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Abstract 

 Slide-free digital pathology techniques, including nondestructive 3D microscopy, are 

gaining interest as alternatives to traditional slide-based histology. In order to facilitate clinical 

adoption of these fluorescence-based techniques, software methods have been developed to 

convert grayscale fluorescence images into color images that mimic the appearance of standard 

absorptive chromogens such as hematoxylin and eosin (H&E). However, these false-coloring 

algorithms often require manual and iterative adjustment of parameters, with results that can be 

inconsistent in the presence of intensity nonuniformities within an image and/or between 

specimens (intra- and inter-specimen variability). Here, we present an open-source (Python-

based) rapid intensity-leveling and digital-staining package that is specifically designed to render 

two-channel fluorescence images (i.e. a fluorescent analog of H&E) to the traditional H&E color 

space for 2D and 3D microscopy datasets. However, this method can be easily tailored for other 

false-coloring needs. Our package offers (1) automated and uniform false coloring in spite of 

uneven staining within a large thick specimen, (2) consistent color-space representations that are 

robust to variations in staining and imaging conditions between different specimens, and (3) GPU-

accelerated data processing to allow these methods to scale to large datasets. We demonstrate 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.03.074955
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

this platform by generating H&E-like images from cleared tissues that are fluorescently imaged in 

3D with open-top light-sheet (OTLS) microscopy, and quantitatively characterizing the results in 

comparison to traditional slide-based H&E histology. 

 

 

Introduction 

 Modern microscopy methods enable life scientists and clinicians to visualize complex 

tissue structures, where recent technological advancements have radically enhanced our 

understanding of biological processes and disease pathologies. However, clinical diagnostic 

practices have not taken full advantage of these modern microscopy techniques. In particular, the 

gold-standard diagnostic method of histology is based on centuries-old technologies, where 

tissues are preserved in harsh fixatives, destructively sectioned onto glass slides, stained with 

simple chromogens (most-commonly with hematoxylin and eosin, i.e. H&E), and manually imaged 

with analog brightfield microscopes. In order to improve throughput, non-destructiveness, 

sampling extent, and in some cases, to provide 3D information, several slide-free microscopy 

techniques have recently been explored for use in clinical settings. For example, techniques such 

as confocal microscopy [1, 2], multiphoton microscopy [3-6], microscopy with UV surface 

excitation (MUSE) [7-9], and structured illumination microscopy (SIM) [10, 11] have been explored 

as slide-free alternatives to frozen-section histology for rapid interoperative guidance. 

Additionally, light-sheet microscopy technologies, such as open-top light-sheet (OTLS) 

microscopy [12 -14], when used in conjunction with tissue-clearing techniques [15], have been 

explored for slide-free nondestructive 3D pathology. These techniques generally rely on 

fluorescence collected with a sensitive monochrome detector.  Since pathologists are accustomed 

to certain color schemes generated by standard chromogens, such as the pink and purple hues 

associated with H&E staining, the ability to render grayscale fluorescent images with color 
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palettes that mimic standard histology can play a major role on the ability of pathologists to 

interpret and adopt slide-free pathology methods in the future.  

 Several groups have published software methods to convert two-channel fluorescence 

images into “virtual H&E” images. One such virtual H&E algorithm was published in 2009 by 

Gareau [16]. Using an additive model, this method rendered the reflectance contrast generated 

by collagen and cytoplasm, and the fluorescence generated by a hematoxylin analog, to mimic 

H&E staining. Bini et al. in 2011 further refined this model by analyzing the transmitted spectra of 

multiple slides that were independently stained with either hematoxylin or eosin [17]. A limitation 

of the additive approach is that in standard H&E histology, the classic pink and purple hues are 

the result of spectral mixing of the two dyes present in the specimen, according to a nonlinear 

absorption process (Beer-Lambert-law attenuation). Additive models rely on the linear 

superposition of intensities, which is non-physical and does not reliably mimic the appearance of 

conventional H&E histology.  

 To address these limitations, a false-coloring model based on the Beer-Lambert law of 

absorption was developed by Giacomelli et al. in 2016 [18]. The Beer-Lambert model accounts 

for the spectral mixing of chromogenic (absorption-based) dyes and their wavelength-dependent 

nonlinear attenuation of light (i.e. exponential decay as a function of concentration). As a result, 

this model can accommodate multiple fluorescent stains with overlapping spectra without loss of 

contrast or non-physical results. Note that in addition to H&E, other chromogens can be modeled, 

such as the DAB stain most-commonly used for immunohistochemistry (IHC) [13]. 

 The previous approaches described above, for false coloring fluorescent images to mimic 

conventional chromogenic (absorption-based) stains, have a number of practical shortcomings 

that prevent them from generating consistent results:  

 (1) Significant variations in the appearance of slide-free digital pathology images can occur 

due to uneven staining within a specimen (intra-specimen variability). In particular, thick 

unsectioned tissues exhibit diffusion barriers that often lead to nonuniform staining. This is more 
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pronounced with large agents such as antibodies but also affects smaller agents. Additionally, 

when imaging optically cleared tissues, samples that are not fully cleared can exhibit a scattering-

induced loss of signal as a function of imaging depth.  

(2) The appearance of both standard histology and slide-free fluorescence images can 

vary greatly between institutions, or even within an institution, due to day-to-day variations in 

sample preparation, staining protocols and imaging parameters (inter-specimen variability) [19]. 

In the presence of these variabilities, simple false-coloring algorithms can fail unless software 

parameters are manually tweaked, often by trial-and-error.   

(3) Finally, 3D slide-free digital pathology datasets are often hundreds of gigabytes to 

terabytes in size, which is 3 to 4 orders of magnitude larger than standard 2D whole slide images. 

To facilitate clinical translation, false-coloring algorithms must be able to process these large 3D 

datasets in an efficient and scalable manner. 

 It bears mentioning that several deep-learning methods have been developed to render 

H&E-like images from unstained tissue sections imaged with label-free imaging modalities such 

as brightfield and autofluorescence microscopy [20-22], multi-photon microscopy [23], and 

quantitative phase-contrast imaging [24]. Similar machine-learning-based approaches could be 

used to create H&E-like images from tissues labeled with exogenous fluorophores (i.e. fluorescent 

analogs of H&E). However, these methods not only require large amounts of training data but are 

also highly sensitive to pre-analytical variations such as staining protocols, imaging parameters, 

and hardware settings. In contrast, the ability to use an explainable physics-based approach for 

digital staining is likely attractive for many end users and regulatory agencies, allowing for easier 

error identification, debugging, and compatibility with different imaging platforms [25].  

In this manuscript we present FalseColor-Python, which enables rapid and robust digital 

staining of fluorescence images to mimic the appearance of chromogenic stains using the Beer-

Lambert model. As a pre-processing step prior to false-coloring, an intensity-leveling routine, 

analogous to flat fielding, is used to locally and globally normalize image intensities, thereby 
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mitigating the effects of both intra- and inter-sample variability. In particular, the code presented 

here is specifically optimized to generate H&E-like images of tissues stained with a two-channel 

fluorescent analog of H&E (i.e. a fluorescent nuclear stain that mimics hematoxylin, along with 

the stromal stain, eosin, which is naturally fluorescent) and imaged with 3D open-top light-sheet 

(OTLS) microscopy [12-14]. We show that FalseColor-Python enables accurate and reproducible 

H&E false-coloring that qualitatively and quantitatively matches the appearance of H&E whole 

slide images, but with less variability than is seen with standard histology. GPU acceleration is 

used for efficient and scalable processing of large 3D datasets. 

 Note that while H&E false-coloring is demonstrated here, FalseColor-Python can be 

tailored to accommodate other preferred fluorescent staining combinations and individual color 

preferences. For example, FalseColor-Python can be adapted to false-color fluorescence images 

to mimic other chromogens, such as DAB (used in standard immunohistochemistry [13]) or other 

special stains (e.g. PAS, Masson’s Trichrome, Toluidine Blue).  In addition, while FalseColor-

Python is optimized for large 3D datasets, it can easily be applied to 2D images as well.    

 

 

FalseColor-Python workflow 

 Figure 1 outlines the workflow for processing large two-channel 3D datasets using 

FalseColor-Python. For our specific implementation of this code, input data is stored on disk in 

the Hierarchical Data Format (HDF5), which is a common multi-resolution 3D image format (Fig 

1A). The advantage of multi-resolution file formats like HDF5, or similar formats such as N5, is 

that they contain multiple down-sampled versions of the imaging data.  For our 3D microscopy 

data, we use a 16x down-sampled version of the data (low-resolution) to rapidly calculate an 

approximate global background level for each channel. The background level is calculated by first 

ignoring all pixels that are below a threshold value (i.e. black pixels), which we have defined as 4 
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standard deviations above the detector noise floor. The intensity of the 20 th percentile of the 

remaining pixels is defined as the background value, which is due to a combination of tissue 

autofluorescence and nonspecific staining.  We have found that for all of the 3D datasets we have 

examined, this 20% threshold is effective.  However, for tissues that are very densely stained, in 

which there are few “background” pixels, this threshold may need to be adjusted. Once calculated, 

this background level is uniformly subtracted from both the down-sampled and full-resolution 

original dataset (Fig 1B).  Next, the down-sampled dataset is partitioned into uniformly sized data 

cubes.  In our case, each data cubes corresponds to a 100 x 100 x 100 µm3 volume of tissue 

(where 100 µm corresponds to 256 pixels in our raw datasets) (Fig 1C).  We use this partitioned 

data to create a low-resolution 3D “intensity-leveling map,” which will subsequently be used to 

remove global intensity fluctuations from the original dataset (see introduction). The intensity-

leveling map is generated by calculating the median pixel value for every local data cube (Fig 

1D), scaling it with an empirical weighting factor, , and then linearly interpolating between the 

cubes to smooth out the map (Fig 1E). Intensity leveling is achieved by taking a pixel-by-pixel 

ratio of the full-resolution dataset (background-subtracted) and the interpolated intensity-leveling 

map (Fig 1F). The result is an image in which the median value of every local region (i.e. data 

cube) is approximately equal (due to the ratioing step), in which many of the large-scale (gradual) 

intensity irregularities are reduced (Fig 1G). Finally, the leveled images from both channels are 

passed into the Beer-Lambert false-coloring algorithm, which generates a color (RGB) image (Fig 

1H). The intensity-leveling and virtual H&E routines are accelerated with a GPU using the CUDA 

framework from Python’s Numba library [26].  

 Note that the size of the data cubes (Fig 1C) that are used for generating an intensity-

leveling map should be chosen based on the spatial scale of the intensity nonuniformities that 

one wishes to correct.  For images that exhibit very gradual or minimal intensity variations, larger 

cube sizes can be used.  Small cube sizes will remove finer-scale intensity fluctuations but may 

also remove fluctuations/contrast that are due to real tissue structure rather than staining artifacts.   
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 To demonstrate the utility of this method, a comparison of virtual H&E staining with and 

without intensity-leveling is shown in Fig 2. Here a single plane from a 3D microscopy dataset of 

an optically cleared lung specimen is shown. The specimen was stained with a fluorescent nuclear 

stain TOPRO-3 Iodide (Cat: T3605, Thermo-Fisher) and was optically cleared with Ethyl-

Cinnamate (Cat: 112372, Sigma-Aldrich) [14]. The cleared tissue volume was then imaged using 

OTLS microscopy [27]. The Beer-Lambert false-coloring algorithm was applied to a single 

grayscale image without intensity leveling (Fig 2A). In this example, the exterior of the tissue was 

stained more heavily than the interior. In Fig 2B, the intensity-leveling procedure was incorporated 

into the false-coloring routine, such that the false-colored nuclei appear much more uniform 

across the entire image. 

 

 

Colorimetry to mimic standard histology 

 For the clinical adoption of slide-free digital pathology, virtual H&E algorithms must 

consistently render virtual H&E images that qualitatively and quantitatively match the coloration 

of standard histology. To ensure that FalseColor-Python’s virtual H&E algorithm mimics the color 

palettes of standard histology, we measured the color properties of 65 publicly available whole 

slide images (H&E) of prostate adenocarcinoma from the Cancer Digital Slide Archive [28] (Fig 

3A). 10 regions of interest (ROIs) were selected from each whole slide image at a magnification 

of 200x (20x objective), (Fig 3 B).  Hematoxylin and eosin stains were segmented from each 

region of interest using color deconvolution [29, 30]. The color deconvolution algorithm generated 

a probability map for each dye, where pixel values represent the probability of that pixel belonging 

to one of the top-two color components of the image (i.e. hematoxylin or eosin), (Fig 3 C & D). 

These probability maps were used to create binary masks for each structure using Otsu’s 

thresholding method [31]. The binary masks yielded segmented images of the nuclei (hematoxylin 
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stain) and stroma (eosin stain).  This process was repeated for all ROIs and the median color 

properties of each stain were quantified and plotted based on the hue, saturation, value (HSV) 

color model (Fig 3 E & F). We used these measured HSV values as a target for our virtual H&E 

images.  In other words, in FalseColor-Python, we have adjusted the color parameters used in 

the Beer-Lambert false-coloring algorithm so that the median HSV color properties of the virtual 

H&E images approximate that of standard whole slide images.  

 For the clinical adoption of slide-free pathology, virtual H&E images not only need to mimic 

the color palette of standard H&E but must also be consistent and robust in the presence of 

variations between samples, for example due to differences in staining protocols or imaging 

parameters. By incorporating intensity-leveling, our virtual H&E algorithm rendered images with 

similar appearance despite inter-sample intensity differences. As an example, fluorescent images 

of two prostate tissue samples are shown in Fig 4A, in which significant differences in 

fluorescence intensities are seen (when imaged with the same device and settings). The intensity 

levels for each fluorescence channel (TO-PRO-3 and eosin) are shown in the accompanying 

histograms. Despite these differences in intensity, the resulting virtual H&E images of each 

sample are qualitatively and quantitatively similar. On the right-most column of Fig 4A, a 

histogram of the value (V) component of each virtual H&E image is plotted and is comparable for 

both images after the intensity-leveled false-coloring routine is applied. 

 To quantitatively compare the consistency of FalseColor-Python with standard H&E 

histology, we measured the HSV color model parameters for 2100 virtual H&E images from 14 

samples of prostate tissue imaged with 3D OTLS microscopy and then processed with 

FalseColor-Python. To measure the color properties of the virtual H&E images, we used the same 

color-deconvolution method that was used to measure the color properties of whole slide images 

from the Cancer Digital Slide Archive (described previously). It should be noted that while the 

color parameters were adjusted to allow our virtual H&E images to match the color parameters of 

standard H&E images, all virtual H&E images used in this analysis were processed in a fully 
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automated fashion using the exact same code parameters for intensity-leveling and coloration. 

Our results show that the color properties of virtual H&E data processed with FalseColor-Python 

match the measured values of standard H&E, as expected (Fig 4B). Furthermore, the color 

properties of virtual H&E images processed with FalseColor-Python are much more consistent 

(less standard deviation) than the color properties of standard H&E-stained whole slide images. 

Table 1 lists the median and standard deviation of each color property for both standard and 

virtual H&E.  Finally, an image atlas is shown in Fig 5 to demonstrate that FalseColor-Python 

renders consistent virtual H&E images across tissue types and to demonstrate that FalseColor-

Python is easily adjusted to mimic other color spaces in standard histology (DAB staining). 

 

Table 1:  Measured median color properties of standard and virtual H&E images in HSV color space.  

Standard H&E properties are measured from 10 ROIs from each of 65 whole slide images (prostate).  Virtual 

H&E properties are measured from 2100 two-dimensional “optical sections” from 14 prostate specimens. 

 

 

 

Discussion 

 We have developed FalseColor-Python, a rapid intensity-leveling and digital-staining 

package for converting grayscale fluorescence images into color images that mimic conventional 

chromogenic (absorption-based) stains.  In particular, we demonstrate the rendering of virtual 

H&E images from thick tissues stained with a fluorescent analog of H&E and imaged in 3D. To 

improve the consistency of our false-coloring method in the presence of both inter-sample and 

intra-sample variations in staining/intensity, we have developed and incorporated a 3D intensity-

leveling routine (Figs 1 & 2). We analyzed the color properties of standard H&E images (Fig 3) 

 Hematoxylin Eosin 

 Standard Virtual Standard Virtual 

Hue  0.811 ± 0.043  0.808 ± 0.009  0.910 ± 0.023  0.901 ± 0.010 

Saturation  0.453 ± 0.095  0.457 ± 0.055  0.381 ± 0.119  0.310 ± 0.039 

Value  0.494 ± 0.111  0.502 ± 0.048  0.788 ± 0.087  0.811 ± 0.025 
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and used this data to ensure that the virtual H&E images rendered by FalseColor-Python are 

representative of standard histology. Our results show that the virtual H&E images rendered by 

FalseColor-Python are qualitatively and quantitatively similar to standard H&E histology 

regardless of variations in intensity, as for example due to differences in sample preparation, 

imaging device, and/or imaging parameters (Fig 4). In particular, we have shown that FalseColor-

Python renders virtual H&E images that not only quantitatively match the appearance of standard 

H&E images, but with less variability in coloration than is seen with standard histology (Fig 4B).  

 The ability to render quantitatively and qualitatively consistent virtual H&E images is of 

critical importance for the adoption of fluorescence-based imaging methods in anatomic 

pathology. Staining non-uniformities and depth-dependent intensity variations are common data-

quality issues in fluorescence imaging, particularly for nondestructive slide-free 3D imaging 

modalities. In developing this intensity-leveling technique, we have taken advantage of the 

multiple down-sampled versions of an imaging dataset that are stored in a multi-resolution image 

format such as HDF5.  However, down-sampling of imaging data is straightforward and intensity-

leveling maps can be generated from any 3D imaging data.  For our 3D microscopy data, optimal 

performance has been seen with data cubes of 100 x 100 x 100 µm3, however users can make 

adjustments as needed to best suit their data. This tunability is demonstrated in an example 

located on our GitHub repository. Finally, for certain images with intensity nonuniformities, 

enhanced performance is seen using an implementation of contrast-limited adaptive histogram 

equalization (CLAHE) as a pre-processing step before intensity-leveling is performed. This is 

included as an optional method within FalseColor-Python but was not used in the examples 

shown in this study. 

 In terms of limitations, our intensity-leveling method is best suited for images where 

staining is present throughout the entirety of the sample, but where the spatial variations in that 

signal are relatively gradual compared with the real high-resolution features of interest (e.g. Fig 

2.) In cases in which large-scale (gradual) intensity variations are biologically real and informative 
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to end users (e.g. pathologists), there is the possibility that our intensity-leveling methods will 

mask (i.e. flatten) such global-intensity variations.  However, this could be mitigated by tuning the 

size of the data-partitioning cubes as outlined in Fig 1. 

 A significant outcome of this study is that virtual H&E images rendered by FalseColor-

Python exhibit significantly less variability in color parameters than standard histology. This is not 

surprising considering the obvious differences in appearance seen in histology images generated 

by independent labs, and even within individual labs at different times. The measured median 

color-property values of our virtual H&E images were all well within one standard deviation of the 

color properties of standard H&E images.  

We recognize that the standard H&E data used in this analysis represents a subset of all 

possible color presentations found in histology. Further, we acknowledge that there is a high 

degree of subjectivity and personal preference regarding the optimal coloration for standard H&E 

images. Therefore, it is possible to tune the appearance of false-colored images if so desired. For 

simplicity, RGB color parameters, which are easily measured from any image, are included as 

arguments in FalseColor-Python’s Beer-Lambert false-coloring algorithm so that users can make 

adjustments as needed. Further discussion of adjusting color settings is provided in an example 

on the online repository (see GitHub link at the end of this article).  

Note that all methods used for colorimetry analysis of standard and virtual H&E images 

(e.g. Fig 3) are included in FalseColor-Python. Additionally, as mentioned in the introduction, 

FalseColor-Python is easily adapted for other fluorescence-to-chromogenic staining 

transformations, for example to render images that mimic chromogenic immunohistochemistry 

(i.e. DAB stain) (Fig 5C & 5F).  

 FalseColor-Python contains several methods that use GPU acceleration. For example, 

CUDA-based implementations of the Beer-Lambert false-coloring algorithm are included in 

FalseColor-Python as well as several preprocessing steps such as intensity-leveling, image 

sharpening, and background subtraction. For users without access to GPU hardware, equivalent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.03.074955
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

CPU-based processing methods are available as alternatives in FalseColor-Python. In a simple 

speed comparison, we measured the average time to process 200 two-channel 16-bit images 

(2048 x 2048 pixels each) with FalseColor-Python, using either GPU- or CPU-based Beer-

Lambert false-coloring algorithms and preprocessing steps (i.e background subtraction, intensity-

leveling). The GPU-based process was faster by over a factor of 6 (116 +/- 17 ms per image vs. 

789 +/- 18 ms per image). There is room for further improvement by developing objects and 

methods within FalseColor-Python that can process large 3D datasets in parallel. For example, 

implementing multi-resolution file formats that allow for parallelized read operations (e.g. N5 

instead of HDF5) will enable FalseColor-Python to process 3D datasets even more efficiently. 

Parallelized processing in FalseColor-Python is discussed in an example on the GitHub 

repository. Developers who are interested in contributing to FalseColor-Python should submit pull 

requests via the GitHub repository. 

 

 

Detailed methods 

 

OTLS imaging 

 Tissue samples were stained with a fluorescent nuclear stain, TO-PRO-3 (Cat: T3605, 

Thermo-Fisher) at a 1:2000 dilution and eosin (Cat: 3801615, Leica Biosystems) at a 1:2000 

dilution for 4 hours at room temperature with light shaking. Samples were optically cleared with 

ethyl-cinnamate (Cat: 112372, Sigma-Aldrich). Stained and cleared samples were imaged on a 

custom OTLS system [14]. A 660-nm laser was used to excite the nuclear dye, TO-PRO3, and a 

561-nm laser was used to excite eosin. Each channel was imaged separately, in succession, with 

a 16-bit sCMOS camera. For more information on OTLS imaging see our previous publications 

[12-14]. 
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Image processing 

 Two channel OTLS datasets were stored on disk in the HDF5 format with metadata in an 

XML file structured for analysis using BigStitcher [27]. A custom compression filter (B3D) was 

used to provide 10x compression. The fine alignment of all OTLS data was performed in 

BigStitcher and fused to disk as a separate HDF5 file. Before virtual H&E rendering (as described 

in the manuscript), an optional sharpening routine was used on each image to enhance edges. 

 Virtual H&E rendering of two-channel fluorescence images was achieved using the Beer-

Lambert false-coloring algorithm [18]. Grayscale intensities are converted into RGB images via: 

 

 

where H, E are fluorescent images, MH, E is the 2D image leveling map for each channel, α, β are 

intensity-leveling constants, j, k are the color settings and n = R, G, B. Based on the colorimetry 

measurements described in the manuscript (Fig. 3), we adjusted FalseColor-Python’s 

hematoxylin and eosin color parameters until the measured color properties of virtual H&E images 

consistently matched those of standard H&E. After this calibration no further adjustments were 

necessary. Table 2 lists the RGB color settings used for processing OTLS images. For leveling 

our OTLS images, α = 1.5 and β = 3.7 were chosen as scaling constants for the majority of our 

datasets. 

 Hematoxylin Eosin 

R 0.17 0.05 

G 0.27 1.00 

B 0.105 0.54 

Table 2:  Reference k values for virtual H&E coloration in RGB space. 

𝐼ሺ𝐻, 𝐸ሻ  =  𝑒𝑥𝑝 ൬−
𝑗𝑛𝐻

𝛼𝑀𝐻
൰ · 𝑒𝑥𝑝 ൬−

𝑘𝑛𝐸

𝛽𝑀𝐸
൰ (1) 
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 GPU acceleration for image processing was done using the cuda.jit decorator from the 

Numba library [26]. Implementation of GPU acceleration is done in such a way that the user needs 

no experience with the CUDA framework to accelerate their code (see examples on the GitHub 

repository). To achieve GPU acceleration, users only require a virtual environment equipped with 

the Anaconda’s cudatoolkit [32] and a CUDA capable GPU. GPU processing was done with a 

Nvidia Quadro P4000. A script containing the workflow as described in Fig 1 can be found on the 

GitHub repository. 

 

 

Histology Data Collection 

 To quantify the HSV color space of traditional histopathology, 65 whole slide images of 

prostate adenocarcinoma biopsies from the Cancer Genome Atlas, cancer.digitalslidearchive.org 

[28] were examined, 10 equally sized fields of view from each whole slide image were taken at 

20x magnification. 

 

 

Color-Space quantification 

 To accurately analyze the color space of histology and OTLS images, the hematoxylin 

and eosin channels were separated from one another via a binary mask generated by color 

deconvolution from the scikit-image.color python package [30]. This color deconvolution-based 

segmentation was used for both standard and virtual H&E images. A binary mask was generated 

for each structure by first applying a median filter to the result of the color deconvolution, and then 

applying Otsu’s thresholding method [31]. Small objects were removed from the initial mask using 

an area threshold. A binary opening with a structuring element of a disk, r = 3, was applied to the 

resulting image. The input RGB image was converted to HSV space and then each mask was 
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applied to generate the final segmented image for each structure. This process was repeated 

across 650 regions of interest taken from publicly available prostate adenocarcinoma whole slide 

images and 2100 OTLS virtual H&E images from 14 prostate samples. Once each structure was 

segmented, the median value for each color property (HSV) was recorded from each segmented 

image. Zero valued areas, which resulted from the application of the binary mask, were ignored. 

 

 

Code Availability 

 The full FalseColor-python code, example data, and colorimetry analysis methods, are 

publicly available at https://github.com/serrob23/falsecolor. The repository includes instructions 

for installation and annotated examples.  

 

 

Programming Language 

 Python 3.6+ is used in FalseColor-Python. Some features may be unavailable on older 

versions. A full list of dependencies and requirements is available on GitHub. 
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Figure 1. FalseColor-Python workflow for virtual H&E rendering of a two-channel fluorescent analog 

of H&E.  The following operations are performed on both channels, but only one is shown for simplicity. (A) 

3D data (I) is loaded from disk. (B) A down-sampled version of the dataset (16x down-sampled here) is 

extracted, and a background level is calculated for each channel, which is uniformly subtracted from both 

the down-sampled and full-resolution original dataset. (C) The down-sampled data is further subdivided into 

cubes. (D) A preliminary 3D leveling map is generated by calculating the median pixel value for each data 

cube. (E)  A full-resolution leveling map, αM, is then generated by interpolation. Here, α is an empirically 

determined constant that controls image brightness. (F) To achieve intensity leveling, the full-resolution data, 

I, is divided by αM. This evens out coarse non-uniformities within the image. (G) The leveled images, If for 

both channels are input into the Beer-Lambert model to generate virtual H&E images, (H). 
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Figure 2. False-coloring with and without intensity-leveling. Only one channel is shown for simplicity. 

(A) Images are shown of a thick tissue specimen that is labeled (nonuniformly) with a fluorescent nuclear 

stain (TO-PRO-3), optically cleared, and then imaged with 3D microscopy.  The image is false colored to 

mimic hematoxylin without intensity-leveling applied. A line profile within the inset clearly shows that nuclei 

in the inner region of the tissue (yellow arrow) are dimmer than nuclei on the exterior (blue arrow). When 

false colored, the nuclei on the exterior appear much darker (bottom panel). (B) The same field of view is 

shown after intensity leveling is applied. Nuclei across the field of view exhibit similar intensities, and when 

false colored, are much more uniform in appearance. Scale bars: 100 µm 
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Figure 3. Measuring the color properties of histology images. (A) A whole slide image of prostate 

adenocarcinoma from the Cancer Digital Slide Archive, cancer.digitalslidearchive.org. Scale bar: 2 mm (B) 

Magnified inset of (A). Scale bar: 75 µm (C, D) Process to segment the hematoxylin and eosin components. 

Using color deconvolution, a probability map is generated for the top two components of each ROI from the 

whole slide image (right panel). A binary mask is created for each of the two components by applying Otsu’s 

thresholding to the probability map (middle panel). This yields a segmented image of the nuclei 

(hematoxylin stain) and cytoplasm (eosin stain) (left panel). Scale bar: 75 µm (E, F) After segmentation of 

all ROIs, the median values of hue, saturation, and value (HSV color model) are quantified and plotted for 

both the hematoxylin-stained and eosin-stained tissue components. 
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Figure 4. Inter-specimen consistency of virtual H&E images. (A) OTLS images of prostate tissue with 

different staining intensities. Despite significant differences in intensity between example I and II, the virtual 

H&E images appear qualitatively and quantitatively similar. Histograms are shown of the fluorescence 

intensities within each image, and the value (V) component of the virtual H&E images. (B) Distribution of 

median color properties for 650 standard H&E and 2100 virtual H&E images of prostate tissue. The 

distributions for standard H&E exhibit the high degree of color variation seen in conventional histology. The 

virtual H&E images rendered with FalseColor-Python accurately mimic the coloration of standard H&E with 

significantly less variation in color parameters than conventional H&E.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074955doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.03.074955
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 

 
 

Figure 5. False-coloring image atlas. Thick tissues were stained with a fluorescent analog of H&E (A, B, D, 

E), or an antibody targeting the high molecular weight keratin (HMWK), CK-8, along with the nuclear stain, 

TO-PRO-3 (C, F).   All tissues were optically cleared and imaged in 3D with an open-top light-sheet (OTLS) 

microscope. (A) Skin.  (B) Kidney. (C) Prostate. (D) Basal layer of the epidermis. (E) Kidney tubules. (F) 

Prostate glands (carcinoma).  Virtual H&E images were processed with identical code parameters in a fully 

automated fashion. Virtual IHC images were processed with an identical code, but with coloring parameters 

changed to mimic the chromogen DAB (brown stain) and hematoxylin (blue stain).  These codes and 

parameters are provided in our GitHub repository (see provided link).  Scale bars: 500 µm for A-C, 50 µm for 

D-F. 
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