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Abstract: 

 

Motivation:  In the last two decades, scientists working in different labs have assayed gene 

expression from millions of samples. These experiments can be combined into compendia and 

analyzed collectively to extract novel biological patterns. Technical variability, sometimes 

referred to as batch effects, may result from combining samples collected and processed at 

different times and in different settings. Such variability may distort our ability to interpret and 

extract true underlying biological patterns. As more multi-experiment, integrative analysis 

methods are developed and available data collections increase in size, it is crucial to determine 

how technical variability affect our ability to detect desired patterns when many experiments are 

combined 

 

Objective: We sought to determine the extent to which an underlying signal was masked by 

technical variability by simulating compendia comprised of data aggregated across multiple 

experiments. 

 

Method:  We developed a generative multi-layer neural network to simulate compendia of gene 

expression experiments from large-scale microbial and human datasets. We compared 

simulated compendia before and after introducing varying numbers of sources of undesired 

variability. 

 

Results:  We found that the signal from a baseline compendium was obscured when the number 

of added sources of variability was small. Perhaps as expected, applying statistical correction 

methods rescued the underlying signal in these cases. As the number of sources of variability 

increased, surprisingly, we observed that detecting the original signal became increasingly 

easier even without correction. In fact, applying statistical correction methods reduced our 

power to detect the underlying signal. 

 

Conclusion:  When combining a modest number of experiments, it is best to correct for 

experiment-specific noise. However, when many experiments are combined, statistical 

correction reduces one’s ability to extract underlying patterns. 
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Introduction: 

 

For the last two decades, unprecedented amounts of transcriptome-wide gene expression 

profiling data have been generated, most of which are shared in public platforms for the 

research community.1 Researchers are now combining samples across different experiments to 

form compendia, and analyzing these compendia is revealing new biology.2–6 It is well-

understood that technical sources of variability pervade large-scale data analysis such as 

transcriptome-wide expression profiling studies.7–10 Numerous methods have been designed to 

correct for various types of effects.7,11,12 Despite the prevalence of technical sources of 

variability, researchers have successfully extracted biological patterns from multi-experiment 

compendia without applying correction methods.2–5,13 We sought to determine the basis of these 

seemingly contradictory results by examining the extent to which underlying statistical structure 

can be extracted from compendium-style datasets in the presence of sources of undesired 

variability. 

 

A number of methods have been developed to simulate transcriptome-wide expression 

experiments.14–17  However, simulating a compendium of many experiments with existing 

approaches would require defining a statistical model that describes the process by which 

researchers design and carry out experiments, which is likely to be very challenging. Instead, 

we developed an approach to simulate compendia by sampling from the low-dimensional 

representation produced by multi-layer generative neural networks trained on gene expression 

data from an existing compendium. This allowed us to simulate gene expression experiments 

that mimic real experimental configurations. We combined these experiments to create 

compendia.  

 

Using this simulation approach, we studied how adding varying amounts of experiment-specific 

noise affects the statistical structure of gene expression compendia and our ability to detect 

underlying patterns. This topic is becoming pressing as more large-scale expression compendia 

become available. We found that prior reports of pervasive technical noise and analyses that 

succeed without correcting for it are, in fact, consistent. In settings with relatively few 

experiment-specific sources of undesired variation, the added noise substantially alters the 

structure of the data. In these settings, statistical correction produces a data representation that 

better captures the original variability in the data. On the other hand, when the number of 
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experiment-specific sources of undesired variability becomes large, attempting to correct for 

these sources does more harm than good. 

 

Results: 

 

We characterized publicly available data compendia using refine.bio18, a meta-repository that 

integrates data from multiple different repositories. We found that an average experiment 

contained hundreds to thousands of samples in most widely studied organisms (Table 1). These 

samples were derived from hundreds to thousands of experiments, and the most common 

experimental designs had relatively few samples (medians from 5-12). We compared these to 

two readily available compendia, recount2 and one for P. aeruginosa, that have been used for 

compendium-wide analyses.2,3,6 The compendia that have been successfully used in prior 

work2,3,6 have similar median numbers of samples per experiment (recount2 = 4, P. aeruginosa 

= 6) to the current publicly available data. 

 

Table 1:   Public data usually have only a modest number of samples per experiment, though in 

aggregate many samples are available. Statistics for the 10 largest transcriptomic compendia found in 

refine.bio, which is a meta-repository containing publicly available expression data from the Sequence 

Read Archive (SRA)19, Gene Expression Omnibus (GEO)20 and ArrayExpress21.    

 No. experiments Median no. samples Total no. samples 

HOMO SAPIENS 15440 12 571862 

MUS MUSCULUS 13224 10 296829 

ARABIDOPSIS THALIANA 1627 9 24855 

RATTUS NORVEGICUS 1368 12 38530 

DROSOPHILA MELANOGASTER 853 9 17836 

SACCHAROMYCES CEREVISIAE 627 12 12972 

DANIO RERIO 546 9.5 28518 

CAENORHABDITIS ELEGANS 375 10 7953 

SUS SCROFA 280 12 6063 

ZEA MAYS 274 5 3458 

 

Constructing a generative model for gene expression samples 

 

We developed an approach to simulate new gene expression compendia using generative 

multi-layer neural networks. Specifically, we trained a variational autoencoder (VAE)22, which 
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was comprised of an encoder and decoder neural network. The encoder neural network 

compressed the input data through two layers into a low-dimensional representation and the 

decoder neural network expanded the dimensionality back to the original input size. The VAE 

learned a low-dimensional representation that can reconstruct the original input data.  

Simultaneously, the VAE optimized the lowest dimensional representation to follow a normal 

distribution (Figure 1A).  This normal distribution constraint, distinguishes VAE’s from other 

types of autoencoders and allowed us to generate variations of the input data by sampling from 

a continuous latent space.22  

 

We trained VAEs for each dataset (recount2 and P. aeruginosa). We evaluated the training and 

validation set loss at each epoch, which stabilized after roughly 100 epochs (Figure 1B). We 

observed a similar stabilization after 40 epochs for recount2 (Figure S1A). We simulated new 

genome-wide gene expression data by sampling from the latent space of the VAE using a 

normal distribution (Figure 1C). We used UMAP23 to visualize the structure of the original and 

data and found that the simulated data generally fell near original data for both compendia 

(Figure 1D; Figure S1B). 

 

Simulating gene expression compendia with synthetic samples 

 

We designed a simulation study to assess the extent to which artifactual noise associated with 

individual partitions of a large compendium affects the structure of the overall compendium. Our 

simulation is akin to asking: if different labs performing transcriptome-wide experiments 

randomly sampled from the available set of possible conditions, to what extent would 

experiment-specific biases dominate the signal of the data. We simulated new compendia, 

randomly divided the samples into partitions, and then added noise to each partition, and 

compared the simulated compendia with added noise to the unpartitioned one (Figure 2A). Each 

partition represents groups of samples with shared experiment-specific noise. We evaluated the 

similarity before and after applying an algorithm designed to correct for technical noise in each 

partition – given the linear noise added we used limma24 to correct. 

 

We performed a study with this design using the VAE trained from the P. aeruginosa 

compendium for 2 to 6,000 partitions. We found that adding technical noise to partitions always 

reduced the similarity between the simulated data without partitions and the partitioned data. 

However, the nature of the change in similarity differed substantially between the partitioned 
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sets before and after the correction step (Figure 2B). With the correction step, similarity dropped 

throughout the range of the study, eventually reaching the same level as the permuted data. 

Without the correction step, similarity dropped immediately to near the permuted level and then 

recovered throughout the rest of the tested range. Examining simulated data on the top 2 

principle components from the original data with the corrected and uncorrected data at various 

numbers of partitions revealed that the correction step removes both wanted and unwanted 

variability, eventually removing all variability in the data (Figure 2C). Without correction, the data 

were initially dramatically transformed; however, as the number of partitions grows the effect on 

the structure of the data was diminished.  

 

To determine whether or not this was a more general property of such compendia, we repeated 

the same simulation study using a VAE trained on a recount2 compendium. recount2 is a 

compendium comprised of human RNA-seq samples, so it is generated using a different 

technology and consists of assays of a very different organism. Results with recount2 mirrored 

our findings with the P. aeruginosa compendium. The correction step initially retained more 

similarity, but performance crossed over and by the end of the study the uncorrected data were 

more similar to the unpartitioned simulated compendium (Figure 2D). Examining the top 

principle components again revealed that correction better retained the structure of the original 

data with few partitions, but with many partitions the structure was better retained without 

correction (Figure 2E).  We observed the same trends when we varied the magnitude of the 

noise added (Figure S2) or used a different noise correction method, such as COMBAT (Figure 

S3). 

 

Constructing a generative model for gene expression experiments 

 

We randomly selected samples from the range of all possible samples in the compendium. For 

the next simulation, we developed an approach that could simulate realistic experimental 

structure. This next simulation added another level of complexity to the model, by simulating 

experiments as opposed to samples, in order to make the simulated compendia more 

representative of true expression data. The technique that we developed uses the same 

underlying approach of sampling from a VAE. However, in this case  

we randomly selected a template experiment and a vector that would move that template 

experiment to a new location in the gene expression space (Figure 3A).  The simulation 

preserved the relationship between samples within the template experiment while also shifting 
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the activity of the samples in the latent space (Figure 3B). Intuitively, this process maintained 

the relationship between samples but changed the underlying perturbation. We used this 

process to generate compendia of new gene expression experiments. We exampled how the 

original samples in an experiment (E-GEOD- 51409) and a simulated experiment generated 

using E-GEOD-51409 as a template have consistent clustering of samples (Figure 3C original 

and experiment level simulated experiment).25 However the genes that were differentially 

expressed were different between the two datasets. This demonstrated that the perturbation 

intensity and experimental design were relatively consistent in gene expression space, even 

though the nature of the perturbation differed. The simulated experiment had a lower variance 

compared to the original dataset due to the normality assumption made by the VAE, which 

compresses the latent space data representation.22 However, in general, the clustering of 

samples is conserved between the simulated and original experiments, as observed in the 

additional template experiments with more complex structures (Figure S4). 

 

Given the fact that we preserved the association between samples and experiments in this new 

simulation, we would expect that new experiments would preserve the correlation in expression 

of genes that are in the same pathway. In our previous example experiment, E-GEOD-51409, 

the simulated experiment generated using the original E-GEOD-51409 as a template (i.e. 

experiment-level) identified 14 differentially expressed genes (Figure 3C). In contrast, the 

simulated experiment generated by randomly sampling (i.e. sample-level) did not identify any 

differentially expressed genes; the median log2 fold change was 0.08. Furthermore, when 

simulating 100 new experiments using E-GEOD-51409 as a template, the experiments 

generated using the workflow in Figure 3A identified a median of 2,588 differentially expressed 

genes compared to those new experiments generated by randomly sampling from the 

compendium resulting from the workflow in Figure 1C (Figure 3D) which identified a median of 0 

differentially expressed genes. Additionally, the median number of enriched KEGG pathways is 

1 using the workflow in Figure 3A compared to 0 using the random sampling approach using the 

previous simulation strategy (Figure 3E). Overall, it appears that this new simulation approach 

generated a compendium of experiments with some real underlying biology and therefore this 

new simulation represents a more realistic simulation compared to the previous one. Examples 

of the significantly enriched pathways can be seen in Table 2. The top over-represented 

pathway is the ribosome pathway, which is likely a commonly altered pathway found in many 

experiments regardless of experiment type.26 The remaining pathways found in the original 

experiment were generally metabolism related, which is consistent with the finding from the 
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original publication.25 The simulated experiment was particularly enriched in sulfur metabolism 

and ABC transporters, which is consistent with a different previous experiment that found 

upregulation of transport systems in response to sulfate limitations.27 Overall, in accordance 

with real gene expression experiments, the new simulated experiments contain related groups 

of enriched pathways which reflect the specific hypothesis being tested. 

 

Table 2: Enriched pathways found in the original E-GEOD-51409 experiment and the pseudo-experiment generated 

using the experiment-level simulation. 

 

 

Simulating gene expression compendia with synthetic experiments 

 

We used our method to simulate new experiments that follow existing patterns to examine the 

patterns that we observed for generic partitions (Figure 4A). We simulated 600 experiments 

using the P. aeruginosa compendium. We divided these experiments into partitions. These 

partitions represent groupings of experiments with shared noise, such as experiments from the 

same lab or experiments with the same experimental design.  Each partition contains technical 

sources of variance within and between experiments. Results with simulated experiments were 

similar to those from arbitrarily partitioned samples. We observed a monotonic loss of similarity 

after the correction step as the number of partitions increased (Figure 4B). Visualizing the top 

principal components revealed that statistical correction initially better recapitulated the overall 

structure of the data but that with many partitions similarity decreased (Figure 4C, dark blue). 

Without correction there was a larger initial drop in similarity but a later recovery (Figure 4B) and 

visualizing the top principal components recapitulated this finding (Figure 4C, light blue). We 

performed analogous experiments using the recount2 VAE and 100 simulated experiments. We 

Original Adjusted  

p-value 

Experiment level simulation Adjusted  

p-value 

Pae03010: Ribosome 2.966E-11 Pae03010: Ribosome 7.96E-07 

Pae00500: Starch and sucrose 

metabolism 

0.001512 Pae02010: ABC transporters 0.004009 

Pae01200: Carbon metabolism 0.004466 Pae00920: Sulfur metabolism 0.01576 

Pae00640: Propanoate 

metabolism 

0.001954   
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observed consistent results with this dataset using both SVCCA similarity (Figure 4D) and visual 

inspection of the top principal components (Figure 4E). In summary, as the number of partitions 

increase the experiment-specific technical sources contribute less overall to the signal and the 

underlying patterns dominate the overall signal. When many partitions are present, even ideal 

statistical approaches to correct for noise over-corrects and removes the underlying signal.   

 

Discussion: 

 

Our findings reveal that compendia-wide analyses do not always require correction for 

experiment-specific technical variance and that correcting for such variance may remove signal. 

This simulation study provides an explanation for the observation that past studies2–6 have 

successfully extracted biological signatures from gene expression compendia despite the 

presence of uncorrected experiment-specific sources of technical variability. In general, there 

exists compendia that contain some small number of experiment-specific sources where 

traditional correction methods can be effective at recovering the biological structure of interest; 

however, there also exist large-scale gene expression compendia where these methods may be 

harmful instead of helpful. The number of experiment-specific sources that determine whether to 

apply correction will vary depending on the dataset – the size of the compendia, the magnitude 

and structure of the signals. Using the associated repository 

(https://github.com/greenelab/simulate-expression-compendia) users can customize the scripts 

to run the simulation experiments on their own expression data in order to examine the effect of 

a linear noise model on their dataset. Though our analysis uses simplifying assumptions that 

preclude us from defining a specific threshold for noise correction, these simulations define a 

set of general properties that will guide compendia analyses moving forward.  

 

We introduce a new method to simulate genome-wide gene expression experiments, using 

existing gene expression data as starting material, which goes beyond simulating individual 

samples. This allowed us to examine the extent to which our findings hold with realistic 

experimental designs. The ability to simulate gene expression experiments with a realistic 

structure may have many potential legitimate uses: e.g., pre-training for machine learning 

models, providing synthetic test data for software, and other such applications. Additionally, this 

simulation technique can be used to explore hypothetical experiments that have not been 

previously performed and generate hypotheses. However, such approaches could also be used 
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by nefarious actors to generate synthetic data for publications. Forensic tools that detect 

synthetic genome-wide data may be needed to combat potential fraudulent uses. 

 

Our study has several limitations. We assume a certain noise model that differs between 

experiments. However, the sources of noise are multifaceted and any such assumption will 

necessarily be an oversimplification, though such assumptions are not uncommon.10,12,28 By 

selecting a specific noise model and using an ideal noise-removal step, we provide a best case  

scenario for artifact removal. While any simulation study will necessarily make simplifying 

assumptions, this work is the first to use deep generative models as part of a simulation study to 

probe the long-standing assumption that correcting for technical variability is necessary for 

analyses that span multiple experiments. Our findings reveal that in settings with hundreds or 

thousands of experiments, correcting for experiment-specific effects can harm performance and 

that it can be best to do nothing. 

 

Our study also has broader implications for efforts to standardize scientific processes. 

Centralization of large-scale data generation has the potential to reduce experiment-specific 

technical noise, though it comes at a cost of flexibility. Our results suggest that a highly 

distributed process where experiments are carried out in many different locations with their own 

specific sources of technical noise can also lead to valuable data collections. 

 

 

Methods: 

 

Pseudomonas aeruginosa gene expression compendium 

 

We downloaded a compendium of P. aeruginosa data that was previously used for 

compendium-wide analyses.2 Previous studies identified biologically-relevant processes such as 

oxygen deprivation2 and phosphate starvation3 by applying denoising autoencoders. We 

obtained the processed and normalized gene expression matrices from the associated GitHub 

repository. The P. aeruginosa dataset was previously processed by Tan et. al.2 During 

processing, raw microarray data were downloaded as .cel files, rma was used to convert probe 

intensity values from the .cel files to log2 base gene expression measurements, and these gene 

expression values were then normalized to 0-1 range per genes. 
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This compendium includes measurements from 107 experiments that contain 989 samples for 

5,549 genes.2 It contains experiments that accrued between the release of the GeneChip P. 

aeruginosa genome array and at the time of data freeze in 2014.  Approximately 70% of the 

samples were from cultures of strain PAO1 and derivatives, 13% were in strain PA14 

background, 0.6% were from PAK strains and the remaining were largely clinical isolates.  Of 

the strains, 73% were wild-type (WT) genotypes and the rest were mutants that had undergone 

genetic modification. Approximately 60% of the samples were grown in LB medium while the 

rest were grown in Pseudomonas Isolation Agar (PIA), glucose, pyruvate or amino acid-based 

media.3 Roughly 80% were grown planktonically, 15% were grown in biofilms and the remaining 

samples were in vivo or not annotated. Overall, this P. aeruginosa compendium covered a wide 

range of gene expression patterns including characterization of clinical isolates from Cystic 

Fibrosis infections, response of mutant versus WT, response of antibiotic treatment, microbial 

interactions, adaptation from water to GI tract infection. Despite having 989 samples, this 

compendium represents the heterogeneity of P. aeruginosa.  

 

recount2 gene expression compendium 

 

We downloaded human RNA-seq data from recount2.29  The dataset includes over 70,000 

samples collected from Sequencing Read Archive (SRA).  It is comprised of more than 50,000 

samples from different types of experiments, roughly 10,000 samples from Genotype-Tissue 

Expression project (GTEx v6) covering 44 types of normal tissue, and more than 10,000 

samples from The Cancer Genome Atlas (TCGA) measuring 33 cancer types.19,30,31  The 

recount2 authors uniformly processed and quantified these data. We downloaded data using the 

recount library in Bioconductor (version 1.14.0).29  The entire recount2 dataset is 8TB. Based on 

the P. aeruginosa compendium we expected that a subset of the compendium would be 

sufficient for this simulation, so we selected a random subset of 50 NCBI studies, which resulted 

in 896 samples with 58,037 genes for our simulation. Each project (imported from NCBI 

BioProject) is akin to an experiment in the P.  aeruginosa compendium, and we used the term 

experiment instead of projects in order to maintain consistency in this paper. The downloaded 

recount2 dataset was in the form of raw read counts, which was normalized to produce RPKMs 

used in our analysis.  The normalized gene expression data was then scaled to a 0-1 range per 

gene. 

 

Constructing a generative model of gene expression compendia 
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We designed an approach to simulate gene expression compendia with a multi-layer variational 

autoencoder (VAE). We built this model in Keras (version 2.1.6) with a TensorFlow backend 

(version 1.10.0) based on the Tybalt software for gene expression VAEs.32–34  Our architecture 

used each input gene as a feature. We compressed these genes to 2,500 intermediate features 

using a rectified linear unit (ReLU) activation function to combine weighted nodes from the 

previous layer. We encoded these features into 30 latent space features, which we optimized to 

follow a standard normal distribution via the addition of a Kullbach-Leibler (KL) divergence term 

into the loss function. We then reconstructed these features back to the input space using 

decoding layers that mirror the encoder network. We trained the VAE using 90% of the input 

dataset, leaving 10% as a validation set.  We determined training hyperparameters by manually 

adjusting parameters and selecting parameters that optimized the validation loss. These were a 

learning rate of 0.001, a batch size of 100, warmups set to 0.01, 100 epochs for the P. 

aeruginosa compendium and 20 epochs for the recount2 compendium. 

 

We used the VAE trained from each compendium to generate new compendia by randomly 

sampling from the latent space. We generated a simulated compendium containing 6,000 P. 

aeruginosa samples or 500 recount2 samples. For our first simulation, we sampled randomly - 

ignoring the relationship between samples with a specific experiment. We simulated 

experiment-specific sources of undesired variability within compendia by dividing the data into 

partitions and adding noise to each partition. 

 

We divided the P. aeruginosa simulated compendium into [1, 2, 5, 10, 20, 50, 100, 500, 1000, 

2000, 3000, 6000] partitions and divided the recount2 simulated compendium into [1, 2, 5, 10, 

20, 50, 100, 250, 500] partitions.  We randomly added linear noise to each partition by 

generating a vector of length equal to the number of genes (5,549 P. aeruginosa genes and 

58,037 Human genes) where each value in the vector was drawn from a normal distribution with 

a mean of 0 and a variance of 0.2. With the 0-1 scaling, a value of 0.2 produced a relatively 

large difference in gene expression space (Figure S1), which allowed us to evaluate the impact 

of a large amount of technical noise. 

 

Though linear noise is an over-simplification of the types of noise that affect gene expression 

data, it allowed us to design an approach to optimally remove noise. Adjusting the choices of 

normalization, noise magnitude, and noise patterns will result in different selections of the 
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precise cross-over point where it becomes beneficial to perform correction. With this design, we 

do not expect that it is possible to estimate exactly where this precise cross-over point is. That 

would require a compendium where investigators systematically performed the same 

combination of different experiments in multiple labs at different times. We were unable to 

identify such a compendium on the scale of thousands of samples from tens to hundreds of 

labs.  Thus, though our analysis necessarily includes simplifying assumptions that limit our 

ability to precisely define the thresholds for correction for arbitrary datasets and noise sources, it 

remains suitable for examining the overriding principles that govern compendium-wide 

analyses. 

 

We also designed an approach to generate gene expression compendia with realistic 

experimental designs. There was no consistent set of annotated experimental designs, so we 

developed a simulation method that did not depend on a priori knowledge of experimental 

design. For each synthetic experiment, we randomly sampled a “template experiment” from the 

set of P. aeruginosa or recount2 experiments. We then simulated new data that matched the 

template experiment by selecting a random sample from the low dimensional representation of 

the simulated compendia and calculating the vector (Zshift) that connected this random sample 

(Zrandom) and the encoded template experiment (Xtemplate_experiment) using equation 1: 

Zshift = centroid(Ztemplate_experiment) - Zrandom (eqn 1) 

 

 We then linearly shifted the template experiment in the low-dimensional latent space by adding 

this vector to each sample in the experiment as seen in equation 2.  

 

Znew_experiment = Ztemplate_experiment + Zshift  (eqn 2) 

 

This process preserves the relationship between samples within the experiment but shifts the 

samples to a new location in the latent space. Intuitively this simulation maintains the same 

experimental design but is akin to studying a distinct biological process. Repeating this process 

for each experiment allowed us to generate new simulated compendia comprised of realistic 

experimental designs.   

We divided the P. aeruginosa simulated compendium into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100, 

200, 300, 400, 500, 600] partitions and divided the recount2 simulated compendium into [1, 2, 5, 

10, 20, 30, 50] partitions, where experiments are divided equally amongst the partitions. For 

each partition we added simulated noise as described in the previous section. Experiments 
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within the same partition have the same noise added.  Each partition represents a group of 

experiments generated from the same lab or with the same experimental design.  

 

Removing technical variability from noisy compendia 

 

Our model of undesired variability is a linear signature applied separately to each partition of the 

data, which we consider akin to experiments or groups of experiments in a compendium of gene 

expression data. We used the removeBatchEffect function in the R library, limma (version 

3.44.0), to correct for the technical variation that was artificially added to the simulated 

compendia.24  Limma removes the technical noise by first fitting a linear model to describe the 

relationship between the input gene expression data and the experiment labels.  The input 

expression data contains both a biological signal and technical noise component.  By fitting a 

linear model, limma will extract the noise contribution and then subtract this from the total input 

expression data. This method presents a best-case scenario for removing the undesired 

variability in the simulated compendia because the model matches the noise pattern we’ve used 

in the simulation.   

 

Measuring the similarity of matched compendia 

 

We used Singular Vector Canonical Correlation Analysis (SVCCA)35 to estimate similarities 

between different compendia. SVCCA is a method designed to compare two data 

representations35. Given two multivariate datasets, X1 and X2, the goal of SVCCA is to find the 

basis vectors, w and s, to maximize the correlation between wTX1 and sTX2. In other words, 

SVCCA attempts to find the space, defined by a set of basis vectors, such that the projection of 

the data onto that space is most correlated.  Two datasets are considered similar if their linearly 

invariant correlation is high (i.e., if X1 is a shift or rotation of X2 then X1 and X2 are considered 

similar).  

 

We compared the statistical structure of the gene expression, projected onto the first 10 

principle components, in the baseline simulated compendia (those with only one experiment or 

partition, X1) versus those with multiple experiments or partitions (X2). Our SVCCA analysis was 

designed to measure the extent to which the gene expression structure of the compendia 

without noise is similar to the gene expression structure of the compendia with multiple sources 

of technical variance has been added as well as those where correction has been applied. Here 
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we use 10 principle components for computational simplicity. Selecting a different value would 

affect the crossover point but not the general trends that we describe. 

 

A case study of differential expression in a template experiment 

 

We compared the E-GEOD-51409 experiment36 with two different simulated representations to 

provide a case study for experiment-based simulation. E-GEOD-51409 included P. aeruginosa 

in two different growth conditions. For one simulation, we generated random samples and 

randomly assigned them to conditions, which we termed the sample-simulated experiment. For 

the second we used the latent space transformation process described above, which we termed 

the experiment-simulated experiment. We used the eBayes module in the limma library to 

calculate differential gene expression values for each gene between the two different growth 

conditions in the real and simulated data. We built heatmaps for the 14 most differentially 

expressed genes, where differentially expressed genes where those with FDR adjusted cutoff < 

0.05 and log2 fold change >1, which are thresholds frequently used in practice. We selected 14 

genes because there were 505, 14, 0 differentially expressed genes found in the original 

experiment, experiment-simulated experiment, sample-simulated experiment respectively. Since 

there were 0 differentially expressed genes found in the sample-simulated experiment, we 

displayed the top 14 genes sorted by adjusted p-value to provide a visual summary of the 

simulation process. 

 

Comparing sample-level and experiment-level simulated datasets 

 

We simulated 100 experiments using the template E-GEOD-51409 experiment36. We sought to 

compare the sample-level and experiment-level simulation processes. We set a threshold for 

differentially expressed genes at a Bonferroni-corrected p-value cutoff of 0.05. We used the 

enrichKEGG module in the clusterProfiler library to conduct an over-representation analysis37. 

We used the Fisher’s exact test to calculate a p-value for over-representation of pathways in the 

set of differentially expressed genes. We considered pathways to be over-represented if the 

Bonferroni corrected p-value was less than 0.05. 

 

Implementation and Software Availability 
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All scripts to reproduce this analysis are available the GitHub repository 

(https://github.com/greenelab/simulate-expression-compendia) under an open source license. 

The repository contains 98% python jupyter notebooks, 2% python and 0.1% R scripts.  The 

repository’s structure is separated by input dataset. Pseudomonas/ and Human/ directories 

each contain the input data in the data/input/ directory. Scripts for the sample level simulation 

can be found in Pseudomonas /Pseudomonas_sample_lvl_sim.ipynb for the P. aeruginosa 

compendium and Human/Human_sample_lvl_sim.ipynb for the recount2 compendium. Scripts 

for the experiment level simulation can be found in 

Pseudomonas/Pseudomonas_experiment_lvl_sim.ipynb and 

Human/Human_experiment_lvl_sim.ipynb respectively. The virtual environment was managed 

using conda (version 4.6.12), and the required libraries and packages are defined in the 

environment.yml file. We describe in the Readme file how users can analyze different 

compendia or use different noise patterns.  
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Figure Legends: 

 

Figure 1. Simulating gene expression data using VAE. A) Architecture of the VAE, where the 

input data gets compressed into intermediate layer of 2500 features and then into a hidden layer 

of 30 latent features.  Each latent feature follows a normal distribution with mean µ and variance 

σ. The input dimensions of the Pseudomonas dataset are shown here as an example (989 

samples, 5549 genes). The same architecture is used to train the recount2 dataset except the 

input has 896 samples and 58,037 genes. B) Validation loss plotted per epoch during training 

using the P. aeruginosa compendium. C) Workflow to simulate gene expression samples from a 

compendium model, where new samples are generated by sampling from the latent space 

distribution. D) UMAP projection of P. aeruginosa gene expression data from the real dataset 

(pink) and the simulated compendium using the workflow in C (grey).   

 

Figure 2. Results of simulating compendia. A) workflow describing how experiment-specific 

noise was added to the simulated compendia and how the simulated compendia were evaluated 

for similarity compared to the original input compendia. B,D) SVCCA curve measuring the 

similarity between a compendia without noise versus a compendium with noise (light blue), 

compendium with noise corrected for (dark blue). As a negative control, we used the similarity 

between the gene expression pattern of the simulated data with a single partition compared with 

the simulated data that has been permuted to destroy any meaningful structure in the data. C,E) 

Subsampled gene expression data (500 samples per compendia) projected onto the first two 

principal components showing the overlap in structure between the compendia without noise 

(gray) versus the compendia with noise (light blue), compendia with noise corrected for (dark 

blue).  

 

Figure 3. Simulating gene expression compendia by experiment. A) Workflow to simulate gene 

expression per experiment. B) UMAP projection of P. aeruginosa gene expression data 

highlighting a single experiment, E-GEOD-51409, (red) in the original dataset (left) and the 

simulated dataset (right), which was subsampled to 1000 samples. C) Differential expression 

analysis of experiment E-GEOD-51409 (left), random simulated samples (middle), simulated 

samples using the same experiment as a template (right). D) Number of differentially expressed 

genes identified across 100 simulated experiments generated using experiment-level simulation 

and sample-level simulation. E) Number of enriched pathways identified across 100 simulated 

experiments generated using experiment-level simulation and sample-level simulation.  
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Figure 4. Results of simulating compendia comprised of gene expression experiments. A) 

workflow describing how experiment-specific noise was added to the simulated compendia and 

how the simulated compendia were evaluated for similarity compared to the original input 

compendia. B,D) SVCCA curve measuring the similarity between a compendia without noise 

versus a compendium with noise (light blue), compendium with noise corrected for (dark blue). 

As a negative control, we used the similarity between the gene expression pattern of the 

simulated data with a single partition compared with the simulated data that has been permuted 

to destroy any meaningful structure in the data. C,E) Subsampled gene expression data (500 

samples per compendia) projected onto the first two principal components showing the overlap 

in structure between the compendia without noise (gray) versus the compendia with noise (light 

blue), compendia with noise corrected for (dark blue).   

 

Figure S1. Results of varying the magnitude of the experiment-specific noise added to each 

partition. SVCCA curve measuring the similarity between a compendium without noise versus a 

compendium with noise (light blue), compendium with noise corrected for (dark blue).  As a 

negative control, we used the similarity between the gene expression pattern of the simulated 

data with a single partition compared with the simulated data that has been permuted to destroy 

any meaningful structure in the data.  Using noise model with A) 0.2 variance, B) 0.05 variance 

with a zoomed in view on the left, C) 0.025 variance with a zoomed in view on the left. 

  

Figure S2. Simulating recount2 gene expression data using VAE. A) Validation loss plotted per 

epoch during training. B) UMAP projection of gene expression data from the real dataset (pink) 

and the simulated compendium using the workflow in Figure 1C (grey).  

 

Figure S3. Results of simulating P. aeruginosa compendia using A) sample-level simulation or 

B) experiment-level simulation with COMBAT noise correction. 

 

Figure S4. Clustering of 100 random gene expression profiles in original versus simulated 

experiments using A) E-GEOD-21704 and B) E-GEOD-10030 as templated. 
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