

1

2 BioID analysis of the cyclin F interactome reveals that ALS-variant cyclin F
3 alters the homeostasis of paraspeckle-associated proteins

4

5 Stephanie L. Rayner^{1*}, Flora Cheng¹, Shu Yang¹, Natalie Grima¹, Yazi D. Ke³, Carol G.
6 Au³, Marco Morsch¹, Alana De Luca¹, Jennilee M. Davidson¹, Mark P. Molloy², Bingyang
7 Shi¹, Lars M. Ittner³, Ian Blair¹, Roger S. Chung¹ & Albert Lee^{1*}

8

⁹*Corresponding authors

10

11 ¹ Department of Biomedical Sciences, Centre for Motor Neuron Disease Research,
12 Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place,
13 North Ryde, NSW 2109

14 ²Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital,
15 Pacific Hwy, St Leonards, Sydney, NSW 2065

16 ³ Department of Biomedical Sciences, Dementia Research Centre, Faculty of Medicine
17 and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109

18

19 *Authors and emails:*

20 Stephanie L. Rayner: stephanie.rayner@mq.edu.au

21 Flora Cheng: flora.cheng@mq.edu.au

22 Shu Yang: shu.yang@mq.edu.au

23 Natalie Grima: natalie.grima@mq.edu.au

24 Yazi D. Ke: yazi.ke@mq.edu.au

25 Carol G. Au: carol.au@mq.edu.au

26 Marco Morsch: marco.morsch@mq.edu.au
27 Alana De Luca: alana.deluca@utas.edu.au
28 Jennilee M. Davidson: jennilee.davidson@hdr.mq.edu.au
29 Mark P. Molloy: m.molloy@sydney.edu.au
30 Bingyang Shi: bingyang.shi@mq.edu.au
31 Lars M. Ittner: lars.ittner@mq.edu.au
32 Ian Blair: ian.blair@mq.edu.au
33 Roger S. Chung: roger.chung@mq.edu.au
34 Albert Lee: albert.lee@mq.edu.au
35

36 ***Highlights***

37 • Previously, we identified missense mutations in *CCNF* that are linked to
38 Amyotrophic lateral sclerosis/Frontotemporal dementia (ALS/FTD) and have shown
39 that a single mutation in cyclin F can cause defects to major protein degradation
40 systems in dividing cells.
41 • Cyclin F has very few known interaction partners, many of which have roles in cell
42 cycle progression. Accordingly, we used BioID and mass spectrometry to identify
43 novel binding partners of cyclin F that may reveal insight into the role of cyclin F in
44 neurodegeneration.
45 • Mass spectrometry and bioinformatic studies demonstrate that cyclin F interacts
46 with several RNA binding proteins. This includes the essential paraspeckle
47 proteins, RBM14. Notably, this interaction could be validated by standard
48 immunoprecipitations and immunoblotting. Cyclin F could also be found to interact
49 with a series of essential proteins which form the paraspeckle complex.

50

51 • We further evaluated the effect of cyclin F(S621G) on the homeostasis of these
52 novel interaction partners in primary neurons in response to a known paraspeckle
53 inducer, MG132. Notably, we demonstrate significant defects in the homeostasis of
54 RBM14 and SFPQ, but not NONO, when cyclin F carries an S621G mutation.

55 • Unlike other paraspeckle proteins, RBM14 levels have not previously been
56 reported in the post-mortem brain and spinal cord of ALS patient post-mortem
57 tissue. Here, we note significant defects in the homeostasis of RBM14 in the post-
58 mortem tissue of ALS patients.

59

60 **Abstract**

61 *Background:* Previously, we identified missense mutations in *CCNF* that are causative of
62 familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia
63 (FTD). *CCNF* encodes for the protein cyclin F, a substrate recognition component of the
64 E3-ubiquitin ligase, $SCF^{cyclin\ F}$. We have previously shown that mutations in *CCNF* cause
65 disruptions to overall protein homeostasis; causing a build-up of ubiquitylated proteins (1)
66 as well as defects in autophagic machinery (2).

67

68 *Methods:* Here, we have used an unbiased proteomic screening workflow using BioID, as
69 well as standard immunoprecipitations to identify novel interaction partners of cyclin F,
70 identifying the interaction between cyclin F and a series of paraspeckle proteins. The
71 homeostasis of these new cyclin F interaction partners, RBM14, NONO and SFPQ were
72 monitored in primary neurons using immunoblotting. In addition, the homeostasis of
73 RBM14 was compared between control and ALS/FTD patient tissue using standard IHC
74 studies.

75

76 *Results:* Using BioID, we found over 100 putative interaction partners of cyclin F and
77 demonstrated that cyclin F closely associates with a number of essential paraspeckle
78 proteins, which are stress-responsive proteins that have recently been implicated in ALS
79 pathogenesis. We further demonstrate that the turnover of these novel binding partners
80 are defective when cyclin F carries an ALS/FTD-causing mutation. In addition the analysis
81 of RBM14 levels in ALS patient post-mortem tissue revealed that RBM14 levels were
82 significantly reduced in post-mortem ALS patient motor cortex and significantly reduced in
83 the neurons of spinal cord tissue.

84

85 *Conclusion:* Overall, our data demonstrate that the dysregulation of paraspeckle
86 components may be contributing factors to the molecular pathogenesis of ALS/FTD.

87

88 **Keywords:** **BioID, cyclin F, paraspeckles, RBM14, amyotrophic lateral sclerosis,**
89 **frontotemporal dementia, proteomics, ubiquitylation, homeostasis.**

90

91 **Materials and correspondence**

92 Albert Lee (albert.lee@mq.edu.au)

93 Stephanie L. Rayner (stephanie.rayner@mq.edu.au)

94 Current address: 2 Technology Place, North Ryde, NSW 2109, Australia.

95

96

97

98

99

100

101 **Background**

102 Amyotrophic lateral sclerosis (ALS) is typically a late-onset neurodegenerative disease
103 characterised by the selective degeneration of upper and lower motor neurons of the
104 cerebral cortex, brainstem and spinal cord. It is the most common form of motor neurone
105 disease (MND) with poor prognosis and limited treatment options. A proportion of ALS
106 patients also develop clinical or subclinical frontotemporal dementia (FTD) and
107 pathological and genetic overlap is now recognised, indicating that they represent a
108 spectrum of disease (3). Approximately 5-10% of ALS patients carry an autosomal
109 dominant genetic mutation. Familial mutations have been reported in over 30 genes
110 including *SOD1* (4, 5), *VCP* (6), *TARDBP* (7), *FUS* (8, 9), *OPTN* (10), *SQSTM1* (11),
111 *UBQLN2* (12), *MATR3* (13) and *TBK1* (14, 15). Identification of these genes has drawn
112 attention to protein clearance pathways, proteins that accumulate within insoluble
113 cytoplasmic inclusions and defects in RNA processing in disease pathogenesis. Recently,
114 we identified several novel missense mutations in *CCNF* in patients with ALS/FTD (1).
115 *CCNF* encodes for cyclin F, a 786 amino acid protein that forms part of the multi-protein
116 Skp1-Cul1-F-Box (SCF^{cyclin F}) E3 ligase that is known to regulate cell cycle progression
117 through timely ubiquitylation of substrates to regulate their homeostasis through
118 proteasomal degradation (16).

119

120 We have previously reported that a familial ALS/FTD mutation in cyclin F (denoted cyclin
121 F^{S621G}) alters the ubiquitylation activity of SCF^{cyclin F}, leading to the accumulation of
122 ubiquitylated proteins (1). In addition, we have also shown that the activity of cyclin F may
123 be regulated by post-translational modifications and that the loss of a phosphorylation site
124 causes aberrant ubiquitylation activity (2). Ultimately this leads to defects in bulk

125 degradation processes and an upregulation in caspase-mediated cell death pathways
126 (17).

127

128 Currently, there are few known interaction partners of cyclin F. These proteins are
129 generally associated with cell-cycle function, including substrates such as ribonucleoside-
130 diphosphate reductase subunit M2 (RRM2) (18), nucleolar and spindle-associated protein
131 1 (NuSAP) (19), centriolar coiled-coil protein of 110 kDa (CP110) (20), cell division control
132 protein 6 homolog (CDC6) (21), stem-loop binding protein (SLBP) (22), exonuclease 1
133 (exo1) (23) and fizzy-related protein homolog (Fzr1) (24). In addition, known interaction
134 partners of cyclin F include Skp1 (forming part of the ubiquitin ligase complex), b-myb (25)
135 and CKII (26). Given that the interaction partners of cyclin F that have been reported to
136 date are predominantly involved in cell-cycle regulation, it is not immediately obvious how
137 cyclin F^{S621G} might trigger neurodegeneration in non-dividing neurons. Therefore, we
138 hypothesised that there are other interaction partners of cyclin F that may help to
139 understand the processes that may become defective in non-dividing cells.

140

141 BiOID can be used to identify protein interaction partners and proteins in close proximity
142 (~10 nm radius) (27) to the protein of interest using an engineered biotin-ligase, BirA* (28,
143 29). An advantage of using BiOID over standard immunoprecipitation (IP) methods, is the
144 ability to identify transient, low abundance interaction partners as well as proteins that are
145 not soluble in standard IP buffers (30). In recent years, BiOID has been used to identify
146 novel binding partners of a number of proteins including lamin A (31) and E-cadherin (32),
147 ZO-1 (33), TDP-43 and fragmented TDP-43 (34). In addition, BiOID has been utilized to
148 identify substrates of β-TrCP 1 and 2 (35).

149

150 In this study, we have used BiolD followed by mass spectrometry (MS) to characterise the
151 interactome of cyclin F. In doing so, we identified more than 100 putative interaction
152 partners of cyclin F, including a group of RNA binding proteins that are also essential
153 paraspeckle proteins. Previously we have demonstrated that an ALS-causing mutation in
154 cyclin F causes defects in major protein degradation systems, thus we evaluate the
155 dysregulation of these proteins in primary neurons and in ALS patient tissue.

156

157

158

159 **METHODS**

160 *Plasmids and Cloning*

161 Expression constructs encoding wild type and S621G *CCNF* cDNA fused to an N-terminal
162 mCherry fluorophore were used as described previously (1). Wild type and S621G *CCNF*
163 cDNA fused to a C-terminal Flag-tag was also cloned into a pcDNA 3.1 vector. BirA* alone
164 or BirA* in frame with cyclin F was cloned into pcDNA5/FRT/TO. Constructs encoding
165 RBM14-HA were cloned into a pcDNA3.1 vector.

166

167 *Cell culture*

168 Human Embryonic Kidney Cells (HEK293) and HEK293 Flp-In T-Rex cells were grown
169 and maintained in Dulbecco's modified Eagle medium (DMEM, Sigma-Aldrich)
170 supplemented with 10% (v/v) of heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich).
171 Plated cells were grown and maintained in a humidified incubator held at a constant
172 temperature of 37°C, with 5% CO₂. All cell lines were tested for mycoplasma prior to
173 experimental work using the MycoAlert Mycoplasma Detection Kit (Lonza).

174

175 In order to generate stably-transfected cell lines, HEK293 Flp-In T-Rex cells (Thermo)
176 were double-transfected using constructs encoding Flp-recombinase (pOG44) as well as
177 constructs encoding BirA^{*}-cyclin F using Lipofectamine 2000 (Thermo) according to the
178 manufacturer's instructions. After 48 hours, cells were selected with 100 µg/mL
179 Hygromycin (InvivoGen) and 15 µg/mL Blasticidin (InvivoGen). In order to ensure the cells
180 were stably-transfected and that transgene expression could be induced, tetracycline
181 (Sigma-Aldrich) was added to cell culture media at a final concentration of 0.1µg/mL for
182 18-24 hours. Tetracycline-dependent gene expression was monitored using standard
183 immunoblotting procedures.

184

185 *Primary cell culture*

186 Primary mouse cortical neurons were cultured as previously described (36). Briefly, brains
187 were obtained from embryos on embryonic day 16.5. Cerebral hemispheres were sub-
188 dissected, digested in trypsin at 37°C and homogenized using fire-polished glass pipettes
189 into single cell suspension. Cells were seeded out at 5 million cells per 10 cm dish in
190 medium containing 10% FBS/high glucose DMEM (Life Technologies). Medium was
191 changed 2 hours post seeding and cells were subsequently maintained in Neurobasal
192 medium supplemented with Glutamax and B27 supplement (Life Technologies).

193

194 *Proximity-labelling in live HEK293 Flp-In T-Rex cells*

195 Stably transfected HEK293 Flp-In T-Rex cells were grown and maintained in DMEM
196 supplemented with 10% FBS and 100 µg/mL Hygromycin (InvivoGen) and 15 µg/mL
197 Blasticidin (InvivoGen). Once cells reached 70% confluency, expression of BirA^{*} or BirA^{*}-
198 cyclin F (wild-type and CCNF variants) was induced by adding 0.1 µg/mL of tetracycline
199 (Sigma-Aldrich) to cell culture media. In order to biotinylate proteins in proximity to the

200 transgene, 50 μ M of biotin (Sigma-Aldrich) was simultaneously added to the culture
201 media. After 18-24 hours, cells were washed with PBS and harvested into ice-cold PBS.
202 Harvested cells were washed twice with ice-cold PBS and centrifuged at 2000xg for 10
203 minutes at 4°C. Washed cell pellets were snap frozen at -80°C until further use.

204

205 *Total cell lysis*

206 For total cell lysis, frozen cell pellets were first defrosted on ice and resuspended in ice-
207 cold modified RIPA buffer (50 mM Tris-HCl, 150 mM NaCl, 1% NP-40, 1mM EDTA, 1mM
208 EGTA, 0.1% SDS, 0.5% Sodium deoxycholate, pH 7.4) containing appropriate amounts of
209 protease and phosphatase inhibitor cocktails (Roche). Cells were incubated in RIPA buffer
210 for 15 minutes on ice with intermittent vortexing before probe sonication using a Sonic
211 Ruptor 250 at 50% power and pulser settings set to 30%. Lysates were subject to a total
212 of 10 pulses each before centrifugation at 14,000xg for 20 minutes at 4°C. The
213 supernatant containing cellular proteins was aliquoted and stored at -80°C until further
214 analysis.

215

216 *Biotin pull-downs*

217 Cleared lysates containing biotinylated proteins in modified RIPA buffer were incubated
218 with 30 μ L of pre-washed streptavidin-coated magnetic beads (Thermo Fisher) for 3 hours
219 at 4°C whilst rotating. In order to isolate biotinylated proteins from the complex mixture, a
220 magnetic rack was used to isolate magnetic beads. Isolated magnetic beads were washed
221 5 times in modified RIPA buffer. Captured biotinylated proteins were eluted by
222 resuspension in Laemmli sample buffer (BioRad), containing NuPAGE Sample Reducing
223 Agent (Invitrogen) and were boiled at 95°C for 10 minutes. The eluents were prepared for
224 1D SDS-PAGE as described below.

225 *Immunoprecipitations*

226 HEK293 cells were transfected with constructs encoding mCherry-cyclin F, Flag-cyclin F
227 or RBM14-HA using Lipofectamine 2000 according to the manufacturer's instructions.
228 Transfected cells were harvested after 24 hours and cell pellets were resuspended in NP-
229 40 lysis buffer (1 % (v/v) Nonidet P-40 in Tris-buffered saline (TBS), 2 mM EDTA,
230 cOmplete protease inhibitor cocktail and phosSTOP (Roche)). The resuspended cells
231 were vortexed, then probe sonicated (10 seconds, Setting 3, Branson Sonifier 450). The
232 cell lysates were centrifuged at 14, 000×g for 30 minutes to remove cell debris. For
233 immunoprecipitations, approximately 500 µg of cellular protein was incubated with 1 µg of
234 flag antibody or 20 µL of RFP-Trap®_MA (Chromotek). The magnetic beads were
235 collected using a magnet and washed three times in NP-40 lysis buffer. For western blot
236 analysis, beads were resuspended in 1x Loading buffer (BioRad) containing 1x reducing
237 reagent (NuPage) and boiled at 95°C for 10 minutes.

238

239

240 *SDS PAGE and Immunoblotting*

241 Equal amounts of protein were separated on a 4-12% Bis-Tris SDS PAGE gel. Proteins
242 were transferred onto a nitrocellulose membrane using a Bio-Rad Trans-blot Turbo semi-
243 dry transfer cell (1.3 A, 25 V, 7 mins). The membranes were blocked in 3% skim milk
244 powder in PBST for half an hour prior to incubation with primary antibody overnight at 4°C
245 or 1 hour at RT. Primary antibodies used in this study were: rabbit polyclonal anti-cyclin F
246 (1:300; cat# sc-952, Santa Cruz Biotechnology), mouse monoclonal anti-mCherry (1:300;
247 cat# 632543, Clonetech), mouse monoclonal anti-β-actin (Abcam, dilution- 1:12,000,
248 catalogue #ab6276-101), mouse monoclonal anti-GAPDH (Proteintech, dilution-
249 1:10,000), mouse monoclonal anti-α-tubulin (Sigma-Aldrich, dilution- 1:1000, catalogue

250 #T5168), rabbit polyclonal anti-RBM14 (Sigma-Aldrich, dilution- 1:1000, catalogue
251 #HPA006628), mouse monoclonal anti-PSPC1 (Santa Cruz, dilution- 1:500, catalogue
252 #sc-374367), mouse monoclonal anti-PSF (Santa Cruz, dilution- 1:1000, catalogue #sc-
253 101137), rabbit polyclonal anti-Matrin 3 (Proteintech, dilution- 1:1000, catalogue #12202-
254 2-AP).

255

256 After incubation with primary antibodies, the membranes were washed in PBS-T three
257 times for 10 minutes before fluorescently labelled IRDye 800CW Goat Anti-Rabbit IgG
258 Secondary Antibody (1:15,000; LI-COR) or fluorescently labelled IRDye® 680RD Goat
259 anti-Mouse IgG Secondary Antibody (1:15,00; LI-COR) secondary antibodies was added
260 for 30 minutes at RT. Immunoblots were imaged using a Li-Cor Odyssey imaging system
261 at the appropriate wavelength.

262

263 *In-gel trypsin digestion*

264 Equal amounts of protein were loaded and separated on a 4-15% SDS-PAGE gel
265 (BioRad). The resulting gel was briefly incubated in fixing solution (50% methanol, 10%
266 acetic acid) and proteins were stained with Coomassie blue R250 until protein bands were
267 visible. The gel was then left to destain overnight in Destain solution (25% methanol).
268 After destaining, protein bands were excised from gels into 5 fractions. Gel fractions were
269 then cut into smaller pieces (~1 mm²) and further destained with 50% methanol/50 mM
270 ammonium bicarbonate (pH 8). Gel pieces were then washed and dehydrated in 50%
271 acetonitrile (ACN)/50 mM ammonium bicarbonate for 10 minutes, then incubated with
272 100% ACN until gel pieces were completely dehydrated. ACN was removed, and gel
273 pieces were dried under vacuum centrifugation before being incubated with 10 mM
274 dithiothreitol (DTT) in 50 mM ammonium bicarbonate (AmBiC) for 40 minutes at 37°C.

275 Excess DTT was removed before gel pieces were incubated with 25 mM iodoacetamide
276 (IAA) in 50 mM ammonium bicarbonate for 40 minutes at room temperature in the dark.
277 Gel pieces were then washed twice with 50% ACN/50 mM ammonium bicarbonate for 10
278 minutes each time before the supernatant was removed and gel pieces were incubated in
279 100% (v/v) ACN to dehydrate gel pieces as described earlier. Excess ACN was removed
280 and gel pieces were left to dry.

281

282 Gel pieces were incubated with trypsin (12.5 ng/μl; proteomics grade, Sigma-Aldrich)
283 diluted in 50 mM ammonium bicarbonate and incubated overnight at 37°C. After
284 incubation, the supernatant was transferred into fresh tubes and acidified with formic acid
285 (FA). The gel pieces were incubated in 50% ACN, 2% FA. Supernatants containing tryptic
286 peptides were pooled and lyophilised. For desalting, peptides were resuspended in 0.1%
287 FA and desalted using pre-washed and equilibrated C18 OMIX tips (Agilent). Once
288 desalted, samples were again lyophilised and stored at -80°C until MS analysis.

289

290 Prior to mass spectrometry, lyophilised peptides were resuspended in 0.1% FA and bath
291 sonicated for 20 minutes. The resuspended peptides were then centrifuged at 14, 000×g
292 for 15 minutes to remove any insoluble debris, and the clarified peptides were analysed by
293 LC-MS/MS. The peptide fractions were separated on an Ultimate 3000 nanoLC (Thermo
294 Fisher Scientific) fitted with the Acclaim PepMap RSLC column (Thermo Fisher Scientific),
295 making use of a 60 minutes gradient (2–95% v/v acetonitrile, 0.1% v/v formic acid)
296 running at a flow rate of 300 nl/minute. Peptides eluted from the nano LC column were
297 subsequently ionized into the Q Exactive™ Plus mass spectrometer (Thermo Fisher
298 Scientific). The electrospray source was fitted with an emitter tip 10μm (New Objective,
299 Woburn, MA) and maintained at 1.5 kV electrospray voltage. The temperature of the

300 capillary was set to 250°C. Precursor ions were selected for MS/MS fragmentation using a
301 data-dependent “Top 10” method operating in FT-FT acquisition mode with HCD
302 fragmentation. FT-MS analysis on the Q Exactive™ Plus was carried out at 70,000
303 resolution and an AGC target of 1×10^6 ions in full MS. MS/MS scans were carried out at
304 17,500 resolution with an AGC target of 2×10^4 ions. Maximum injection times were set to
305 30 and 50 milliseconds respectively. The ion selection threshold for triggering MS/MS
306 fragmentation was set to 25,000 counts and an isolation width of 2.0 Da was used to
307 perform HCD fragmentation with normalised collision energy of 27.

308

309 *Bioinformatics and statistics*

310 The raw files were searched using Proteome Discoverer 2.4 software (Thermo Fisher
311 Scientific) incorporating the Sequest search algorithm employing the *Homo sapiens*
312 Uniprot FASTA databases. Peptide identifications were determined taking into account a
313 20-ppm precursor ion tolerance and 0.1 Da MS/MS fragment ion tolerance for FT-MS and
314 HCD fragmentation respectively. Peptide modifications were also considered whereby
315 cysteine carbamidomethylation was considered a static modification. Variable
316 modifications included methionine oxidation, asparagine and glutamine deamidation,
317 lysine biotinylation, and acetylated N-terminal residues. Trypsin was set as the enzyme of
318 use, allowing for three missed cleavages at the most. Data was also processed using a
319 label-free quantitation (LFQ) workflow employing the Minora Feature node, making use of
320 a Protein FDR validator node which estimates the false discovery rates at the protein level
321 as well as a percolator node to estimate the FDR at the PSM level. Results were adjusted
322 so that the final global FDR was less than 1% at the protein and peptide level. A *q*-value
323 of 0.01 was required to validate protein identifications.

324

325 Statistical analyses were typically conducted using GraphPad Prism 8.2.1 software or
326 Ingenuity Pathway Analysis (IPA). In GraphPad Prism, statistical analyses involved the
327 use of a paired t-test. Comparisons were considered significant if the *p*-values were less
328 than 0.05.

329

330 Statistically significant protein functions were identified using Ingenuity Pathway Analysis
331 (IPA). Here a Right-Tailed Fisher's Exact Test was used. Results were considered
332 statistically significant if the *p*-value was less than 0.05.

333

334 *Adeno-associated viruses (AAV)*

335 Vectors encoding full length human WT cyclin F or cyclin F carrying the S621G mutation
336 (n-terminal V5-tagged) was cloned into a rAAV vector under the human synapsin
337 promoter using the plasmid pAAV-hSyn-EGFP (gift from Bryan Roth; Addgene, #50465)
338 as backbone and removing EGFP. The same vector with EGFP expression was used as
339 control. Packaging of rAAV9 vectors were performed as previously described (37) using
340 the capsid AAV9.PHP.B (38). Briefly, HEK293T cells in 15cm dishes were each
341 transfected with 12.5 μ g of vector plasmid containing gene of interest, 25 μ g of pF Δ 6 and
342 12.5 μ g of AAV rep-cap using PEI-max in IMDM (Sigma-Aldrich). Cells were harvested 48
343 hours post-transfection by scraping and centrifuged at 350 \times g for 30 minutes. The cell
344 supernatant was subjected to polyethylene glycol (PEG) precipitation and cell pellet was
345 further lysed using a freeze-thaw cycle and combined with the PEG mixture. After lysis
346 with sodium deoxycholate and 3 rounds of freeze/thaw cycles, the supernatant was
347 collected for purification in an OptiSeal tube (Beckman-Coulter) containing iodixanol
348 layers (15%, 25%, 40%, 54%; Sigma-Aldrich). Purified virus was collected using a 19G
349 syringe, inserted just below the 405 gradient and during dialyzed and concentrated using

350 Amicon Ultra-15 CFU with 100 kDa cutoff filter (Millipore). The virus was sterile filtered
351 through a Spin-X 0.22 μ m centrifuge filter (Corning).

352

353 *AAV transduction into primary neurons*

354 For AAV transduction, cortical neurons were transduced with WT CCNF, CCNF S621G or
355 EGFP AAV at MOI of 5000 on DIV 3. At 10 days *in vitro* (DIV), cells were treated with 0.2
356 μ M of proteasome inhibitor, MG132, for 12 hours.

357

358 *Immunohistochemistry and microscopy*

359 Post-mortem paraffin-embedded cervical spinal cord sections from ALS patients (n=4) and
360 controls (n=3) were obtained from the New South Wales Brain Bank Network. For
361 immunohistochemical staining, tissue sections were heated at 70°C for 30 minutes,
362 deparaffinized with xylene and rehydrated with a descending series of ethanol washes. To
363 retrieve antigens, sections were boiled for 20 minutes in low pH buffer (pH 6.1; Dako, CA,
364 USA). Endogenous peroxidase activity and non-specific binding were blocked by
365 incubation with 3% hydrogen peroxide in methanol for 15 minutes followed by 5% normal
366 goat serum (Vector Laboratories, CA, USA) with 0.1% TWEEN-20 in PBS for 1 hour.
367 Sections were incubated at 4°C overnight with primary antibody rabbit anti-RBM14 (1:100,
368 Sigma-Aldrich) and then at room temperature for 1 hour with biotinylated goat anti-rabbit
369 IgG (Vector Laboratories). The avidin-biotin complex detection system (Vector
370 Laboratories) with 3,3'-diaminobenzide as chromogen (Dako) was used to detect the
371 immunoreactive signal. Nuclei were counterstained with hematoxylin before sections were
372 dehydrated with an increasing series of ethanol washes followed by xylene. Sections were
373 coverslipped using Di-N-Butyle Phthalate in xylene (DPX, Dako).

374

375 Tissue sections were visualized using the ZEISS Axio Imager 2 microscope and analysed
376 using Fiji Image J. To quantify RBM14 neuronal nuclei staining, each image was first
377 deconvoluted with the Image J 'H DAB' Deconvolution Macro (39). A region of interest
378 (ROI) was drawn around the neuron nucleus and pixel intensity was scored using the IHC
379 Profiler plugin categorizing overall RBM14 staining in the ROI as either high positive,
380 positive, low positive or negative (40). Only neurons with a clear nucleus were included.
381 The number of neurons with RBM14 expression in the high positive and positive zone or
382 low positive and negative zone were plotted and analysed with Fishers' exact test
383 (significance set to 0.0166667 after Bonferroni correction).

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400 **RESULTS**

401 *BioID identifies known and novel protein interaction partners of cyclin F*

402 In order to identify transient and low abundance interaction partners of cyclin F, we used a
403 proximity-based biotinylation method known as BioID (31). Here, we first cloned cyclin F in
404 frame with a modified biotin ligase (denoted BirA*-cyclin F^{WT}). In addition, we cloned a
405 mutant of cyclin F^{LP/AA} (which has previously been reported to stabilize the interaction
406 between cyclin F and transiently interacting proteins) in frame with BirA*, generating
407 BirA*-Cyclin F^{LP/AA} (Figure 1a). In order to tightly control the expression of the fusion
408 protein in cultured cells, we generated stably transfected HEK293 T-Rex Flp-In cell lines
409 (Thermo). The T-Rex Flp-In system was selected as it ensures that only a single copy of
410 the transgene is placed within the exact same insertion site in the host genome, whilst the
411 expression of cyclin F, a cell cycle regulator, is controlled in a tetracycline-dependent
412 manner.

413

414 To conduct the BioID experiments, transgene expression was firstly induced in HEK293
415 Flp-In T-Rex cells using tetracycline. This is followed by addition of biotin to cell culture
416 media for 24 hours. The resulting cells were lysed in harsh lysis buffer, before the
417 biotinylated proteins were isolated using streptavidin-coated beads. These resulting
418 proteins are then analysed by immunoblotting and mass spectrometry (Figure 1B). To
419 begin BioID experiments that identify binding partners of cyclin F, we first confirmed that
420 there was no leakage in either transgene expression or biotin-labelling, whilst initiation of
421 cyclin F-BirA* expression and the addition of biotin leads to the biotinylation of proteins
422 (Figure 1C). To identify proteins in proximity to cyclin F, cells expressing either cyclin F-
423 BirA* or BirA* alone were expressed in HEK293 Flp-In T-Rex cells. Here, we induced
424 expression of the transgene with tetracycline, added biotin, and after 24 hours cells were

425 harvested. Biotinylated proteins were enriched using Streptavidin Magnetic Beads
426 (Thermo) and prepared for immunoblotting and subsequent proteomic analysis. Notably,
427 immunoblotting revealed that the biotinylation profile was greater in BirA* only expressing
428 cells (Figure 1D), which correlated with higher expression levels of BirA* compared to
429 BirA*-cyclin F. Thus, prior to MS analysis we adjusted the input of isolated biotinylated
430 proteins accordingly (Supplementary Figure 1).

431

432 We carried out an in-gel trypsin digestion of the biotinylated proteins followed by liquid
433 chromatography-mass spectrometry (LC-MS/MS). In total, 918 proteins were identified,
434 with 163 proteins found in cyclin F-BirA* and cyclin F-BirA* (LP/AA) combined, but not
435 when biotin ligase was expressed alone (Figure 2A). The list of protein identifications was
436 further filtered such that proteins were considered interaction partners of cyclin F if they: *i.*
437 increased at least two-fold when comparing BirA*-cyclin F to BirA* and *ii.* were present in
438 at least 2 out of 3 biological replicates of BirA*-cyclin F expressing cells. The final list of
439 high-confidence interactors of cyclin F yielded 119 proteins (presented in Supplementary
440 Table 1). Within this list, we identified cyclin F and RING-box protein 1 (Rbx1). Rbx1 and
441 cyclin F are both essential units of the Skp1-Cul1-Fbx^(cyclin F) E3 ubiquitin ligase complex,
442 confirming that the BiolD assay has biotinylated proteins within close proximity as
443 expected. Casein kinase II (CKII), another previously identified binding-partner of cyclin F
444 (26, 41), was also found in this list.

445

446

447

448

449

450 *Bioinformatic pathway analysis identifies known and novel functions of cyclin F*

451 Next, Ingenuity Pathway Analysis (IPA) analysis was used to assign statistically significant
452 molecular functions to proteins associated with cyclin F (Figure 2B). Consistent with
453 known function of cyclin F, IPA unveiled a statistical enrichment of interaction partners
454 with roles in ‘Cell Cycle Progression’ ($p<3.51E-04$) (Figure 2C), as well as ‘DNA
455 Replication, Recombination and Repair’ ($p<1.59E-02$). Several novel molecular functions
456 were also identified, one of which involves ‘RNA Post-Transcriptional Modification’ with
457 specific functions of ‘Processing of mRNA’ ($p=4.92E-07$), ‘Splicing of mRNA’ ($p=1.41E-06$),
458 ‘Processing of rRNA’ ($p=1.82E-04$), ‘Unwinding of mRNA’ ($p=1.56E-02$), ‘Annealing of
459 hnRNA’ ($p=1.56E-02$), ‘Processing of RNA’ ($p=1.90E-09$) and ‘Splicing of RNA’ ($p=2.70E-07$).
460

461

462 We also used IPA to analyse the 111 proteins that were uniquely associated with cyclin
463 $F^{LP/AA}$, as this protein list includes stabilized interaction partners. In this list, we found a
464 series of proteins which had roles in ‘RNA Damage and Repair’ ($p=4.27E-10$), ‘Processing
465 of RNA’ ($p=1.38E-08$), ‘Processing of rRNA’ ($p=7.98E-08$), ‘Splicing of RNA’ ($1.83E-04$).
466 Within the list of proteins with roles known to be involved in RNA metabolism, there were
467 also a series of RNA binding proteins including TAF15, EWS and RBM14; proteins also
468 known to form paraspeckles (Figure 3). Notably, IPA predicted changes in the
469 homeostasis of these proteins to affect the expression of RNA, prompting further
470 investigation into the relationship between cyclin F and these interaction partners.

471

472 *Cyclin F is closely associated with paraspeckle proteins*

473 Given that RBM14 is essential for building subnuclear paraspeckles (42), we validate the
474 interaction between cyclin F and RBM14 using standard immunoprecipitation and

475 immunoblotting (Figure 4A). Here we noted that cyclin F(WT)-flag and cyclin F(S621G)-
476 flag could co-immunoprecipitate with endogenous RBM14, with no effect from the
477 mutation. In addition, both overexpressed cyclin F(WT)-flag and cyclin F(S621G)-flag
478 could co-immunoprecipitate with RBM14-HA. Conversely, RBM14-HA could co-
479 immunoprecipitate with both cyclin F(WT)-flag and cyclin F(S621G)-flag (Figure 4B).

480

481 Next we questioned whether cyclin F could also bind other essential components of the
482 paraspeckle complex, NONO and SFPQ. Indeed, mCherry-cyclin F was found to
483 immunoprecipitate with these essential paraspeckle components in addition to RBM14
484 (Figure 4C). In all cases, both cyclin F^{WT} and cyclin F^{S621G} were able to co-
485 immunoprecipitate with these paraspeckle components. Together the data validated the
486 mass spectrometry data and further demonstrated that cyclin F interacted with protein
487 components of the paraspeckle complex.

488

489 *Cyclin F^{S621G} causes disruption of paraspeckle homeostasis in primary neurons*
490 Previously it has been established that proteasome inhibitor, MG132 is able to initiate
491 paraspeckle assembly and lead to elongation of the paraspeckle structure. During this
492 time, paraspeckle protein levels remain largely consistent (43). To assess the effect of
493 cyclin F^{S621G} on paraspeckle regulation in response to MG132, we overexpressed cyclin
494 F^{WT}, cyclin F^{S621G} or an empty vector in primary mouse cortical neurons by AAV infection,
495 then collected protein lysates following treatment with 0.2 μ M of MG132 or a vehicle
496 control (Figure 5A). Notably we observed that, in response to MG132 treatment, there was
497 a significant increase in RBM14 of 1.54 fold (Figure 5B) as well as a significant increase in
498 SFPQ levels of 1.21 fold-change (Figure 5C) in cyclin F^{S621G} overexpressing cells
499 compared to the wild-type control. There was no significant difference in the expression of

500 NONO in response to MG132 treatment (Figure 5D) suggesting that mutant cyclin F may
501 lead to a disruption in the homeostasis of some essential paraspeckle components.

502

503 *RBM14 homeostasis is dysregulated in the motor cortex and spinal cord of ALS patients*
504 RBM14 homeostasis has not previously been reported in patient postmortem tissue. To
505 determine whether RBM14 levels are dysregulated in post-mortem ALS patient tissue, we
506 measured RBM14 levels in motor cortex and spinal cord neurons via semi-quantification
507 of immunohistochemical labeling. Since RBM14 is a known nuclear protein, we
508 specifically compared RBM14 expression in neuronal nuclei from control and ALS patients
509 (Table 2). In control spinal cord neurons, RBM14 showed either primarily nuclear staining
510 or staining in both nuclei and cytoplasm. In comparison, in ALS patient tissues, there was
511 a significant reduction of nuclear RBM14 in spinal cord neurons (Figure 6).

512

513 **DISCUSSION**

514 In this study, we have identified novel protein interactors of cyclin F using BiID coupled
515 with mass spectrometry. We found that cyclin F was closely associated with paraspeckle
516 proteins including RBM14, NONO, and SFPQ. Furthermore, we demonstrate that the
517 homeostasis of RBM14 and SFPQ, essential components of the paraspeckle complex, is
518 influenced by cyclin F and becomes defective when cyclin F carries an S621G mutation
519 linked to ALS/FTD. Finally, we show yet another paraspeckle protein, RBM14, may be
520 involved in ALS pathogenesis through the dysregulation of protein levels in post-mortem
521 motor cortex and spinal cord of ALS patients.

522

523 We previously reported the identification of disease-causing variants in CCNF in familial
524 and sporadic ALS/FTD patients and have reported defects in major protein degradation

systems in cells overexpressing cyclin F(S621G) (1). Given these known deficits, it is logical to predict that the role of cyclin F in ALS pathogenesis may be associated with defective protein degradation pathways. Given that many interaction partners of cyclin F were unknown, we undertook unbiased proteomic screening to identify interaction partners cyclin F. To take advantage of the T-Rex and Flp-In systems (allowing controlled copy number integration at the exact same site) we performed the BiOID assay in HEK293 cells, and in doing so, identified more than 100 high-confidence interaction partners. We acknowledge that many of these may not be relevant to motor neurons as their biological function is related to activities such as cell division. However, we did identify several proteins involved in RNA processing pathways that are likely to be relevant to ALS/FTD.

The BiOID assay identified a close association of cyclin F with a group of paraspeckle proteins. Further work revealed that an ALS-causing mutation in cyclin F leads to the defective homeostasis of essential paraspeckle proteins, RBM14 and SFPQ. Paraspeckles are a class of subnuclear bodies that form within the interchromatin space of mammalian cells (44). These RNA-protein structures form as RNA binding proteins interact with the long non-coding RNA (lncRNA), *NEAT1* (45). Alterations to paraspeckle assembly and function has important implications in the context of neurodegeneration as paraspeckles have a clear role in controlling gene expression (44). In particular, paraspeckles are known to regulate multiple cellular processes such as cell stress responses, cellular differentiation and viral infections (44). Therefore, disruption to paraspeckle assembly or function results in inability to rapidly transcribe stress-responsive proteins required for maintaining cellular viability. Notably, the formation of paraspeckles, and the dysregulation of this process, is emerging as a biological marker of ALS. For example, the assembly of paraspeckle proteins around *NEAT1_2* has been reported in spinal motor neurons of early-stage ALS patients (46). In addition, compromised

551 paraspeckle formation has been identified in cell and animal models of FUSopathies, with
552 mislocalised FUS resulting in neuronal inclusions of paraspeckle components (47). In both
553 studies, the increased levels of paraspeckle assembly may represent a downstream,
554 protective cellular response to stress. We now report a different type of possible
555 involvement of paraspeckles in ALS pathogenesis. We show that RBM14 homeostasis is
556 dysregulated in post-mortem brain and spinal cord of ALS patients. RBM14 has been
557 shown to connect key paraspeckle subcomplexes, a function which requires the presence
558 of its prion-like domain (42). Thus, the dysregulation of RBM14 (and potentially other
559 paraspeckle proteins), a core paraspeckle protein, may impair paraspeckle
560 assembly/function and leave motor neurons vulnerable to cellular stress and therefore
561 more susceptible to neurodegeneration. Importantly, in this study, we have shown that
562 RBM14 dysregulation occurs in the brain and spinal cord of patients, regardless of the
563 presence of *CCNF* mutation, suggesting that the dysregulation of RBM14 homeostasis
564 may be one contributing step in the multi-stage pathogenesis of ALS.

565 Of the more than 30 genes (and their corresponding protein products) that are now linked
566 to ALS, two broad functional categories have emerged; protein-degradation pathways
567 (indirectly because of the presence of abnormal protein aggregates, and directly through
568 regulators of protein degradation such as cyclin F and ubiquilin-2) and RNA processing.
569 However, the link between these two distinct groups of proteins remain poorly understood.
570 Perhaps the strongest association to date is represented by TDP-43 and to a lesser extent
571 FUS, which are both major constituents of intraneuronal aggregates, and their core
572 function being associated with RNA processing (48). We now present a new and different
573 linkage, demonstrating that cyclin F influences the homeostasis of key paraspeckle
574 components. Future studies should look to identify the cellular processes, such as RNA
575 processing in response to stress stimuli, that may become dysregulated due to the

576 reduction of RBM14 in the nucleus of affected motor neurons, as this may provide deeper
577 insight into the underlying causes of ALS/FTD. Notably, this study also identifies RBM14
578 dysregulation in sporadic cases of ALS. Together the data further link the dysregulation of
579 the ubiquitin-proteasome system and RNA processing to the pathogenesis of ALS/FTD.

580

581 **CONCLUSIONS**

582 This study employed an unbiased proteomic screening assay which revealed that cyclin F
583 interacts with several core proteins of the paraspeckle complex. Using
584 immunoprecipitation, we confirmed the interaction between cyclin F and three paraspeckle
585 proteins; RBM14, NONO and SFPQ. Notably, we demonstrate that the pathogenic cyclin
586 F^{S621G} variant disrupts the homeostasis of these proteins and their responsiveness to a
587 stressor that stimulates paraspeckle formation. Finally, we report for the first time that
588 RBM14 levels are dysregulated in brain and spinal cord of ALS patients relative to healthy
589 patient controls. Collectively, these data suggest that cyclin F may influence stress
590 responses through modulation of the paraspeckle complex, and that disruption in
591 paraspeckle homeostasis may contribute to the molecular pathogenesis of ALS/FTD.

592

593

594

595

596

597

598 **Abbreviations**

599	AAV	Adeno-associated viruses
600	ACN	Acetonitrile
601	AGC	Automatic gain control
602	ALS	Amyotrophic Lateral Sclerosis
603	AmBic	Ammonium bicarbonate
604	BCA	Bicinchoninic acid assay
605	BiOID	Proximity dependent <i>Biotin Identification</i>
606	Bis-Tris	1,3-bis(tris(hydroxymethyl)methylamino)propane
607	BSA	Bovine serum albumin
608	DIV	Days <i>in vitro</i>
609	DMEM	Dulbecco's Modified Eagle Medium
610	DMSO	Dimethyl sulfoxide
611	DNA	Deoxyribonucleic acid
612	DTT	Dithiothreitol
613	EDTA	Ethylenediaminetetraacetic acid
614	EGFP	Enhanced green fluorescent protein
615	FA	Formic acid
616	FT-MS	Fourier transform-mass spectrometry
617	FBS	Fetal bovine serum
618	FDR	False discovery rate
619	FTD	Frontotemporal Dementia
620	HCD	Higher energy collision dissociation
621	MS	Mass spectrometry
622	IAA	Iodoacetamide

623	IgG	Immunoglobulin G
624	IMDM	Iscove's Modified Dulbecco's Medium
625	IP	Immunoprecipitation
626	IPA	Ingenuity Pathway Analysis
627	LFQ	Label-free quantitation
628	MND	Motor neurone disease
629	MOI	Multiplicity of Infection
630	nanoESI	Nanoelectrospray ionization
631	NHEJ	Non-Homologous End Joining
632	NP-40	Nonidet P-40
633	PBS	Phosphate buffered saline
634	PBST	Phosphate buffered saline containing Tween-20
635	PEG	Polyethylene glycol
636	PEI	Polyethylenimine
637	PSM	Peptide-spectrum match
638	RIPA	Radioimmunoprecipitation assay buffer
639	ROI	Region of interest
640	SCF	Skp1-Cul1-F-Box
641	SDS	Sodium dodecyl sulphate
642	SDS-PAGE	Sodium dodecyl sulphate polyacrylamide gel electrophoresis
643	UPS	Ubiquitin-proteasome system
644		
645		
646		
647		

648 **DECLARATIONS**

649 ***Ethics approval and consent to participate***

650 International, national, and/or institutional guidelines for the care and use of animals were
651 followed. Ethics approval was also obtained for the use of human tissue.

652 ***Consent for publication***

653 Not applicable

654 ***Availability of data and material***

655 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
656 Consortium via the PRIDE partner repository with the dataset identifier PXD014163 and
657 10.6019/PXD014163.

658 ***Competing interests***

659 The authors declare that they have no competing interests.

660 ***Funding***

661 This research has been supported by research grants from the National Health & Medical
662 Research Council (APP1095215, APP1107644), Motor Neurone Disease Research
663 Institute of Australia (GIA1510, GIA1628, GIA1715 and IG1910), and philanthropic
664 donations to the Macquarie University Centre for MND Research.

665 ***Authors' Contributions***

666 R.C. and A.L. and S.L.R. conceptualized the project. S.L.R. conducted the BiOID studies,
667 MS analysis, follow-up biochemical studies and wrote the manuscript. F.C. assisted with
668 MS sample runs. A.D. assisted with stable cell line generation. S.Y. and N.G. generated
669 lysates from patient tissue and conducted IHC studies using patient tissue. C.G.A. and
670 Y.D.K. conducted primary neuron transduction and drug treatment. M.P.M., I.B., A.L.,

671 R.C., J.M.D., M.M., L.M.I., B.S. assisted with editing the manuscript. All authors read and
672 approved the final manuscript.

673

674

675 **Acknowledgements**

676 This research was supported by access to the Australian Proteomics Analysis Facility
677 (APAF) established under the Australian Government's NCRIS program.

678

679 **REFERENCES**

- 680 1. K. L. Williams *et al.*, CCNF mutations in amyotrophic lateral sclerosis and
681 frontotemporal dementia. *Nature communications* **7**, 11253 (Apr 15, 2016).
- 682 2. A. Lee *et al.*, Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated
683 Lys48-linked ubiquitylation and defective autophagy. *Cellular and molecular life
684 sciences : CMLS*, (Aug 29, 2017).
- 685 3. R. Ferrari, D. Kapogiannis, E. D. Huey, P. Momeni, FTD and ALS: a tale of two
686 diseases. *Current Alzheimer research* **8**, 273 (May, 2011).
- 687 4. D. R. Rosen *et al.*, Mutations in Cu/Zn superoxide dismutase gene are associated
688 with familial amyotrophic lateral sclerosis. *Nature* **362**, 59 (Mar 4, 1993).
- 689 5. H. X. Deng *et al.*, Amyotrophic lateral sclerosis and structural defects in Cu,Zn
690 superoxide dismutase. *Science* **261**, 1047 (Aug 20, 1993).
- 691 6. G. D. Watts *et al.*, Inclusion body myopathy associated with Paget disease of bone
692 and frontotemporal dementia is caused by mutant valosin-containing protein.
693 *Nature genetics* **36**, 377 (Apr, 2004).
- 694 7. J. Sreedharan *et al.*, TDP-43 mutations in familial and sporadic amyotrophic
695 lateral sclerosis. *Science* **319**, 1668 (Mar 21, 2008).
- 696 8. T. J. Kwiatkowski, Jr. *et al.*, Mutations in the FUS/TLS gene on chromosome 16
697 cause familial amyotrophic lateral sclerosis. *Science* **323**, 1205 (Feb 27, 2009).
- 698 9. C. Vance *et al.*, Mutations in FUS, an RNA processing protein, cause familial
699 amyotrophic lateral sclerosis type 6. *Science* **323**, 1208 (Feb 27, 2009).
- 700 10. H. Maruyama *et al.*, Mutations of optineurin in amyotrophic lateral sclerosis.
701 *Nature* **465**, 223 (May 13, 2010).
- 702 11. F. Fecto *et al.*, SQSTM1 mutations in familial and sporadic amyotrophic lateral
703 sclerosis. *Archives of neurology* **68**, 1440 (Nov, 2011).
- 704 12. H. X. Deng *et al.*, Mutations in UBQLN2 cause dominant X-linked juvenile and
705 adult-onset ALS and ALS/dementia. *Nature* **477**, 211 (Aug 21, 2011).
- 706 13. J. O. Johnson *et al.*, Mutations in the Matrin 3 gene cause familial amyotrophic
707 lateral sclerosis. *Nature neuroscience* **17**, 664 (May, 2014).
- 708 14. E. T. Cirulli *et al.*, Exome sequencing in amyotrophic lateral sclerosis identifies
709 risk genes and pathways. *Science* **347**, 1436 (Mar 27, 2015).

710 15. A. Freischmidt *et al.*, Haploinsufficiency of TBK1 causes familial ALS and fronto-
711 temporal dementia. *Nature neuroscience* **18**, 631 (May, 2015).

712 16. J. Galper *et al.*, Cyclin F: A component of an E3 ubiquitin ligase complex with roles
713 in neurodegeneration and cancer. *The international journal of biochemistry & cell
714 biology* **89**, 216 (Aug, 2017).

715 17. A. L. Hogan *et al.*, Expression of ALS/FTD-linked mutant CCNF in zebrafish leads
716 to increased cell death in the spinal cord and an aberrant motor phenotype.
717 *Human molecular genetics* **26**, 2616 (Jul 15, 2017).

718 18. V. D'Angiolella *et al.*, Cyclin F-mediated degradation of ribonucleotide reductase
719 M2 controls genome integrity and DNA repair. *Cell* **149**, 1023 (May 25, 2012).

720 19. M. J. Emanuele *et al.*, Global identification of modular cullin-RING ligase
721 substrates. *Cell* **147**, 459 (Oct 14, 2011).

722 20. V. D'Angiolella *et al.*, SCF(Cyclin F) controls centrosome homeostasis and mitotic
723 fidelity through CP110 degradation. *Nature* **466**, 138 (Jul 1, 2010).

724 21. D. Walter *et al.*, SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA
725 re-replication. *Nature communications* **7**, 10530 (Jan 28, 2016).

726 22. J. F. Dankert *et al.*, Cyclin F-Mediated Degradation of SLBP Limits H2A.X
727 Accumulation and Apoptosis upon Genotoxic Stress in G2. *Molecular cell* **64**, 507
728 (Nov 3, 2016).

729 23. A. E. Elia *et al.*, Quantitative Proteomic Atlas of Ubiquitination and Acetylation in
730 the DNA Damage Response. *Molecular cell* **59**, 867 (Sep 3, 2015).

731 24. R. Choudhury *et al.*, APC/C and SCF(cyclin F) Constitute a Reciprocal Feedback
732 Circuit Controlling S-Phase Entry. *Cell reports* **16**, 3359 (Sep 20, 2016).

733 25. D. K. Klein *et al.*, Cyclin F suppresses B-Myb activity to promote cell cycle
734 checkpoint control. *Nature communications* **6**, 5800 (Jan 5, 2015).

735 26. A. Lee *et al.*, Casein kinase II phosphorylation of cyclin F at serine 621 regulates
736 the Lys48-ubiquitylation E3 ligase activity of the SCF((cyclin F)) complex. *Open
737 biology* **7**, (Oct, 2017).

738 27. D. I. Kim *et al.*, Probing nuclear pore complex architecture with proximity-
739 dependent biotinylation. *Proceedings of the National Academy of Sciences of the
740 United States of America* **111**, E2453 (Jun 17, 2014).

741 28. K. J. Roux, D. I. Kim, B. Burke, BioID: a screen for protein-protein interactions.
742 *Current protocols in protein science* **74**, Unit 19 23 (Nov 5, 2013).

743 29. K. J. Roux, D. I. Kim, B. Burke, D. G. May, BioID: A Screen for Protein-Protein
744 Interactions. *Current protocols in protein science* **91**, 19 23 1 (Feb 21, 2018).

745 30. S. Rayner *et al.*, Using proteomics to identify ubiquitin ligase-substrate pairs:
746 how novel methods may unveil therapeutic targets for neurodegenerative
747 diseases. *Cell Mol Life Sci.* **76**, 2499 (2019).

748 31. K. J. Roux, D. I. Kim, M. Raida, B. Burke, A promiscuous biotin ligase fusion
749 protein identifies proximal and interacting proteins in mammalian cells. *The
750 Journal of cell biology* **196**, 801 (Mar 19, 2012).

751 32. C. M. Van Itallie *et al.*, Biotin ligase tagging identifies proteins proximal to E-
752 cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell
753 and cell-substrate adhesion. *Journal of cell science* **127**, 885 (Feb 15, 2014).

754 33. C. M. Van Itallie *et al.*, The N and C termini of ZO-1 are surrounded by distinct
755 proteins and functional protein networks. *The Journal of biological chemistry*
756 **288**, 13775 (May 10, 2013).

757 34. C. C. Chou *et al.*, TDP-43 pathology disrupts nuclear pore complexes and
758 nucleocytoplasmic transport in ALS/FTD. *Nature neuroscience* **21**, 228 (Feb,
759 2018).

760 35. E. Coyaud *et al.*, BioID-based Identification of Skp Cullin F-box (SCF)beta-
761 TrCP1/2 E3 Ligase Substrates. *Molecular & cellular proteomics : MCP* **14**, 1781
762 (Jul, 2015).

763 36. T. Fath, Y. D. Ke, P. Gunning, J. Gotz, L. M. Ittner, Primary support cultures of
764 hippocampal and substantia nigra neurons. *Nature protocols* **4**, 78 (2009).

765 37. M. Bi *et al.*, Tau exacerbates excitotoxic brain damage in an animal model of
766 stroke. *Nature communications* **8**, 473 (Sep 7, 2017).

767 38. B. E. Deverman *et al.*, Cre-dependent selection yields AAV variants for
768 widespread gene transfer to the adult brain. *Nature biotechnology* **34**, 204 (Feb,
769 2016).

770 39. A. C. Ruifrok, D. A. Johnston, Quantification of histochemical staining by color
771 deconvolution. *Analytical and quantitative cytology and histology* **23**, 291 (Aug,
772 2001).

773 40. F. Varghese, A. B. Bukhari, R. Malhotra, A. De, IHC Profiler: an open source plugin
774 for the quantitative evaluation and automated scoring of immunohistochemistry
775 images of human tissue samples. *PloS one* **9**, e96801 (2014).

776 41. I. Mavrommatti *et al.*, beta-TrCP- and Casein Kinase II-Mediated Degradation of
777 Cyclin F Controls Timely Mitotic Progression. *Cell reports* **24**, 3404 (Sep 25,
778 2018).

779 42. S. Hennig *et al.*, Prion-like domains in RNA binding proteins are essential for
780 building subnuclear paraspeckles. *The Journal of cell biology* **210**, 529 (Aug 17,
781 2015).

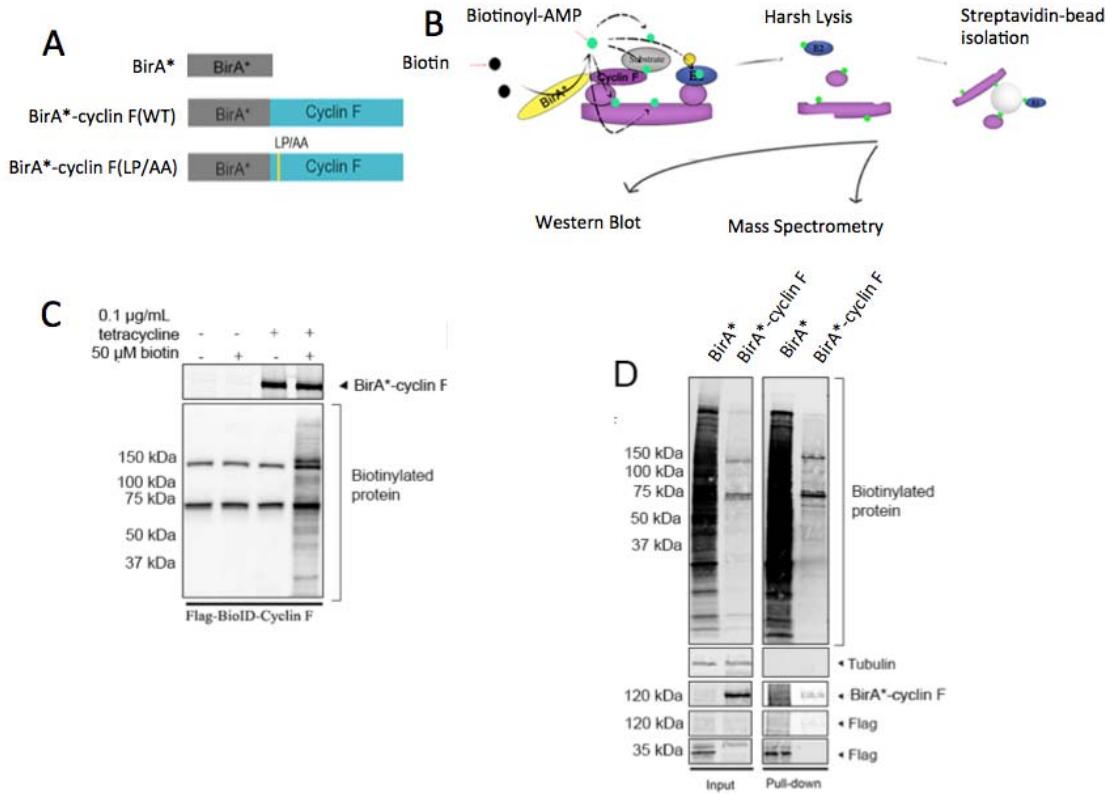
782 43. T. Hirose *et al.*, NEAT1 long noncoding RNA regulates transcription via protein
783 sequestration within subnuclear bodies. *Molecular biology of the cell* **25**, 169
784 (Jan, 2014).

785 44. A. H. Fox, A. I. Lamond, Paraspeckles. *Cold Spring Harbor perspectives in biology* **2**,
786 a000687 (Jul, 2010).

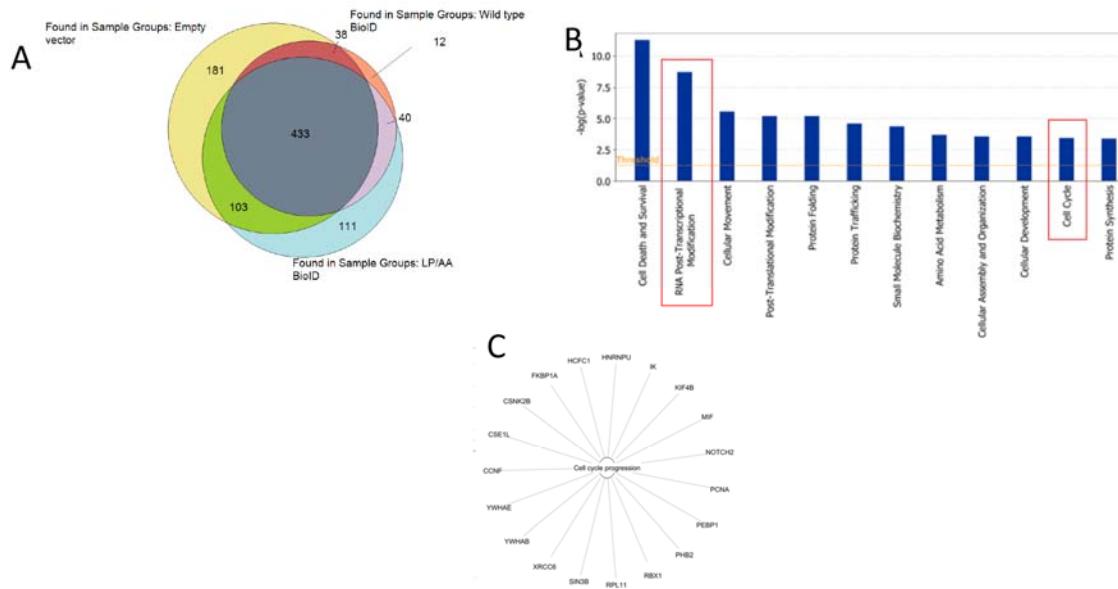
787 45. C. S. Bond, A. H. Fox, Paraspeckles: nuclear bodies built on long noncoding RNA.
788 *The Journal of cell biology* **186**, 637 (Sep 7, 2009).

789 46. Y. Nishimoto *et al.*, The long non-coding RNA nuclear-enriched abundant
790 transcript 1_2 induces paraspeckle formation in the motor neuron during the
791 early phase of amyotrophic lateral sclerosis. *Molecular brain* **6**, 31 (Jul 8, 2013).

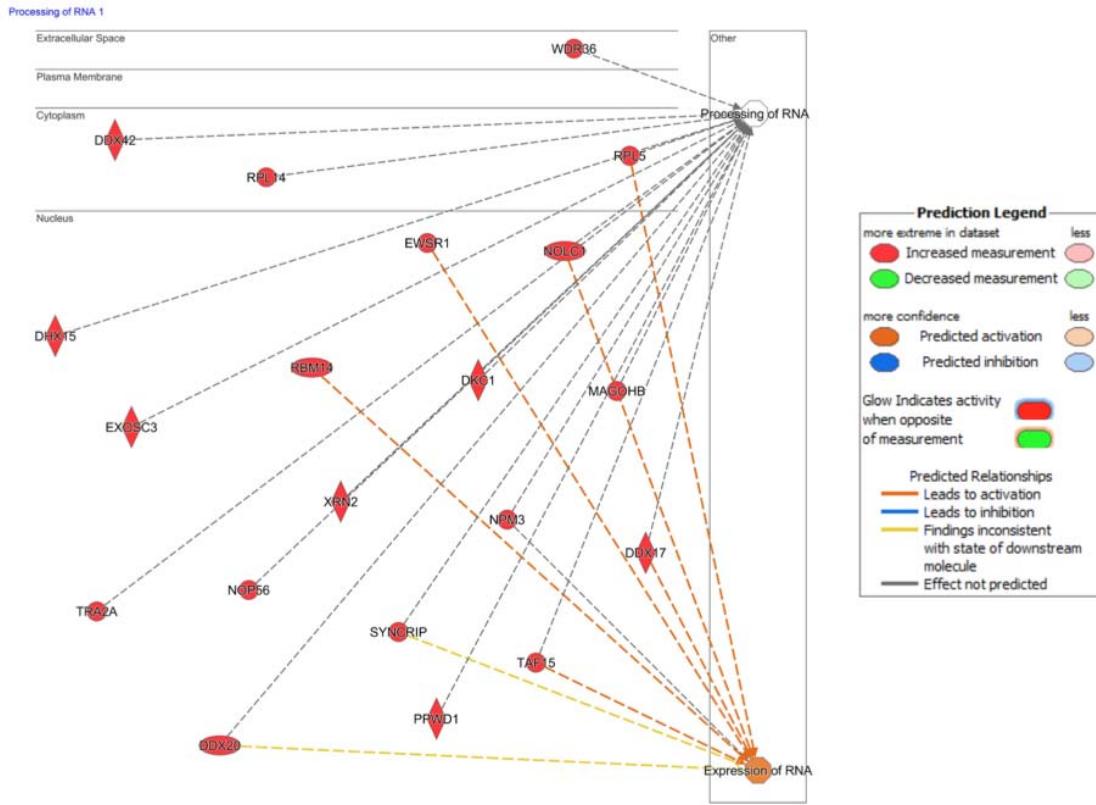
792 47. T. A. Shelkovnikova, H. K. Robinson, C. Troakes, N. Ninkina, V. L. Buchman,
793 Compromised paraspeckle formation as a pathogenic factor in FUSopathies.
794 *Human molecular genetics* **23**, 2298 (May 1, 2014).

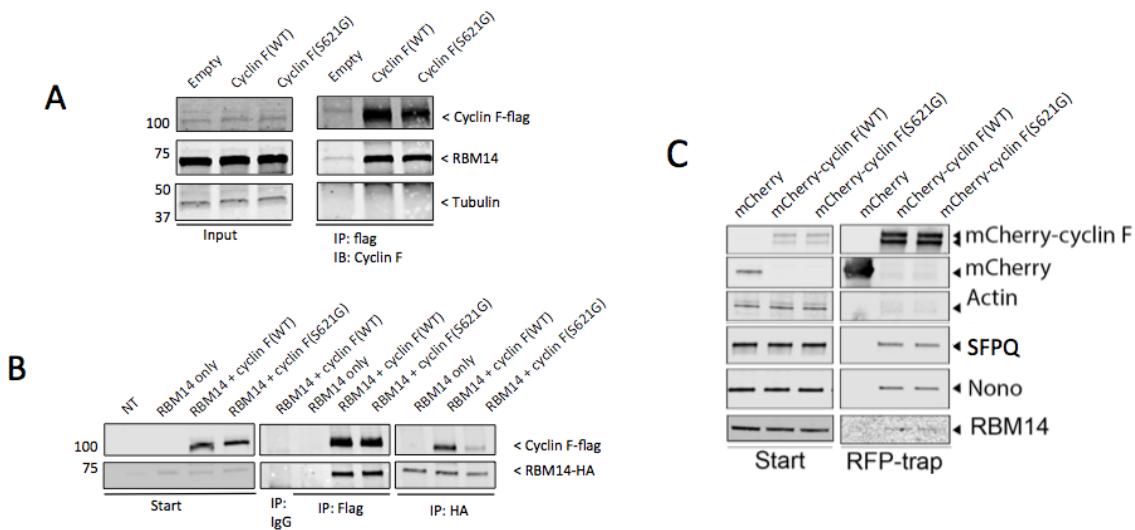

795 48. C. Lagier-Tourenne, M. Polymenidou, D. W. Cleveland, TDP-43 and FUS/TLS:
796 emerging roles in RNA processing and neurodegeneration. *Human molecular
797 genetics* **19**, R46 (Apr 15, 2010).

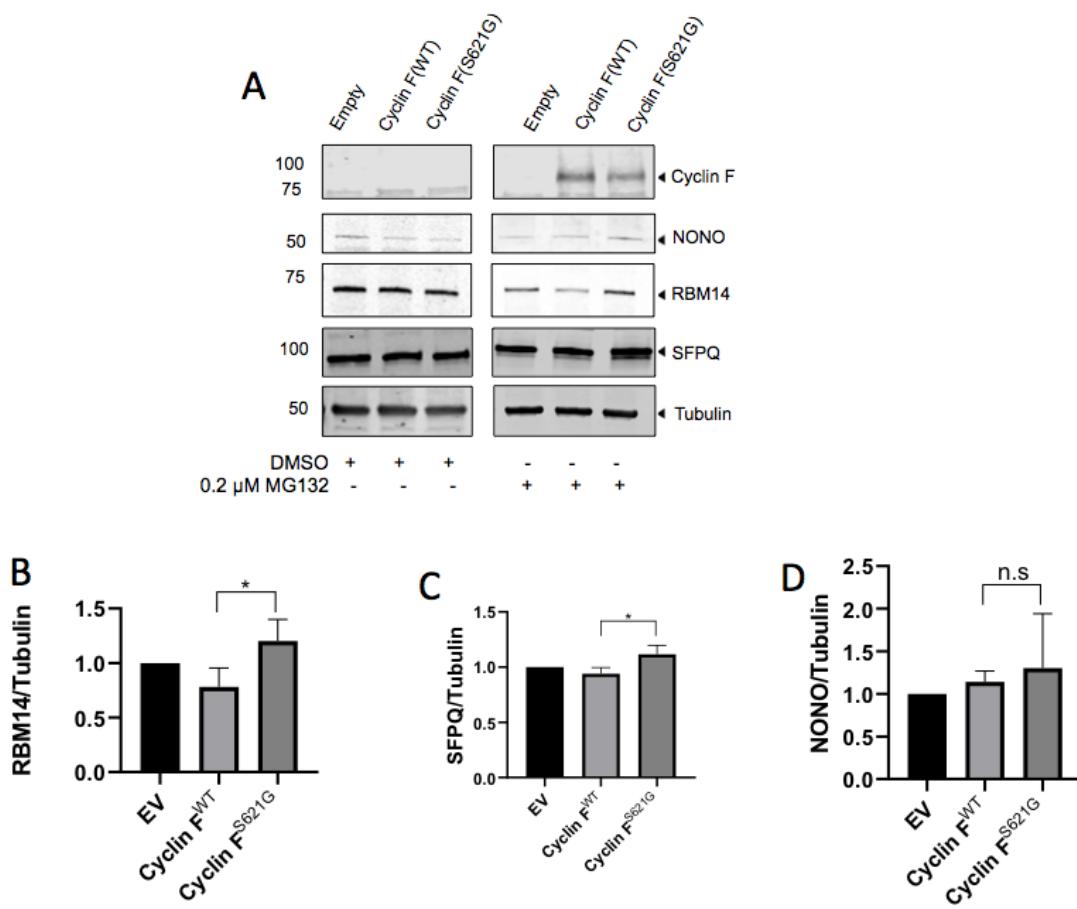
798
799


Table 1. Details of patient tissue

Case	Tissue type	Age (y)	Gender	PMI (hr)	Disease
					onset
Control	Motor cortex	37	Male	24	N/A
Control	Spinal cord and motor cortex	61	Male	30	N/A
Control	Spinal cord and motor cortex	80	Male	12	N/A
Control	Spinal cord	75	Male	34	N/A
SALS	Motor cortex	81	Male	70	80
SALS	Motor cortex	84	Male	23	74
FALS (C9orf72)	Motor cortex	60	Male	99	58
FALS (Unknown mutation)	Spinal cord and motor cortex	54	Female	16	53
SALS (C9orf72)	Spinal cord	65	Female	18	65
SALS	Spinal cord	71	Male	12.5	70
FALS (C9orf72)	Spinal cord	75	Male	74	21.5




Figure 1. Identifying cyclin F interaction partners using BioID. **A.** BirA* alone, BirA*-cyclin F(WT) and BirA*-cyclin F(LP/AA) were stably transfected into Flp-In T-Rex HEK293 cells. **B.** Schematic showing process of biotinylation by BirA*, isolation of biotinylated proteins and identification by western blotting or mass spectrometry. **C.** Stably transfected HEK293 Flp-In cells were treated with tetracycline to induce gene expression. Addition of biotin led to the biotinylation of proteins in proximity to cyclin F, as detected by immunoblotting with fluorescently-tagged streptavidin (LiCor). **D.** The biotinylation profile of BirA* alone or cyclin F-BirA* before and after streptavidin-coated bead pull-downs.


Figure 2. **A.** Proteomic analysis identified common and unique proteins biotinylated by BirA* alone, BirA*-cyclin F(WT) and BirA*-cyclin F(LP/AA). **B.** Ingenuity Pathway analysis (IPA) of protein interaction partners showing top twelve statistically enriched molecular processes for cyclin F interaction partners. **C.** Proteins interaction partners involved in cell cycle progression.

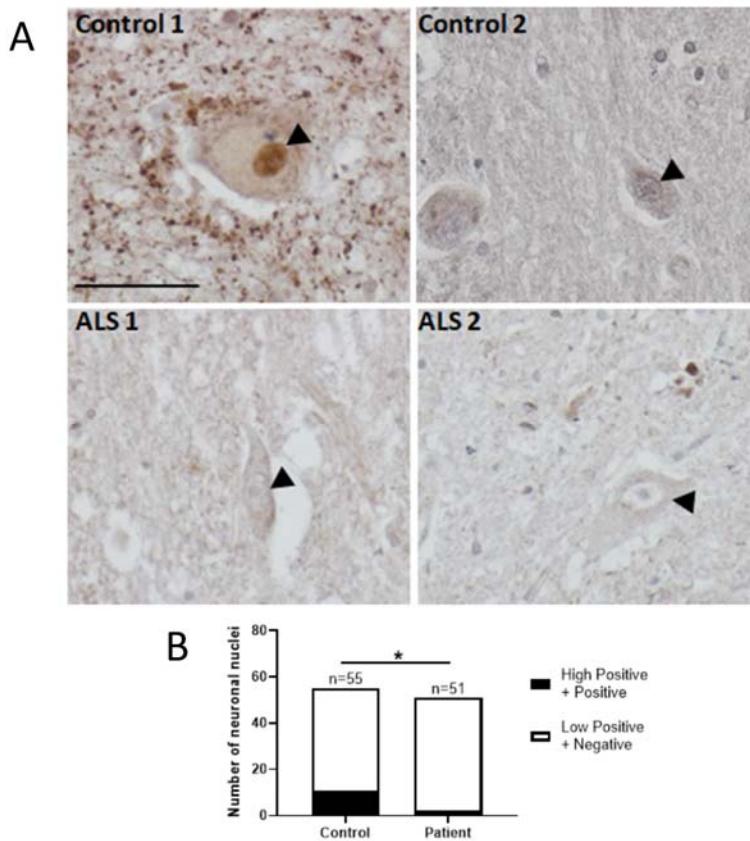

Figure 3. Protein interaction partners involved in RNA processing and expression along with subcellular localisation.

Figure 4. Cyclin F interacts with paraspeckle proteins. **A.** Flag-tagged cyclin F(WT), cyclin F(S621G) or an empty vector control were transfected into HEK293 cells. Anti-flag antibody was used to immunoprecipitate flag-tagged proteins. Eluates were evaluated by immunoblotting with the antibodies specified. **B.** Flag-tagged cyclin F(WT) or cyclin F(S621G) were co-transfected alongside RBM14-HA in HEK293 cells. Anti-flag or anti-HA antibody was used to immunoprecipitate flag-tagged or HA-tagged proteins as specified. Eluates were evaluated by immunoblotting with the antibodies specified. **C.** mCherry-cyclin F(WT) or mCherry-cyclin F(S621G) were transfected into HEK293 cells. An RFP-trap was incubated with lysates to immunoprecipitate mCherry-tagged proteins. Eluates were evaluated by immunoblotting using the antibodies specified.

Figure 5. Cyclin F^{S621G} causes defective turnover of paraspeckle components in primary neurons. **A.** Primary neurons were transduced using constructs encoding cyclin F^{WT}, cyclin F^{S621G} or an empty vector control. Transduced neurons were treated with 0.2 μ M MG132 or a vehicle control for 24 hours before cells were lysed in RIPA buffer and analysed by immunoblotting using the antibodies as indicated. **B.** Densitometry of RBM14 upon MG132 treatment normalised to Tubulin (n=4, *: $p<0.05$). **C.** Densitometry of SFPQ upon MG132 treatment normalised to Tubulin (n=4, *: $p<0.05$). **D.** Densitometry of NONO upon MG132 treatment normalised to Tubulin (n=4, n.s; not significant).

Figure 6. RBM14 is reduced in the brain and spinal cord of ALS patients. **A.** Representative images of RBM14 immunohistochemical staining in control (n=3) and ALS patient (n=4) spinal cord tissues. Arrowheads indicate RBM14 staining in neuronal nuclei. Scale bar=50 μ m. **B.** Semi-quantification of RBM14 IHC staining showed a significant reduction of RBM14 in neuronal nuclei from ALS patients compared to controls. A total number of 55 control neurons and 51 patient neurons were analysed using Image J IHC Profiler Plugin (Fisher's exact test, *: $p<0.05$).