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Abstract:

Motivation: In the last two decades, scientists working in different labs have assayed gene
expression from millions of samples. These experiments can be combined into compendia and
analyzed collectively to extract novel biological patterns. Technical variability, sometimes
referred to as batch effects, may result from combining samples collected and processed at
different times and in different settings. Such variability may distort our ability to interpret and
extract true underlying biological patterns. As more multi-experiment, integrative analysis
methods are developed and available data collections increase in size, it is crucial to determine
how technical variability affect our ability to detect desired patterns when many experiments are

combined

Objective: We sought to determine the extent to which an underlying signal was masked by
technical variability by simulating compendia comprised of data aggregated across multiple

experiments.

Method: We developed a generative multi-layer neural network to simulate compendia of gene
expression experiments from large-scale microbial and human datasets. We compared
simulated compendia before and after introducing varying numbers of sources of undesired

variability.

Results: We found that the signal from a baseline compendium was obscured when the number
of added sources of variability was small. Perhaps as expected, applying statistical correction
methods rescued the underlying signal in these cases. As the number of sources of variability
increased, surprisingly, we observed that detecting the original signal became increasingly
easier even without correction. In fact, applying statistical correction methods reduced our

power to detect the underlying signal.

Conclusion: When combining a modest number of experiments, it is best to correct for
experiment-specific noise. However, when many experiments are combined, statistical

correction reduces one’s ability to extract underlying patterns.
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Introduction:

For the last two decades, unprecedented amounts of transcriptome-wide gene expression
profiling data have been generated, most of which are shared in public platforms for the
research community.® Researchers are now combining samples across different experiments to
form compendia, and analyzing these compendia is revealing new biology.*™® It is well-
understood that technical sources of variability pervade large-scale data analysis such as
transcriptome-wide expression profiling studies.”™® Numerous methods have been designed to
correct for various types of effects.”*'*? Despite the prevalence of technical sources of
variability, researchers have successfully extracted biological patterns from multi-experiment
compendia without applying correction methods.*™>** We sought to determine the basis of these
seemingly contradictory results by examining the extent to which underlying statistical structure
can be extracted from compendium-style datasets in the presence of sources of undesired

variability.

A number of methods have been developed to simulate transcriptome-wide expression
experiments.***’ However, simulating a compendium of many experiments with existing
approaches would require defining a statistical model that describes the process by which
researchers design and carry out experiments, which is likely to be very challenging. Instead,
we developed an approach to simulate compendia by sampling from the low-dimensional
representation produced by multi-layer generative neural networks trained on gene expression
data from an existing compendium. This allowed us to simulate gene expression experiments
that mimic real experimental configurations. We combined these experiments to create

compendia.

Using this simulation approach, we studied how adding varying amounts of experiment-specific
noise affects the statistical structure of gene expression compendia and our ability to detect
underlying patterns. This topic is becoming pressing as more large-scale expression compendia
become available. We found that prior reports of pervasive technical noise and analyses that
succeed without correcting for it are, in fact, consistent. In settings with relatively few
experiment-specific sources of undesired variation, the added noise substantially alters the
structure of the data. In these settings, statistical correction produces a data representation that

better captures the original variability in the data. On the other hand, when the number of
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experiment-specific sources of undesired variability becomes large, attempting to correct for

these sources does more harm than good.
Results:

We characterized publicly available data compendia using refine.bio'®, a meta-repository that
integrates data from multiple different repositories. We found that an average experiment
contained hundreds to thousands of samples in most widely studied organisms (Table 1). These
samples were derived from hundreds to thousands of experiments, and the most common
experimental designs had relatively few samples (medians from 5-12). We compared these to
two readily available compendia, recount2 and one for P. aeruginosa, that have been used for
compendium-wide analyses.?*° The compendia that have been successfully used in prior
work?*® have similar median numbers of samples per experiment (recount2 = 4, P. aeruginosa

= 6) to the current publicly available data.

Table 1: Public data usually have only a modest number of samples per experiment, though in
aggregate many samples are available. Statistics for the 10 largest transcriptomic compendia found in
refine.bio, which is a meta-repository containing publicly available expression data from the Sequence
Read Archive (SRA)lg, Gene Expression Omnibus (GEO)20 and ArrayExpre5521.

No. experiments | Median no. samples | Total no. samples
HOMO SAPIENS 15440 12 571862
MUS MUSCULUS 13224 10 296829
ARABIDOPSIS THALIANA 1627 9 24855
RATTUS NORVEGICUS 1368 12 38530
DROSOPHILA MELANOGASTER 853 9 17836
SACCHAROMYCES CEREVISIAE 627 12 12972
DANIO RERIO 546 9.5 28518
CAENORHABDITIS ELEGANS 375 10 7953
SUS SCROFA 280 12 6063
ZEA MAYS 274 5 3458

Constructing a generative model for gene expression samples

We developed an approach to simulate new gene expression compendia using generative

multi-layer neural networks. Specifically, we trained a variational autoencoder (VAE)??, which
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was comprised of an encoder and decoder neural network. The encoder neural network
compressed the input data through two layers into a low-dimensional representation and the
decoder neural network expanded the dimensionality back to the original input size. The VAE
learned a low-dimensional representation that can reconstruct the original input data.
Simultaneously, the VAE optimized the lowest dimensional representation to follow a normal
distribution (Figure 1A). This normal distribution constraint, distinguishes VAE'’s from other
types of autoencoders and allowed us to generate variations of the input data by sampling from

a continuous latent space.”

We trained VAEs for each dataset (recount2 and P. aeruginosa). We evaluated the training and
validation set loss at each epoch, which stabilized after roughly 100 epochs (Figure 1B). We
observed a similar stabilization after 40 epochs for recount2 (Figure S1A). We simulated new
genome-wide gene expression data by sampling from the latent space of the VAE using a
normal distribution (Figure 1C). We used UMAP? to visualize the structure of the original and
data and found that the simulated data generally fell near original data for both compendia
(Figure 1D; Figure S1B).

Simulating gene expression compendia with synthetic samples

We designed a simulation study to assess the extent to which artifactual noise associated with
individual partitions of a large compendium affects the structure of the overall compendium. Our
simulation is akin to asking: if different labs performing transcriptome-wide experiments
randomly sampled from the available set of possible conditions, to what extent would
experiment-specific biases dominate the signal of the data. We simulated new compendia,
randomly divided the samples into partitions, and then added noise to each partition, and
compared the simulated compendia with added noise to the unpartitioned one (Figure 2A). Each
partition represents groups of samples with shared experiment-specific noise. We evaluated the
similarity before and after applying an algorithm designed to correct for technical noise in each

partition — given the linear noise added we used limma?* to correct.

We performed a study with this design using the VAE trained from the P. aeruginosa
compendium for 2 to 6,000 partitions. We found that adding technical noise to partitions always
reduced the similarity between the simulated data without partitions and the partitioned data.

However, the nature of the change in similarity differed substantially between the partitioned
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sets before and after the correction step (Figure 2B). With the correction step, similarity dropped
throughout the range of the study, eventually reaching the same level as the permuted data.
Without the correction step, similarity dropped immediately to near the permuted level and then
recovered throughout the rest of the tested range. Examining simulated data on the top 2
principle components from the original data with the corrected and uncorrected data at various
numbers of partitions revealed that the correction step removes both wanted and unwanted
variability, eventually removing all variability in the data (Figure 2C). Without correction, the data
were initially dramatically transformed; however, as the number of partitions grows the effect on
the structure of the data was diminished.

To determine whether or not this was a more general property of such compendia, we repeated
the same simulation study using a VAE trained on a recount2 compendium. recount2 is a
compendium comprised of human RNA-seq samples, so it is generated using a different
technology and consists of assays of a very different organism. Results with recount2 mirrored
our findings with the P. aeruginosa compendium. The correction step initially retained more
similarity, but performance crossed over and by the end of the study the uncorrected data were
more similar to the unpartitioned simulated compendium (Figure 2D). Examining the top
principle components again revealed that correction better retained the structure of the original
data with few partitions, but with many partitions the structure was better retained without
correction (Figure 2E). We observed the same trends when we varied the magnitude of the
noise added (Figure S2) or used a different noise correction method, such as COMBAT (Figure
S3).

Constructing a generative model for gene expression experiments

We randomly selected samples from the range of all possible samples in the compendium. For
the next simulation, we developed an approach that could simulate realistic experimental
structure. This next simulation added another level of complexity to the model, by simulating
experiments as opposed to samples, in order to make the simulated compendia more
representative of true expression data. The technique that we developed uses the same
underlying approach of sampling from a VAE. However, in this case

we randomly selected a template experiment and a vector that would move that template
experiment to a new location in the gene expression space (Figure 3A). The simulation

preserved the relationship between samples within the template experiment while also shifting
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the activity of the samples in the latent space (Figure 3B). Intuitively, this process maintained
the relationship between samples but changed the underlying perturbation. We used this
process to generate compendia of new gene expression experiments. We exampled how the
original samples in an experiment (E-GEOD- 51409) and a simulated experiment generated
using E-GEOD-51409 as a template have consistent clustering of samples (Figure 3C original
and experiment level simulated experiment).?®> However the genes that were differentially
expressed were different between the two datasets. This demonstrated that the perturbation
intensity and experimental design were relatively consistent in gene expression space, even
though the nature of the perturbation differed. The simulated experiment had a lower variance
compared to the original dataset due to the normality assumption made by the VAE, which
compresses the latent space data representation.”? However, in general, the clustering of
samples is conserved between the simulated and original experiments, as observed in the

additional template experiments with more complex structures (Figure S4).

Given the fact that we preserved the association between samples and experiments in this new
simulation, we would expect that new experiments would preserve the correlation in expression
of genes that are in the same pathway. In our previous example experiment, E-GEOD-51409,
the simulated experiment generated using the original E-GEOD-51409 as a template (i.e.
experiment-level) identified 14 differentially expressed genes (Figure 3C). In contrast, the
simulated experiment generated by randomly sampling (i.e. sample-level) did not identify any
differentially expressed genes; the median log2 fold change was 0.08. Furthermore, when
simulating 100 new experiments using E-GEOD-51409 as a template, the experiments
generated using the workflow in Figure 3A identified a median of 2,588 differentially expressed
genes compared to those new experiments generated by randomly sampling from the
compendium resulting from the workflow in Figure 1C (Figure 3D) which identified a median of O
differentially expressed genes. Additionally, the median number of enriched KEGG pathways is
1 using the workflow in Figure 3A compared to 0 using the random sampling approach using the
previous simulation strategy (Figure 3E). Overall, it appears that this new simulation approach
generated a compendium of experiments with some real underlying biology and therefore this
new simulation represents a more realistic simulation compared to the previous one. Examples
of the significantly enriched pathways can be seen in Table 2. The top over-represented
pathway is the ribosome pathway, which is likely a commonly altered pathway found in many
experiments regardless of experiment type.?® The remaining pathways found in the original

experiment were generally metabolism related, which is consistent with the finding from the
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original publication.?® The simulated experiment was particularly enriched in sulfur metabolism
and ABC transporters, which is consistent with a different previous experiment that found
upregulation of transport systems in response to sulfate limitations.?” Overall, in accordance
with real gene expression experiments, the new simulated experiments contain related groups

of enriched pathways which reflect the specific hypothesis being tested.

Table 2: Enriched pathways found in the original E-GEOD-51409 experiment and the pseudo-experiment generated

using the experiment-level simulation.

Original Adjusted Experiment level simulation Adjusted
p-value p-value

Pae03010: Ribosome 2.966E-11 Pae03010: Ribosome 7.96E-07
Pae00500: Starch and sucrose 0.001512 Pae02010: ABC transporters 0.004009
metabolism
Pae01200: Carbon metabolism 0.004466 Pae00920: Sulfur metabolism 0.01576
Pae00640: Propanoate 0.001954
metabolism

Simulating gene expression compendia with synthetic experiments

We used our method to simulate new experiments that follow existing patterns to examine the
patterns that we observed for generic partitions (Figure 4A). We simulated 600 experiments
using the P. aeruginosa compendium. We divided these experiments into partitions. These
partitions represent groupings of experiments with shared noise, such as experiments from the
same lab or experiments with the same experimental design. Each partition contains technical
sources of variance within and between experiments. Results with simulated experiments were
similar to those from arbitrarily partitioned samples. We observed a monotonic loss of similarity
after the correction step as the number of partitions increased (Figure 4B). Visualizing the top
principal components revealed that statistical correction initially better recapitulated the overall
structure of the data but that with many partitions similarity decreased (Figure 4C, dark blue).
Without correction there was a larger initial drop in similarity but a later recovery (Figure 4B) and
visualizing the top principal components recapitulated this finding (Figure 4C, light blue). We

performed analogous experiments using the recount2 VAE and 100 simulated experiments. We
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observed consistent results with this dataset using both SVCCA similarity (Figure 4D) and visual
inspection of the top principal components (Figure 4E). In summary, as the number of partitions
increase the experiment-specific technical sources contribute less overall to the signal and the
underlying patterns dominate the overall signal. When many partitions are present, even ideal

statistical approaches to correct for noise over-corrects and removes the underlying signal.

Discussion:

Our findings reveal that compendia-wide analyses do not always require correction for
experiment-specific technical variance and that correcting for such variance may remove signal.
This simulation study provides an explanation for the observation that past studies®® have
successfully extracted biological signatures from gene expression compendia despite the
presence of uncorrected experiment-specific sources of technical variability. In general, there
exists compendia that contain some small number of experiment-specific sources where
traditional correction methods can be effective at recovering the biological structure of interest;
however, there also exist large-scale gene expression compendia where these methods may be
harmful instead of helpful. The number of experiment-specific sources that determine whether to
apply correction will vary depending on the dataset — the size of the compendia, the magnitude
and structure of the signals. Using the associated repository

(https://github.com/greenelab/simulate-expression-compendia) users can customize the scripts

to run the simulation experiments on their own expression data in order to examine the effect of
a linear noise model on their dataset. Though our analysis uses simplifying assumptions that
preclude us from defining a specific threshold for noise correction, these simulations define a

set of general properties that will guide compendia analyses moving forward.

We introduce a new method to simulate genome-wide gene expression experiments, using
existing gene expression data as starting material, which goes beyond simulating individual
samples. This allowed us to examine the extent to which our findings hold with realistic
experimental designs. The ability to simulate gene expression experiments with a realistic
structure may have many potential legitimate uses: e.g., pre-training for machine learning
models, providing synthetic test data for software, and other such applications. Additionally, this
simulation technique can be used to explore hypothetical experiments that have not been

previously performed and generate hypotheses. However, such approaches could also be used
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by nefarious actors to generate synthetic data for publications. Forensic tools that detect

synthetic genome-wide data may be needed to combat potential fraudulent uses.

Our study has several limitations. We assume a certain noise model that differs between
experiments. However, the sources of noise are multifaceted and any such assumption will
necessarily be an oversimplification, though such assumptions are not uncommon.***?%¢ By
selecting a specific noise model and using an ideal noise-removal step, we provide a best case
scenario for artifact removal. While any simulation study will necessarily make simplifying
assumptions, this work is the first to use deep generative models as part of a simulation study to
probe the long-standing assumption that correcting for technical variability is necessary for
analyses that span multiple experiments. Our findings reveal that in settings with hundreds or
thousands of experiments, correcting for experiment-specific effects can harm performance and

that it can be best to do nothing.

Our study also has broader implications for efforts to standardize scientific processes.
Centralization of large-scale data generation has the potential to reduce experiment-specific
technical noise, though it comes at a cost of flexibility. Our results suggest that a highly
distributed process where experiments are carried out in many different locations with their own

specific sources of technical noise can also lead to valuable data collections.

Methods:

Pseudomonas aeruginosa gene expression compendium

We downloaded a compendium of P. aeruginosa data that was previously used for
compendium-wide analyses.? Previous studies identified biologically-relevant processes such as
oxygen deprivation? and phosphate starvation® by applying denoising autoencoders. We
obtained the processed and normalized gene expression matrices from the associated GitHub
repository. The P. aeruginosa dataset was previously processed by Tan et. al.? During
processing, raw microarray data were downloaded as .cel files, rma was used to convert probe
intensity values from the .cel files to log2 base gene expression measurements, and these gene

expression values were then normalized to 0-1 range per genes.
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This compendium includes measurements from 107 experiments that contain 989 samples for
5,549 genes.” It contains experiments that accrued between the release of the GeneChip P.
aeruginosa genome array and at the time of data freeze in 2014. Approximately 70% of the
samples were from cultures of strain PAO1 and derivatives, 13% were in strain PA14
background, 0.6% were from PAK strains and the remaining were largely clinical isolates. Of
the strains, 73% were wild-type (WT) genotypes and the rest were mutants that had undergone
genetic modification. Approximately 60% of the samples were grown in LB medium while the
rest were grown in Pseudomonas Isolation Agar (PIA), glucose, pyruvate or amino acid-based
media.®> Roughly 80% were grown planktonically, 15% were grown in biofilms and the remaining
samples were in vivo or not annotated. Overall, this P. aeruginosa compendium covered a wide
range of gene expression patterns including characterization of clinical isolates from Cystic
Fibrosis infections, response of mutant versus WT, response of antibiotic treatment, microbial
interactions, adaptation from water to Gl tract infection. Despite having 989 samples, this

compendium represents the heterogeneity of P. aeruginosa.

recount2 gene expression compendium

We downloaded human RNA-seq data from recount2.?® The dataset includes over 70,000
samples collected from Sequencing Read Archive (SRA). Itis comprised of more than 50,000
samples from different types of experiments, roughly 10,000 samples from Genotype-Tissue
Expression project (GTEX v6) covering 44 types of normal tissue, and more than 10,000
samples from The Cancer Genome Atlas (TCGA) measuring 33 cancer types.'**%3! The
recount2 authors uniformly processed and quantified these data. We downloaded data using the
recount library in Bioconductor (version 1.14.0).° The entire recount2 dataset is 8TB. Based on
the P. aeruginosa compendium we expected that a subset of the compendium would be
sufficient for this simulation, so we selected a random subset of 50 NCBI studies, which resulted
in 896 samples with 58,037 genes for our simulation. Each project (imported from NCBI
BioProject) is akin to an experiment in the P. aeruginosa compendium, and we used the term
experiment instead of projects in order to maintain consistency in this paper. The downloaded
recount2 dataset was in the form of raw read counts, which was normalized to produce RPKMs
used in our analysis. The normalized gene expression data was then scaled to a 0-1 range per

gene.

Constructing a generative model of gene expression compendia
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We designed an approach to simulate gene expression compendia with a multi-layer variational
autoencoder (VAE). We built this model in Keras (version 2.1.6) with a TensorFlow backend
(version 1.10.0) based on the Tybalt software for gene expression VAEs.*** Our architecture
used each input gene as a feature. We compressed these genes to 2,500 intermediate features
using a rectified linear unit (ReLU) activation function to combine weighted nodes from the
previous layer. We encoded these features into 30 latent space features, which we optimized to
follow a standard normal distribution via the addition of a Kullbach-Leibler (KL) divergence term
into the loss function. We then reconstructed these features back to the input space using
decoding layers that mirror the encoder network. We trained the VAE using 90% of the input
dataset, leaving 10% as a validation set. We determined training hyperparameters by manually
adjusting parameters and selecting parameters that optimized the validation loss. These were a
learning rate of 0.001, a batch size of 100, warmups set to 0.01, 100 epochs for the P.

aeruginosa compendium and 20 epochs for the recount2 compendium.

We used the VAE trained from each compendium to generate new compendia by randomly
sampling from the latent space. We generated a simulated compendium containing 6,000 P.
aeruginosa samples or 500 recount2 samples. For our first simulation, we sampled randomly -
ignoring the relationship between samples with a specific experiment. We simulated
experiment-specific sources of undesired variability within compendia by dividing the data into

partitions and adding noise to each patrtition.

We divided the P. aeruginosa simulated compendium into [1, 2, 5, 10, 20, 50, 100, 500, 1000,
2000, 3000, 6000] partitions and divided the recount2 simulated compendium into [1, 2, 5, 10,
20, 50, 100, 250, 500] partitions. We randomly added linear noise to each partition by
generating a vector of length equal to the number of genes (5,549 P. aeruginosa genes and
58,037 Human genes) where each value in the vector was drawn from a normal distribution with
a mean of 0 and a variance of 0.2. With the 0-1 scaling, a value of 0.2 produced a relatively
large difference in gene expression space (Figure S1), which allowed us to evaluate the impact

of a large amount of technical noise.

Though linear noise is an over-simplification of the types of noise that affect gene expression
data, it allowed us to design an approach to optimally remove noise. Adjusting the choices of

normalization, noise magnitude, and noise patterns will result in different selections of the
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precise cross-over point where it becomes beneficial to perform correction. With this design, we
do not expect that it is possible to estimate exactly where this precise cross-over point is. That
would require a compendium where investigators systematically performed the same
combination of different experiments in multiple labs at different times. We were unable to
identify such a compendium on the scale of thousands of samples from tens to hundreds of
labs. Thus, though our analysis necessarily includes simplifying assumptions that limit our
ability to precisely define the thresholds for correction for arbitrary datasets and noise sources, it
remains suitable for examining the overriding principles that govern compendium-wide

analyses.

We also designed an approach to generate gene expression compendia with realistic
experimental designs. There was no consistent set of annotated experimental designs, so we
developed a simulation method that did not depend on a priori knowledge of experimental
design. For each synthetic experiment, we randomly sampled a “template experiment” from the
set of P. aeruginosa or recount2 experiments. We then simulated new data that matched the
template experiment by selecting a random sample from the low dimensional representation of
the simulated compendia and calculating the vector (Zsni«t) that connected this random sample
(Zrandom) and the encoded template experiment (Xiemplate_experiment) USING equation 1:

Zshift = CentrOid(Ztemplate_experiment) - Zrandom (eqn 1)

We then linearly shifted the template experiment in the low-dimensional latent space by adding

this vector to each sample in the experiment as seen in equation 2.

Znew_experiment= Ztemplate_experiment+ Zshift (eqn 2)

This process preserves the relationship between samples within the experiment but shifts the
samples to a new location in the latent space. Intuitively this simulation maintains the same
experimental design but is akin to studying a distinct biological process. Repeating this process
for each experiment allowed us to generate new simulated compendia comprised of realistic
experimental designs.

We divided the P. aeruginosa simulated compendium into [1, 2, 3, 5, 10, 20, 30, 50, 70, 100,
200, 300, 400, 500, 600] partitions and divided the recount2 simulated compendium into [1, 2, 5,
10, 20, 30, 50] partitions, where experiments are divided equally amongst the partitions. For

each partition we added simulated noise as described in the previous section. Experiments
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within the same partition have the same noise added. Each partition represents a group of

experiments generated from the same lab or with the same experimental design.

Removing technical variability from noisy compendia

Our model of undesired variability is a linear signature applied separately to each partition of the
data, which we consider akin to experiments or groups of experiments in a compendium of gene
expression data. We used the removeBatchEffect function in the R library, limma (version
3.44.0), to correct for the technical variation that was artificially added to the simulated
compendia.?* Limma removes the technical noise by first fitting a linear model to describe the
relationship between the input gene expression data and the experiment labels. The input
expression data contains both a biological signal and technical noise component. By fitting a
linear model, limma will extract the noise contribution and then subtract this from the total input
expression data. This method presents a best-case scenario for removing the undesired
variability in the simulated compendia because the model matches the noise pattern we've used

in the simulation.

Measuring the similarity of matched compendia

We used Singular Vector Canonical Correlation Analysis (SVCCA)*® to estimate similarities
between different compendia. SVCCA is a method designed to compare two data
representations®. Given two multivariate datasets, X; and X,, the goal of SVCCA is to find the
basis vectors, w and s, to maximize the correlation between w'X" and s™X,. In other words,
SVCCA attempts to find the space, defined by a set of basis vectors, such that the projection of
the data onto that space is most correlated. Two datasets are considered similar if their linearly
invariant correlation is high (i.e., if X; is a shift or rotation of X, then X; and X, are considered

similar).

We compared the statistical structure of the gene expression, projected onto the first 10
principle components, in the baseline simulated compendia (those with only one experiment or
partition, X;) versus those with multiple experiments or partitions (X;). Our SVCCA analysis was
designed to measure the extent to which the gene expression structure of the compendia
without noise is similar to the gene expression structure of the compendia with multiple sources

of technical variance has been added as well as those where correction has been applied. Here
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we use 10 principle components for computational simplicity. Selecting a different value would

affect the crossover point but not the general trends that we describe.
A case study of differential expression in a template experiment

We compared the E-GEOD-51409 experiment® with two different simulated representations to
provide a case study for experiment-based simulation. E-GEOD-51409 included P. aeruginosa
in two different growth conditions. For one simulation, we generated random samples and
randomly assigned them to conditions, which we termed the sample-simulated experiment. For
the second we used the latent space transformation process described above, which we termed
the experiment-simulated experiment. We used the eBayes module in the limma library to
calculate differential gene expression values for each gene between the two different growth
conditions in the real and simulated data. We built heatmaps for the 14 most differentially
expressed genes, where differentially expressed genes where those with FDR adjusted cutoff <
0.05 and log2 fold change >1, which are thresholds frequently used in practice. We selected 14
genes because there were 505, 14, 0 differentially expressed genes found in the original
experiment, experiment-simulated experiment, sample-simulated experiment respectively. Since
there were 0 differentially expressed genes found in the sample-simulated experiment, we
displayed the top 14 genes sorted by adjusted p-value to provide a visual summary of the

simulation process.
Comparing sample-level and experiment-level simulated datasets

We simulated 100 experiments using the template E-GEOD-51409 experiment®. We sought to
compare the sample-level and experiment-level simulation processes. We set a threshold for
differentially expressed genes at a Bonferroni-corrected p-value cutoff of 0.05. We used the
enrichKEGG module in the clusterProfiler library to conduct an over-representation analysis®’.
We used the Fisher’s exact test to calculate a p-value for over-representation of pathways in the
set of differentially expressed genes. We considered pathways to be over-represented if the

Bonferroni corrected p-value was less than 0.05.

Implementation and Software Availability
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All scripts to reproduce this analysis are available the GitHub repository

(https://github.com/greenelab/simulate-expression-compendia) under an open source license.

The repository contains 98% python jupyter notebooks, 2% python and 0.1% R scripts. The
repository’s structure is separated by input dataset. Pseudomonas/ and Human/ directories
each contain the input data in the data/input/ directory. Scripts for the sample level simulation
can be found in Pseudomonas /Pseudomonas_sample_Ivl_sim.ipynb for the P. aeruginosa
compendium and Human/Human_sample_Ivl_sim.ipynb for the recount2 compendium. Scripts
for the experiment level simulation can be found in
Pseudomonas/Pseudomonas_experiment_Ivl_sim.ipynb and
Human/Human_experiment_Ivl_sim.ipynb respectively. The virtual environment was managed
using conda (version 4.6.12), and the required libraries and packages are defined in the
environment.yml file. We describe in the Readme file how users can analyze different

compendia or use different noise patterns.
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Figure Legends:

Figure 1. Simulating gene expression data using VAE. A) Architecture of the VAE, where the
input data gets compressed into intermediate layer of 2500 features and then into a hidden layer
of 30 latent features. Each latent feature follows a normal distribution with mean p and variance
0. The input dimensions of the Pseudomonas dataset are shown here as an example (989
samples, 5549 genes). The same architecture is used to train the recount2 dataset except the
input has 896 samples and 58,037 genes. B) Validation loss plotted per epoch during training
using the P. aeruginosa compendium. C) Workflow to simulate gene expression samples from a
compendium model, where new samples are generated by sampling from the latent space
distribution. D) UMAP projection of P. aeruginosa gene expression data from the real dataset

(pink) and the simulated compendium using the workflow in C (grey).

Figure 2. Results of simulating compendia. A) workflow describing how experiment-specific
noise was added to the simulated compendia and how the simulated compendia were evaluated
for similarity compared to the original input compendia. B,D) SVCCA curve measuring the
similarity between a compendia without noise versus a compendium with noise (light blue),
compendium with noise corrected for (dark blue). As a negative control, we used the similarity
between the gene expression pattern of the simulated data with a single partition compared with
the simulated data that has been permuted to destroy any meaningful structure in the data. C,E)
Subsampled gene expression data (500 samples per compendia) projected onto the first two
principal components showing the overlap in structure between the compendia without noise
(gray) versus the compendia with noise (light blue), compendia with noise corrected for (dark
blue).

Figure 3. Simulating gene expression compendia by experiment. A) Workflow to simulate gene
expression per experiment. B) UMAP projection of P. aeruginosa gene expression data
highlighting a single experiment, E-GEOD-51409, (red) in the original dataset (left) and the
simulated dataset (right), which was subsampled to 1000 samples. C) Differential expression
analysis of experiment E-GEOD-51409 (left), random simulated samples (middle), simulated
samples using the same experiment as a template (right). D) Number of differentially expressed
genes identified across 100 simulated experiments generated using experiment-level simulation
and sample-level simulation. E) Number of enriched pathways identified across 100 simulated

experiments generated using experiment-level simulation and sample-level simulation.
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Figure 4. Results of simulating compendia comprised of gene expression experiments. A)
workflow describing how experiment-specific hoise was added to the simulated compendia and
how the simulated compendia were evaluated for similarity compared to the original input
compendia. B,D) SVCCA curve measuring the similarity between a compendia without noise
versus a compendium with noise (light blue), compendium with noise corrected for (dark blue).
As a negative control, we used the similarity between the gene expression pattern of the
simulated data with a single partition compared with the simulated data that has been permuted
to destroy any meaningful structure in the data. C,E) Subsampled gene expression data (500
samples per compendia) projected onto the first two principal components showing the overlap
in structure between the compendia without noise (gray) versus the compendia with noise (light

blue), compendia with noise corrected for (dark blue).

Figure S1. Results of varying the magnitude of the experiment-specific noise added to each
partition. SVCCA curve measuring the similarity between a compendium without noise versus a
compendium with noise (light blue), compendium with noise corrected for (dark blue). As a
negative control, we used the similarity between the gene expression pattern of the simulated
data with a single partition compared with the simulated data that has been permuted to destroy
any meaningful structure in the data. Using noise model with A) 0.2 variance, B) 0.05 variance

with a zoomed in view on the left, C) 0.025 variance with a zoomed in view on the left.

Figure S2. Simulating recount2 gene expression data using VAE. A) Validation loss plotted per
epoch during training. B) UMAP projection of gene expression data from the real dataset (pink)

and the simulated compendium using the workflow in Figure 1C (grey).

Figure S3. Results of simulating P. aeruginosa compendia using A) sample-level simulation or

B) experiment-level simulation with COMBAT noise correction.

Figure S4. Clustering of 100 random gene expression profiles in original versus simulated
experiments using A) E-GEOD-21704 and B) E-GEOD-10030 as templated.
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