. 5c. For statistical analysis, T-test with Welsh correction was
824 used and significance is indicated ***: p-value < 0.001, n.s.: p-value > 0.05.
825 (F) Model of SteC-FMNL interaction and functional relationship: (i) SteC binds FMNL subfamily
826 formins directly, and independently of its catalytic activity, and is necessary and sufficient for
827 its phosphorylation. (ii) The interaction between phosphorylated FMNL formins and Cdc42
828 induces actin polymerization (Kühn et al. 2015), and explains the actin bundling phenotype
829 (as observed in fluorescence microscopy of infected 3T3 fibroblasts).

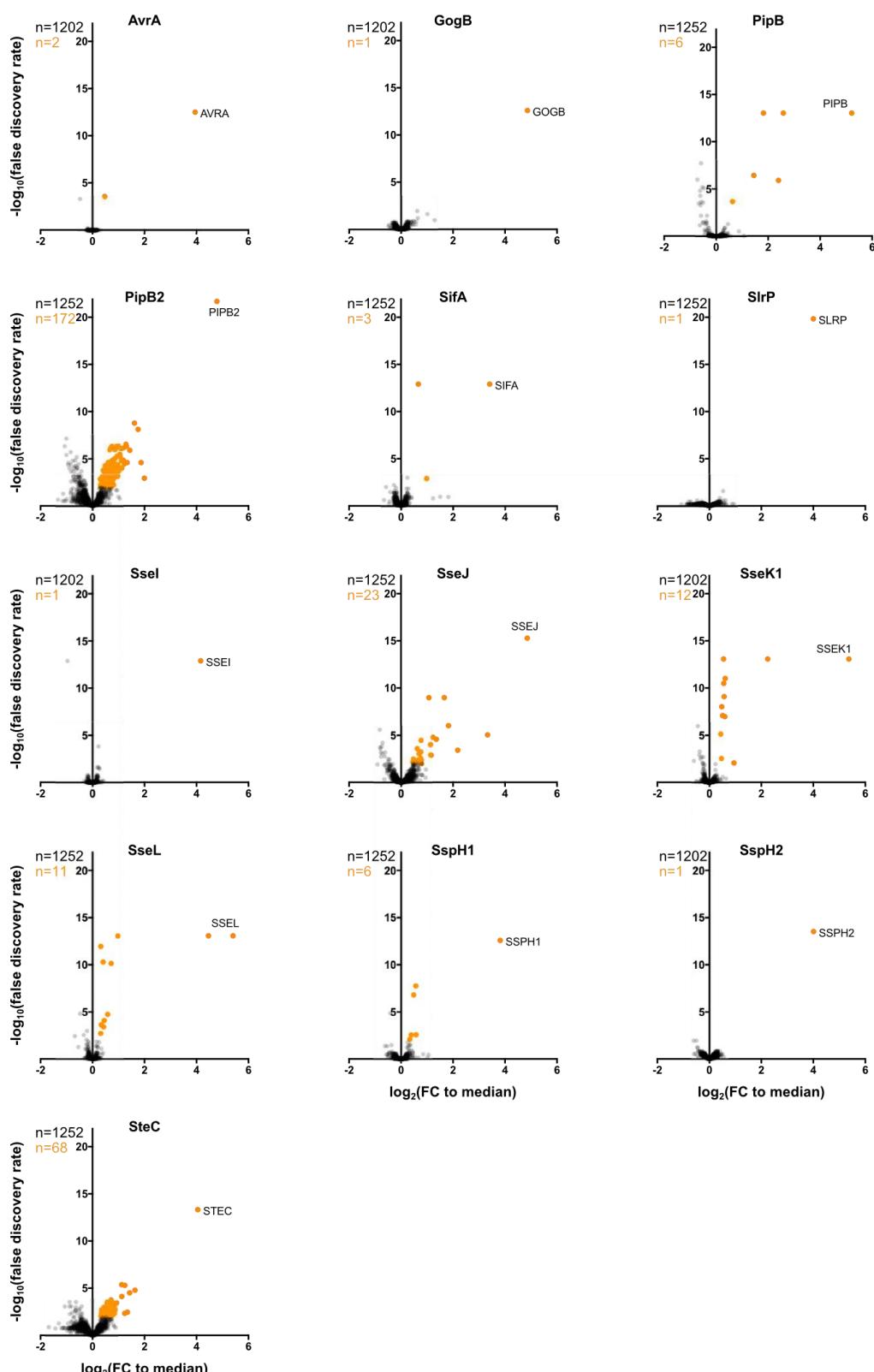
830 **SUPPLEMENTARY FIGURE LEGENDS**


831
832 **Figure S1.** Time-dependent effector expression and translocation of PipB2 probed by Western
833 Blot. RAW264.7 were infected with PipB2-STF expressing STm. 0 hpi, 8 hpi and 20 hpi, cells
834 were lysed in 0.1 % Triton-X100 and the soluble (cytosolic) and insoluble (nuclei, STm)
835 fractions were separated by centrifugation. Probing with anti-FLAG antibody shows presence
836 of the effector PipB2-STF in the soluble and insoluble fractions. As loading controls, anti-RecA
837 (bacterial), anti-GAPDH (cytosolic) and anti-H3 (nuclei) were used. Time-dependent
838 expression and translocation was assessed in one experiment.

839 **Figure S2.** Replicate reproducibility and comparison of normalization to untagged control (WT)
840 with median. (A) Venn diagrams summarizing the number of proteins identified in the different
841 replicates of all TMT10 runs. Effector set 1 and 2 refers to the two 10-plexes (WT + 9 effectors)
842 in which the 20 effectors were split. Only proteins with at least two unique peptides were
843 considered and only those in at least 2 replicates were used for further analysis. (B) Volcano
844 plots showing fold enrichment for targets identified in RAW264.7 after x-linked (left panels) or
845 native (right panels) pulldown of SteE-STF at 20 hpi (as an example). Fold changes (\log_2) for
846 each protein were calculated by dividing the abundance (signal sum) per TMT channel, per
847 run, by either the median abundance of a given protein across the entire TMT run (first and
848 third panel) or by the abundance of the respective protein in the untagged control (second and
849 fourth panel). Thresholds for hit calling was set to a False Discovery Rate (fdr) of 1% and a
850 Fold Increase of >20% (Fold Change 1.2) (\log_2). Hits are colored orange and non-hits are
851 displayed in grey. Using normalization with respect to untagged wildtype (WT) control (left 2
852 panels) displays worse signal-to-noise ratio compared to median normalization (right 2
853 panels). This is especially true for crosslinked samples.

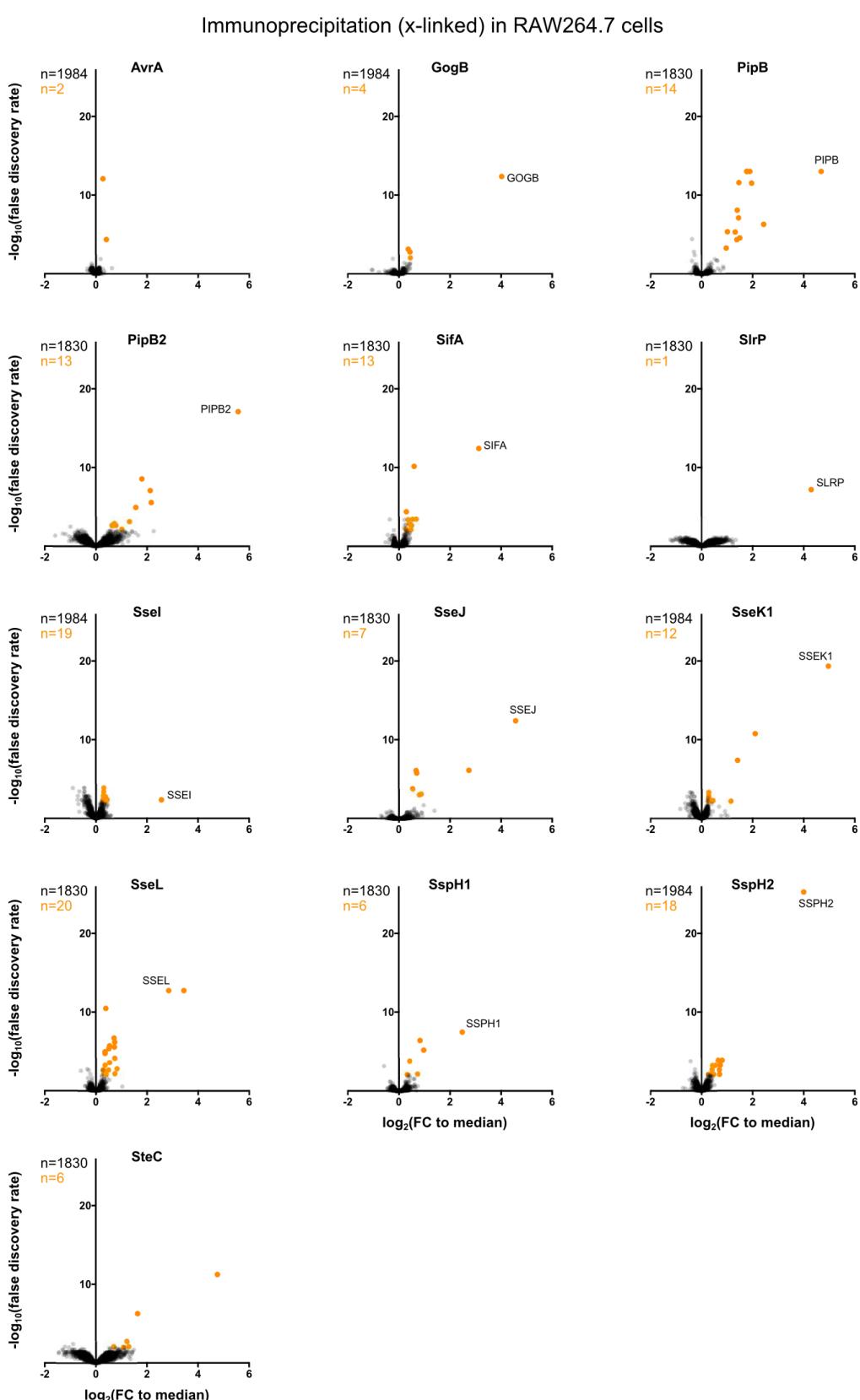

855

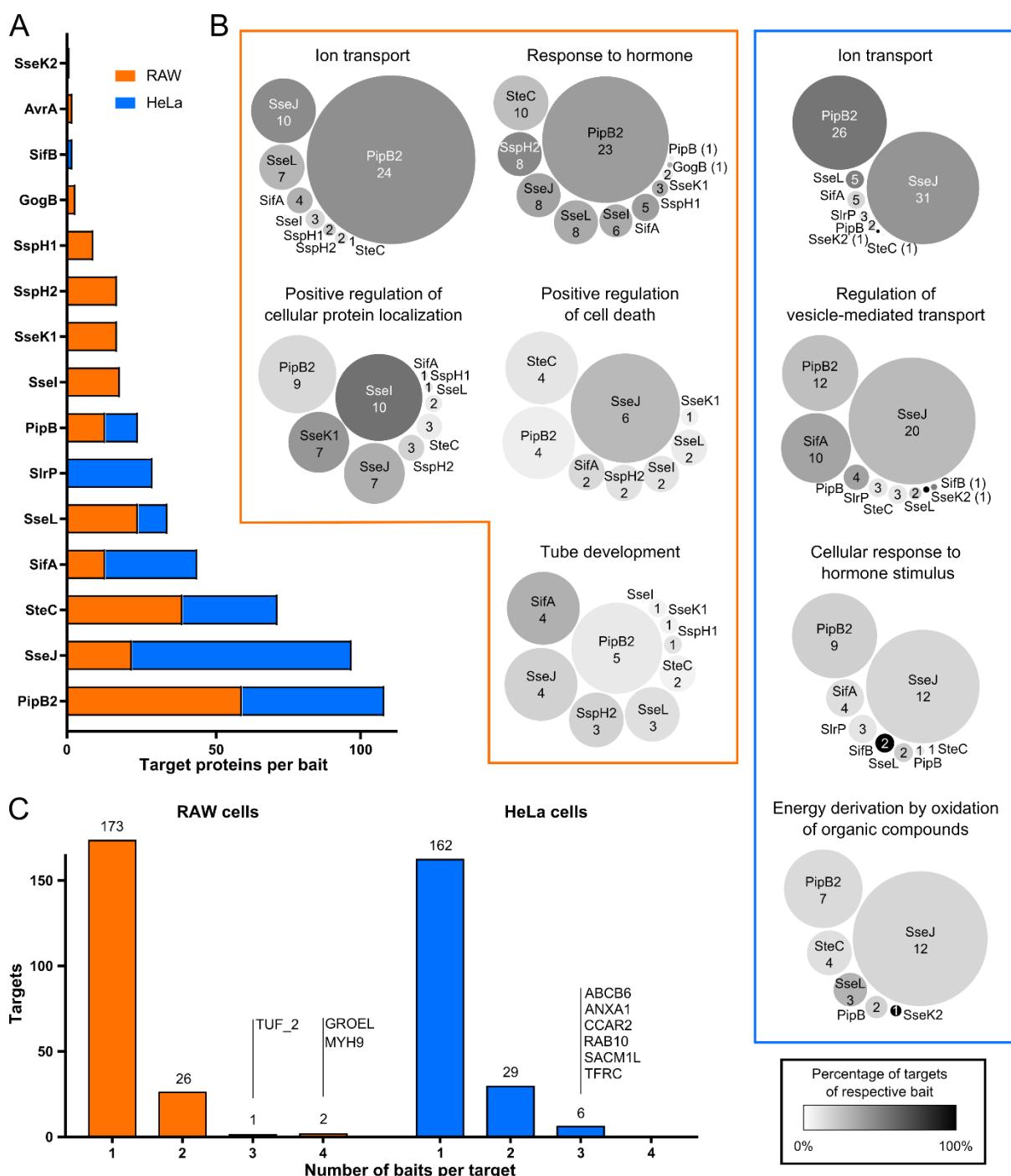
Immunoprecipitation (native) in HeLa cells



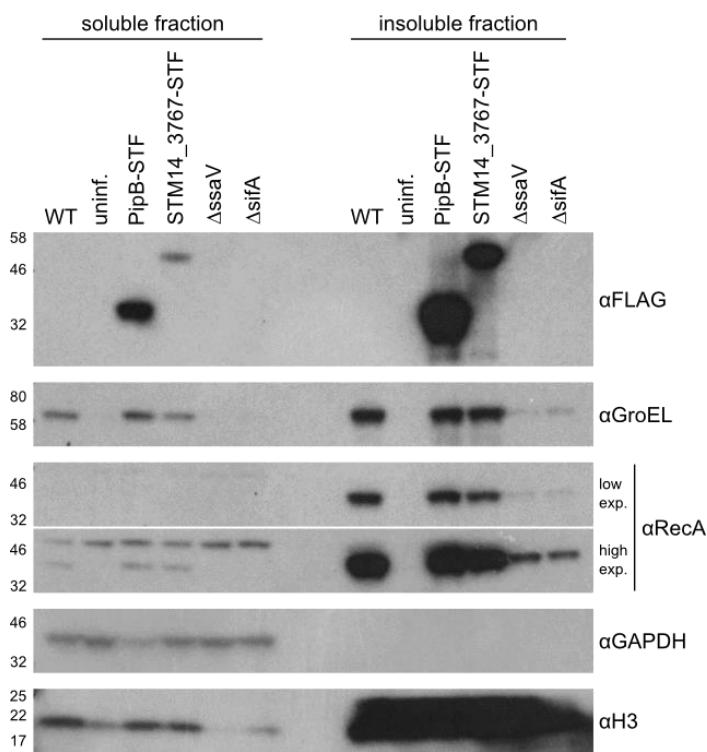
856

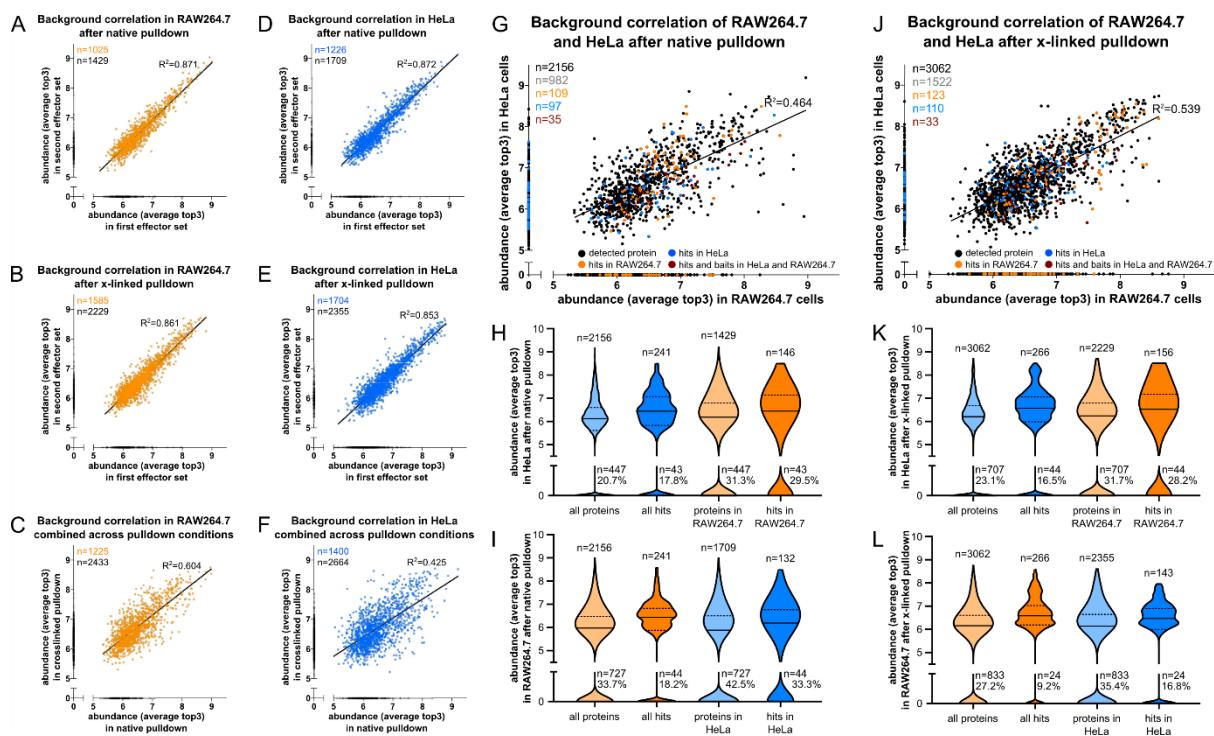
857 **Supplementary figure S3.** Volcano plots displaying fold enrichment for each protein in HeLa
858 cells after native pulldown at 20 hpi for each tested STF-tagged effector. Fold changes (\log_2)
859 for each protein were calculated with respect to the median and hits were called as described
860 in Figure S2. Hits are colored blue and non-hits are displayed in grey. See Tables S2 and S3
861 for all data or hits only for both cell types, respectively.




Immunoprecipitation (native) in RAW264.7 cells

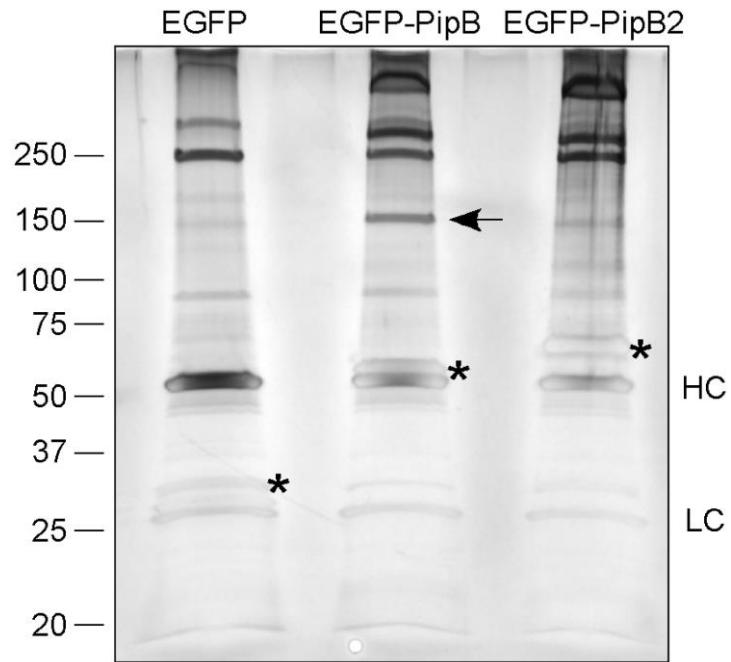
867


868 **Supplementary figure S5.** Target enrichment per effector in RAW264.7 cells after native
 869 pulldown at 20 hpi. Fold changes were calculated and hits called as described in Figures S3
 870 and S4. Hits are colored orange and non-hits are displayed in grey. See Tables S2 and S3 for
 871 all data or hits only for both cell types, respectively.

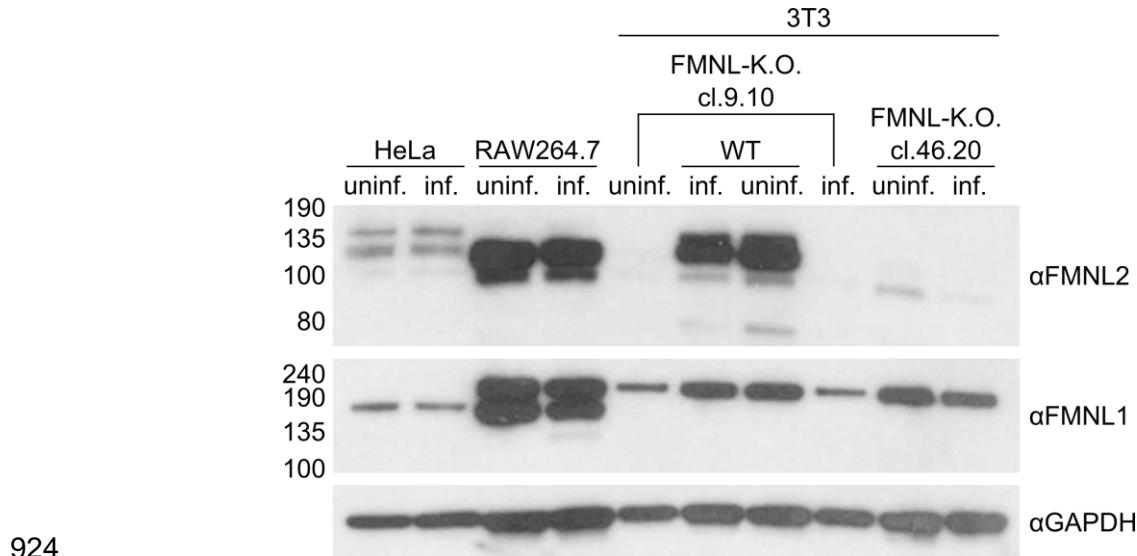


878 **Figure S7.** Connectivity within PPI networks. (A) Number of target proteins interacting with
879 each effector in RAW264.7 (orange) and HeLa (blue) cells, ordered by total number of protein
880 targets. (B) Effectors affecting various GO terms. Bubble size corresponds to the percentage
881 of targets associated with a given GO-term interacting with the respective effector (number of
882 eukaryotic protein targets is indicated). Shade of the bubble corresponds to the percentage of
883 target proteins associated with any given GO-term with respect to the total number of proteins
884 interacting with the respective effector (color as indicated in the spectrum). (C) Histogram of
885 the number of STm effector proteins (baits) interacting with each target protein in RAW264.7
886 (left side, orange) and HeLa cells (right side, blue). Most targets interact with a single bait, but
887 several can work as connection points between different effectors. Names are indicated for
888 targets with more than 3 PPIs with effectors.

889



890 **Figure S8.** Subcellular fractionation showing GroEL enrichment in the host cell cytoplasm.
891 RAW264.7 macrophages were infected with wildtype Stm, several tagged stains, a Δ sifA
892 mutant (which displays decreased vacuolar stability and less proliferation in macrophages)
893 and a Δ ssaV mutant (T3SS2 deficient). Western blot was performed after harvesting at 20 hpi
894 in Triton-X100 containing lysis buffer in a single replicate. The soluble fraction (cytoplasm) is
895 displayed on the left side, the insoluble fraction (Stm, nuclei) on the right. α FLAG antibody
896 was used to determine translocation of tagged effectors and α GroEL to determine presence
897 of GroEL in the respective fractions, loading controls: α RecA (bacterial), α GAPDH
898 (cytoplasmic fraction), α H3 (nuclear). In addition to the presence of the effector protein, PipB,
899 in the soluble fraction (previously described), we also saw the bacterial proteins GroEL and
900 STM14_3767, a bacterial itaconate CoA-transferase which interacted with PipB in the host
901 cytoplasm, yet not the bacterial loading control RecA.


902

903 **Figure S9.** Comparison of RAW264.7 and HeLa expression protein expression. Orthologs
904 were found based on protein name and using the OMA-browser (Altenhoff et al. 2018), and if
905 no ortholog was found, or if the protein was not detected in the other cell line, abundance was
906 set to 0 – more detailed information is provided in Experimental Procedures. Correlations of
907 protein abundances in various runs, as indicated in the title of each respective scatter plot. (A-
908 C) Orange (RAW264.7) and (D-F) blue (HeLa) blots from top to bottom: (A, D) batch
909 comparison in native pulldown; (B, E) batch comparison in pulldown after cross-linking; (C, F)
910 average of native pulldowns vs. average of crosslinked pulldowns. Large scatter plots: (G)
911 Native pulldown in RAW264.7 vs. HeLa. Hits are indicated: hits in both cell lines in red, hits in
912 HeLa cells in blue, hits in RAW264.7 in orange. (H, I) Violin plots as in Figure 4C summarizing
913 the protein abundance in HeLa cells (top) and RAW264.7 macrophages (bottom) after native
914 pulldown, i.e. quantification of the x- and y-axis, as well as blue and orange dots of the
915 summarizing scatterplot. (J) cross-linked pulldown in RAW264.7 vs HeLa, hits are annotated
916 as in panel G. (K, L) Violin plot summarizing panel J, quantification and display as in panels H
917 and I, respectively.

918

919 **Figure S10.** Interaction of PipB, but not PipB2, with PDZD8 after transfection. SilverQuest
920 Silver stain of proteins that have been co-IPed from HeLa cells with either EGFP, EGFP-PipB
921 or EGFP-PipB2. Protein indicated by arrow in EGFP-PipB lane was sent for LC-MS/MS
922 analysis and identified as PDZD8. Asterisks denote EGFP and EGFP-fusion proteins that were
923 immunoprecipitated in each condition. HC, heavy chain; LC, light chain.

925 **Figure S11.** Expression of FMNL1, FMNL2 and FMNL3 in all cell types used for this study.
926 Western Blot (single replicate) showing the presence of FMNLs in the various cell lines used.
927 Protein detection with αFMNL1, αFMNL2 (which also cross-reacts with FMNL3, (Kage,
928 Winterhoff, et al. 2017) and αGAPDH antibodies was performed as described in the
929 Experimental Procedures section. Cleared cell lysate (Triton-X100 soluble fraction) was
930 loaded in all cases. Infected samples (inf.) are at 8 hpi.

931 **Supplemental information file list**
932 **Figure S1.** STm effector expression and translocation timeline
933 **Figure S2.** Replicate reproducibility and fold-change calculation
934 **Figure S3-6.** Volcano plots of all TMT10-runs (S3: HeLa native, S4: HeLa: crosslinked, S5:
935 RAW264.7 native, S6: RAW264.7 crosslinked)
936 **Figure S7.** Connectivity within PPI networks
937 **Figure S8.** Subcellular fractionation showing GroEL enrichment in the host cell cytoplasm
938 **Figure S9.** Correlation of RAW264.7 vs HeLa expression data
939 **Figure S10.** Interaction of PipB, but not PipB2 with PDZD8 after transfection
940 **Figure S11.** Expression of FMNL1, FMNL2 and FMNL3 in all cell types used for this study
941
942 **Table S1.** STm tagged effector library; list of tagged effectors and performance
943 **Table S2.** STm-host Protein-protein interactions in RAW264.7 and HeLa cells. Summary of
944 all Limma results from AP-QMS work. (One sheet cell line and pulldown condition)
945 **Table S3.** STm-host Protein-protein interactions in RAW264.7 and HeLa cells. Hits from AP-
946 QMS. (One sheet for RAW264.7 macrophages and one for HeLa cells)
947 **Table S4.** Summary of previously published PPIs during STm infection that were identified in
948 our AP-QMS approach
949 **Table S5.** Functional interactions extracted from STRING DB version 11 to build the
950 interaction networks
951 **Table S6.** List of all GO-terms and GO clusters identified in RAW264.7 and HeLa cells.
952 **Table S7.** Protein abundances in RAW264.7 and HeLa cells. Entire dataset. (Protein
953 abundances as detected in all different conditions, combined into one with pulldown condition
954 and cell line in the various columns)
955 **Table S8.** List of PPIs chosen for validation with reciprocal pulldown, including information on
956 log(FC) in the AP-QMS work, feasibility of target pulldown and detectability of reciprocal
957 interaction
958 **Table S9.** Limma results of separate TMT10-run focusing on SseJ (crosslinked pulldown 20
959 hpi in HeLa cells)
960 **Table S10.** Identified phosphosites in *in vitro* kinase assay of SteC with N-terminal regions of
961 FMNL1 and FMNL2
962
963 **Key Resources Tables**
964 **Table S11.** List of primers used
965 **Table S12.** List of bacterial strains used
966 **Table S13.** List of plasmids used
967 **Table S14.** List of antibodies used

968 **Experimental procedures**

969 No statistical methods were used to predetermine sample size.

970 **Media, chemicals and reagents**

971 The following chemicals and reagents used were purchased from Sigma: DMSO (cat. nr. 972 D8418), Triton-X100 (x100), heat inactivated Fetal Bovine Serum (FBS) (F9665-500ML), 973 Phalloidin ATTO-647N (65906), gentamicin (G1914); Gibco: DMEM 4.5 g/L glucose (41965); 974 Roche cOmplete mini EDTA-free protease inhibitors (11873580001); Life Technologies 975 Hoechst 33342 (H3570); Thermo Scientific Pierce™ formaldehyde 16% (w/v) (28908). 976 Antibodies are listed in table S14 including the distributor and catalog number. Bacterial 977 antibiotic selection was performed on LB agar containing ampicillin 100µg/mL or 30µg/mL 978 kanamycin at 37°C.

979 **Bacterial strains and plasmids**

980 All strains used in this study are listed in Table S12. *Salmonella enterica* subsp. *Typhimurium* 981 14028s (STm) wildtype was used to generate the tagged effector library as described below. 982 Single gene deletion mutants (Δ sseJ, Δ sseL, Δ steC, Δ prgK, Δ ssaV, Δ sifA) were struck out 983 from a single deletion collection (Porwollik et al. 2014) followed by PCR confirmation and 984 retransduction into the wildtype STm 14028s background using P22 phage. To generate the 985 Δ sseJ Δ sseL double mutant, FLP-FRT mediated excision of the antibiotic resistance cassette 986 was performed as previously described (Datsenko and Wanner 2000), followed by P22 987 transduction of the second mutated loci. Resulting double mutants were verified by colony 988 PCR. STm SL1344 wildtype, Δ pipB and Δ pipB2 strains have been described previously 989 (Hoiseth and Stocker 1981; Knodler et al. 2002, 2004). The complementing plasmids, pPipB- 990 2HA and pPipB2-2HA, are pACYC184 derivatives and have been described previously 991 (Knodler et al. 2002, 2004).

992

993 The STm 14028s tagged effector library was generated as follows. To generate the template 994 plasmid (pJPS1) we cloned the 2xSTREP-TEV-3xFLAG (STF) tag into the MCS (EcoRI- 995 HindIII) of pQE30 and designated pMZ2. The pMZ2 plasmid was then used as a PCR template 996 to amplify a 2xSTREP-TEV-3xFLAG tag together with the pKD4 kanamycin resistance 997 cassette using primers JPS26 and JPS27. This amplicon was then T/A cloned into pGEM®-T 998 Easy according to manufacturer's instructions followed by sequence verification and 999 designation as pJPS1. Purified pJPS1 was used as template DNA to amplify and introduce a 1000 2xSTREP-TEV-3xFLAG (STF) tag followed by a kanamycin resistance cassette at the C- 1001 terminus of chromosomally encoded genes via λ -red recombinase (Datsenko and Wanner 1000; Uzzau et al. 2001). Clones were selected on LB agar containing kanamycin 30µg/mL 1003 and verified PCR and sequencing of the C-terminal region of the targeted gene. The resulting 1004 tagged effectors expressed the following C-terminal STF affinity tag sequence; 1005 GGAAAGWHPQFEKGGGGGGGGWSHPQFEKGENLYFQGADYKDHDGDYKDHD 1006 DYKDDDDK. See Table S1 and S12 for the complete list of effectors targeted.

1007

1008 To avoid disturbing the C-terminal prenylation motif of the effector sifA, the STF tag was 1009 chromosomally inserted within the open reading frame between residues D136 and I137 using 1010 a two-step selection method related to λ -red recombination was (Kolmsee and Hengge 2011). 1011 Briefly, to generate an STm 14028s strain amenable to pKD45 two-step selection, the 1012 endogenous STm ccdAB locus (STM14_5550 and STM14_5550) was deleted via λ -red 1013 recombination (Datsenko and Wanner 2000; Uzzau et al. 2001) using primers JPS38 and

1014 JPS39, followed by PCR verification and P22 transduction to a wildtype background and
1015 designated STm Δ ccdB::Cm. A fragment of the plasmid pKD45 (Datsenko and Wanner
1016 2000) encoding a kanamycin-resistance cassette and a ccdB toxin under the control of a
1017 rhamnose-inducible promoter was amplified using primer pairs JPS14 and JPS15 containing
1018 extensions homologous to the *sifA* locus (STM14_1400). The resulting amplicon was
1019 chromosomally integrated into STm Δ ccdB::Cm using λ -red recombination and selected on
1020 LB agar containing 30 μ g/mL kanamycin (Datsenko and Wanner 2000). Positive *sifA*::Kan-
1021 ccdB transformants were verified by PCR and tested for L-rhamnose sensitivity on M9 minimal
1022 agar. Using primers JPS28 and JPS29 and the pJPS1 plasmid as DNA template, an amplicon
1023 containing overhangs with sequence homology to *sifA* and an internal STF sequence was
1024 amplified and integrated onto the chromosome using λ -red recombinase (Datsenko and
1025 Wanner 2000). Transformants were counter-selected on M9 minimal agar containing 0.5% L-
1026 rhamnose after incubation at 30°C for 2 days and verified by PCR. A list of STF-tagged
1027 effectors generated is listed in Table S1, along with summarized test expression behavior in
1028 both HeLa and RAW264.7 cells.

1029
1030 For ectopic expression in mammalian cells, the *pipB* open reading frame was amplified from
1031 S. Typhimurium SL1344 genomic DNA with the oligonucleotides pipBGFP-N5' and pipBGFP-
1032 N3'2. The amplicon was digested with BgIII/Sall and ligated into BgIII/Sall-digested pEGFP-
1033 C1 (Clontech) to create EGFP-PipB. EGFP-PipB(Δ 270-291) was created by amplification with
1034 pipBGFP-N5' and GFPPipB-269R, digestion with BgIII/Sall and ligation into pEGFP-C1.
1035 EGFP-PipB2 has been described previously (Knodler and Steele-Mortimer 2005). PDZD8 was
1036 tagged at the C-terminus with a myc epitope for immunodetection. The coding sequence plus
1037 an upstream Kozak sequence were amplified from a PDZD8 cDNA clone, MGC:27107
1038 IMAGE:4837939 (The CCSB Human ORFeome Collection) with the oligonucleotides PDZK8-
1039 EcoRI-Kozak and NM_173791-Xho. The amplicon was ligated in EcoRI/Xhol-digested pCMV-
1040 Tag 5A (Stratagene) to create pKozak-PDZD8-myc.

1041
1042 For expression in yeast, EcoRI/BgIII fragments encoding full length, residues 1-281, residues
1043 1-271, residues 1-188 and residues 189-291 of PipB were amplified from SL1344 genomic
1044 DNA with the following oligonucleotide pairs and ligated into pGAD424 (Clontech): pGAD-
1045 PipB-1F and pGAD-PipB-291R, pGAD-PipB-1F and pGAD-PipB-281R, pGAD-PipB-1F and
1046 pGAD-PipB-271R, pGAD-PipB-1F and pGAD-PipB-188R, pGAD-PipB-189F and pGAD-PipB-
1047 291R. Full-length and fragments of PDZD8 were PCR amplified as EcoRI/Sall fragments from
1048 PDZD8 cDNA (details above). Amplicons were digested and ligated into pGBT9 (Clontech).
1049 The following oligonucleotide pairs were used: pGBT9-PDZK8-F and pGBT9-PDZK8-R for
1050 pGBT9-PDZD8, pGBT9-PDZK8-F2 and pGBT9-PDZK8-R for pGBT9-PDZD8(Δ 1-338),
1051 pGBT9-PDZK8-F and pGBT9-PDZK8-R2 for pGBT9-PDZD8(Δ 930-1154). Overlap extension
1052 PCR (Horton et al. 1989) was used to create pGBT9 constructs that were deleted for residues
1053 368-461 (pGBT9-PDZD8 Δ PDZ), residues 494-814 (pGBT9-PDZD8(Δ 494-814)) and residues
1054 841-887 (pGBT9-PDZD8 Δ C1).

1055 **Cell culture conditions**

1056 RAW264.7 macrophages (ATCC TIB-71) and HeLa epithelial cells (ATCC CCL-2) were
1057 cultured at 37°C, 5% CO₂ in DMEM containing 4.5g/l glucose (Gibco). Cells were passaged
1058 at 90% confluence and were not used beyond passage number 15. For cell passaging and
1059 seeding, media was removed, cells were washed once in pre-warmed PBS and detached by
1060 incubation in 0.05% trypsin-EDTA (for HeLa cells, Thermo Fisher, cat. Nr. 25300054) or

1061 accutase (for RAW264.7 cells, Thermo Fisher, cat. Nr. A1110501) at 37°C for ~3 min.
1062 Complete media was added to the cell suspension and cells were counted using trypan blue
1063 staining in a Biorad TC20 automated cell counter. If cells were prepared for infection, the
1064 following cell numbers were seeded 20h prior to the infection: For 96-wells (Zell-Kontakt, cat.
1065 Nr. 21315241), 7.5x10³ HeLa and 3x10⁴ RAW264.7 cells; 6-wells (Thermo Scientific, cat. Nr.
1066 10119831), 2x10⁵ HeLa and 9x10⁵ RAW264.7 cells; 15cm dishes (Greiner, cat. Nr. 639160),
1067 3.5x10⁶ HeLa and 15.4x10⁶ RAW264.7 cells. For large-scale AP-QMS experiments, five 15cm
1068 dishes were seeded per effector per condition, equaling a total cell number of ~75x10⁶ and
1069 17.5x10⁶ for cells for RAW264.7 and HeLa cells, respectively. NIH 3T3 wildtype and derived
1070 FMNL2/3 double knockout clones 9.10 and 46.20 were maintained as described before (Kage,
1071 Steffen, et al. 2017). HeLa cells harboring an NPC1 knockout were maintained as previously
1072 described (Tharkeshwar et al. 2017).

1073 **Infection of RAW264.7 macrophages and HeLa cells**

1074 For infection of RAW264.7, STm strains were cultured overnight at 37°C, washed in PBS and
1075 added to the cells at a multiplicity of infection (MOI) of 100. For infections carried out in
1076 multiwell plates, the bacteria were spun down at 170G for 5 min to increase contact between
1077 bacteria and macrophages. The infection was performed for 30 min at 37°C, after which the
1078 media containing bacteria was removed by aspiration, cells were washed once in pre-warmed
1079 PBS. Subsequently, cells were cultured at 37°C in DMEM (4.5 g/l glucose) containing
1080 100µg/ml gentamycin to kill all remaining extracellular bacteria. After 1 hr, the media was
1081 replaced with DMEM containing 16 µg/ml gentamycin for the remainder of the experiment (this
1082 also denotes time point zero). For HeLa cell infection, overnight cultures of STm strains were
1083 subcultured (300µL overnight culture in 10 ml LB Lennox containing adequate antibiotics) and
1084 cultured for 3.5 hr at 37°C in 100 ml Erlenmeyers at 45 rpm (adapted from (Steele-Mortimer
1085 2008)). For infection, a MOI of 100 was used and the infection and gentamicin protection assay
1086 were performed as described for macrophages in the previous paragraph. DMEM (1g/l
1087 Glucose) was used as growth medium.

1088 **Proteomic sample preparation for AP-QMS**

1089 For native harvesting, cells were washed twice in PBS at RT and lysis buffer (PBS, containing
1090 0.1% Triton-X100 and 1x Protease Inhibitor (cOmplete EDTA free, Roche) was added (300µL
1091 for 6-well plates, 5ml for 15cm dish). Cells were put at 4°C for 30 min while shaking gently and
1092 subsequently scraped off and resuspended by pipetting. The cell lysate suspension was
1093 centrifuged at 4°C for 15 min at 20,000G to clear the lysate. A small sample of the cleared
1094 lysate was saved as “Total” sample, the remaining lysate was directly used for
1095 immunoprecipitation. For harvesting after crosslinking, the cells were washed twice in PBS at
1096 RT and crosslinking buffer (PBS, containing 1mM DSP (Thermo Fisher, cat. nr. 22585)) was
1097 added. Crosslinking was performed for 2 hr at 4°C and quenched using 20mM Tris-Cl at pH
1098 7.5. Cells were washed twice in quenching buffer and subsequently subjected to the lysis
1099 protocol described above.

1100

1101 For pulldown of tagged STm effectors, anti-FLAG M2 affinity gel (Sigma, A2220) was used.
1102 50µL of the slurry per sample were washed twice in lysis buffer (centrifugation for 1 min at 4°C
1103 and 5000rpm). The beads were added to fresh, cleared lysate and incubated for at least 4h
1104 (native samples) or O.N. (x-linked samples) at 4°C while tumbling. After bead incubation, the
1105 suspension was spun down at 4000rpm for 10 min (4°C) and the supernatant was removed.
1106 The beads were washed four times in 1ml cooled washing buffer (PBS containing 0.01%

1107 Triton-X100), using centrifugation at 5000rpm for 1 min (4°C) for sedimentation. After the final
1108 wash, all remaining buffer was removed, and 40µL elution buffer (PBS containing 150µg/ml
1109 3x FLAG peptide and 0.05% RapiGest) was added. After 1h overhead tumbling at 4°C, the
1110 suspension was spun down at 8200rpm at 4°C and the supernatant was removed. 40µL
1111 elution buffer were added and one more round of elution was performed.

1112 **TMT-labeling of AP-QMS samples and Mass Spectrometry**

1113 Within each TMT-10plex, untagged control (wildtype), as well as 9 STF-effector strains were
1114 assessed in parallel (RAW264.7 run 1: WT, PipB, PipB2, SifA, SseJ, SseL, SspH1, SteC, SlrP,
1115 run 2: WT, AvrA, GogB, SipB, SpvC, Ssel, SseK1, SspH2, SteA, SteE; HeLa run 1: WT, PipB,
1116 PipB2, SifA, SseJ, SseL, SspH1, SspH2, SteC, SlrP, run 2: WT, AvrA, GogB, SifB, SpvC,
1117 SseF, Ssel, SseK1, SseK2, SteA). For each run, all STF-tagged effector strains were seeded
1118 and infected at the same time. Prior to MS, 1µL of the elution fractions were used in Western
1119 Blot to validate the presence of the effector bait. Total protein concentration was determined
1120 using the Pierce Micro BCA kit, according to the manufacturer's protocol. All samples were
1121 adjusted to 10 µg protein in 50 µL volume and were subsequently submitted to the EMBL
1122 Proteomics Core Facility. After reduction of disulfide bridges using 10 mM dithiothreitol at 56°C
1123 for 30 min in HEPES buffer (50 mM HEPES, pH 8.5), alkylation was performed using 20 mM
1124 2-chloroacetamide at room temperature in HEPES buffer for 30 min under exclusion of light.
1125 Samples were prepared according to the SP3 protocol (Hughes et al. 2019) and trypsinized
1126 (sequencing grade, Promega, enzyme to protein ratio 1:50) overnight at 37°C. Subsequently,
1127 peptides were recovered in HEPES buffer by collecting supernatant on magnet and combining
1128 it with a second elution wash of the magnetic beads with HEPES buffer. Peptides were labelled
1129 with TMT10plex (Werner et al. 2014) Isobaric Label Reagent (ThermoFisher) according the
1130 manufacturer's instructions. In short, 0.8mg reagent was dissolved in 42 µL acetonitrile (100%)
1131 and 4 µL of this stock were added to the samples and incubated for 1 h at room temperature.
1132 The reaction was then quenched with 5% hydroxylamine for 15 min. Samples were pooled for
1133 the TMT-10plex and then further cleaned using OASIS® HLB µElution Plate (Waters).
1134 Subsequently, offline high pH reverse phase fractionation was performed on an Agilent 1200
1135 Infinity high-performance liquid chromatography system, using a Gemini C18 column (3 µm,
1136 110 Å, 100 x 1.0 mm, Phenomenex) with 20 mM ammonium formate (pH 10.0) and 100%
1137 acetonitrile as mobile phase (Reichel et al. 2016). The first and two last fractions were
1138 discarded prior to LC-MS analysis.

1139 **AP-QMS Data acquisition**

1140 Samples were analyzed on an UltiMate 3000 RSLC nano LC system (Dionex) using a µ-
1141 Precolumn C18 PepMap 100 trapping cartridge (5µm, 300 µm i.d. x 5 mm, 100 Å) and a
1142 nanoEase™ M/Z HSS T3 column 75 µm x 250 mm C18 as analytical column (1.8 µm, 100 Å,
1143 Waters). After trapping with a constant flow of 0.1% formic acid in water at 30 µL/min onto the
1144 trapping column for 6 min, elution was carried out via the analytical column at a constant flow
1145 of 0.3 µL/min with increasing percentage of solvent (0.1% formic acid in acetonitrile): from 2%
1146 to 4% in 4 min, from 4% to 8% in 2 min, then 8% to 28% for a further 96 min, and finally from
1147 28% to 40% in another 10 min. The analytical column was coupled to QExactive plus (Thermo)
1148 mass spectrometer and mass-spec was performed according to previously described
1149 parameters (Perez-Perri et al. 2018).

1150 **AP-QMS Data analysis**

1151 IsobarQuant (Franken et al. 2015) and Mascot (v2.2.07) were used to process the acquired
1152 data. Peptide search was performed against a Uniprot *Homo sapiens* proteome database

1153 (UP000005640, for HeLa cell samples) or a Uniprot *Mus musculus* database (UP000000589,
1154 for RAW264.7 cell samples), combined with the *Salmonella typhimurium* (strain 14028s /
1155 SGSC 2262) (UP000002695) database containing common contaminants and reversed
1156 sequences. The following modifications were included in the search parameters:
1157 Carbamidomethyl (C) and TMT10 (K) as fixed modifications, acetyl (protein N-terminus),
1158 oxidation (M) and TMT10 (N-terminal) as variable modifications. Mass error tolerance was set
1159 as follows: 10ppm for the full scan (MS1) and 0.02Da for MS/MS (MS2) spectra. In addition,
1160 a maximum of two missed cleavages were allowed for trypsin, a minimum peptide length of
1161 seven amino acids was required and the false discovery rate (fdr) on peptide and protein level
1162 was set to 0.01. The output files of IsobarQuant (Franken et al. 2015) were analyzed using
1163 the R programming language (ISBN 3-900051-07-0). Only proteins that were quantified with
1164 at least two unique peptides and identified in at least two out of three biological replicates were
1165 kept for further analysis. The 'signal_sum' columns were first annotated to their biological
1166 conditions and then a median across all conditions per replicate was computed for each
1167 protein. First, potential batch-effects were removed using the 'removeBatchEffect' function of
1168 the limma package (Ritchie et al. 2015). Second, data were normalized with a variance
1169 stabilization normalization (vsn – (Huber et al. 2002)). Finally, missing values were imputed
1170 using the impute function (method = "knn") of the Msnbase package (Gatto and Lilley 2012).
1171 Limma was employed again to test for differential expression. Fold changes with respect to
1172 the median of the respective run were calculated for each protein in each pulldown. T-values
1173 from the limma output were pasted also into fdrtool (Strimmer 2008) in order to compute
1174 alternative fdrs. In case the standard deviation of the t-values deviated from 1 to a degree that
1175 no convergence of statistically significant hits was observed, the q-values from the fdrtool
1176 output were used as alternative fdrs. A protein was annotated as a 'hit' with an fdr smaller than
1177 1% and a fold increase of at least 20%; this was done for all four datasets (RAW264.7 native,
1178 RAW264.7 crosslinked, HeLa native and HeLa crosslinked) independently. This initial hitlist
1179 was then further refined in multiple steps: 1) PPIs were combined into two datasets, one for
1180 each cell line; 2) if a PPI passed the FC criterion in both conditions (native and crosslinked),
1181 the fdr requirement was loosened to $fdr \leq 0.05$; 3) the resulting PPIs were ranked according
1182 to fdr and according to FC for each effector and each condition (native and crosslinked); 4)
1183 only PPIs that were in the top 20 for either FC or fdr were called "hit"; 5) in addition, all PPIs
1184 that passed the FC requirement, as well as the loosened fdr requirement in both conditions
1185 were called a "hit". Output from tables from statistical analysis are in Table S2.

1186 **Network building and GO-term analysis**

1187 Networks were built from the hits for both native and crosslinked pulldowns. Known host-host
1188 functional interactions (physical and/or functional from genomic context, high-throughput
1189 experiments, (conserved) co-expression and previous knowledge), as well as bacterial
1190 functional interactions were imported into cytoscape v3.7.2 (Shannon et al. 2003) using
1191 STRING protein query (STRING DB version 11 (Szklarczyk et al. 2019)) for the respective
1192 organism and a confidence cutoff of 0.7 (see Table S5 for functional interaction network edges
1193 of the different organisms). Using a reference list of all the proteins detected in the LC-MS/MS
1194 runs for the respective human (HeLa) or rodent (RAW264.7) host, GO-term enrichment for
1195 biological processes was performed using ClueGO version 2.5.2 with the cell line specific AP-
1196 QMS protein background as reference proteome. GO-term fusion, as well as grouping was
1197 enabled using a p-value cutoff of 0.05 after Benjamini Hochberg p-value correction. GO-terms
1198 contained in GO level 4 and 5 were searched, requiring at least 3 genes and 15% of genes

1199 per term and merging groups if at least 40% of genes and terms overlapped. The leading
1200 group term was chosen as the GO-term containing the largest number of genes.

1201 **SDS-PAGE and Immunoblotting**

1202 For protein separation and detection, the BioRad system, and RunBlue precast gradient gels
1203 (expedeon) were used. Prior to loading on the gel, samples were diluted in Laemmli buffer
1204 (Laemmli 1970) containing 100 mM DTT and heated to 98°C for 10 min. Samples were spun
1205 down and loaded using a Hamilton syringe. SDS-PAGE was performed at a constant voltage
1206 of 150V for 50 min. For Western Blot, Immobilon-P PVDF or nitrocellulose membranes were
1207 used in a BioRad system (100V for 90 min while keeping the system cool). Subsequently,
1208 membranes were blocked in 5% milk in TBST for 1h and incubated in primary antibody diluted
1209 1:1000 (see Table S14 for manufacturer and origin and antibody dilutions used) overnight.
1210 Membranes were washed 3 times for 5 min in TBST and subsequently incubated in secondary
1211 antibody conjugated to HRP (see Table S14) for 1h in 5% milk in TBST. After washing 3 times
1212 for 5 min, exposure using SuperSignalTM West Pico Plus chemiluminescent substrate
1213 (Thermo scientific) or Supersignal West Femto Max Sensitivity ECL onto Lucent Blue X-Ray
1214 films (advansta) or Kodak film in the dark was used to detect protein bands.

1215 **Reciprocal pulldown validation**

1216 In order to validate PPIs identified from the AP-QMS workflow, we used a panel of 11 host
1217 target specific antibodies (see Table S14 for antibodies used). Per reaction, 50µl slurry of
1218 Protein-A beads (Thermo Fisher, cat. nr. 22811) for antibodies produced in rabbit or Protein
1219 G beads (Abcam, ab193259) for antibodies produced in mouse or rat, were washed twice in
1220 lysis buffer (0.1% Triton-X100 in PBS containing protease inhibitor). For each reaction, 3.5µl
1221 antibody were added to 100µl of washed beads in lysis buffer and incubated at room
1222 temperature for 2 hr with constant rotation in order to load the beads. The bead-antibody
1223 mixture was applied to the cleared, fresh lysate (obtained as described in the “Proteomic
1224 sample preparation section) without removing unbound antibody and incubated at 4°C for 4h.
1225 Samples were then centrifuged for 1 min at 5,000 rpm at 4°C and supernatant was decanted.
1226 The antigen-bound beads were washed 3 times in wash buffer (PBS containing 0.01% Triton-
1227 X100) by centrifuging at 5,000 rpm at 4°C for 1 min. After the final washing step, supernatants
1228 were removed and 100 µL of Laemmli buffer (Laemmli 1970) containing 100 mM DTT was
1229 added to the beads. Samples were heated to 98°C for 10 min followed by centrifugation for 1
1230 min at 14,000 rpm. Eluates were analyzed by immunoblot (see Table S14 for antibody
1231 dilutions).

1232 **PipB and PipB2 immunoprecipitations and mass spectrometry**

1233 HeLa adenocarcinoma epithelial cells (ATCC CCL-2) were grown in Eagle’s modified medium
1234 (Mediatech) containing 10% heat-inactivated fetal calf serum (Invitrogen) at 37°C with 5%
1235 CO₂. Cells were seeded in 10 cm tissue-culture treated dishes and transfected with FuGENE
1236 6® reagent (Roche) for 24 hr. Plasmid DNA was prepared using the QIAfilter Plasmid Midi kit
1237 (QIAGEN) according to the manufacturer’s instructions. For identification of PipB-specific
1238 interacting protein(s) (Fig S10), eight 10 cm tissue-culture treated dishes of HeLa cells were
1239 transfected with pEGCP-C1, pEGFP-PipB or pEGFP-PipB2. Monolayers were washed twice
1240 in cold PBS and collected by scraping into PBS. Cells were lysed on ice for 30 min in 50 mM
1241 Tris-HCl pH 7.6, 150 mM NaCl, 1mM EDTA, 0.1% Nonidet P-40 containing protease inhibitor
1242 cocktail set III and phosphatase inhibitor cocktail set II (EMD Biosciences). Samples were
1243 centrifuged at 3,000xg for 10 min at 4°C, the post-nuclear supernatant collected and
1244 precleared with Protein A agarose for 1 h at 4°C. The supernatant was collected and incubated

1245 with mouse anti-GFP clone 3E6 (Molecular Probes, Figure 6E) for 1 h at 4°C, followed by the
1246 addition of Protein A agarose. Beads were washed four times in lysis buffer and bound proteins
1247 eluted with boiling 1.5x SDS-PAGE sample buffer. Proteins were separated by SDS-PAGE on
1248 4-15% gradient gels (BioRad) and visualized with SilverQuest Silver staining kit (Thermo). A
1249 150 kDa band unique to the GFP-PipB immunoprecipitate was excised and sent for LC-
1250 MS/MS analysis at the Stanford University Mass Spectrometry (SUMS) Facility. For
1251 confirmation of the PipB-PDZD8 interaction under infection conditions (Fig 4B), HeLa cells
1252 seeded in 10 cm tissue-culture treated dishes were transfected with PDZD8-myc and infected
1253 with the following *S. Typhimurium* strains 12 h later: Δ pipB pPipB-2HA or Δ pipB2 pPipB2-2HA
1254 at a MOI of 50 (ten 10 cm dishes per strain). At 12 h p.i., monolayers were collected and
1255 processed as described above. After 30 min lysis, samples were centrifuged at 6,000xg for 15
1256 min at 4°C (which is sufficient to pellet intact bacteria), the supernatant collected and pre-
1257 cleared with Protein A agarose, followed by incubation with mouse anti-myc clone 4A6
1258 agarose conjugate (EMD Millipore). Beads were washed in lysis buffer and bound proteins
1259 eluted with boiling 1.5x SDS-PAGE sample buffer. Immunoprecipitates were separated by
1260 SDS-PAGE and subject to immunoblotting with rabbit polyclonal anti-PDZD8 peptide
1261 antibodies and mouse monoclonal anti-HA.11 antibodies (Covance).

1262 **Microscopy of F-actin and Filipin**

1263 Cells were seeded in 96-well glass bottom plates (Greiner CellContact, 30,000 cells per well
1264 for RAW264.7, 7,000 cells per well for HeLa or 3T3 fibroblasts) and infected with STm 14028s
1265 strains constitutively expressing mCherry from a plasmid (pFCcGi). After infection, cells were
1266 washed 3 times in warm PBS and fixed for 45 min at room temperature in 4% (w/v)
1267 formaldehyde (Thermo Scientific; 28908) in PBS containing 0.1% Triton-X100. Fixing solution
1268 was removed and cells were washed 3 times in cold PBS. Staining with Hoechst (2 μ g/ml,
1269 Invitrogen, cat. nr. H3570) and Phalloidin ATTO-647N (30.6 μ g/ml, Sigma, cat. nr. 65906)
1270 were performed in PBS for 1 h at room temperature. After staining, cells were washed 3 times
1271 in cold PBS then stored at 4°C in the dark prior to imaging.

1272 For monitoring cholesterol trafficking, HeLa cells that were seeded one day prior at a density
1273 of 7,000 cells per well in a 96-well plate were infected as described above. 12 hr post infection,
1274 cells were washed twice in PBS and fixed in 4% (v/w) formaldehyde in PBS. After two washes
1275 in PBS, cells were stained with filipin (10 μ g/ml in PBS, Sigma, cat. nr. F4767-1MG) for 30
1276 min, and subsequently with HCS CellMask™ Deep Red Stain (Thermo, cat. nr. H32721) as
1277 described by the distributor for another 30 min. Cells were blocked for 1 hr at room temperature
1278 in PBS containing 3% Bovine Serum Albumin (Gerbu, cat. nr. 1062,0250 and 1062,9005), and
1279 subsequently incubated for 1h at RT with Alexa-488-coupled anti-LAMP1 antibody (1:500 in
1280 PBS containing 1% BSA, Abcam). Cells were washed twice in PBS and stored at 4°C in the
1281 dark.

1282 Imaging was performed on a Nikon Eclipse Ti run with the NIS Elements software (version
1283 4.60) at 10x or 20x magnification. Per well, 9 images (for 10x objective) or 16 images (for 20x
1284 objective) were taken at predefined, evenly spaced positions using the following filters: DAPI,
1285 FITC, Cy3, Cy5. Images were segmented using the Cell Profiler software (version 3.0.0). For
1286 segmentation, a nuclei mask was defined based on the DAPI channel. The identified objects
1287 were used to determine cell outlines from phalloidin staining (Cy5 channel). Finally, STm were
1288 identified using a fixed threshold from the Cy3 image and filtered with the cell mask. All primary
1289 1290

1291 and secondary objects were quantified and further analyzed according to the phenotypic
1292 readout (e.g. infection rate, bacterial load).

1293
1294 Quantification of co-localization was performed in ImageJ (version 1.51n). A cell mask was
1295 created by applying Ostu segmentation to the cell outline image after rolling background
1296 subtraction with a radius of 10 pixels (for phalloidin) or Huang segmentation after a rolling
1297 background subtraction with a 15 pixel radius (for cytosin). Similarly, a *Salmonella* mask was
1298 created by applying Otsu segmentation after rolling background subtraction with a 10 pixel
1299 radius to the Cy3 channel and overlaying it with a LAMP1 mask obtained through Ostu
1300 segmentation after a rolling background subtraction with a 10 pixel radius, where applicable.
1301 In order to quantify the degree of co-localization, the average intensity of phalloidin or filipin
1302 within the *Salmonella* mask was divided by the average intensity within the cell mask by
1303 applying the masks to the phalloidin or filipin images, calculating the integrated intensity and
1304 normalizing to the size of the cell or *Salmonella* mask. Random distribution and no co-
1305 localization hence yields a mean value of 1, while co-localization of *Salmonella* and phalloidin
1306 or filipin yields a value >1.

1307
1308 **Immunofluorescence**
1309 HeLa cells were seeded onto acid-washed coverslips in 24-well plates and transfected with
1310 EGFP-PipB for 24 h. Cells were fixed and permeabilized as described previously (Lau et al.
1311 2019). Monolayers were incubated with primary antibodies - rabbit polyclonal anti-PDZD8
1312 (Sigma; 1:100 dilution) and mouse anti-PDI (clone RL90, Affinity Bioreagents; 1:200 dilution)
1313 – followed by Alexa Fluor-conjugated secondary antibodies. Cells were mounted on glass
1314 slides in Mowiol. Alternatively, HeLa cells were transfected with pKozak-PDZD8-myc and
1315 infected 12 h later with invasive *S. Typhimurium* Δ pipB pPipB-2HA or Δ pipB2 pPipB2-2HA
1316 bacteria at an MOI of 50 for 10 min. Invasive bacteria were prepared and infection conditions
1317 were as described previously (Klein, Powers, and Knodler 2017). Monolayers were fixed at 12
1318 hpi, permeabilized and immunostained with the following primary antibodies - rat monoclonal
1319 anti-HA (clone 3F10, Roche: 1:250 dilution), mouse monoclonal anti-myc (clone 9B11, Cell
1320 Signaling; 1:2000 dilution), rabbit polyclonal anti-LAMP2 (kindly provided by Minoru Fukuda
1321 (Fukuda et al. 1988); 1:1000 dilution) or rabbit polyclonal anti-*Salmonella* O-antigen group B
1322 Factors 1,4,5,12 (Difco; 1:2,000 dilution) – followed by Alexa Fluor-conjugated secondary
1323 antibodies. Image acquisition was on a Zeiss LSM510 or LSM710 confocal microscope using
1324 sequential acquisition mode through an optical section of 0.25 μ m in the z-axis. Images are
1325 maximum intensity projections of z-stacks.

1326
1327 **Yeast two-hybrid analysis**
1328 The AH109 yeast reporter strain was maintained on YPD agar plates. Transformation of
1329 AH109 cells with pGAD424- and pGBT9-based constructs by the lithium acetate method was
1330 performed following the guidelines in the Matchmaker two-hybrid system (Clontech). Double
1331 transformants were isolated on synthetic defined medium lacking leucine and tryptophan.
1332 Interaction of fusion proteins was monitored by activation of HIS3 gene transcription following
1333 plating on medium lacking histidine, leucine and tryptophan (Mattera et al. 2003).

1334 **Protein purification and size exclusion chromatography**
1335 Recombinant SteC and a catalytic inactive mutant of SteC (SteC-K256H) were expressed and
1336 purified as previously described (Poh et al. 2008). Purified SteC and SteC-K256H were then
1337 dialyzed in 20 mM Tris-HCl pH 7.4, 200 mM NaCl overnight at 4°C. Samples were

1338 concentrated in a 15 ml Amicon centrifuge column (Ultra 15, 3,000 NMWL cutoff -
1339 UCF900324), glycerol was then added to 10% final concentration and samples were snap-
1340 frozen and stored at -80°C. N-terminal recombinant GST fusion of human FMNL1 (1-385) was
1341 expressed from pGEX-4T1-tev-FMNL1-A1(1-385) in Rosetta(DE3) plysRare as follows.
1342 Briefly, GST fusion proteins were expressed overnight at 250 rpm at 25°C in autoinduction
1343 media (Studier 2005). Cells were harvested and lysed by sonication in lysis buffer (500 mM
1344 NaCl, 50 mM Tris/HCl (pH 7.8), 20% glycerol, 100 µg/ml lysozyme and 1x cOmplete mini
1345 EDTA-free protease inhibitors). GST-fusions were bound to pre-equilibrated Glutathione
1346 Sepharose 4B (GE; 17-0756-01) overnight at 4°C. Beads were then washed thrice with 100
1347 mM NaCl, 50 mM Tris/HCl (pH 7.8), 10% glycerol. GST bound protein was then cleaved using
1348 biotinylated thrombin (Merck Millipore; 69672) according to the manufacturers instructions
1349 overnight at 4°C. Direct interactions between SteC and SteC-K256H with FMNL1 (1-385) were
1350 assessed by analytical gel filtration using an Akta FPLC UPC-900 equipped with a Superose
1351 6 Increase 10/300 GL column (Merck). Typically, 500 µg of each protein was loaded onto the
1352 column equilibrated with 100 mM NaCl, 50 mM Tris/HCl (pH 7.8), 10% glycerol prior to sample
1353 injection. Complex formation was assessed by mixing equimolar amounts of each protein on
1354 ice for 5 min at 4°C prior to injection on the column. Optical density was monitored at 280 nm
1355 (UV) throughout the experiment. As a reference for molecular mass, a Bio-Rad protein
1356 standard (#1511901), covering 1.35 - 670 kDa was used. UV traces were combined and
1357 visualized in Prism v7.

1358 **In vitro kinase assays**

1359 Purified recombinant SteC and catalytically inactive SteC-K256H (10µg each) kinases were
1360 pre-activated with kinase buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 2 mM DTT and 50 µM
1361 ATP) for 5 min at 30°C. FMNL1 1-385 and FMNL2 2-478 were purified as previously described
1362 (Kühn et al. 2015). Next, 10 µg of the purified FMNL1 substrate was mixed with Tris-DTT
1363 buffer (50 mM Tris-HCl pH 7.5, 2 mM DTT) and added to the pre-activated kinase mix.
1364 Radiolabeled [³²P]-γ-ATP was added to the mix and incubated for 30 min at 30°C. The reaction
1365 was stopped by the addition of 2x Laemmli buffer. Labeled proteins were resolved by SDS-
1366 PAGE, transferred to a PVDF membrane and detected by autoradiography. Proteins were
1367 visualized by Coomassie staining.

1368

1369 For phosphoproteomics, kinase pre-activation was achieved using 2 µg of SteC and SteC
1370 K256H kinases as described above. 8 µg of FMNL1 1-385 (FMNL1 sample) or 8 µg of FMNL2
1371 2-478 (FMNL2 sample) or 4 µg of FMNL1 and 4 µg of FMNL2 (FMNL1+FMNL2 sample) were
1372 mixed with kinase buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl₂, 2 mM DTT and 50 µM ATP)
1373 and added to the pre-activated kinase. All reactions were incubated at 30°C for 30 min and
1374 snap-frozen on dry ice and stored at -80°C. After thawing, HEPES pH 8.5 was added to a final
1375 concentration of 100 mM. Reduction/alkylation of cysteine residues was performed by addition
1376 of Tris(2-carboxyethyl)phosphine hydrochloride and chloroacetamide (Sigma-Aldrich) at final
1377 concentrations of 5 mM and 30 mM, respectively. Trypsin (Sigma-Aldrich) was added at a 1:25
1378 ratio (w/w) and the samples were incubated overnight at room temperature. Samples were
1379 then desalting on stage-tips (Rappaport, Ishihama, and Mann 2003) prepared in-house and
1380 packed with 1 mg of C18 material (ReproSil-Pur 120 C18-AQ 5 µm, Dr Maisch).

1381 **LC-MS/MS Phosphoproteomics**

1382 Nanoflow LC-MS/MS analysis was performed by coupling an UltiMate 3000 RSLCnano LC
1383 system (Thermo Scientific) to a Fusion Orbitrap Lumos mass spectrometer (Thermo

1384 Scientific). Dried peptides were resuspended in a loading buffer consisting of 20 mM citric acid
1385 (Sigma-Aldrich) and 1% formic acid (Sigma-Aldrich). Peptides were injected, trapped and
1386 washed on a precolumn (C18 PepMap 100, 5 μ m, 300 μ m i.d. x 5 mm, 100 \AA , Thermo
1387 Scientific) for 3 min at a flow rate of 30 μ L/min with 100% buffer A (0.1% formic acid in HPLC
1388 grade water). Peptides were then transferred into an analytical column (Waters nanoEase
1389 HSS C18 T3, 75 μ m x 25 cm, 1.8 μ m, 100 \AA) before separation at a flow rate of 300 nL/min
1390 using a 45 min gradient, from 8% to 32% buffer B (0.1% formic acid, 80% acetonitrile, Sigma-
1391 Aldrich). Electrospray ionization was performed using a 2.1 kV spray voltage and a transfer
1392 capillary temperature of 275°C. The mass spectrometer was operated in data-dependent
1393 acquisition mode. Full mass spectra (m/z 300-1500) were acquired in the Orbitrap analyzer at
1394 a resolution of 60,000 with an Automated Gain Control (AGC) target value of 4e5 charges and
1395 a maximum injection time of 50 ms. The mass spectrometer was operated in Topspeed mode
1396 (maximum duty cycle time of 3 s) and precursors were sequentially selected to undergo HCD
1397 fragmentation at a normalized collision energy of 30%. The precursor intensity threshold was
1398 set to 1e5 and the dynamic exclusion to 8 seconds. MS2 spectra were acquired in the Orbitrap
1399 analyzer at a resolution of 30,000 (isolation window of 1.6 Th) with an AGC target value of 1e5
1400 charges and a maximum injection time of 200 ms. Precursors with unassigned charge state
1401 as well as charge states of 1+ and $\geq 6+$ were excluded from fragmentation.

1402 MaxQuant software (version 1.6.2.3 (Cox and Mann 2008)) was used to process the raw data
1403 files, which were searched against a database consisting of FMNL1, FMNL2 and SteC
1404 proteins as well as commonly observed contaminants. The following parameters were used
1405 for the database search: trypsin digestion with a maximum of 3 missed cleavages, fixed
1406 carbamidomethylation of cysteine residues, variable oxidation of methionine residues as well
1407 as variable phosphorylation of serine/threonine/tyrosine residues and variable N-terminal
1408 acetylation. Mass tolerance was set to 4.5 ppm at the MS1 level and 20 ppm at the MS2 level.
1409 False discovery rate was set to 1%, the minimum peptide length to 7 residues, a score cut-off
1410 of 40 was used for modified peptides, and the match between runs option was used with a
1411 retention match time window of 2 min.

1412 **References**

1413 Altenhoff, Adrian M., Natasha M. Glover, Clément-Marie Train, Klara Kaleb, Alex Warwick
1414 Vesztrocy, David Dylus, Tarcisio M. de Farias, et al. 2018. "The OMA Orthology
1415 Database in 2018: Retrieving Evolutionary Relationships among All Domains of Life
1416 through Richer Web and Programmatic Interfaces." *Nucleic Acids Research* 46 (D1):
1417 D477–85.

1418 Arena, Ellen T., Sigrid D. Auweter, L. Caetano M. Antunes, A. Wayne Vogl, Jun Han, Julian
1419 A. Guttman, Matthew A. Croxen, et al. 2011. "The Deubiquitinase Activity of the
1420 *Salmonella* Pathogenicity Island 2 Effector, SseL, Prevents Accumulation of Cellular
1421 Lipid Droplets." *Infection and Immunity* 79 (11): 4392–4400.

1422 Auweter, Sigrid D., Amit P. Bhavsar, Carmen L. de Hoog, Yuling Li, Y. Alina Chan, Joris van
1423 der Heijden, Michael J. Lowden, et al. 2011. "Quantitative Mass Spectrometry
1424 Catalogues *Salmonella* Pathogenicity Island-2 Effectors and Identifies Their Cognate
1425 Host Binding Partners." *The Journal of Biological Chemistry* 286 (27): 24023–35.

1426 Auweter, Sigrid D., Hong B. Yu, Ellen T. Arena, Julian A. Guttman, and B. Brett Finlay. 2012.
1427 "Oxysterol-Binding Protein (OSBP) Enhances Replication of Intracellular *Salmonella*
1428 and Binds the *Salmonella* SPI-2 Effector SseL via Its N-Terminus." *Microbes and*
1429 *Infection / Institut Pasteur* 14 (2): 148–54.

1430 Awomoyi, Agnes A. 2007. "The Human Solute Carrier Family 11 Member 1 Protein
1431 (SLC11A1): Linking Infections, Autoimmunity and Cancer?" *FEMS Immunology and*
1432 *Medical Microbiology* 49 (3): 324–29.

1433 Bai, Siau Wei, Maria Teresa Herrera-Abreu, Jennifer L. Rohn, Victor Racine, Virginia
1434 Tajadura, Narendra Suryavanshi, Stephanie Bechtel, Stefan Wiemann, Buzz Baum, and
1435 Anne J. Ridley. 2011. "Identification and Characterization of a Set of Conserved and
1436 New Regulators of Cytoskeletal Organization, Cell Morphology and Migration." *BMC*
1437 *Biology* 9 (August): 54.

1438 Baldassarre, Massimiliano, Virtu Solano-Collado, Arda Balci, Heather M. Wilson, Subhankar
1439 Mukhopadhyay, Gordon Dougan, and Stefania Spanò. 2019. "Salmonella Typhi
1440 Survives in Human Macrophages by Neutralizing the RAB32/BLOC-3 Host-Defence
1441 Pathway." *bioRxiv*. <https://doi.org/10.1101/570531>.

1442 Benjamini, Y., and Y. Hochberg. 1995. "Controlling the False Discovery Rate: A Practical
1443 and Powerful Approach to Multiple Testing." *Journal of the Royal Statistical Society.*
1444 <https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1995.tb02031.x>.

1445 Bindea, Gabriela, Bernhard Mlecnik, Hubert Hackl, Pornpimol Charoentong, Marie Tosolini,
1446 Amos Kirilovsky, Wolf-Herman Fridman, Franck Pagès, Zlatko Trajanoski, and Jérôme
1447 Galon. 2009. "ClueGO: A Cytoscape Plug-in to Decipher Functionally Grouped Gene
1448 Ontology and Pathway Annotation Networks." *Bioinformatics* 25 (8): 1091–93.

1449 Blasche, Sonja, Stefan Arens, Arnaud Ceol, Gabriella Siszler, M. Alexander Schmidt,
1450 Roman Häuser, Frank Schwarz, et al. 2014. "The EHEC-Host Interactome Reveals
1451 Novel Targets for the Translocated Intimin Receptor." *Scientific Reports* 4 (December):
1452 7531.

1453 Block, Jennifer, Dennis Breitsprecher, Sonja Kühn, Moritz Winterhoff, Frieda Kage, Robert
1454 Geffers, Patrick Duwe, et al. 2012. "FMNL2 Drives Actin-Based Protrusion and

1455 Migration Downstream of Cdc42." *Current Biology*: CB 22 (11): 1005–12.

1456 Brumell, John H., Danika L. Goosney, and B. Brett Finlay. 2002. "SifA, a Type III Secreted
1457 Effector of *Salmonella Typhimurium*, Directs *Salmonella*-Induced Filament (Sif)
1458 Formation along Microtubules." *Traffic* 3 (6): 407–15.

1459 Calderwood, Michael A., Kavitha Venkatesan, Li Xing, Michael R. Chase, Alexei Vazquez,
1460 Amy M. Holthaus, Alexandra E. Ewence, et al. 2007. "Epstein-Barr Virus and Virus
1461 Human Protein Interaction Maps." *Proceedings of the National Academy of Sciences of
1462 the United States of America* 104 (18): 7606–11.

1463 Castanheira, Sónia, and Francisco García-Del Portillo. 2017. "Salmonella Populations inside
1464 Host Cells." *Frontiers in Cellular and Infection Microbiology* 7 (October): 432.

1465 Chou, Seemay, Heather Upton, Katherine Bao, Ursula Schulze-Gahmen, Avi J. Samelson,
1466 Nanhai He, Anna Nowak, et al. 2013. "HIV-1 Tat Recruits Transcription Elongation
1467 Factors Dispersed along a Flexible AFF4 Scaffold." *Proceedings of the National
1468 Academy of Sciences of the United States of America* 110 (2): E123–31.

1469 Cox, Jürgen, and Matthias Mann. 2008. "MaxQuant Enables High Peptide Identification
1470 Rates, Individualized P.p.b.-Range Mass Accuracies and Proteome-Wide Protein
1471 Quantification." *Nature Biotechnology* 26 (12): 1367–72.

1472 Cunha, Larissa D., and Dario S. Zamboni. 2013. "Subversion of Inflammasome Activation
1473 and Pyroptosis by Pathogenic Bacteria." *Frontiers in Cellular and Infection Microbiology*
1474 3 (November): 76.

1475 Datsenko, K. A., and B. L. Wanner. 2000. "One-Step Inactivation of Chromosomal Genes in
1476 *Escherichia Coli* K-12 Using PCR Products." *Proceedings of the National Academy of
1477 Sciences of the United States of America* 97 (12): 6640–45.

1478 D'Costa, Vanessa M., Etienne Coyaud, Kirsten C. Boddy, Estelle M. N. Laurent, Jonathan
1479 St-Germain, Taoyingnan Li, Sergio Grinstein, Brian Raught, and John H. Brumell. 2019.
1480 "BiLD Screen of *Salmonella* Type 3 Secreted Effectors Reveals Host Factors Involved
1481 in Vacuole Positioning and Stability during Infection." *Nature Microbiology*, October.
1482 <https://doi.org/10.1038/s41564-019-0580-9>.

1483 Diacovich, Lautaro, Audrey Dumont, Daniel Lafitte, Elodie Soprano, Aude-Agnès Guilhon,
1484 Christophe Bignon, Jean-Pierre Gorvel, Yves Bourne, and Stéphane Méresse. 2009.
1485 "Interaction between the SifA Virulence Factor and Its Host Target SKIP Is Essential for
1486 *Salmonella* Pathogenesis." *The Journal of Biological Chemistry* 284 (48): 33151–60.

1487 Drecktrah, Dan, Seamus Levine-Wilkinson, Tapen Dam, Seth Winfree, Leigh A. Knodler,
1488 Trina A. Schroer, and Olivia Steele-Mortimer. 2008. "Dynamic Behavior of *Salmonella*-
1489 Induced Membrane Tubules in Epithelial Cells." *Traffic* 9 (12): 2117–29.

1490 Du, Fangyong, and Jorge E. Galán. 2009. "Selective Inhibition of Type III Secretion
1491 Activated Signaling by the *Salmonella* Effector AvrA." *PLoS Pathogens* 5 (9): e1000595.

1492 English, Amber R., and Gia K. Voeltz. 2013. "Rab10 GTPase Regulates ER Dynamics and
1493 Morphology." *Nature Cell Biology* 15 (2): 169–78.

1494 Franken, Holger, Toby Mathieson, Dorothee Childs, Gavain M. A. Sweetman, Thilo Werner,
1495 Ina Tögel, Carola Doce, et al. 2015. "Thermal Proteome Profiling for Unbiased
1496 Identification of Direct and Indirect Drug Targets Using Multiplexed Quantitative Mass

1497 Spectrometry." *Nature Protocols* 10 (10): 1567–93.

1498 Fukuda, M., J. Viitala, J. Matteson, and S. R. Carlsson. 1988. "Cloning of cDNAs Encoding
1499 Human Lysosomal Membrane Glycoproteins, H-Lamp-1 and H-Lamp-2. Comparison of
1500 Their Dduced Amino Acid Sequences." *The Journal of Biological Chemistry* 263 (35):
1501 18920–28.

1502 Gatto, Laurent, and Kathryn S. Lilley. 2012. "MSnbase-an R/Bioconductor Package for
1503 Isobaric Tagged Mass Spectrometry Data Visualization, Processing and Quantitation."
1504 *Bioinformatics* 28 (2): 288–89.

1505 González-López, Marco Antonio, Norma Velázquez-Guadarrama, María Elena Romero-
1506 Espejel, and José de Jesús Olivares-Trejo. 2013. "Helicobacter Pylori Secretes the
1507 Chaperonin GroEL (HSP60), Which Binds Iron." *FEBS Letters* 587 (12): 1823–28.

1508 Guillén-Samander, Andrés, Xin Bian, and Pietro De Camilli. 2019. "PDZD8 Mediates a
1509 Rab7-Dependent Interaction of the ER with Late Endosomes and Lysosomes."
1510 *Proceedings of the National Academy of Sciences of the United States of America*,
1511 October. <https://doi.org/10.1073/pnas.1913509116>.

1512 Hamon, Mélanie Anne, David Ribet, Fabrizia Stavru, and Pascale Cossart. 2012.
1513 "Listeriolysin O: The Swiss Army Knife of Listeria." *Trends in Microbiology* 20 (8): 360–
1514 68.

1515 Heimsath, Ernest G., Jr, and Henry N. Higgs. 2012. "The C Terminus of Formin FMNL3
1516 Accelerates Actin Polymerization and Contains a WH2 Domain-like Sequence That
1517 Binds Both Monomers and Filament Barbed Ends." *The Journal of Biological Chemistry*
1518 287 (5): 3087–98.

1519 Henning, Matthew S., Patricia Stiedl, Denis S. Barry, Robert McMahon, Scott G. Morham,
1520 Derek Walsh, and Mojgan H. Naghavi. 2011. "PDZD8 Is a Novel Moesin-Interacting
1521 Cytoskeletal Regulatory Protein That Suppresses Infection by Herpes Simplex Virus
1522 Type 1." *Virology* 415 (2): 114–21.

1523 Henry, Thomas, Carole Couillault, Patrick Rockenfeller, Emmanuel Boucrot, Audrey Dumont,
1524 Nina Schroeder, Aurélie Hermant, et al. 2006. "The *Salmonella* Effector Protein PipB2 Is
1525 a Linker for Kinesin-1." *Proceedings of the National Academy of Sciences of the United
1526 States of America* 103 (36): 13497–502.

1527 Hirabayashi, Yusuke, Seok-Kyu Kwon, Hunki Paek, Wolfgang M. Pernice, Maëla A. Paul,
1528 Jinoh Lee, Parsa Erfani, et al. 2017. "ER-Mitochondria Tethering by PDZD8 Regulates
1529 Ca²⁺ Dynamics in Mammalian Neurons." *Science* 358 (6363): 623–30.

1530 Hoiseth, S. K., and B. A. Stocker. 1981. "Aromatic-Dependent *Salmonella* Typhimurium Are
1531 Non-Virulent and Effective as Live Vaccines." *Nature* 291 (5812): 238–39.

1532 Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease. 1989. "Engineering Hybrid
1533 Genes without the Use of Restriction Enzymes: Gene Splicing by Overlap Extension."
1534 *Gene* 77 (1): 61–68.

1535 Huber, Wolfgang, Anja von Heydebreck, Holger Sültmann, Annemarie Poustka, and Martin
1536 Vingron. 2002. "Variance Stabilization Applied to Microarray Data Calibration and to the
1537 Quantification of Differential Expression." *Bioinformatics* 18 Suppl 1: S96–104.

1538 Hughes, Christopher S., Sophie Moggridge, Torsten Müller, Poul H. Sorensen, Gregg B.

1539 Morin, and Jeroen Krijgsveld. 2019. "Single-Pot, Solid-Phase-Enhanced Sample
1540 Preparation for Proteomics Experiments." *Nature Protocols* 14 (1): 68–85.

1541 Imami, Koshi, Amit P. Bhavsar, Hongbing Yu, Nat F. Brown, Lindsay D. Rogers, B. Brett
1542 Finlay, and Leonard J. Foster. 2013. "Global Impact of *Salmonella* Pathogenicity Island
1543 2-Secreted Effectors on the Host Phosphoproteome." *Molecular & Cellular Proteomics: MCP* 12 (6): 1632–43.

1545 Jackson, Laurie K., Parwez Nawabi, Cristiana Hentea, Everett A. Roark, and Kasturi Haldar.
1546 2008. "The *Salmonella* Virulence Protein SifA Is a G Protein Antagonist." *Proceedings of
1547 the National Academy of Sciences of the United States of America* 105 (37): 14141–46.

1548 Jäger, Stefanie, Peter Cimermancic, Natali Gulbahce, Jeffrey R. Johnson, Kathryn E.
1549 McGovern, Starlynn C. Clarke, Michael Shales, et al. 2011. "Global Landscape of HIV-
1550 Human Protein Complexes." *Nature* 481 (7381): 365–70.

1551 Jäger, Stefanie, Natali Gulbahce, Peter Cimermancic, Joshua Kane, Nanhai He, Seemay
1552 Chou, Iván D'Orso, et al. 2011. "Purification and Characterization of HIV-Human Protein
1553 Complexes." *Methods* 53 (1): 13–19.

1554 Jäger, Stefanie, Dong Young Kim, Judd F. Hultquist, Keisuke Shindo, Rebecca S. LaRue,
1555 Eunju Kwon, Ming Li, et al. 2011. "Vif Hijacks CBF-β to Degrade APOBEC3G and
1556 Promote HIV-1 Infection." *Nature* 481 (7381): 371–75.

1557 Jennings, Elliott, Teresa L. M. Thurston, and David W. Holden. 2017. "Salmonella SPI-2
1558 Type III Secretion System Effectors: Molecular Mechanisms And Physiological
1559 Consequences." *Cell Host & Microbe* 22 (2): 217–31.

1560 Jones, Rheinallt M., Huixia Wu, Christy Wentworth, Liping Luo, Lauren Collier-Hyams, and
1561 Andrew S. Neish. 2008. "Salmonella AvrA Coordinates Suppression of Host Immune
1562 and Apoptotic Defenses via JNK Pathway Blockade." *Cell Host & Microbe* 3 (4): 233–
1563 44.

1564 Junutula, Jagath R., Ann M. De Maziére, Andrew A. Peden, Karen E. Ervin, Raj J. Advani,
1565 Suzanne M. van Dijk, Judith Klumperman, and Richard H. Scheller. 2004. "Rab14 Is
1566 Involved in Membrane Trafficking between the Golgi Complex and Endosomes."
1567 *Molecular Biology of the Cell* 15 (5): 2218–29.

1568 Kage, Frieda, Anika Steffen, Adolf Ellinger, Carmen Ranftler, Christian Gehre, Cord
1569 Brakebusch, Margit Pavelka, Theresia Stradal, and Klemens Rottner. 2017. "FMNL2
1570 and -3 Regulate Golgi Architecture and Anterograde Transport Downstream of Cdc42."
1571 *Scientific Reports* 7 (1): 9791.

1572 Kage, Frieda, Moritz Winterhoff, Vanessa Dimchev, Jan Mueller, Tobias Thalheim, Anika
1573 Freise, Stefan Brühmann, et al. 2017. "FMNL Formins Boost Lamellipodial Force
1574 Generation." *Nature Communications* 8 (March): 14832.

1575 Kitt, Khameeka N., Delia Hernández-Deviez, Sarah D. Ballantyne, Elias T. Spiliotis, James
1576 E. Casanova, and Jean M. Wilson. 2008. "Rab14 Regulates Apical Targeting in
1577 Polarized Epithelial Cells." *Traffic* 9 (7): 1218–31.

1578 Klein, Jessica A., Tushun R. Powers, and Leigh A. Knodler. 2017. "Measurement of
1579 *Salmonella* Enterica Internalization and Vacuole Lysis in Epithelial Cells." *Methods in
1580 Molecular Biology* 1519: 285–96.

1581 Knodler, Leigh A., Jean Celli, Wolf-Dietrich Hardt, Bruce A. Vallance, Calvin Yip, and B. Brett
1582 Finlay. 2002. "Salmonella Effectors within a Single Pathogenicity Island Are
1583 Differentially Expressed and Translocated by Separate Type III Secretion Systems." *Molecular Microbiology* 43 (5): 1089–1103.

1585 Knodler, Leigh A., and Olivia Steele-Mortimer. 2005. "The Salmonella Effector PipB2 Affects
1586 Late Endosome/lysosome Distribution to Mediate Sif Extension." *Molecular Biology of
1587 the Cell* 16 (9): 4108–23.

1588 Knodler, Leigh A., Bruce A. Vallance, Jean Celli, Seth Winfree, Bryan Hansen, Marinieve
1589 Montero, and Olivia Steele-Mortimer. 2010. "Dissemination of Invasive Salmonella via
1590 Bacterial-Induced Extrusion of Mucosal Epithelia." *Proceedings of the National
1591 Academy of Sciences of the United States of America* 107 (41): 17733–38.

1592 Knodler, Leigh A., Bruce A. Vallance, Michael Hensel, Daniela Jäckel, B. Brett Finlay, and
1593 Olivia Steele-Mortimer. 2004. "Salmonella Type III Effectors PipB and PipB2 Are
1594 Targeted to Detergent-Resistant Microdomains on Internal Host Cell Membranes." *Molecular Microbiology*. <https://doi.org/10.1046/j.1365-2958.2003.03598.x>.

1596 Knodler, Leigh A., Seth Winfree, Dan Dreckrah, Robin Ireland, and Olivia Steele-Mortimer.
1597 2009. "Ubiquitination of the Bacterial Inositol Phosphatase, SopB, Regulates Its
1598 Biological Activity at the Plasma Membrane." *Cellular Microbiology* 11 (11): 1652–70.

1599 Köhler, Katja, Daniel Louvard, and Ahmed Zahraoui. 2004. "Rab13 Regulates PKA Signaling
1600 during Tight Junction Assembly." *The Journal of Cell Biology* 165 (2): 175–80.

1601 Kolmsee, Tim, and Regine Hengge. 2011. "Rare Codons Play a Positive Role in the
1602 Expression of the Stationary Phase Sigma Factor RpoS ($\sigma(S)$) in Escherichia Coli." *RNA
1603 Biology* 8 (5): 913–21.

1604 Kolodziejek, Anna M., Melissa A. Altura, Junping Fan, Erik M. Petersen, Matthew Cook,
1605 Peter S. Brzovic, and Samuel I. Miller. 2019. "Salmonella Translocated Effectors Recruit
1606 OSBP1 to the Phagosome to Promote Vacuolar Membrane Integrity." *Cell Reports* 27
1607 (7): 2147–56.e5.

1608 Kühn, Sonja, Constanze Erdmann, Frieda Kage, Jennifer Block, Lisa Schwenkmezger,
1609 Anika Steffen, Klemens Rottner, and Matthias Geyer. 2015. "The Structure of FMNL2–
1610 Cdc42 Yields Insights into the Mechanism of Lamellipodia and Filopodia Formation."
1611 *Nature Communications*. <https://doi.org/10.1038/ncomms8088>.

1612 Kyei, George B., Isabelle Vergne, Jennifer Chua, Esteban Roberts, James Harris, Jagath R.
1613 Junutula, and Vojo Deretic. 2006. "Rab14 Is Critical for Maintenance of Mycobacterium
1614 Tuberculosis Phagosome Maturation Arrest." *The EMBO Journal* 25 (22): 5250–59.

1615 Laemmli, U. K. 1970. "Cleavage of Structural Proteins during the Assembly of the Head of
1616 Bacteriophage T4." *Nature* 227 (5259): 680–85.

1617 LaRock, Doris L., Anu Chaudhary, and Samuel I. Miller. 2015. "Salmonellae Interactions with
1618 Host Processes." *Nature Reviews. Microbiology* 13 (4): 191–205.

1619 Lau, Nicole, Amanda L. Haeberle, Brittany J. O'Keeffe, Eleanor A. Latomanski, Jean Celli,
1620 Hayley J. Newton, and Leigh A. Knodler. 2019. "SopF, a Phosphoinositide Binding
1621 Effector, Promotes the Stability of the Nascent Salmonella-Containing Vacuole." *PLoS
1622 Pathogens* 15 (7): e1007959.

1623 Li, Menghan, Bing Gu, Rajdeep Bomjan, Meghana Chitale, Daisuke Kihara, and Daoguo
1624 Zhou. 2018. "YggG Is a Novel SPI-1 Effector Essential for *Salmonella* Virulence."
1625 *bioRxiv*. <https://doi.org/10.1101/300152>.

1626 Maeda, Kenji, Kanchan Anand, Antonella Chiapparino, Arun Kumar, Mattia Poletto, Marko
1627 Kaksonen, and Anne-Claude Gavin. 2013. "Interactome Map Uncovers
1628 Phosphatidylserine Transport by Oxysterol-Binding Proteins." *Nature* 501 (7466): 257–
1629 61.

1630 Mahdavi, Alborz, Janek Szychowski, John T. Ngo, Michael J. Sweredoski, Robert L. J.
1631 Graham, Sonja Hess, Olaf Schneewind, Sarkis K. Mazmanian, and David A. Tirrell.
1632 2014. "Identification of Secreted Bacterial Proteins by Noncanonical Amino Acid
1633 Tagging." *Proceedings of the National Academy of Sciences of the United States of
1634 America* 111 (1): 433–38.

1635 Mattera, Rafael, Cecilia N. Arighi, Robert Lodge, Marino Zerial, and Juan S. Bonifacino.
1636 2003. "Divalent Interaction of the GGAs with the Rabaptin-5-Rabex-5 Complex." *The
1637 EMBO Journal* 22 (1): 78–88.

1638 Maxfield, Frederick R., and Daniel Wüstner. 2012. "Analysis of Cholesterol Trafficking with
1639 Fluorescent Probes." *Methods in Cell Biology* 108: 367–93.

1640 McCaig, William D., Antonius Koller, and David G. Thanassi. 2013. "Production of Outer
1641 Membrane Vesicles and Outer Membrane Tubes by *Francisella Novicida*." *Journal of
1642 Bacteriology* 195 (6): 1120–32.

1643 McShan, Andrew C., Asokan Anbanandam, Sikta Patnaik, and Roberto N. De Guzman.
1644 2016. "Characterization of the Binding of Hydroxyindole, Indoleacetic Acid, and
1645 Morpholinoaniline to the *Salmonella* Type III Secretion System Proteins SipD and SipB."
1646 *ChemMedChem* 11 (9): 963–71.

1647 Mesmin, Bruno, Joëlle Bigay, Joël Polidori, Denisa Jamecna, Sandra Lacas-Gervais, and
1648 Bruno Antonny. 2017. "Sterol Transfer, PI4P Consumption, and Control of Membrane
1649 Lipid Order by Endogenous OSBP." *The EMBO Journal* 36 (21): 3156–74.

1650 Mousnier, Aurélie, Gunnar N. Schroeder, Charlotte A. Stoneham, Ernest C. So, James A.
1651 Garnett, Lu Yu, Steve J. Matthews, Jyoti S. Choudhary, Elizabeth L. Hartland, and Gad
1652 Frankel. 2014. "A New Method to Determine in Vivo Interactomes Reveals Binding of
1653 the *Legionella Pneumophila* Effector PieE to Multiple Rab GTPases." *mBio* 5 (4).
1654 <https://doi.org/10.1128/mBio.01148-14>.

1655 Nawabi, Parwez, Drew M. Catron, and Kasturi Haldar. 2008. "Esterification of Cholesterol by
1656 a Type III Secretion Effector during Intracellular *Salmonella* Infection." *Molecular
1657 Microbiology* 68 (1): 173–85.

1658 Nesvizhskii, Alexey I. 2012. "Computational and Informatics Strategies for Identification of
1659 Specific Protein Interaction Partners in Affinity Purification Mass Spectrometry
1660 Experiments." *Proteomics* 12 (10): 1639–55.

1661 Nguyen, Ngan N. T., Yun-Sook Lim, Lap P. Nguyen, Si C. Tran, Trang T. D. Luong, Tram T.
1662 T. Nguyen, Hang T. Pham, et al. 2018. "Hepatitis C Virus Modulates Solute Carrier
1663 Family 3 Member 2 for Viral Propagation." *Scientific Reports* 8 (1): 15486.

1664 Niemann, George S., Roslyn N. Brown, Jean K. Gustin, Afke Stufkens, Afshan S. Shaikh-
1665 Kidwai, Jie Li, Jason E. McDermott, et al. 2011. "Discovery of Novel Secreted Virulence

1666 Factors from *Salmonella Enterica* Serovar *Typhimurium* by Proteomic Analysis of
1667 Culture Supernatants." *Infection and Immunity* 79 (1): 33–43.

1668 Nokes, Rita L., Ian C. Fields, Ruth N. Collins, and Heike Fölsch. 2008. "Rab13 Regulates
1669 Membrane Trafficking between TGN and Recycling Endosomes in Polarized Epithelial
1670 Cells." *The Journal of Cell Biology* 182 (5): 845–53.

1671 Odendall, Charlotte, Nathalie Rolhion, Andreas Förster, John Poh, Douglas J. Lamont, Mei
1672 Liu, Paul S. Freemont, Andrew D. Catling, and David W. Holden. 2012. "The *Salmonella*
1673 Kinase *SteC* Targets the MAP Kinase MEK to Regulate the Host Actin Cytoskeleton."
1674 *Cell Host & Microbe* 12 (5): 657–68.

1675 Ohlson, Maikke B., Kerry Fluhr, Cheryl L. Birmingham, John H. Brumell, and Samuel I.
1676 Miller. 2005. "SseJ Deacylase Activity by *Salmonella Enterica* Serovar *Typhimurium*
1677 Promotes Virulence in Mice." *Infection and Immunity* 73 (10): 6249–59.

1678 Ohlson, Maikke B., Zhiwei Huang, Neal M. Alto, Marie-Pierre Blanc, Jack E. Dixon, Jijie
1679 Chai, and Samuel I. Miller. 2008. "Structure and Function of *Salmonella* *SifA* Indicate
1680 That Its Interactions with *SKIP*, *SseJ*, and *RhoA* Family GTPases Induce Endosomal
1681 Tubulation." *Cell Host & Microbe* 4 (5): 434–46.

1682 Penn, Bennett H., Zoe Netter, Jeffrey R. Johnson, John Von Dollen, Gwendolyn M. Jang,
1683 Tasha Johnson, Yamini M. Ohol, et al. 2018. "An *Mtb*-Human Protein-Protein Interaction
1684 Map Identifies a Switch between Host Antiviral and Antibacterial Responses." *Molecular
1685 Cell* 71 (4): 637–48.e5.

1686 Perez-Perri, Joel I., Birgit Rogell, Thomas Schwarzl, Frank Stein, Yang Zhou, Mandy Rettel,
1687 Annika Brosig, and Matthias W. Hentze. 2018. "Discovery of RNA-Binding Proteins and
1688 Characterization of Their Dynamic Responses by Enhanced RNA Interactome Capture."
1689 *Nature Communications* 9 (1): 4408.

1690 Pfeffer, Suzanne R. 2019. "NPC Intracellular Cholesterol Transporter 1 (NPC1)-Mediated
1691 Cholesterol Export from Lysosomes." *The Journal of Biological Chemistry* 294 (5):
1692 1706–9.

1693 Pierson, Tony, Demetrios Matrakas, Yuka U. Taylor, Ganiraju Manyam, Victor N. Morozov,
1694 Weidong Zhou, and Monique L. van Hoek. 2011. "Proteomic Characterization and
1695 Functional Analysis of Outer Membrane Vesicles of *Francisella Novicida* Suggests
1696 Possible Role in Virulence and Use as a Vaccine." *Journal of Proteome Research* 10
1697 (3): 954–67.

1698 Pilar, Ana Victoria C., Sarah A. Reid-Yu, Colin A. Cooper, David T. Mulder, and Brian K.
1699 Coombes. 2012. "GogB Is an Anti-Inflammatory Effector That Limits Tissue Damage
1700 during *Salmonella* Infection through Interaction with Human *FBXO22* and *Skp1*." *PLoS
1701 Pathogens* 8 (6): e1002773.

1702 Poh, John, Charlotte Odendall, Ad Spanos, Cliona Boyle, Mei Liu, Paul Freemont, and David
1703 W. Holden. 2008. "SteC Is a *Salmonella* Kinase Required for SPI-2-Dependent F-Actin
1704 Remodelling." *Cellular Microbiology* 10 (1): 20–30.

1705 Porwollik, Steffen, Carlos A. Santiviago, Pui Cheng, Fred Long, Prerak Desai, Jennifer
1706 Fredlund, Shabarinath Srikumar, et al. 2014. "Defined Single-Gene and Multi-Gene
1707 Deletion Mutant Collections in *Salmonella Enterica* Sv *Typhimurium*." *PloS One* 9 (7):
1708 e99820.

1709 Rajagopala, Seesandra Venkatappa, Kelly T. Hughes, and Peter Uetz. 2009. "Benchmarking
1710 Yeast Two-Hybrid Systems Using the Interactions of Bacterial Motility Proteins."
1711 *Proteomics* 9 (23): 5296–5302.

1712 Ramos-Morales, Francisco. 2012. "Impact of *Salmonella Enterica* Type III Secretion System
1713 Effectors on the Eukaryotic Host Cell." *International Scholarly Research Notices* 2012
1714 (December). <https://doi.org/10.5402/2012/787934>.

1715 Rappsilber, Juri, Yasushi Ishihama, and Matthias Mann. 2003. "Stop and Go Extraction Tips
1716 for Matrix-Assisted Laser Desorption/ionization, Nanoelectrospray, and LC/MS Sample
1717 Pretreatment in Proteomics." *Analytical Chemistry* 75 (3): 663–70.

1718 Reichel, Marlene, Yalin Liao, Mandy Rettel, Chikako Ragan, Maurits Evers, Anne-Marie
1719 Alleaume, Rastislav Horos, Matthias W. Hentze, Thomas Preiss, and Anthony A. Millar.
1720 2016. "In Planta Determination of the mRNA-Binding Proteome of *Arabidopsis* Etiolated
1721 Seedlings." *The Plant Cell* 28 (10): 2435–52.

1722 Reinicke, Anna T., James L. Hutchinson, Anthony I. Magee, Piero Mastroeni, John
1723 Trowsdale, and Adrian P. Kelly. 2005. "A *Salmonella Typhimurium* Effector Protein SifA
1724 Is Modified by Host Cell Prenylation and S-Acylation Machinery." *The Journal of
1725 Biological Chemistry* 280 (15): 14620–27.

1726 Ritchie, Matthew E., Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and
1727 Gordon K. Smyth. 2015. "Limma Powers Differential Expression Analyses for RNA-
1728 Sequencing and Microarray Studies." *Nucleic Acids Research* 43 (7): e47.

1729 Rzomp, Kimberly A., Luella D. Scholtes, Benjamin J. Briggs, Gary R. Whittaker, and Marci A.
1730 Scidmore. 2003. "Rab GTPases Are Recruited to Chlamydial Inclusions in Both a
1731 Species-Dependent and Species-Independent Manner." *Infection and Immunity* 71 (10):
1732 5855–70.

1733 Saliba, Antoine-Emmanuel, Ivana Vonkova, Stefano Ceschia, Greg M. Findlay, Kenji Maeda,
1734 Christian Tischer, Samy Deghou, et al. 2014. "A Quantitative Liposome Microarray to
1735 Systematically Characterize Protein-Lipid Interactions." *Nature Methods* 11 (1): 47–50.

1736 Sano, Hiroyuki, William G. Roach, Grantley R. Peck, Mitsunori Fukuda, and Gustav E.
1737 Lienhard. 2008. "Rab10 in Insulin-Stimulated GLUT4 Translocation." *Biochemical
1738 Journal* 411 (1): 89–95.

1739 Schleker, Sylvia, Jingchun Sun, Balachandran Raghavan, Matthew Srnec, Nicole Müller,
1740 Mary Koepfinger, Leelavati Murthy, Zhongming Zhao, and Judith Klein-Seetharaman.
1741 2012. "The Current *Salmonella*-Host Interactome." *Proteomics. Clinical Applications* 6
1742 (1-2): 117–33.

1743 Schroeder, Gunnar N. 2017. "The Toolbox for Uncovering the Functions of *Legionella*
1744 Dot/Icm Type IVb Secretion System Effectors: Current State and Future Directions."
1745 *Frontiers in Cellular and Infection Microbiology* 7: 528.

1746 Selkirk, Joel, Nan Li, Jacob Bobonis, Annika Hausmann, Anna Sueki, Haruna Imamura,
1747 Bachir El Debs, et al. 2018. "Spatiotemporal Proteomics Uncovers Cathepsin-
1748 Dependent Host Cell Death during Bacterial Infection." *bioRxiv*.
1749 <https://doi.org/10.1101/455048>.

1750 Shah, Priya S., Jason A. Wojcechowskyj, Manon Eckhardt, and Nevan J. Krogan. 2015.
1751 "Comparative Mapping of Host-Pathogen Protein-Protein Interactions." *Current Opinion*

1752 *in Microbiology* 27 (October): 62–68.

1753 Shannon, Paul, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel
1754 Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. “Cytoscape: A
1755 Software Environment for Integrated Models of Biomolecular Interaction Networks.”
1756 *Genome Research* 13 (11): 2498–2504.

1757 Shapira, Sagi D., Irit Gat-Viks, Bennett O. V. Shum, Amelie Dricot, Marciela M. de Grace,
1758 Liguo Wu, Piyush B. Gupta, et al. 2009. “A Physical and Regulatory Map of Host-
1759 Influenza Interactions Reveals Pathways in H1N1 Infection.” *Cell* 139 (7): 1255–67.

1760 Singh, Kshipra, Nicole T. Al-Greene, Thomas G. Verriere, Lori A. Coburn, Mohammad Asim,
1761 Daniel P. Barry, Margaret M. Allaman, et al. 2016. “The L-Arginine Transporter Solute
1762 Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and
1763 Effacing Bacteria.” *PLoS Pathogens* 12 (10): e1005984.

1764 Sontag, Ryan L., Ernesto S. Nakayasu, Roslyn N. Brown, George S. Niemann, Michael A.
1765 Sydor, Octavio Sanchez, Charles Ansong, et al. 2016. “Identification of Novel Host
1766 Interactors of Effectors Secreted by *Salmonella* and *Citrobacter*.” *mSystems* 1 (4).
1767 <https://doi.org/10.1128/mSystems.00032-15>.

1768 Spanò, Stefania, Xiaoyun Liu, and Jorge E. Galán. 2011. “Proteolytic Targeting of Rab29 by
1769 an Effector Protein Distinguishes the Intracellular Compartments of Human-Adapted
1770 and Broad-Host *Salmonella*.” *Proceedings of the National Academy of Sciences of the
1771 United States of America* 108 (45): 18418–23.

1772 Steele-Mortimer, Olivia. 2008. “Infection of Epithelial Cells with *Salmonella Enterica*.”
1773 *Methods in Molecular Biology* 431: 201–11.

1774 Stein, Mary-Pat, Matthias P. Müller, and Angela Wandinger-Ness. 2012. “Bacterial
1775 Pathogens Commandeer Rab GTPases to Establish Intracellular Niches.” *Traffic* 13
1776 (12): 1565–88.

1777 Stévenin, Virginie, Yuen-Yan Chang, Yoann Le Toquin, Magalie Duchateau, Quentin Giai
1778 Gianetto, Chak Hon Luk, Audrey Salles, et al. 2019. “Dynamic Growth and Shrinkage of
1779 the *Salmonella*-Containing Vacuole Determines the Intracellular Pathogen Niche.” *Cell
1780 Reports* 29 (12): 3958–73.e7.

1781 Strimmer, Korbinian. 2008. “Fdrtool: A Versatile R Package for Estimating Local and Tail
1782 Area-Based False Discovery Rates.” *Bioinformatics* 24 (12): 1461–62.

1783 Studier, F. William. 2005. “Protein Production by Auto-Induction in High Density Shaking
1784 Cultures.” *Protein Expression and Purification* 41 (1): 207–34.

1785 Stynen, Bram, Hélène Tournu, Jan Tavernier, and Patrick Van Dijck. 2012. “Diversity in
1786 Genetic in Vivo Methods for Protein-Protein Interaction Studies: From the Yeast Two-
1787 Hybrid System to the Mammalian Split-Luciferase System.” *Microbiology and Molecular
1788 Biology Reviews: MMBR* 76 (2): 331–82.

1789 Sun, Yi, Philip J. Bilan, Zhi Liu, and Amira Klip. 2010. “Rab8A and Rab13 Are Activated by
1790 Insulin and Regulate GLUT4 Translocation in Muscle Cells.” *Proceedings of the
1791 National Academy of Sciences of the United States of America* 107 (46): 19909–14.

1792 Szklarczyk, Damian, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime
1793 Huerta-Cepas, Milan Simonovic, et al. 2019. “STRING v11: Protein-Protein Association

1794 Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide
1795 Experimental Datasets." *Nucleic Acids Research* 47 (D1): D607–13.

1796 Takahashi-Kanemitsu, Atsushi, Christopher T. Knight, and Masanori Hatakeyama. 2020.
1797 "Molecular Anatomy and Pathogenic Actions of Helicobacter Pylori CagA That Underpin
1798 Gastric Carcinogenesis." *Cellular & Molecular Immunology* 17 (1): 50–63.

1799 Teng, Ben, Can Zhao, Xiaoqing Liu, and Zengyou He. 2015. "Network Inference from AP-
1800 MS Data: Computational Challenges and Solutions." *Briefings in Bioinformatics* 16 (4):
1801 658–74.

1802 Tharkeshwar, Arun Kumar, Jesse Trekker, Wendy Vermeire, Jarne Pauwels, Ragna
1803 Sannerud, David A. Priestman, Danielle Te Vruchte, et al. 2017. "A Novel Approach to
1804 Analyze Lysosomal Dysfunctions through Subcellular Proteomics and Lipidomics: The
1805 Case of NPC1 Deficiency." *Scientific Reports* 7 (January): 41408.

1806 Uetz, Peter, Yu-An Dong, Christine Zeretzke, Christine Atzler, Armin Baiker, Bonnie Berger,
1807 Seesandra V. Rajagopala, et al. 2006. "Herpesviral Protein Networks and Their
1808 Interaction with the Human Proteome." *Science* 311 (5758): 239–42.

1809 Unsworth, Kate E., Michael Way, Mark McNiven, Laura Machesky, and David W. Holden.
1810 2004. "Analysis of the Mechanisms of *Salmonella*-Induced Actin Assembly during
1811 Invasion of Host Cells and Intracellular Replication." *Cellular Microbiology* 6 (11): 1041–
1812 55.

1813 Uzzau, S., N. Figueroa-Bossi, S. Rubino, and L. Bossi. 2001. "Epitope Tagging of
1814 Chromosomal Genes in *Salmonella*." *Proceedings of the National Academy of Sciences
1815 of the United States of America* 98 (26): 15264–69.

1816 Verschueren, Erik, John Von Dollen, Peter Cimermancic, Natali Gulbahce, Andrej Sali, and
1817 Nevan J. Krogan. 2015. "Scoring Large-Scale Affinity Purification Mass Spectrometry
1818 Datasets with MiST." *Current Protocols in Bioinformatics / Editorial Board, Andreas D.
1819 Baxevanis ... [et Al.]* 49 (March): 8.19.1–8.19.16.

1820 Wang, Di, Jun Lou, Chuan Ouyang, Weilin Chen, Yiqi Liu, Xinyuan Liu, Xuetao Cao, Jianli
1821 Wang, and Linrong Lu. 2010. "Ras-Related Protein Rab10 Facilitates TLR4 Signaling by
1822 Promoting Replenishment of TLR4 onto the Plasma Membrane." *Proceedings of the
1823 National Academy of Sciences of the United States of America* 107 (31): 13806–11.

1824 Wasylka, Julie A., Malina A. Bakowski, Jason Szeto, Maikke B. Ohlson, William S. Trimble,
1825 Samuel I. Miller, and John H. Brumell. 2008. "Role for Myosin II in Regulating
1826 Positioning of *Salmonella*-Containing Vacuoles and Intracellular Replication." *Infection
1827 and Immunity* 76 (6): 2722–35.

1828 Werner, Thilo, Gavain Sweetman, Maria Fälth Savitski, Toby Mathieson, Marcus Bantscheff,
1829 and Mikhail M. Savitski. 2014. "Ion Coalescence of Neutron Encoded TMT 10-Plex
1830 Reporter Ions." *Analytical Chemistry* 86 (7): 3594–3601.

1831 Wideman, Jeremy G., Dario L. Balacco, Tim Fieblinger, and Thomas A. Richards. 2018.
1832 "PDZD8 Is Not the 'Functional Ortholog' of Mmm1, It Is a Paralog." *F1000Research* 7
1833 (July): 1088.

1834 Wilhelm, Léa P., Laetitia Voilquin, Toshihide Kobayashi, Catherine Tomasetto, and Fabien
1835 Alpy. 2019. "Intracellular and Plasma Membrane Cholesterol Labeling and
1836 Quantification Using Filipin and GFP-D4." In *Intracellular Lipid Transport: Methods and*

1837 *Protocols*, edited by Guillaume Drin, 137–52. New York, NY: Springer New York.

1838 Wyles, Jessica P., Christopher R. McMaster, and Neale D. Ridgway. 2002. “Vesicle-
1839 Associated Membrane Protein-Associated Protein-A (VAP-A) Interacts with the
1840 Oxysterol-Binding Protein to Modify Export from the Endoplasmic Reticulum.” *The*
1841 *Journal of Biological Chemistry* 277 (33): 29908–18.

1842 Yang, Chun-Kai, Hosam E. Ewis, Xiaozhou Zhang, Chung-Dar Lu, Hae-Jin Hu, Yi Pan,
1843 Ahmed T. Abdelal, and Phang C. Tai. 2011. “Nonclassical Protein Secretion by *Bacillus*
1844 *Subtilis* in the Stationary Phase Is Not due to Cell Lysis.” *Journal of Bacteriology* 193
1845 (20): 5607–15.

1846 Yayoshi-Yamamoto, S., I. Taniuchi, and T. Watanabe. 2000. “FRL, a Novel Formin-Related
1847 Protein, Binds to Rac and Regulates Cell Motility and Survival of Macrophages.”
1848 *Molecular and Cellular Biology* 20 (18): 6872–81.

1849 Zhao, Weidong, Thomas Moest, Yaya Zhao, Aude-Agnès Guilhon, Christophe Buffat, Jean-
1850 Pierre Gorvel, and Stéphane Méresse. 2015. “The *Salmonella* Effector Protein SifA
1851 Plays a Dual Role in Virulence.” *Scientific Reports* 5 (August): 12979.