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Abstract 

Study Objectives: Estimate the genetic relationship of cannabis use with sleep deficits and 

eveningness chronotype. 

Methods: We used linkage disequilibrium score regression (LDSC) to analyze genetic 

correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep 

deficit polygenic risk scores (PRSs) and estimated their ability to predict cannabis use behaviors 

using logistic regression. Summary statistics came from existing genome wide association 

studies (GWASs) of European ancestry that were focused on sleep duration, insomnia, 

chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS 

prediction consisted of high-risk participants and participants from twin/family community-

based studies (n = 796, male = 66%; mean age = 26.81). Target data consisted of self-reported 

sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime use, 

number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms).  

Results: Significant genetic correlation between lifetime cannabis use and eveningness 

chronotype (rG = 0.24, p < 0.01), as well as between CUD and both short sleep duration (<7 h) 

(rG = 0.23, p = 0.02) and insomnia (rG = 0.20, p = 0.02). Insomnia PRS predicted earlier age of 

first cannabis use (β = -0.09, p = 0.02) and increased lifetime CUD symptom count use (β = 0.07, 

p = 0.03). 

Conclusion: Cannabis use is genetically associated with both sleep deficits and an eveningness 

chronotype, suggesting that there are genes that predispose individuals to both cannabis use and 

sleep deficits. 

Keywords: Cannabis, Cannabis Use Disorder, Sleep Duration, Insomnia, Chronotype, Genetics. 
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                                                              Introduction 

 Cannabis is one of the most widely used psychoactive substances in the world 1 and has a 

well-documented but unclear relationship with sleep. Cannabis contains cannabinoids, which are 

the major contributors to psychoactive and medicinal effects 2. The brain contains cannabinoid 

receptors, which are affected by exogenous cannabinoids and endogenous cannabinoids (i.e. 

produced within the brain). Together, these receptors and endogenous cannabinoids comprise the 

endocannabinoid system. The two most prominent exogenous cannabinoids are 

Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid, and Cannabidiol (CBD), 

which appears to have additional sedating and anxiolytic properties 3. Evidence suggests that an 

interplay between THC and CBD may underlie a nuanced relationship with sleep. For example, 

acute/low-dose THC and high-dose CBD may aide sleep, but low-dose CBD and long-

term/high-dose THC may interfere with sleep 4. While cannabis is often associated with being a 

sleep aid 5–10, repeated cannabis use may lead to tolerance of its sleep-aid properties and 

consistent use is linked to negative sleep outcomes via habituation 4.  

 Increased frequency of cannabis use is associated with an assortment of sleep problems 

including prolonged latency to sleep onset 11, lower sleep duration 11–16 sleep disturbances 17, 

sleep quality problems 17–20, later bed times 15, and insomnia related outcomes 12,17,19,21–23. These 

adverse effects might be specific to daily or chronic users, as a recent study found that daily 

cannabis users endorsed worse sleep quality and increased insomnia symptoms compared to both 

non-users and non-daily users, but also found that non-users and non-daily users demonstrated 

similar sleep scores 17. Thus, irregular users might not experience the adverse sleep effects 

experienced by heavy users. Additionally, sleep disturbances are a primary withdrawal symptom 

of cannabis use disorders (CUD) and are often a leading risk factor for relapse, suggesting that 
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those with ongoing CUD might suffer from continuous sleep issues stemming from discontinued 

use or attempts to abstain 4,24. Lastly, an eveningness chronotype (a diurnal preference for a 

sleep-wake pattern of activity and alertness in the evening which is linked to insomnia 25 and 

sleep complaints 26 27) is associated with increased cannabis frequency 28–30 and cannabis 

addiction 31.  

 In addition to cross-sectional association, there is evidence of early cannabis exposure 

and use predicting later sleep outcomes. The fetal brain is densely inhabited with CB1 receptors 

that spread during gestation 32. CB1 receptors are thought to be involved in the regulation of 

sleep processes since they are found in numerous regions of the brain associated with the sleep-

wake cycle 33. THC binds to CB1 receptors, and animal research implies this possibly modifies 

fetal cortical circuitry in the womb 34. Several studies have found associations of prenatal 

cannabis exposure with early sleep factors, such as differences in quiet time, irregular sleep, and 

sleep related body movements a few days after birth 35 and less efficient sleep and less total sleep 

time at three years of age 36. 

  The endocannabinoid system also plays a critical role in the development of the 

adolescent brain 37 and because the brain is changing and developing well throughout early 

adulthood 38, could be susceptible to the effects of cannabis for a large part of the lifespan. A 

handful of studies have found that cannabis initiation and early use predict later sleep problems 

such as tiredness, trouble sleeping 22 short sleep duration 16,39, and insomnia related outcomes 23. 

Evidence exists for the reverse relationship as well, with premorbid insomnia 21 and generalized 

sleep problems 39–41 predicting later cannabis use. This effect appears strong in early 

development, such that early childhood sleep deficits predict cannabis use in later adolescence 

22,42–44 and sleep factors during adolescence predict adult cannabis use 21,45. Lastly, endorsements 
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of an adolescent eveningness chronotype is associated with follow-up reports of increased 

cannabis use controlling for baseline adolescent substance use 40. With evidence of both cross-

sectional associations and a bidirectional relationship between cannabis and sleep 

deficits/eveningness chronotype, there could be an underlying common liability such as shared 

or common genetics responsible for this association. 

 The concept of common genetic liability is that the same genetic influences can act on 

distinct or separately measured phenotypes. This can be referred to as `shared genetics’ or, more 

formally, genetic pleiotropy. That is, if phenotypes are genetically correlated, the relationship 

between those phenotypes can be partially explained by common genetic liability (pleiotropy, 

shared genetics), implying that the genetic influences on one phenotype also have an influence 

on another phenotype. There is increasing evidence of a genetic relationship between cannabis 

use and sleep deficits, which may be biologically centered on the endocannabinoid system’s 

involvement in the circadian sleep–wake cycle 46–48. Additionally, disruption of circadian genes 

might disturb the reward processing system, which can influence substance use 49,50. While 

research has shown evidence of common genetics between both alcohol and tobacco use and 

disorders with sleep outcomes using both twin studies and genomic methods (e.g., genetic 

correlations) 51–56, studies specifically focused on the genetic relationship between cannabis and 

sleep components remain scarce. Two twin studies have found evidence of shared genetics 

between cannabis use and sleep outcomes, specifically lower adult sleep duration 16 and adult 

insomnia outcomes 23. Additionally, several clock gene polymorphisms have been linked to risk 

for cannabis addiction 57.  

 Consistent with this literature, there is converging evidence that support a shared genetic 

liability hypothesis. Recent large genome-wide association studies (GWASs) on sleep-related 
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and chronotype variables 56,58–61 have found genes and genetic pathways linked with both 

cannabis use or cannabinoid activity 62–68. Likewise, several GWASs of lifetime cannabis use 

and CUD disorder 65,66,69,70 have found genetic associations that are believed to be involved in 

circadian rhythm and sleep behaviors 71–74. These studies imply genetic pleiotropy between 

cannabis use and sleep deficits, but research is needed to analyze the specific role of the potential 

shared genetics in this relationship, specially using modern genomic methods.  

 As mentioned, modern GWASs have been used to identify independent genome-wide 

significant loci associated with various sleep traits and to estimate genome-wide single 

nucleotide polymorphism (SNP) heritability for several sleep-related traits such as chronotype 

(eveningness-morningness) (14%), sleep duration (10%), and insomnia (17%) 56,58,75 as well as 

for cannabis behaviors such as lifetime cannabis use (11%) 66 and CUD (4%) 70. These results 

suggest that the combined effects of common SNPs capture a considerable proportion of the 

heritability of various sleep behaviors and cannabis use behaviors. A polygenic risk score (PRS) 

is an individual measure of genetic propensity to a trait of risk that is generated by multiplying 

the number of risk alleles that an individual possesses at a particular SNP by the effect size from 

a discovery GWAS for that same SNP. By applying summary statistics from a large GWAS to a 

smaller genotyped target sample, PRSs can be generated to estimate if genetic risk for a trait is 

associated with another trait, implying shared genetics between traits. Additionally, summary 

statistics from GWASs can be used to analyze genetic correlations by using a technique called 

Linkage Disequilibrium Score Regression (LDSC) which estimates if the direction of effect of 

SNPs are correlated between traits. Thus, LDSC analyzes if direction of effect between the SNPs 

of two traits are correlated based on the whole genome, while PRS analysis uses the genetic 

scores  assigned to individuals (derived from a GWAS) to determine if the genetic risk attributed 
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to the PRS can predict behaviors observed in a target sample; the PRS analysis can readily 

control for covariates. 

  In this study, we first conducted genetic correlation analyses using the summary statistics 

of several large cannabis (lifetime cannabis use and CUD) and sleep (sleep duration, chronotype, 

and insomnia) GWASs with the intention of finding significant genetic correlations that would 

suggest that the direction of SNPs between these domains are correlated. Secondly, we generated 

PRSs based on summary statistics of various large sleep related GWASs (chronotype, sleep 

duration, and insomnia) and analyzed the ability of sleep trait PRSs to predict cannabis measures 

in a target sample consisting of both high-risk participants and participants from twin/family 

community-based studies.  

Methods 

2.1 Participants  

 In order to generate accurate and bias free PRSs, the ideal analysis requires that the racial 

make-up of the target data reflect the original GWAS data that the PRS was derived from 76. 

With this in mind, we used an initial sample of 900 (self-identifying white) adults who 

participated in a third wave of data collection from either the Center on Antisocial Drug 

Dependence (CADD) in Boulder, CO [PI: Hewitt] or the Genetics of Antisocial Drug 

Dependence (GADD) cohort from Denver, CO and San Diego, CA [PI: Hopfer]. Amongst those 

in the sample with a family member (208 total subjects were nested within a family), we kept 

one member of each family at random to make our final sample 796 subjects. Removing subjects 

from the same family allowed us to avoid the potential convergent complications of using mixed 

effects models as well avoid the role of the shared environment amongst family members. Of our 

remaining sample, we had 644 subjects from the CADD and 152 from the GADD. Subjects from 
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the CADD included data from the Colorado Adoption Project (n = 10; 77), Longitudinal Twin 

Study (n = 156; 78), Community Twin Sample (n = 315; 78), and the Adolescent Substance Abuse 

Project (n = 124; 79). In addition to the San Diego and Denver subsamples of the GADD, 46 

subjects in this consortium were part of a separate study [PI: Hopfer, DA035804] that were 

integrated into the third wave of the GADD. The final sample was 66% male (n = 529) with an 

average age of 26.81 years (SD = 3.15, range = 19-37).  

2.2 Measures  

Cannabis measures in target sample 

 Cannabis measures in our target sample were self-reported via a supplement to the 

Composite International Diagnostic Interview Substance Abuse Module (CIDI-SAM) 80. 

Any/lifetime cannabis use was measure with a screening question regarding lifetime cannabis 

use (“Have you ever used cannabis?”). Subjects who endorsed any lifetime cannabis use (n = 

627) were asked a series of cannabis-related questions including: age of first use (“How old were 

you the first time you used cannabis?”) (mean = 15.33 years, SD = 3.20), and number of 

lifetimes uses (“How many times in your life have you used cannabis?”). Responses for number 

of lifetime cannabis uses included: “1-2 times” (n = 38), “3-5 times” (n = 58), “6-9 times” (n = 

28), “10-19 times” (n = 38), “20-39 times” (n = 59), and “40 or more times” (n = 416), and were 

coded as 1-5. Anyone who denied any lifetime cannabis use were assigned a 0 for number of 

lifetime cannabis use (n = 169). Previous 180-day cannabis use was measured by asking, “How 

many days have you used marijuana in the past six months (180 Days)?” (mean = 34.52 years, 

SD = 67.62). Past 180-day cannabis use was categorized as 0 days (n = 562), 1-100 days (n = 

189), and more than 100 days (n = 149).  
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 We included several measures of DSM-IV cannabis use disorders 81 taken from the CIDI-

SAM in order to generate a measure that consisted of the sum of the number of both lifetime 

cannabis dependence and abuse symptoms endorsed (mean = 1.52, SD = 2.51, range = 0-11), 

with the goal of generating a variable conceptually similar to the unidimensional symptom count 

of CUD in DSM-5 82. Research has determined that the cannabis abuse and dependence criteria 

of DSM-IV might not distinguish between two separate disorders or constructs 83 and that a 

unidimensional symptom count classifies CUD more appropriately 84. Studies with DSM-IV 

cannabis dependence and abuse symptom data have utilized this summation technique in order to 

make a symptom count measure that is comparable to CUD reflecting a single disorder 84,85. 

Sleep measures in target data 

 Sleep measures in our target sample were assessed using the Jessor Health Questionnaire 

86. Sleep duration was assessed using two questions which asked, “How many hours of sleep do 

you typically get on a weekend?” and “How many hours of sleep do you typically get on a 

weekday?” with responses being “5 hours or less,” “6 hours,” “7 hours,” “8 hours,” “9 hours,” 

“10 hours,” or “11 hours or more.” Our measures of short sleep duration were coded to match the 

GWAS we generated our PRS from 56. Short sleep duration <7 hours was coded as a 1 (n = 233 

and n = 162) and 7–8�hours sleep duration was coded as 0 (n = 500 and n = 415) for both 

weekday and weekend sleep respectively. Those who reported 9 or more hours were assigned an 

NA in order to match the coding of the sleep duration GWAS. Subjects also were asked: “How 

often do you feel tired or sleepy when you get up in the morning?”, “How often do you feel tired 

or low on energy in day?”, and “How often do you take a nap during the daytime?” with possible 

responses for these three questions being “almost never,” “once a week or so,”  “2 or 3 times a 

week,” “nearly every day,” and “would rather not answer;”  coded as 1-4 and NA. 
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Generating polygenic risk scores 

 After removing duplicate SNPs, quality control performed in PLINK 87 included pruning 

variants based on missingness (>5%), minor allele frequency (<1%), and Hardy-Weinberg 

equilibrium (p-value <.001) followed by pruning variants based on linkage disequilibrium 

(wherever r2 exceeds .20 within a 50 kb window). There were 1,089,148 SNPs available for 

generating PRSs after applying QC. Effect sizes from the discovery GWAS of sleep traits 56,58,75 

were multiplied by the number of affected alleles at each individual SNP in our target sample in 

order to generate a unique PRS for each participant. That is, each participant in our data was 

assigned a PRS for each sleep trait, by applying GWAS effect sizes to their genomic data. Each 

PRS comprised of all SNPs that passed quality control steps (all p < 1) and thus explained the 

highest variance in the sleep phenotypes in our target sample. This is consistent with work 

suggesting that complex traits display a high amount of polygenicity and that using only 

genome-wide significant SNPs may exclude many SNPs with small but meaningful additive 

effects 88; thus including all possible SNPs captures the highest amount of variance possible for a 

given trait 89,90.  

Summary statistics from sleep GWASs for PRS analysis and genetic correlations via LDSC 

 Sleep trait PRS effect sizes were generated from the summary statistics of several large 

sleep-related GWASs (all performed by the same research team) that utilized data of European 

ancestry from the UK biobank 56,58,75. The sleep-related traits included self-report chronotype 58, 

short sleep duration (<7 hours) 56, and self-reported insomnia symptoms 75. The original 

chronotype GWAS utilized morningness, which was a binary measure of being a morning person 

or not (if participants endorsed any morningness measures as opposed to any eveningness 

measure) with morning people coded as 1 and evening people coded as 0. For the purpose of this 
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study and the emphasis on sleep deficits, we reverse coded this measure and interpreted the 

results as eveningness chronotype (127,622 cases and 120,478 controls). Short sleep was defined 

as <7�hours relative to 7–8�hours sleep duration (106,192 cases and 305,742 controls). Severe 

Insomnia (as defined by the GWAS) was classified using a self-report question: “Do you have 

trouble falling asleep at night or do you wake up in the middle of the night?”, with participants 

being dichotomized into controls (“never/rarely”, n = 108,357) and frequent insomnia symptoms 

(“usually”, n = 129,270) and with those reporting “sometimes” excluded. These same summary 

statistics were used for the genetic correlation analysis. 

Summary statistics from cannabis GWASs for genetic correlations via LDSC 

 Summary statistics from several large scale GWASs of cannabis use behaviors were used 

for LDSC. Summary statistics for lifetime cannabis use were generated from self-report 

measures of whether a participant had ever used cannabis during their lifetime from a sample 

comprised of both the UK biobank and the International Cannabis Consortium (n�=�162,082 

66). Summary statistics for CUD were derived via the International Statistical Classification of 

Diseases and Related Health Problems, 10th revision diagnosis of CUD 91 reflecting a 

problematic and persistent use of cannabis and were derived from the deCODE cohort based in 

Iceland (5,501 cases and 301,041 controls) 70. 

Covariates 

 We included age 92, sex 93,94, depression 9596, and current alcohol and tobacco 

use 97,98 as covariates in all regression models. Current alcohol and tobacco use were 

measured using the number of days that tobacco (mean = 35.09 SD = 43.25) and alcohol (mean 

= 60.05, SD = 80.59) were used in the past 180-days. Past 180-day tobacco use was categorized 

as 0 days (n = 123), 1-10 days (n = 196), 11-40 days (n = 246), and more than 40 days (n = 231). 
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Past 180-day alcohol use was categorized as 0 days (n = 386), 1-100 days (n = 163) and more 

than 100 days (n = 247). Depression symptoms were assessed using the Center for 

Epidemiological Studies-Depression (CES-D) scale 99 with the caveat of the sleep disturbance 

question being removed due to its direct overlap with our sleep PRS measure (mean = 27.66, SD 

= 8.96). All regression models also included the first 10 ancestral principal components (PCs 1- 

10) generated in PLINK as covariates to account for population stratification as is common in 

Genetic and PRS analysis 100,101.  

2.3 Statistical Analysis 

Genetic correlations via linkage disequilibrium score regression 

We used Linkage Disequilibrium Score Regression (LDSC) 102 to calculate genetic 

correlations between traits. Summary statistics were filtered by INFO > .90 and MAF > .01. 

Strand ambiguous SNPs, SNPs with duplicated rs numbers, and multi-allelic variants that are not 

SNPs were all removed. SNPs with low Ns (as determined by the LDSC program) were also 

removed when sample sizes were available. Alleles were merged with the Hap Map 3 103 

reference panel, with the major histone complex removed. The LD scores and beta weights used 

were pre-computed from 1000 Genomes European GWAS data included in the LDSC download.  

LDSC is a computationally efficient method that regresses Chi-square statistics from 

GWASs on LD scores of the trait of interest 104. LD scores per SNP are the sum of the variance 

explained by LD with other SNPs 105. Genetic correlations were calculated using overlapping 

SNPs from filtered summary statistic files. Genetic correlations also account for population 

stratification and are not confounded by overlapping samples. 

Polygenic risk regression analysis  

             All regression analyses were conducted in R version 3.5.1 106. Logistic regression models 
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were used to test the association between sleep trait PRSs and cannabis use behaviors including 

the previously mentioned covariates of age, sex, depression symptoms, past 180-day alcohol and 

tobacco use, and ancestral principal components (PCs 1-10). In terms of the steps of our 

analyses, we first used LDSC to estimate potential genetic correlations between sleep and 

cannabis GWAS summary statistics. Second, we ran phenotypic regression models between our 

sleep measures and cannabis behaviors in our target data to establish associations of sleep 

deficits and cannabis behaviors amongst our target sample. Third, we ran regression models 

between our sleep PRSs and sleep traits in our discovery sample in order to confirm that the 

sleep PRSs predicted sleep constructs in our target data. Lastly, we ran regression models to see 

how sleep PRSs predict cannabis behaviors. For all series of regressions models involving PRSs 

we ran two sets of models 1) with just age, sex, and PCs 1-10 as covariates and 2) with the prior 

covariates and the addition of current depression symptoms and past 180-day alcohol and 

tobacco use. We utilized this two-model approach in order to 1) look at the associations between 

sleep PRSs and cannabis factors controlling for both basic covariates and more complex 

covariates and 2) determine if the effects seen in our final models (including all covariates) were 

driven by  the more maladaptive covariates (depression and past 180-day substance use).  

                                                                     Results 

Genetic correlations using LDSC 

 We first used LDSC to look at potential genetic correlations between cannabis and sleep 

traits using the largest GWAS to date for each trait. Table 1 displays the LDSC analysis between 

sleep traits and cannabis use traits. We found significant positive genetic correlations between 

any lifetime cannabis use and eveningness chronotype (rG = 0.24, p < 0.01). We also found 

significant genetic correlations between CUD and both short sleep duration (rG = 0.23, p = 0.02) 
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and insomnia (rG = 0.20, p = 0.02), as well as a marginally significant genetic correlation 

between CUD and eveningness chronotype (rG = 0.16, p = 0.06). Figure 1 displays the genetic 

correlations between cannabis and sleep phenotypes using LDSC (Error bars are 95% confidence 

intervals). 

Sleep traits predicting cannabis in target data 

 Table 2 displays regression outputs of our target data sleep traits predicting cannabis use 

behaviors controlling for sex, age, depression, and past 180-day alcohol and tobacco use. Short 

sleep duration on the weekday significantly predicted earlier age of first cannabis use (β = -0.06, 

p < 0.01). Short sleep duration on the weekend significantly predicted increased number of 

lifetime cannabis uses (β = 0.23, p < 0.01), increased past 180-day cannabis us (β = 0.24, p < 

0.01), and earlier age of first cannabis use (β = -0.07, p < 0.01), and was trending for lifetime 

cannabis use (β = 0.51, p = 0.09). How often one feels tired or sleepy in the morning 

significantly predicted increased lifetime CUD symptom count (β = 0.09, p = 0.01). How often 

one felt tired or low on energy during the day significantly predicted early age of first cannabis 

use (β = -0.09, p = 0.02), but was trending in predicting increased lifetime CUD symptom count 

(β = 0.07, p = 0.09). 

Sleep PRSs predicting sleep traits 

 Table 3 displays the regression betas between the sleep PRSs and our sleep variables in 

our target data controlling for age, sex, and PCs 1-10. We found evidence of significant 

associations between the PRS for short sleep duration and numerous sleep factors including short 

weekday sleep duration (β = 0.32, p <  0.01), short weekend sleep duration (β = 0.23, p = 0.04), 

and frequency of taking naps during the day (β = 0.08, p = < 0.01). Eveningness chronotype PRS 

was significantly associated with how often one feels tired or low in energy during the day (β = 
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0.07, p = 0.03). While the Insomnia PRS trended in predicting short sleep duration on the 

weekday (β = 0.15 p = 0.07), we failed to find significant associations between the insomnia PRS 

with any of our sleep measures. Table 4 displays regression betas for the sleep PRSs predicting 

sleep outcomes/traits in our target data in our full models controlling for age, sex, PCs 1-10, 

current depression, and past 180-day alcohol and tobacco use. Short sleep PRS significantly 

predicted short sleep on the weekday (β = 0.34, p < 0.01), short sleep on the weekend, (β = 0.27, 

p = 0.02), and how often one takes naps during the day (β = 0.08, p < 0.01). Eveningness 

chronotype significantly predicted how often one feels tired or low in energy during the day (β = 

0.08, p = 0.01).  The insomnia PRS did not significantly predict any sleep variables in our target 

data but was trending for predicting short sleep duration on the weekday (β = 0.16, p = 0.07). 

Sleep PRSs predicting cannabis traits 

 Table 5 displays the regression betas between the sleep PRSs and our sleep variables in 

our target data controlling for age, sex, and PCs 1-10. The insomnia PRS significantly predicted 

earlier age of first cannabis use (β = -0.11, p = 0.01) and increased lifetime CUD symptom count 

(β = 0.08, p = 0.02). Short sleep duration PRS was trending for predicting increased past 180-day 

cannabis use (β = 0.07, p = 0.07), as was the eveningness chronotype PRS for predicting lifetime 

cannabis use (β = 0.15, p = 0.09) and increased lifetime CUD symptom count (β = 0.06, p = 

0.09). Table 6 displays the regression betas for the sleep PRSs predicting cannabis use measures 

in our target data controlling for age, sex, PCS 1-10, current depression, and past 180-day 

alcohol and tobacco use. The insomnia PRS significantly predicted earlier age of first cannabis 

use (β = -0.09, p = 0.02) and increased lifetime CUD symptom count (β = 0.07, p = 0.03). Both 

the short sleep duration and eveningness chronotype PRSs did not significantly predict any of 

our cannabis measures.  
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Discussion 

 We set out to examine the potential shared genetic liability of sleep deficits and cannabis 

use behaviors using multiple genomic methods. We found significant genetic correlations 

between lifetime cannabis use and eveningness chronotype as well as significant positive genetic 

correlation between CUD and both short sleep duration and insomnia. Additionally, we found 

that an insomnia PRS generated from a large scale sleep GWAS predicted earlier age of first 

cannabis use and increased number of lifetime CUD symptoms controlling for sex, age, PCs 1-

10, current depression, and past 180-day alcohol and tobacco, suggesting that the genetic risk 

attributed to insomnia can predict several cannabis use behaviors. This study presents the first 

genomic based evidence (using PRS and LDSC) of shared genetic influence for cannabis use 

behaviors with both sleep traits and chronotype. The direction of these results implies a shared 

genetic relationship between increased cannabis use behaviors and both sleep deficits and an 

eveningness chronotype  

 Our LD score derived genetic correlations are the first such report of a genetic 

relationship between sleep deficits and cannabis use behaviors, and are similar to prior studies 

that have shown genetic associations of sleep deficits and other substance use behaviors such as 

alcohol and tobacco 54–56. These results and analyses imply that there is a positive correlation 

between the effect of SNPs between sleep deficits (short sleep duration, insomnia, and an 

eveningness chronotype) and lifetime cannabis use/CUD, such that the genetic influences on 

cannabis use also have an influence on sleep deficits or vice versa. While a prior twin study 

found a genetic correlation between eveningness chronotype and both increased alcohol quantity 

and binge drinking 51, to our knowledge this is the first report of chronotype being genetically 

correlated with cannabis use. Additionally, our PRS analysis findings present the first report of 
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genetic risk for a sleep behavior predicting a substance use behavior, suggesting that the genetic 

risk for insomnia is associated with cannabis use behaviors such earlier age of first cannabis use 

and increased number of lifetime CUD symptoms.  

 Our sleep duration PRS was validated on phenotypes of sleep behaviors in our target 

sample. Specifically, our short sleep duration PRS predicted short sleep duration on the 

weekday/weekend and how often one takes naps during the daytime. Additionally, the 

eveningness chronotype PRS predicted how often one feels tired or low in energy during the day. 

Unfortunately, our target sample did not have a direct measure of insomnia and our regression 

analysis failed to find any significant relationships between the insomnia PRS and the sleep 

outcomes in our target data (although there was a trending association between the insomnia PRS 

and short sleep duration on the weekday). Similarly, the only chronotype-like measure was 

restricted to a question regarding how often one feels tired or sleepy in the morning, which 

differed from the morning person/night person question of the chronotype GWAS. The insomnia 

GWAS phenotype was defined as severe insomnia, excluding those who had insomnia symptoms 

“sometimes” and only including those with “usual/always” insomnia symptoms. This exclusion 

could have led the PRS to predict only extreme cases and this could have influenced the potential 

variance explained in our regression analysis regarding the sleep outcomes.  

 It is worth noting that we included cannabis measures from differential time points with 

the goal of not only analyzing the genetic relationship between sleep and various cannabis 

behaviors across life, but also to look at the phenotypic associations of early cannabis use and 

later sleep in our target data. We found that several measures of recent sleep characteristics were 

associated with earlier cannabis use measures in our target data; for example, short sleep 

duration on the weekend was associated with earlier age of first cannabis use as well as increased 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.02.053983doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.02.053983
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20

number of lifetime uses, and both short sleep duration on the weekday and how often one feels 

tired or low in energy during the day were associated with earlier age of first cannabis use. 

Additionally, we found that increased lifetime CUD symptom count was associated with feeling 

tired or sleepy in the morning. These results support prior findings of potentially earlier or 

preceding cannabis use behaviors being associated with later sleep factors. Lastly, our measure 

of past 180-day cannabis use was significantly associated with short sleep duration on the 

weekend, implying phenotypic associations of recent cannabis use with recent sleep measures. 

 While some of the results from our LDSC analysis align with our PRS analysis (e.g., 

findings of shared genetics between insomnia and CUD) several of our findings were not 

replicated between the two analyses. For instance, we found a genetic correlation between short 

sleep duration and CUD, yet our PRS for short sleep duration did not predict any cannabis 

behaviors. Additionally, we found a significant genetic association between eveningness 

chronotype and lifetime cannabis use, yet the eveningnness chronotype PRS did not predict any 

cannabis behaviors. Reasons for the lack of convergent results could include population 

differences between the GWAS and target data in terms of both environmental and genetic 

differences of the samples. Different locations of the samples will have different environmental 

influences that can influence phenotype expression and there are both racial and regional 

differences in terms of common and rare variants, minor allele frequencies, and linkage 

disequilibrium that can influence results and the variance explained 107. Lastly, differences in the 

methodological aspects of the analyses (PRS vs LDSC) could be responsible. While both 

analyses focused on the effects across all available SNPs, LDSC looks at the overall direction of 

effect of all SNPS and PRS looks whether the genetic risk for a certain trait predicts a phenotype. 

Overall, our results imply shared genetics between cannabis use and sleep deficits, and the 
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differences seen in the results may be due to population and methodological differences between 

these analyses. 

 Our findings complement a small collection of research focused on the genetics of 

cannabis use and sleep behaviors. Two prior studies by our group have used the classical twin 

design to show that shared genetics played a role in the etiology of the relationship between early 

cannabis use and shorter adult sleep duration, insomnia, and insomnia with short sleep 16,23 and a 

recent study found clock gene polymorphisms that were significant risk factors for cannabis 

addiction 57. One possible explanation for this genetic relationship could be that disturbances of 

circadian rhythm genes might interrupt the reward processing system, which could influence 

substance use 49,50. Another supported explanation could be that the endocannabinoid system is 

involved in the circadian sleep-wake cycle, such that endocannabinoids influence sleep behaviors 

and their levels can vary with the time of day and other circadian related factors 46–48,108. Along 

these lines, several of the genes and genetic pathways found to be significant in sleep related-

variable GWAS 56,58–61 have been associated with cannabis use and cannabinoid activity 62–

65,67,68,109–112. Likewise, GWAS for lifetime cannabis use and CUD 65,66,69,70 have found genes 

that have been linked to sleep behaviors and circadian rhythm 71–74,113.  

 This study demonstrates a genetic relationship between both sleep factors and chronotype 

with cannabis use behaviors, implying shared genetic liability between these domains, 

specifically common genetics between short sleep duration, insomnia, and eveningness 

chronotype with increased cannabis use behaviors. Future studies should use more novel genetic 

methods to examine the exact mechanisms for this genetic relationship such as gene set 

enrichment pathway analysis 114. There are also mechanisms outside of genetics that could be 

responsible for the associations between these traits and future research should use methods that 
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can make causal inferences like Mendelian randomization 115 and epigenome-wide association 

studies 116 to study the relationship between cannabis use and sleep deficits. 

Limitation 

 There are several limitations to this study, which point to important lines of future 

research. First, our cannabis, sleep, and covariate variables in our target sample were self-report 

and could be prone to response bias or report error. Second, while both the short sleep duration 

and eveningness chronotype PRSs were significantly associated with sleep duration outcomes 

and other sleep behaviors, the insomnia PRS was not significantly associated with any of our 

target data sleep measures (although trending for weekday sleep duration). The cohort study 

lacked a valid insomnia or chronotype measure to validate the usefulness of the respective 

evening chronotype and insomnia PRS measures. Inclusion of such measures would have ideally 

been associated with these PRS measures. Third, population differences in environmental factors 

between target and base data can influence the variance predicted in the models. Our GWAS data 

for our PRS was gathered from the UK in a cohort known for being older, predominantly female, 

overtly healthy, and mostly white 117. Our target sample was also of European ancestry but was 

younger, mostly male, and a combination of community-based and high-risk subjects. Fourth, 

genetic differences due to the regional make-up our samples could influence the variance. While 

our GWAS data for our PRSs was from European ancestry/predominantly white and our target 

cohort was made up of only subjects who self-identified as white, there could still be genetic 

differences between the samples that could have influenced the predictive ability of the PRSs to 

explain the variance of the outcomes. Fifth, we reported the effects of all SNPs (p < 1) in our 

results, and while using this threshold method captures the additive effect of additional SNPs 

often removed by the stringent threshold of genome wide significance 88–90, it is also susceptible 
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to false positives or noise. Still, studies have shown that the whole-genome approach of using all 

SNPs captures more signal than it does noise and that this method can outperform PRSs 

generated from using only top hits 118,119. Sixth, while LDSC is robust to population 

stratification/relatedness there are limitations to consider such as biases in the estimates due to 

rare copy variants and capturing genetic variation tagged only by common SNPs 102. Lastly, 

several of our phenotypic and genetic based results regarding the relationship between cannabis 

use and sleep deficits were trending in significance and it is possible that similar studies with 

considerably larger samples would yield clearer results. 

Summary 

 Our findings are consistent with the theory that both sleep deficits (such as short sleep 

duration and insomnia) and eveningness chronotype share genetic liability with cannabis use 

behaviors, and that this genetic relationship contributes to the associations between sleep and 

cannabis. These results extend the current body of research focused on the relationship of sleep 

and cannabis behaviors to include the first instance of genomic evidence (LDSC and PRS 

prediction) as well as the first evidence of a genetic relationship between eveningness 

chronotype and cannabis use behaviors. Future studies should consider novel genomic methods 

to examine potential genes as well as specific genetic causal pathways for these relationships. 
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Figure 1. Genetic correlations between cannabis and sleep phenotypes. Genetic correlations 
were calculated with LDSC. Error bars are 95% confidence intervals. 
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Table 1. Genetic correlations between sleep and cannabis phenotypes using large scale GWAS. 

 Lifetime Cannabis Use Cannabis Use Disorder 

Short Sleep Duration (<7 h) -0.05 [0.03] 0.23* [0.10] 

Eveningness Chronotype 0.24* [0.03] 0.16# [0.09] 

Insomnia 0.01 [0.03] 0.20* [0.09] 

Note. Genetic correlations between cannabis and sleep phenotypes were 
calculated using LD Score Regression. Standard errors are in brackets. 
 *indicates p < 0.05, # p = 0.06  
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Table 2. Regression betas of sleep traits predicting cannabis use behaviors controlling for sex, 
age, depression, and past 180-day substance use. 

Sleep Trait 

Lifetime 
Cannabis 

Use 

Number 
of 

Lifetime 
Uses 

Age of 
First 

Cannabis 
Use 

Past 180-
day 

Cannabis 
Use  

CUD 
Symptom 

Count 

How often do 
you feel tired 
or sleepy 
when you get 
up in the 
morning? 0.11 0.12 -.03 -0.04 

 
 
 
 
 

0.09* 
 
How often do 
you feel tired 
or just low in 
energy during 
the day? 0.11 0.12 -0.09* -0.01 

 
 
 
 
 

0.07# 
 
How often do 
you take a nap 
during the 
daytime? 0.12 0.16 -0.08# 0.08# 

 
 
 
 

0.09# 
 
Short sleep 
duration on 
the weekday 
(<7 h) 0.01 0.04 -0.06** 0.04 

 
 
 
 

0.04 
 
Short sleep 
duration on 
the weekend 
(<7 h) 0.51# 0.23** -0.07** 0.24** 

 
 
 
 

0.04 
# p = 0.06-0.09, * p < 0.05, ** p < 0.01 
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Table 3. Regression betas for sleep polygenic risk scores (p < 1) predicting sleep factors 

controlling for age, sex, and ancestral principal components (PCs 1-10). 

Sleep trait 
Short Sleep Duration (<7 h) 

Polygenic Risk Score 
Eveningness Chronotype 

Polygenic Risk Score 
Insomnia 

Polygenic Risk Score 
How often do you feel tired 
or sleepy when you get up 
in the morning? 0.00 0.02 0.01 
 
How often do you feel tired 
or just low in energy 
during the day? 0.03 0.07* 0.04 
 
How often do you take a 
nap during the daytime? 0.08** -0.04 0.02 
 
Short sleep duration on the 
weekday (<7 h) 0.32** 0.08 0.15# 
 
Short sleep duration on the 
weekend (<7 h) 0.23** 0.10 0.04 

# p = 0.07, * p < 0.05, ** p < 0.01 
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Table 4. Regression betas for sleep polygenic risk scores (p < 1) predicting sleep factors 

controlling for sex, age, depression, past 180-day substance use, and ancestral principal 

components (PCs 1-10). 

Sleep trait 
Short Sleep Duration (<7 h) 

Polygenic Risk Score 
Eveningness Chronotype 

Polygenic Risk Score 
Insomnia 

Polygenic Risk Scor
How often do you feel tired or 
sleepy when you get up in the 
morning? 0.00 0.03 0.02 
 
How often do you feel tired or 
just low in energy during the day? 0.04 0.08* 0.05 
 
How often do you take a nap 
during the daytime? 0.08** 0.04 0.02 
 
Short sleep on the weekday (<7 h) 0.34** 0.10 0.16# 
 
Short sleep on the weekend (<7 h) 0.27* 0.09 0.05 

# p = 0.07, * p < 0.05, ** p < 0.01 
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Table 5. Regression betas for sleep polygenic risk scores (p < 1) predicting cannabis behaviors 

controlling for sex, age, and ancestral principal components (PCs 1-10). 

Sleep trait 
Short Sleep Duration (<7 h) 

Polygenic Risk Score 
Eveningness Chronotype 

 Polygenic Risk Score 
Insomnia 

Polygenic Risk Score
Lifetime Cannabis Use 
 0.10 0.15# 0.09 
 
Number of Lifetime 
Cannabis Uses 0.02 0.05 0.04 
 
 
Age of First Cannabis Use -0.06 0.00 -0.11** 
 
 
Past 180-day  
Cannabis Use 0.07# 0.03 0.01 

 
CUD Symptom Count 0.02 0.06# 0.08* 
 
 

# p = 0.07-0.09, * p < 0.05, ** p < 0.01 
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Table 6. Regression betas for sleep polygenic risk scores (p < 1) predicting cannabis behaviors 

controlling for sex, age, depression, past 180-day substance use, and ancestral principal 

components (PCs 1-10). 

Cannabis Trait 

Short Sleep 
Duration (<7 h) 
Polygenic Risk 

Scores 

Eveningness 
Chronotype 

Polygenic Risk 
Score 

Insomnia Polygenic 
Risk Score 

Lifetime Cannabis Use 0.10 0.16 0.15 
 
Number of Lifetime Uses -0.01 0.05 

 
0.04 

 
Age of first Cannabis Use 

 
 

-0.04 

 
 

0.00 

 
 

-0.09* 
 
Past 180-day Cannabis Use 0.06 0.03 

 
0.01 

 
CUD Symptom Count 0.01 0.05 

 
0.07* 

* p < 0.05 
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