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Abstract
Study Objectives. Estimate the genetic relationship of cannabis use with sleep deficits and
eveningness chronotype.
Methods: We used linkage disequilibrium score regression (LDSC) to analyze genetic
correlations between sleep deficits and cannabis use behaviors. Secondly, we generated sleep
deficit polygenic risk scores (PRSs) and estimated their ability to predict cannabis use behaviors
using logistic regression. Summary statistics came from existing genome wide association
studies (GWASs) of European ancestry that were focused on sleep duration, insomnia,
chronotype, lifetime cannabis use, and cannabis use disorder (CUD). A target sample for PRS
prediction consisted of high-risk participants and participants from twin/family community-
based studies (n = 796, male = 66%; mean age = 26.81). Target data consisted of self-reported
sleep (sleep duration, feeling tired, and taking naps) and cannabis use behaviors (lifetime use,
number of lifetime uses, past 180-day use, age of first use, and lifetime CUD symptoms).
Results: Significant genetic correlation between lifetime cannabis use and eveningness
chronotype (rG = 0.24, p < 0.01), aswell as between CUD and both short sleep duration (<7 h)
(rG=0.23, p=0.02) and insomnia (rG = 0.20, p = 0.02). Insomnia PRS predicted earlier age of
first cannabis use (8 = -0.09, p = 0.02) and increased lifetime CUD symptom count use (5 = 0.07,
p =0.03).
Conclusion: Cannabisuseis genetically associated with both sleep deficits and an eveningness
chronotype, suggesting that there are genes that predispose individuals to both cannabis use and
sleep deficits.

K eywor ds. Cannabis, Cannabis Use Disorder, Slegp Duration, Insomnia, Chronotype, Genetics.
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Introduction

Cannabis is one of the most widely used psychoactive substancesin theworld * and has a
well-documented but unclear relationship with sleep. Cannabis contains cannabinoids, which are
the major contributors to psychoactive and medicinal effects 2. The brain contains cannabinoid
receptors, which are affected by exogenous cannabinoids and endogenous cannabinoids (i.e.
produced within the brain). Together, these receptors and endogenous cannabinoids comprise the
endocannabinoid system. The two most prominent exogenous cannabinoids are
Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid, and Cannabidiol (CBD),
which appears to have additional sedating and anxiolytic properties ®. Evidence suggests that an
interplay between THC and CBD may underlie a nuanced relationship with sleep. For example,
acute/low-dose THC and high-dose CBD may aide sleep, but low-dose CBD and long-
term/high-dose THC may interfere with sleep *. While cannabis is often associated with being a

d >, repeated cannabis use may lead to tolerance of its sleep-aid properties and

sleep ai
consistent useis linked to negative sleep outcomes via habituation *.

Increased frequency of cannabis use is associated with an assortment of sleep problems
including prolonged latency to sleep onset ™, lower sleep duration **° sleep disturbances *,
sleep quality problems ™, |ater bed times ™, and insomnia related outcomes 11942 These
adverse effects might be specific to daily or chronic users, as arecent study found that daily
cannabis users endorsed worse sleep quality and increased insomnia symptoms compared to both
non-users and non-daily users, but also found that non-users and non-daily users demonstrated
similar sleep scores *'. Thus, irregular users might not experience the adverse sleep effects

experienced by heavy users. Additionally, sleep disturbances are a primary withdrawal symptom

of cannabis use disorders (CUD) and are often aleading risk factor for relapse, suggesting that


https://doi.org/10.1101/2020.05.02.053983
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.053983; this version posted May 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6
those with ongoing CUD might suffer from continuous sleep issues stemming from discontinued
use or attempts to abstain #?*. Lastly, an eveningness chronotype (a diurnal preferencefor a

sleep-wake pattern of activity and alertness in the evening which is linked to insomnia ®® and

26 27 28-30

sleep complaints “° ©*) is associated with increased cannabis frequency and cannabis
addiction **,

In addition to cross-sectional association, thereis evidence of early cannabis exposure
and use predicting later sleep outcomes. The fetal brain is densaly inhabited with CB1 receptors
that spread during gestation *2. CB1 receptors are thought to be involved in the regulation of
sleep processes since they are found in numerous regions of the brain associated with the sleep-
wake cycle **. THC binds to CB1 receptors, and animal research implies this possibly modifies
fetal cortical circuitry in the womb **. Several studies have found associations of prenatal
cannabis exposure with early sleep factors, such as differencesin quiet time, irregular seep, and
sleep related body movements a few days after birth * and less efficient sleep and less total sleep
time at three years of age ®.

The endocannabinoid system also plays a critical role in the development of the
adolescent brain *” and because the brain is changing and developing well throughout early
adulthood *, could be susceptible to the effects of cannabis for alarge part of the lifespan. A
handful of studies have found that cannabis initiation and early use predict later sleep problems

1639 and insomnia related outcomes 2.

such as tiredness, trouble sleeping % short sleep duration
Evidence exists for the reverse relationship aswell, with premorbid insomnia ** and generalized
sleep problems **! predicting later cannabis use. This effect appears strong in early
development, such that early childhood sleep deficits predict cannabis use in later adolescence

224244 and sleep factors during adolescence predict adult cannabis use >*. Lastly, endorsements
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of an adolescent eveningness chronotype is associated with follow-up reports of increased
cannabis use controlling for baseline adolescent substance use “°. With evidence of both cross-
sectional associations and a bidirectional relationship between cannabis and sleep
deficits/eveningness chronotype, there could be an underlying common liability such as shared
or common genetics responsible for this association.

The concept of common genetic liability is that the same genetic influences can act on
distinct or separately measured phenotypes. This can be referred to as “shared genetics' or, more
formally, genetic pleiotropy. That is, if phenotypes are genetically correlated, the relationship
between those phenotypes can be partially explained by common genetic liability (pleiotropy,
shared genetics), implying that the genetic influences on one phenotype also have an influence
on another phenotype. There isincreasing evidence of a genetic relationship between cannabis
use and sleep deficits, which may be biologically centered on the endocannabinoid system’s
involvement in the circadian sleep—wake cycle °**. Additionally, disruption of circadian genes
might disturb the reward processing system, which can influence substance use “**°. While
research has shown evidence of common genetics between both alcohol and tobacco use and
disorders with slegp outcomes using both twin studies and genomic methods (e.g., genetic

correlations) >+

, studies specifically focused on the genetic relationship between cannabis and
sleep components remain scarce. Two twin studies have found evidence of shared genetics
between cannabis use and sleep outcomes, specifically lower adult sleep duration *° and adult
insomnia outcomes 2. Additionally, several clock gene polymorphisms have been linked to risk
for cannabis addiction *’.

Consistent with thisliterature, there is converging evidence that support a shared genetic

liability hypothesis. Recent large genome-wide association studies (GWASS) on sleep-related


https://doi.org/10.1101/2020.05.02.053983
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.02.053983; this version posted May 3, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8
and chronotype variables ****! have found genes and genetic pathways linked with both
cannabis use or cannabinoid activity 2. Likewise, several GWASs of lifetime cannabis use
and CUD disorder ®%%7 haye found genetic associations that are believed to be involved in
circadian rhythm and sleep behaviors *~"*. These studies imply genetic pleiotropy between
cannabis use and sleep deficits, but research is needed to analyze the specific role of the potential
shared geneticsin this relationship, specialy using modern genomic methods.

As mentioned, modern GWA Ss have been used to identify independent genome-wide
significant loci associated with various sleep traits and to estimate genome-wide single
nucleotide polymorphism (SNP) heritability for several deep-related traits such as chronotype

56,58,75 aswell as

(eveningness-morningness) (14%), sleep duration (10%), and insomnia (17%)
for cannabis behaviors such as lifetime cannabis use (11%) ® and CUD (4%) . These results
suggest that the combined effects of common SNPs capture a considerable proportion of the
heritability of various sleep behaviors and cannabis use behaviors. A polygenic risk score (PRS)
isan individual measure of genetic propensity to atrait of risk that is generated by multiplying
the number of risk alleles that an individual possesses at a particular SNP by the effect size from
adiscovery GWAS for that same SNP. By applying summary statistics from alarge GWASto a
smaller genotyped target sample, PRSs can be generated to estimate if genetic risk for atrait is
associated with another trait, implying shared genetics between traits. Additionally, summary
statistics from GWASs can be used to analyze genetic correlations by using a technique called
Linkage Disequilibrium Score Regression (LDSC) which estimates if the direction of effect of
SNPs are correlated between traits. Thus, LDSC analyzesif direction of effect between the SNPs

of two traits are correlated based on the whole genome, while PRS analysis uses the genetic

scores assigned to individuals (derived from a GWAS) to determine if the genetic risk attributed
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to the PRS can predict behaviors observed in atarget sample; the PRS analysis can readily
control for covariates.

In this study, we first conducted genetic correlation analyses using the summary statistics
of several large cannabis (lifetime cannabis use and CUD) and sleep (sleep duration, chronotype,
and insomnia) GWASs with the intention of finding significant genetic correlations that would
suggest that the direction of SNPs between these domains are correlated. Secondly, we generated
PRSs based on summary statistics of various large sleep related GWA Ss (chronotype, sleep
duration, and insomnia) and analyzed the ability of sleep trait PRSsto predict cannabis measures
in atarget sample consisting of both high-risk participants and participants from twin/family
community-based studies.

Methods

2.1 Participants

In order to generate accurate and bias free PRSs, the ideal analysis requires that the racial
make-up of the target data reflect the original GWAS data that the PRS was derived from .
With thisin mind, we used an initial sample of 900 (self-identifying white) adults who
participated in a third wave of data collection from either the Center on Antisocial Drug
Dependence (CADD) in Boulder, CO [PI: Hewitt] or the Genetics of Antisocial Drug
Dependence (GADD) cohort from Denver, CO and San Diego, CA [PI: Hopfer]. Amongst those
in the sample with afamily member (208 total subjects were nested within afamily), we kept
one member of each family at random to make our final sample 796 subjects. Removing subjects
from the same family allowed us to avoid the potential convergent complications of using mixed
effects models as well avoid the role of the shared environment amongst family members. Of our

remaining sample, we had 644 subjects from the CADD and 152 from the GADD. Subjects from
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the CADD included data from the Colorado Adoption Project (n = 10; *), Longitudinal Twin
Study (n = 156; "®), Community Twin Sample (n = 315; "®), and the Adolescent Substance Abuse
Project (n = 124; ™). In addition to the San Diego and Denver subsamples of the GADD, 46
subjectsin this consortium were part of a separate study [Pl: Hopfer, DA035804] that were
integrated into the third wave of the GADD. The final sample was 66% male (n = 529) with an
average age of 26.81 years (SD = 3.15, range = 19-37).
2.2 Measures
Cannabis measuresin target sample

Cannabis measures in our target sample were self-reported via a supplement to the
Composite International Diagnostic Interview Substance Abuse Module (CIDI-SAM) .
Any/lifetime cannabis use was measure with a screening question regarding lifetime cannabis
use (“Have you ever used cannabis?’). Subjects who endorsed any lifetime cannabis use (n =
627) were asked a series of cannabis-related questionsincluding: age of first use (“How old were
you the first time you used cannabis?’) (mean = 15.33 years, SD = 3.20), and number of
lifetimes uses (“How many timesin your life have you used cannabis?’). Responses for number
of lifetime cannabis usesincluded: “1-2 times’ (n = 38), “3-5times’ (n =58), “6-9times’ (n =
28), “10-19times” (n = 38), “20-39 times” (n = 59), and “40 or moretimes’ (n = 416), and were
coded as 1-5. Anyone who denied any lifetime cannabis use were assigned a0 for number of
lifetime cannabis use (n = 169). Previous 180-day cannabis use was measured by asking, “How
many days have you used marijuanain the past six months (180 Days)?’ (mean = 34.52 years,
SD = 67.62). Past 180-day cannabis use was categorized as 0 days (n = 562), 1-100 days (n =

189), and more than 100 days (n = 149).
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We included several measures of DSM-IV cannabis use disorders  taken from the CIDI-
SAM in order to generate a measure that consisted of the sum of the number of both lifetime
cannabis dependence and abuse symptoms endorsed (mean = 1.52, SD = 2.51, range = 0-11),
with the goal of generating a variable conceptually similar to the unidimensional symptom count
of CUD in DSM-5 ®, Research has determined that the cannabis abuse and dependence criteria
of DSM-IV might not distinguish between two separate disorders or constructs ® and that a
unidimensional symptom count classifies CUD more appropriately *. Studies with DSM-IV
cannabis dependence and abuse symptom data have utilized this summation technique in order to
make a symptom count measure that is comparable to CUD reflecting a single disorder 34,
Seep measuresin target data

Sleep measures in our target sample were assessed using the Jessor Health Questionnaire
8 Sleep duration was assessed using two questions which asked, “How many hours of sleep do
you typically get on aweekend?’ and “How many hours of sleep do you typically get on a
weekday?” with responses being “5 hours or less,” “6 hours,” “7 hours,” “8 hours,” “9 hours,”
“10 hours,” or “11 hours or more.” Our measures of short sleep duration were coded to match the
GWAS we generated our PRS from *°. Short sleep duration <7 hours was coded asa 1 (n = 233
and n = 162) and 7-8Jhours sleep duration was coded as 0 (n = 500 and n = 415) for both
weekday and weekend sleep respectively. Those who reported 9 or more hours were assigned an
NA in order to match the coding of the slegp duration GWAS. Subjects also were asked: “How
often do you fed tired or sleepy when you get up in the morning?’, “How often do you fed tired
or low on energy in day?’, and “How often do you take a nap during the daytime?’ with possible

responses for these three questions being “almost never,” “once aweek or so,” “2 or 3timesa

week,” “nearly every day,” and “would rather not answer;” coded as 1-4 and NA.
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Generating polygenic risk scores

After removing duplicate SNPs, quality control performed in PLINK & included pruning
variants based on missingness (>5%), minor alele frequency (<1%), and Hardy-Weinberg
equilibrium (p-value <.001) followed by pruning variants based on linkage disequilibrium
(Wherever r? exceeds .20 within a 50 kb window). There were 1,089,148 SNPs available for
generating PRSs after applying QC. Effect sizes from the discovery GWAS of sleep traits %"
were multiplied by the number of affected alleles at each individual SNP in our target sample in
order to generate a unique PRS for each participant. That is, each participant in our data was
assigned a PRS for each dleep trait, by applying GWAS effect sizes to their genomic data. Each
PRS comprised of all SNPs that passed quality control steps (all p < 1) and thus explained the
highest variance in the sleep phenotypesin our target sample. Thisis consistent with work
suggesting that complex traits display a high amount of polygenicity and that using only
genome-wide significant SNPs may exclude many SNPs with small but meaningful additive
effects ®; thusincluding all possible SNPs captures the highest amount of variance possible for a
given trait 2%,
Summary statistics from deep GWASs for PRSanalysis and genetic correlationsvia LDSC

Sleep trait PRS effect sizes were generated from the summary statistics of several large
seep-related GWASs (all performed by the same research team) that utilized data of European
ancestry from the UK biobank ****". The sleep-related traits included self-report chronotype >,
short sleep duration (<7 hours) *°, and self-reported insomnia symptoms ". The original
chronotype GWAS utilized morningness, which was a binary measure of being a morning person

or not (if participants endorsed any morningness measures as opposed to any eveningness

measure) with morning people coded as 1 and evening people coded as 0. For the purpose of this
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study and the emphasis on slegp deficits, we reverse coded this measure and interpreted the
results as eveningness chronotype (127,622 cases and 120,478 controls). Short sleep was defined
as <7! lhours relative to 7-8I Ihours sleep duration (106,192 cases and 305,742 controls). Severe
Insomnia (as defined by the GWAS) was classified using a self-report question: “Do you have
trouble falling asleep at night or do you wake up in the middle of the night?’, with participants
being dichotomized into controls (“never/rarely”, n = 108,357) and frequent insomnia symptoms
(“usually”, n = 129,270) and with those reporting “sometimes’ excluded. These same summary
statistics were used for the genetic correlation analysis.

Summary statistics from cannabis GWASs for genetic correlationsvia LDSC

Summary statistics from several large scale GWASs of cannabis use behaviors were used
for LDSC. Summary statistics for lifetime cannabis use were generated from self-report
measures of whether a participant had ever used cannabis during their lifetime from a sample
comprised of both the UK biobank and the International Cannabis Consortium (n~1=[1162,082
%), Summary statistics for CUD were derived viathe International Statistical Classification of
Diseases and Related Health Problems, 10th revision diagnosis of CUD ** reflecting a
problematic and persistent use of cannabis and were derived from the deCODE cohort based in
Iceland (5,501 cases and 301,041 controls) .
Covariates

9596

We included age %, sex %, depression *, and current alcohol and tobacco

use 97,98

as covariatesin all regression models. Current alcohol and tobacco use were
measured using the number of days that tobacco (mean = 35.09 SD = 43.25) and alcohol (mean
= 60.05, SD = 80.59) were used in the past 180-days. Past 180-day tobacco use was categorized

as 0 days (n = 123), 1-10 days (n = 196), 11-40 days (n = 246), and more than 40 days (n = 231).
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Past 180-day alcohol use was categorized as 0 days (n = 386), 1-100 days (n = 163) and more
than 100 days (n = 247). Depression symptoms were assessed using the Center for
Epidemiological Studies-Depression (CES-D) scale * with the caveat of the sleep disturbance
guestion being removed due to its direct overlap with our sleep PRS measure (mean = 27.66, SD
=8.96). All regression models also included the first 10 ancestral principal components (PCs 1-
10) generated in PLINK as covariates to account for population stratification asis common in
Genetic and PRS analysis 1©1%,
2.3 Statistical Analysis
Genetic correlations via linkage disequilibrium score regression

We used Linkage Disequilibrium Score Regression (LDSC) ** to calcul ate genetic
correlations between traits. Summary statistics were filtered by INFO > .90 and MAF > .01.
Strand ambiguous SNPs, SNPs with duplicated rs numbers, and multi-allelic variants that are not
SNPswere all removed. SNPswith low Ns (as determined by the LDSC program) were also
removed when sample sizes were available. Alleles were merged with the Hap Map 3 1
reference panel, with the major histone complex removed. The LD scores and beta weights used
were pre-computed from 1000 Genomes European GWAS dataincluded in the LDSC download.

LDSC is acomputationally efficient method that regresses Chi-square statistics from
GWASs on LD scores of the trait of interest **. LD scores per SNP are the sum of the variance
explained by LD with other SNPs '®. Genetic correlations were cal culated using overlapping
SNPs from filtered summary statistic files. Genetic correlations also account for population
stratification and are not confounded by overlapping samples.
Polygenic risk regression analysis

All regression analyses were conducted in R version 3.5.1 '®. Logistic regression models
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were used to test the association between sleep trait PRSs and cannabis use behaviors including
the previously mentioned covariates of age, sex, depression symptoms, past 180-day alcohol and
tobacco use, and ancestral principal components (PCs 1-10). In terms of the steps of our
analyses, we first used LDSC to estimate potential genetic correlations between sleep and
cannabis GWAS summary statistics. Second, we ran phenotypic regression models between our
sleep measures and cannabis behaviors in our target data to establish associations of sleep
deficits and cannabis behaviors amongst our target sample. Third, we ran regression models
between our sleep PRSs and sleep traits in our discovery samplein order to confirm that the
sleep PRSs predicted sleep constructsin our target data. Lastly, we ran regression models to see
how sleep PRSs predict cannabis behaviors. For all series of regressions models involving PRSs
we ran two sets of models 1) with just age, sex, and PCs 1-10 as covariates and 2) with the prior
covariates and the addition of current depression symptoms and past 180-day alcohol and
tobacco use. We utilized this two-model approach in order to 1) look at the associations between
sleep PRSs and cannabis factors controlling for both basic covariates and more complex
covariates and 2) determineif the effects seen in our final models (including all covariates) were
driven by the more maladaptive covariates (depression and past 180-day substance use).

Results
Genetic correlationsusing LDSC
Wefirst used LDSC to look at potential genetic correlations between cannabis and sleep
traits using the largest GWAS to date for each trait. Table 1 displays the LDSC analysis between
sleep traits and cannabis use traits. We found significant positive genetic correlations between
any lifetime cannabis use and eveningness chronotype (rG = 0.24, p < 0.01). We aso found

significant genetic correlations between CUD and both short sleep duration (rG = 0.23, p = 0.02)
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and insomnia (rG = 0.20, p = 0.02), aswell as amarginally significant genetic correlation
between CUD and eveningness chronotype (rG = 0.16, p = 0.06). Figure 1 displays the genetic
correlations between cannabis and sleep phenotypes using LDSC (Error bars are 95% confidence
intervals).

Seep traits predicting cannabisin target data

Table 2 displays regression outputs of our target data sleep traits predicting cannabis use
behaviors controlling for sex, age, depression, and past 180-day alcohol and tobacco use. Short
sleep duration on the weekday significantly predicted earlier age of first cannabis use (8 = -0.06,
p < 0.01). Short sleep duration on the weekend significantly predicted increased number of
lifetime cannabis uses (# = 0.23, p < 0.01), increased past 180-day cannabisus (f = 0.24, p <
0.01), and earlier age of first cannabis use (5 = -0.07, p < 0.01), and was trending for lifetime
cannabis use (# = 0.51, p = 0.09). How often one feels tired or sleepy in the morning
significantly predicted increased lifetime CUD symptom count (4 = 0.09, p = 0.01). How often
one felt tired or low on energy during the day significantly predicted early age of first cannabis
use (B =-0.09, p = 0.02), but was trending in predicting increased lifetime CUD symptom count
(8 =0.07, p=0.09).
Seep PRSs predicting deep traits

Table 3 displays the regression betas between the sleep PRSs and our sleep variablesin
our target data controlling for age, sex, and PCs 1-10. We found evidence of significant
associations between the PRS for short sleep duration and numerous sleep factorsincluding short
weekday sleep duration (5 = 0.32, p < 0.01), short weekend sleep duration (5 = 0.23, p = 0.04),
and frequency of taking naps during the day (# = 0.08, p = < 0.01). Eveningness chronotype PRS

was significantly associated with how often one feels tired or low in energy during the day (5 =
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0.07, p = 0.03). While the Insomnia PRS trended in predicting short sleep duration on the
weekday (8 = 0.15 p = 0.07), we failed to find significant associations between the insomnia PRS
with any of our sleep measures. Table 4 displays regression betas for the sleep PRSs predicting
sleep outcomes/traitsin our target data in our full models controlling for age, sex, PCs 1-10,
current depression, and past 180-day alcohol and tobacco use. Short sleep PRS significantly
predicted short sleep on the weekday (8 = 0.34, p < 0.01), short sleep on the weekend, (8 = 0.27,
p = 0.02), and how often one takes naps during the day (8 = 0.08, p < 0.01). Eveningness
chronotype significantly predicted how often one feelstired or low in energy during the day (8 =
0.08, p=0.01). TheinsomniaPRS did not significantly predict any sleep variablesin our target
data but was trending for predicting short sleep duration on the weekday (4 = 0.16, p = 0.07).
Seep PRSs predicting cannabistraits

Table 5 displays the regression betas between the sleep PRSs and our sleep variablesin
our target data controlling for age, sex, and PCs 1-10. The insomnia PRS significantly predicted
earlier age of first cannabis use (8 = -0.11, p = 0.01) and increased lifetime CUD symptom count
(8 =0.08, p=0.02). Short dleep duration PRS was trending for predicting increased past 180-day
cannabis use (# = 0.07, p = 0.07), aswas the eveningness chronotype PRS for predicting lifetime
cannabis use (8 = 0.15, p = 0.09) and increased lifetime CUD symptom count (8 = 0.06, p =
0.09). Table 6 displays the regression betas for the sleep PRSs predicting cannabis use measures
in our target data controlling for age, sex, PCS 1-10, current depression, and past 180-day
alcohol and tobacco use. The insomnia PRS significantly predicted earlier age of first cannabis
use (B =-0.09, p = 0.02) and increased lifetime CUD symptom count (8 = 0.07, p = 0.03). Both
the short sleep duration and eveningness chronotype PRSs did not significantly predict any of

our cannabis measures.
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Discussion
We set out to examine the potential shared genetic liability of sleep deficits and cannabis
use behaviors using multiple genomic methods. We found significant genetic correlations
between lifetime cannabis use and eveningness chronotype as well as significant positive genetic
correlation between CUD and both short sleep duration and insomnia. Additionally, we found
that an insomnia PRS generated from a large scale deep GWAS predicted earlier age of first
cannabis use and increased number of lifetime CUD symptoms controlling for sex, age, PCs 1-
10, current depression, and past 180-day alcohol and tobacco, suggesting that the genetic risk
attributed to insomnia can predict several cannabis use behaviors. This study presents the first
genomic based evidence (using PRS and LDSC) of shared genetic influence for cannabis use
behaviors with both sleep traits and chronotype. The direction of these results implies a shared
genetic relationship between increased cannabis use behaviors and both sleep deficits and an
eveningness chronotype
Our LD score derived genetic correlations are the first such report of a genetic

relationship between sleep deficits and cannabis use behaviors, and are similar to prior studies
that have shown genetic associations of sleep deficits and other substance use behaviors such as
alcohol and tobacco >**°. These results and analyses imply that thereis a positive correlation
between the effect of SNPs between sleep deficits (short sleep duration, insomnia, and an
eveningness chronotype) and lifetime cannabis use/ CUD, such that the genetic influences on
cannabis use also have an influence on sleep deficits or vice versa. While a prior twin study
found a genetic correlation between eveningness chronotype and both increased alcohol quantity
and binge drinking **, to our knowledge thisis the first report of chronotype being genetically

correlated with cannabis use. Additionally, our PRS analysis findings present the first report of
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genetic risk for a sleep behavior predicting a substance use behavior, suggesting that the genetic
risk for insomniais associated with cannabis use behaviors such earlier age of first cannabis use
and increased number of lifetime CUD symptoms.

Our slegp duration PRS was validated on phenotypes of sleep behaviorsin our target
sample. Specifically, our short sleep duration PRS predicted short sleep duration on the
weekday/weekend and how often one takes naps during the daytime. Additionally, the
eveningness chronotype PRS predicted how often one feelstired or low in energy during the day.
Unfortunately, our target sample did not have a direct measure of insomnia and our regression
analysis failed to find any significant relationships between the insomnia PRS and the Sleep
outcomesin our target data (although there was a trending association between the insomnia PRS
and short sleep duration on the weekday). Similarly, the only chronotype-like measure was
restricted to a question regarding how often one feels tired or sleepy in the morning, which
differed from the morning person/night person question of the chronotype GWAS. The insomnia
GWAS phenotype was defined as severe insomnia, excluding those who had insomnia symptoms
“sometimes’ and only including those with “usual/always’ insomnia symptoms. This exclusion
could have led the PRS to predict only extreme cases and this could have influenced the potential
variance explained in our regression analysis regarding the sleep outcomes.

It isworth noting that we included cannabis measures from differential time points with
the goal of not only analyzing the genetic relationship between sleep and various cannabis
behaviors across life, but also to look at the phenotypic associations of early cannabis use and
later sleep in our target data. We found that several measures of recent sleep characteristics were
associated with earlier cannabis use measures in our target data; for example, short sleep

duration on the weekend was associated with earlier age of first cannabis use as well asincreased
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number of lifetime uses, and both short sleep duration on the weekday and how often one feels
tired or low in energy during the day were associated with earlier age of first cannabis use.
Additionally, we found that increased lifetime CUD symptom count was associated with feeling
tired or dleepy in the morning. These results support prior findings of potentially earlier or
preceding cannabis use behaviors being associated with later sleep factors. Lastly, our measure
of past 180-day cannabis use was significantly associated with short sleep duration on the
weekend, implying phenotypic associations of recent cannabis use with recent sleep measures.

While some of the results from our LDSC analysis align with our PRS analysis (e.g.,
findings of shared genetics between insomniaand CUD) several of our findings were not
replicated between the two analyses. For instance, we found a genetic correlation between short
sleep duration and CUD, yet our PRS for short sleep duration did not predict any cannabis
behaviors. Additionally, we found a significant genetic association between eveningness
chronotype and lifetime cannabis use, yet the eveningnness chronotype PRS did not predict any
cannabis behaviors. Reasons for the lack of convergent results could include population
differences between the GWAS and target datain terms of both environmental and genetic
differences of the samples. Different locations of the samples will have different environmental
influences that can influence phenotype expression and there are both racial and regional
differences in terms of common and rare variants, minor allele frequencies, and linkage
disequilibrium that can influence results and the variance explained '*’. Lastly, differencesin the
methodological aspects of the analyses (PRS vs LDSC) could be responsible. While both
analyses focused on the effects across all available SNPs, LDSC looks at the overall direction of
effect of all SNPS and PRS looks whether the genetic risk for a certain trait predicts a phenotype.

Overal, our results imply shared genetics between cannabis use and sleep deficits, and the
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differences seen in the results may be due to population and methodological differences between
these analyses.

Our findings complement a small collection of research focused on the genetics of
cannabis use and sleep behaviors. Two prior studies by our group have used the classical twin
design to show that shared genetics played arole in the etiology of the relationship between early
cannabis use and shorter adult sleep duration, insomnia, and insomnia with short sleep **?* and a
recent study found clock gene polymorphisms that were significant risk factors for cannabis
addiction *’. One possible explanation for this genetic relationship could be that disturbances of
circadian rhythm genes might interrupt the reward processing system, which could influence
substance use **°. Another supported explanation could be that the endocannabinoid system is
involved in the circadian sleegp-wake cycle, such that endocannabinoids influence sleep behaviors
and their levels can vary with the time of day and other circadian related factors “°*31%_ Along
these lines, several of the genes and genetic pathways found to be significant in sleep related-
variable GWAS ***%%! haye been associated with cannabis use and cannabinoid activity %
02.67.68.109-112 ) ikewise, GWAS for lifetime cannabis use and CUD %" have found genes
that have been linked to sleep behaviors and circadian rhythm =413,

This study demonstrates a genetic relationship between both sleep factors and chronotype
with cannabis use behaviors, implying shared genetic liability between these domains,
specifically common genetics between short sleep duration, insomnia, and eveningness
chronotype with increased cannabis use behaviors. Future studies should use more novel genetic
methods to examine the exact mechanisms for this genetic relationship such as gene set
enrichment pathway analysis *. There are also mechanisms outside of genetics that could be

responsible for the associations between these traits and future research should use methods that
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can make causal inferences like Mendelian randomization *> and epigenome-wide association

studies 16

to study the relationship between cannabis use and sleep deficits.
Limitation

There are several limitations to this study, which point to important lines of future
research. First, our cannabis, sleep, and covariate variables in our target sample were self-report
and could be prone to response bias or report error. Second, while both the short sleep duration
and eveningness chronotype PRSs were significantly associated with sleep duration outcomes
and other sleep behaviors, the insomnia PRS was not significantly associated with any of our
target data sleep measures (although trending for weekday sleep duration). The cohort study
lacked avalid insomnia or chronotype measure to validate the usefulness of the respective
evening chronotype and insomnia PRS measures. Inclusion of such measures would have ideally
been associated with these PRS measures. Third, population differences in environmental factors
between target and base data can influence the variance predicted in the models. Our GWAS data
for our PRS was gathered from the UK in a cohort known for being older, predominantly female,

overtly healthy, and mostly white **

. Our target sample was also of European ancestry but was
younger, mostly male, and a combination of community-based and high-risk subjects. Fourth,
genetic differences due to the regional make-up our samples could influence the variance. While
our GWAS data for our PRSs was from European ancestry/predominantly white and our target
cohort was made up of only subjects who self-identified as white, there could still be genetic
differences between the samples that could have influenced the predictive ability of the PRSsto
explain the variance of the outcomes. Fifth, we reported the effects of all SNPs (p < 1) in our
results, and while using this threshold method captures the additive effect of additional SNPs

88-90

often removed by the stringent threshold of genome wide significance , it isalso susceptible
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to false positives or noise. Still, studies have shown that the whole-genome approach of using all
SNPs captures more signal than it does noise and that this method can outperform PRSs
generated from using only top hits **#**°. Sixth, while LDSC is robust to population
stratification/rel atedness there are limitations to consider such as biases in the estimates due to
rare copy variants and capturing genetic variation tagged only by common SNPs'®. Lastly,
several of our phenotypic and genetic based results regarding the relationship between cannabis
use and sleep deficits were trending in significance and it is possible that similar studies with
considerably larger samples would yield clearer results.

Summary

Our findings are consistent with the theory that both sleep deficits (such as short Sleep
duration and insomnia) and eveningness chronotype share genetic liability with cannabis use
behaviors, and that this genetic relationship contributes to the associ ations between sleep and
cannabis. These results extend the current body of research focused on the relationship of sleep
and cannabis behaviors to include the first instance of genomic evidence (LDSC and PRS
prediction) aswell asthefirst evidence of a genetic relationship between eveningness
chronotype and cannabis use behaviors. Future studies should consider novel genomic methods

to examine potential genes aswell as specific genetic causal pathways for these relationships.
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Figure 1. Genetic correlations between cannabis and sleep phenotypes. Genetic correlations
were calculated with LDSC. Error bars are 95% confidence intervals,
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Table 1. Genetic correlations between sleep and cannabis phenotypes using large scale GWAS.

Lifetime CannabisUse Cannabis Use Disorder

Short Sleep Duration (<7 h) -0.05[0.03] 0.23* [0.10]
Eveningness Chronotype 0.24* [0.03] 0.16#[0.09]
Insomnia 0.01[0.03] 0.20* [0.09]

Note. Genetic correlations between cannabis and sleep phenotypes were
calculated using LD Score Regression. Standard errors are in brackets.
*indicates p < 0.05, # p = 0.06
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Table 2. Regression betas of sleep traits predicting cannabis use behaviors controlling for sex,
age, depression, and past 180-day substance use.
Number Ageof  Past 180- CuD
Lifetime of First day Symptom
Cannabis Lifetime Cannabis Cannabis Count
Sleep Trait Use Uses Use Use

How often do

you feel tired

or sleepy

when you get

upinthe

morning? 0.11 0.12 -.03 -0.04 0.09*

How often do

you feel tired

or just low in

energy during

the day? 0.11 0.12 -0.09* -0.01 0.07#

How often do

you take anap

during the

daytime? 0.12 0.16 -0.08# 0.08# 0.09#

Short sleep

duration on

the weekday

(<7h) 0.01 0.04 -0.06** 0.04 0.04

Short sleep

duration on

the weekend

(<7h) 0.51# 0.23** -0.07** 0.24** 0.04
#p=0.06-0.09, * p<0.05, ** p<0.01
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Table 3. Regression betas for sleep polygenic risk scores (p < 1) predicting sleep factors
controlling for age, sex, and ancestral principal components (PCs 1-10).
Short Sleep Duration (<7 h)  Eveningness Chronotype Insomnia
Sleep trait Polygenic Risk Score Polygenic Risk Score Polygenic Risk Score

How often do you feel tired
or sleepy when you get up
in the morning? 0.00 0.02 0.01
How often do you feel tired
or just low in energy
during the day? 0.03 0.07* 0.04
How often do you take a
nap during the daytime? 0.08** -0.04 0.02
Short sleep duration on the
weekday (<7 h) 0.32** 0.08 0.15#
Short sleep duration on the
weekend (<7 h) 0.23** 0.10 0.04

#p=0.07,* p<0.05,** p<0.01
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Table 4. Regression betas for sleep polygenic risk scores (p < 1) predicting sleep factors

controlling for sex, age, depression, past 180-day substance use, and ancestral principal

components (PCs 1-10).

Short Sleep Duration (<7 h)  Eveningness Chronotype Insomnia
Sleep trait Polygenic Risk Score Polygenic Risk Score Polygenic Risk Scc

How often do you feel tired or
sleepy when you get up in the
morning? 0.00 0.03 0.02
How often do you feel tired or
just low in energy during the day? 0.04 0.08* 0.05
How often do you take a nap
during the daytime? 0.08** 0.04 0.02
Short sleep on the weekday (<7 h) 0.34** 0.10 0.16#
Short sleep on the weekend (<7 h) 0.27* 0.09 0.05

#p=0.07,* p<0.05, ** p<0.01
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Table 5. Regression betas for sleep polygenic risk scores (p < 1) predicting cannabis behaviors

controlling for sex, age, and ancestral principal components (PCs 1-10).

Short Sleep Duration (<7 h) Eveningness Chronotype Insomnia
Sleep trait Polygenic Risk Score Polygenic Risk Score Polygenic Risk Score

Lifetime Cannabis Use

0.10 0.15# 0.09
Number of Lifetime
Cannabis Uses 0.02 0.05 0.04
Age of First Cannabis Use -0.06 0.00 -0.11**
Past 180-day
Cannabis Use 0.07# 0.03 0.01
CUD Symptom Count 0.02 0.06# 0.08*

#p =0.07-0.09, * p < 0.05, ** p< 0.01
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Table 6. Regression betas for sleep polygenic risk scores (p < 1) predicting cannabis behaviors

controlling for sex, age, depression, past 180-day substance use, and ancestral principal

components (PCs 1-10).

Short Sleep Eveningness Insomnia Polygenic
Duration (<7 h) Chronotype Risk Score
Polygenic Risk Polygenic Risk
Cannabis Trait Scores Score

Lifetime Cannabis Use 0.10 0.16 0.15

Number of Lifetime Uses -0.01 0.05 0.04

Age of first Cannabis Use -0.04 0.00 -0.09*

Past 180-day Cannabis Use 0.06 0.03 0.01

CUD Symptom Count 0.01 0.05 0.07*

* p<0.05
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