

isoTarget: a genetic method for analyzing the functional diversity of splicing isoforms *in vivo*

Hao Liu ^{1, 2}, Sarah Pizzano ¹, Ruonan Li ¹, Wenquan Zhao ¹, Macy W. Veling ¹, Yujia Hu ¹, Limin Yang ^{1, 3}, and Bing Ye ^{1, 2, 4, *}

¹ Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA

² Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA

³ School of Medicine, Dalian University, Dalian, Liaoning, 116622, China

⁴ Lead contact

* Correspondence and requests for materials should be addressed to B.Y. (bingye@umich.edu).

Keywords: *isoTarget*, splicing isoform, Dscam, subcellular, genetic tool, *Drosophila*

1 **SUMMARY**

2
3 Protein isoforms generated by alternative splicing contribute to proteome diversity. Due
4 to the lack of effective techniques, isoform-specific functions, expression, localization,
5 and signaling mechanisms of endogenous proteins *in vivo* are unknown for most genes.
6 Here we report a genetic method, termed *isoTarget*, for blocking the expression of a
7 targeted isoform without affecting the other isoforms and for conditional tagging the
8 targeted isoform for multi-level analyses in select cells. Applying *isoTarget* to two
9 mutually exclusive isoforms of *Drosophila* Dscam, Dscam[TM1] and [TM2], we found
10 that endogenous Dscam[TM1] is localized in dendrites while Dscam[TM2] is in both
11 dendrites and axons. We demonstrate that the difference in subcellular localization
12 between Dscam[TM1] and [TM2], rather than any difference in biochemical properties,
13 leads to the two isoforms' differential contributions to dendrite and axon development.
14 Moreover, with *isoTarget*, we discovered that the subcellular enrichment of functional
15 partners results in a DLK/Wallenda-Dscam[TM2]-Dock signaling cascade specifically in
16 axons. *isoTarget* is an effective technique for studying how alternative splicing
17 enhances proteome complexity.

1 **INTRODUCTION**

2

3 Alternative splicing is a fundamental biological process that expands proteome diversity

4 in eukaryotes. Genome-wide transcriptome analyses have shown that 90%-95% of

5 human genes encode two or more isoforms (Baralle and Giudice, 2017). The

6 percentage of multi-exonic genes that undergo alternative splicing is estimated to be

7 63% in mouse, 45% in *Drosophila*, and 25% in *C. elegans* (Lee and Rio, 2015).

8 Alternative splicing is regulated by the coordination of RNA-binding proteins, RNA

9 polymerase II, and epigenetic modifications of DNA (Baralle and Giudice, 2017).

10 Perturbations of RNA splicing cause neurodevelopmental, cardiovascular, and other

11 diseases (Baralle and Giudice, 2017; Scotti and Swanson, 2016). Despite these

12 important findings, how distinct protein isoforms resulted from alternative splicing differ

13 in their functions and regulations are poorly understood. In fact, the cellular functions,

14 endogenous expression and localization, and signaling cascades of individual splicing

15 isoforms are only known for a very small number of genes (Baralle and Giudice, 2017).

16 Protein isoforms encoded by alternative exons often differ in their structures and

17 biochemical properties, which lead to distinct functions of the isoforms (Kelemen et al.,

18 2013). In addition, different types of cells may express different splicing variants (Baralle

19 and Giudice, 2017), which further diversifies the biological functions of different

20 isoforms. Intriguingly, different protein isoforms of some genes are localized to distinct

21 subcellular compartments within the same cell (Baralle and Giudice, 2017; Kelemen et

22 al., 2013; Lee et al., 2016; Lerch et al., 2012; Yap and Makeyev, 2016). Compared to

23 our understanding of how biochemical and expressional differences contribute to

24 distinct functions of splicing isoforms, much less is known about whether and how

25 isoform-specific subcellular localization contributes to distinct cellular functions. This is a

26 challenging problem because solving it requires manipulating a specific isoform at its

27 endogenous locus—without affecting other isoforms—in a cell-specific fashion.

28 Transgene-mediated overexpression of splicing variants of interest is widely used

29 for studying isoform-specific functions and subcellular localization in specific cells.

30 However, it is well documented that overexpressed proteins often do not mimic the

1 endogenous proteins in their spatiotemporal expression, localization, and functions
2 (Baralle and Giudice, 2017; Kelemen et al., 2013; Moriya, 2015; Prelich, 2012).

3 Here, we report a genetic method, termed *isoTarget*, for studying isoform-specific
4 function, localization, and signaling of endogenous splicing isoforms of interest. This
5 method allows to knock out a select isoform for functional studies and to tag
6 conditionally the endogenous proteins for multi-disciplinary analyses in specific cells
7 without affecting other isoforms. To achieve these, we created a translational stop
8 sequence, used it to generate a cleavable cassette that contains an epitope tag for
9 conditional tagging, and inserted the cassette into the exon encoding the isoform of
10 interest. As a proof-of-concept, we applied *isoTarget* to study two mutually exclusive
11 isoforms of *Drosophila Down syndrome cell adhesion molecule* (Dscam), Dscam[TM1]
12 and [TM2] (Schmucker et al., 2000; Wang et al., 2004; Zhan et al., 2004). We report
13 isoform-specific functions for Dscam[TM1] and [TM2] resulting from the distinct
14 endogenous subcellular localization patterns of these two isoforms. We further describe
15 a compartment-specific signaling pathway in the axon terminals, which involves
16 Dscam[TM2], but not [TM1], as a result of the differential localization of the two isoforms
17 and their functional partners. These findings illustrate the versatility of *isoTarget* in
18 isoform studies and its effectiveness in uncovering mechanisms governing the
19 expansion of proteome diversity by alternative splicing *in vivo*. In addition, they establish
20 the causality between the subcellular localization and cellular function of Dscam splicing
21 isoforms, demonstrating the critical role of subcellular localization in expanding the
22 functional diversity of splicing isoforms.

1 **RESULTS**

2

3 **The design of *isoTarget***

4 The transcriptional stop cassettes commonly used for conditional knockouts or knockins
5 (Lakso et al., 1992) do not specifically disrupt the expression a select splicing isoform
6 and are hence not applicable for isoform-specific studies. This is because RNA splicing
7 occurs after transcription and, as a consequence, transcriptional stop cassettes disrupts
8 the expression of all isoforms downstream of the targeted isoform (Figure 1A). To meet
9 this challenge, we created a *translational stop* (*t/stop*) sequence by introducing multiple
10 stop codons (TAA, TAG or TGA) into the DNA sequence encoding a non-catalytic
11 region of β -Galactosidase (β -Gal) (Figures 1A, S1A). If the *t/stop* is present in an
12 isoform-specific exon, it would lead to isoform-specific truncation during mRNA
13 translation (Figure 1A).

14 To achieve cell-type-specific labeling of targeted isoforms, the *t/stop* sequence is
15 flanked by two R recombinase recognition sites (RSRT) followed by an epitope tag
16 (Chen et al., 2014; Nern et al., 2011). When R recombinase is expressed to remove
17 *t/stop*, the epitope tag is inserted in-frame into the targeted isoform, allowing the
18 detection and biochemical analyses of endogenous proteins in cells of interest (Figure
19 1B). We refer to the RSRT-*t/stop*-RSRT as “iso-KO cassette” (for “*isoTarget* knockout
20 cassette”), as its insertion into an isoform-specific exon is expected to create a loss-of-
21 function mutant of this particular isoform. In *Drosophila*, the iso-KO alleles can be used
22 in combination with the mosaic analysis with a repressible cell marker (MARCM) (Lee
23 and Luo, 1999) to study isoform-specific function in targeted single neurons (Figure 1B).
24 We refer to the RSRT-epitope resulted from the excision of the *t/stop* sequence as “iso-
25 Tagging cassette”. As we show below, the iso-Tagging approach allows the
26 investigation of upstream and downstream signaling mechanisms that involve targeted
27 isoform at the organismal, cell-type-specific, or subcellular levels (Figure 1B).

28

29 **The validation of *isoTarget* and mitigation of off-target effects of translational-
30 stop cassettes**

1 To fulfill the designed applications, the *isoTarget* technique should meet the following
2 requirements. First, the iso-KO cassette must abolish the function of the targeted
3 isoform. Second, the iso-KO or iso-Tagging cassette in one isoform should not impair
4 the expression of other isoforms. Third, iso-Tagging—resulted from the excision of the
5 iso-KO cassette—should restore the isoform functions that are disrupted by the iso-KO
6 cassette. We determined whether *isoTarget* met these prerequisites by testing on the
7 *Drosophila Dscam* gene.

8 In *Drosophila*, exon 17.1 and 17.2 of *Dscam* gene encode two different
9 transmembrane/juxtamembrane domains (Schmucker et al., 2000). Alternative splicing
10 of these two mutually exclusive exons produces two isoforms called Dscam[TM1] and
11 Dscam[TM2] (Figure S1B). We inserted the iso-KO cassette into the juxtamembrane
12 domain in exon 17.1 (TM1) and 17.2 (TM2) (Figures S1B-C). In homozygous
13 *Dscam[TM2]* iso-KO (*Dscam[TM2]*^{iso-KO}) larvae, the axon terminal growth was
14 dramatically impaired in the class IV dendritic arborization (C4da) neurons (Figures 2A-
15 B, and H), a widely used model for studying dendrite and axon development (Grueber
16 and Jan, 2004; Grueber et al., 2007; Jan and Jan, 2010; Ye et al., 2007). This is
17 consistent with previous reports that *Dscam* is required for axon terminal growth in
18 C4da neurons (Kim et al., 2013), and suggests that iso-KO cassette abolishes
19 *Dscam[TM2]* functions. The impaired growth of axon terminals was completely rescued
20 in homozygous global Dscam[TM2] iso-Tagging (*Dscam[TM2]*^{iso-Tagging}) larvae resulted
21 from the excision of the iso-KO cassette (Figures S1C, S2A-B), suggesting that tagging
22 endogenous Dscam[TM2] with the epitope tag (V5) does not disrupt the function of the
23 isoform.

24 Next, we determined whether *isoTarget* of one isoform affected the expression of
25 another isoform by using quantitative real-time PCR and immunohistochemistry on
26 *isoTarget* samples. *Dscam[TM1]* mRNA levels were not affected in the brains of
27 homozygous *Dscam[TM2]*^{iso-KO} or *Dscam[TM2]*^{iso-Tagging} 3rd-instar larvae (Figure S2C).
28 Unexpectedly, the [TM1] iso-KO cassette abolished *Dscam[TM2]* mRNA and protein
29 expression, creating a *Dscam[TM1/2]*^{iso-KO} mutant (Figures S3A and S3B-C). By
30 contrast, the expression of *Dscam[TM2]* mRNA was not affected by *Dscam[TM1]* iso-
31 Tagging cassette (Figure S3A). These results suggest that inserting a long piece of

1 DNA in TM1-encoding exon disrupts the splicing of TM2-encoding exon of *Dscam* pre-
2 mRNA (Figure S3F), possibly by overly extending the distance between exon 16 and
3 the TM2-encoding exon (Anastassiou et al., 2006). To test this possibility, we reduced
4 the size of the iso-KO cassette from 561 bp to 285 bp by cutting a 276 bp-fragment from
5 the *tstop* sequence. Strikingly, insertion of the short iso-KO cassette in [TM1] did not
6 impair *Dscam*[TM2] expression, including both mRNA and protein expression (Figures
7 S3A and S3D-E). Through these studies, we discovered that the impact of an *isoTarget*
8 cassette on off-target isoforms can be mitigated by reducing the cassette length and
9 found a new translational stop sequence for achieving this.

10 Taken together, these results validate the use of *isoTarget* for studying
11 endogenous *Dscam*[TM1] and [TM2] isoforms.

12

13 **Uncovering the functions of *Dscam* isoforms in axon terminals with *isoTarget***
14 We previously demonstrated that in larval PNS neurons *Dscam* instructs the
15 presynaptic terminal growth, which is a function that is distinct from *Dscam*'s role in
16 neurite self-avoidance (Kim et al., 2013). However, whether both *Dscam*[TM1] and
17 [TM2] contribute to this process is unknown. With *iso-KO* larvae, we found that knocking
18 out the [TM2] isoform impaired axon terminal growth in larval C4da neurons (Figures
19 2A-B and H). By contrast, the axonal development remained intact in *Dscam*[TM1]^{iso-KO}
20 larvae (Figures 2C and H). Next, we combined *isoTarget* with the MARCM technique to
21 determine whether the *Dscam* isoforms functioned cell-autonomously to regulate C4da
22 axon terminal growth. Single C4da neurons that were homozygous for *Dscam*[TM1]^{iso-KO}
23 had normal axon terminal growth (Figures 2D-E and I). By contrast, loss of *Dscam*[TM2]
24 in C4da neurons significantly impaired axon terminal growth to the same levels as loss
25 of *Dscam* (Figures 2F-G and I).

26 Similar to C4da neurons, while C3da neurons in homozygous *Dscam*[TM1]^{iso-KO}
27 larvae showed normal growth of axon terminals, those in homozygous *Dscam*[TM2]^{iso-KO}
28 displayed dramatically reduced axon terminals growth, as evident in the gaps in
29 longitudinal axon tracts (Figures 2J-L). The disruption in longitudinal axon tracts was
30 also observed in *Dscam*[TM1/2]^{KO} larvae (Figure 2M).

1 These results suggest that *Dscam*[TM2], but not *Dscam*[TM1], regulates the
2 growth of axon terminals.

3

4 **Uncovering the functions of *Dscam* isoforms in dendrites with *isoTarget***

5 *Dscam* has been shown to mediate dendritic self-avoidance without affecting dendritic
6 growth in the PNS neurons of *Drosophila* larvae (Hughes et al., 2007; Matthews et al.,
7 2007; Soba et al., 2007). Again, it is unknown whether both *Dscam*[TM1] and [TM2]
8 isoforms are responsible for this process. We applied *isoTarget* to answer this question.
9 As expected from previous studies, homozygous *Dscam*[TM1/2]^{iso-KO} mutant larvae,
10 which lack both [TM1] and [TM2] functions, exhibited increased dendritic crossing in
11 both C3da mechanosensors (Figures 3A-B and E) and C4da nociceptors (Figures S4A-
12 B and E), indicating defective avoidance among dendrites of the same neuron. Different
13 from what we observed in axons, neither *Dscam*[TM1]^{iso-KO} nor *Dscam*[TM2]^{iso-KO}
14 caused any defect in dendritic self-avoidance in these neurons (Figures 3C-D and E,
15 S4C-D and E).

16 We further combined MARCM with *isoTarget* to study cell-autonomous functions
17 of targeted isoforms in single cells. As previously shown (Hughes et al., 2007; Matthews
18 et al., 2007; Soba et al., 2007), single C4da neurons that were homozygous of *Dscam*¹⁸,
19 which abolishes both [TM1] and [TM2] isoforms, showed significant self-avoidance
20 defect (Figures 3G and J). By contrast, loss of either *Dscam*[TM1] or [TM2] in single
21 C4da neurons did not cause any defect in dendritic self-avoidance (Figures 3H-I and J).

22 These results suggest that *Dscam*[TM1] and [TM2] function redundantly in
23 dendritic self-avoidance. Thus, these two isoforms function differently in dendrite and
24 axon development.

25

26 **Using *isoTarget* to identify the subcellular localizations of endogenous protein
27 isoforms**

28 Previous studies have shown that in CNS neurons transgenic *Dscam*[TM1] is restrained
29 in somatodendritic compartments while [TM2] is in both dendrites and axons (Wang et
30 al., 2004; Yang et al., 2008; Zhan et al., 2004). However, transgenic *Dscam*[TM1] and
31 [TM2] were both found to be ubiquitously present in PNS neurons (Soba et al., 2007)

1 (Figures 6B and D and data not shown). Does this discrepancy indicate that the
2 subcellular localization of Dscam isoforms varies in different neuronal types? To answer
3 this question, we applied iso-Tagging to examine the subcellular localizations of
4 *endogenous* Dscam isoforms in both PNS and CNS neurons. We found that in PNS
5 neurons both *endogenous* Dscam[TM1] and [TM2] were localized in the dendrites
6 (Figures 4A-C). Interestingly, different from what we observed with *Dscam* transgenes,
7 only *endogenous* Dscam[TM2] was localized in the presynaptic terminals of PNS
8 neurons (Figures 4D and E). Similar isoform-specific localization patterns were
9 observed in CNS neurons. By iso-Tagging in mushroom body (MB) neurons in the 3rd-
10 instar larva, we observed both *endogenous* Dscam[TM1] and [TM2] in MB calyx
11 (Figures 4F-H), which is a cluster of dendritic branches, but only [TM2] in the core fibers
12 of axonal peduncles (Figures 4I-K). The finding that only [TM2] is localized in axons was
13 further supported by the observation of Dscam proteins in axonal shafts that connect
14 the PNS and CNS. In iso-Tagging larvae, despite a substantial amount of Dscam[TM1]
15 signals in the neuropil region of the ventral nerve cord (VNC), no [TM1] signal was
16 observed in axonal shafts (Figures S5A-B). By contrast, Dscam[TM2] puncta were
17 abundant in axonal shafts in global *Dscam[TM2]^{iso-Tagging}* larvae (Figure S5C). Taken
18 together, we found that in PNS and CNS, both *endogenous* Dscam[TM1] and [TM2]
19 isoforms are present in dendrites, while only [TM2] is in axons.

20 Notably, *endogenous* Dscam expression seemed to be enriched in developing
21 neurons, but not in mature ones. While both *endogenous* Dscam[TM1] and [TM2] were
22 observed in PNS neurons at the early 2nd-instar stage, no signal was detectable in the
23 3rd instar stage (data not shown). In larval MB, *endogenous* Dscam[TM2] was detected
24 only in the core fiber, which is the axonal projections of nascent developing neurons.
25 These observations are consistent with previous immunostaining results with an anti-
26 Dscam antibody (Zhan et al., 2004). The discrepancies of spatiotemporal expression
27 pattern between transgenes and *endogenous* Dscam isoforms underscore the
28 importance of studying protein isoforms at the physiological level.

29

30 **Dendrite-specific localization restrains *endogenous* Dscam[TM1] from**
31 **functioning in axons**

1 The studies above show that endogenous Dscam[TM1] is required for dendritic, but not
2 axonal, development. Although this could be a result of the compartmentalized
3 localization of Dscam[TM1] in dendrites, trans-compartmental communication has been
4 shown for many membrane proteins (Terenzio et al., 2017). It is thus essential to
5 determine whether or not the dendrite-specific localization of Dscam[TM1], instead of its
6 biochemical properties, restrains it from functioning in axons. This important issue has
7 not been addressed, despite previous insightful studies on the differences between
8 Dscam[TM1] and [TM2].

9 We determined whether forced localization of Dscam[TM1] in axon terminals was
10 sufficient to rescue the axon phenotype caused by *Dscam[TM2]^{iso-KO}*. Overexpression of
11 a *Dscam[TM1]* transgene in C4da neurons led to a modest level of Dscam[TM1] in axon
12 terminals and significantly mitigated axonal growth defects caused by *Dscam[TM2]^{iso-KO}*
13 (Figures 5A-B, and F). As expected, two different [TM2] transgenes (#1 and #2) both
14 caused higher levels of [TM2] in axon terminals and stronger rescue than the [TM1]
15 transgene (Figures 5C, E-G). Strikingly, when we used 2 copies of the C4da-specific
16 driver *ppk-Gal4* to increase the axonal level of Dscam[TM1] to that expressed by
17 *Dscam[TM2]* transgenes, the rescue effects were comparable (Figures 5C, D, F, and
18 G). By quantitatively assessing transgenic Dscam::GFP levels in C4da axon terminals
19 (Figure 5G), we found a linear correlation ($R^2=0.969$) between presynaptic Dscam
20 isoform levels and their rescue effects (Figure 5H). These results suggest that when
21 localized in the same subcellular compartment, Dscam[TM1] function equally as
22 Dscam[TM2] in promoting axonal growth. Thus, the dendritic function of endogenous
23 Dscam[TM1] is a result of its compartmentalized localization.

24

25 **Axonally enriched Dscam[TM2]-Dock signaling is essential for the axonal
26 function of Dscam[TM2]**

27 While the study above demonstrates that the dendrite-specific localization of
28 Dscam[TM1] prevents it from functioning in axon development, it remains unknown
29 whether Dscam[TM1] and [TM2] exhibit any biochemical difference that might also
30 explain the difference in their cellular functions. To test this possibility, we took
31 advantage of *isoTarget* to compare Dscam[TM1] and [TM2] for their interactions with

1 functional partners. Among the molecules known to bind to the intracellular domain of
2 Dscam and mediate its signaling (Kamiyama et al., 2015; Liu et al., 2009; Purohit et al.,
3 2012; Schmucker et al., 2000; Sterne et al., 2015), we found that Dock, an SH2/SH3
4 adapter protein that is preferentially localized in axons (Desai et al., 1999; Fan et al.,
5 2003; Hing et al., 1999), preferentially associated with Dscam[TM2] in *Drosophila* larval
6 brains (Figure 6A). We further confirmed this finding with transgenic flies that
7 overexpress Dscam[TM1]:GFP or [TM2]:GFP through their endogenous promoters
8 (Wang et al., 2004). Immunoprecipitation was performed using an anti-GFP antibody.
9 Endogenous Dock preferentially co-precipitated with [TM2]:GFP from brain lysates of
10 3rd instar larvae (Figure 6B). Consistent with this notion, we found that Dock is required
11 for Dscam[TM2] to promote axon terminal growth. While overexpressing [TM2]
12 significantly promoted axon terminal growth in C4da neurons, its effect was completely
13 eliminated by loss of *dock* (Figures 6C-G). Interestingly, we found that the [TM2]-Dock
14 signaling is compartment-dependent. Dock bound to both isoforms with equal affinity in
15 cultured Schneider 2 (S2) cells, which do not have dendrite-axon compartmentalization
16 (Figure 6H). This result is consistent with the previous finding that the Dock-binding
17 sites, including PXXP sites and polyproline motifs, are located in the cytoplasmic region
18 shared by [TM1] and [TM2] (Schmucker et al., 2000). Consistent with the biochemical
19 results, the axon terminal overgrowth resulted from [TM1] overexpression was also
20 eliminated by loss of *dock* (Figures 6I-L). Thus, given the same subcellular
21 compartment, Dscam[TM1] and [TM2] are biochemically comparable and share the
22 same signaling mechanism. Moreover, the ectopic localization, function and signaling of
23 transgenic [TM1] in axons underscore the importance of studying splicing isoforms at
24 physiological levels of expression.

25

26 **Axonal enrichment of Wnd compartmentalizes the Wnd-Dscam[TM2] signaling**

27 We showed previously that the signaling pathway involving the E3 ubiquitin ligase
28 Highwire (Hiw) and the dual leucine zipper kinase Wallenda (Wnd) promotes Dscam
29 expression (Kim et al., 2013). However, whether the Hiw-Wnd pathway regulates the
30 expression of both [TM1] and [TM2] isoforms is unknown. To address this, we
31 determined whether loss of *hiw* or overexpression of Wnd changed the levels of

1 [TM1]::HA and [TM2]::V5. To test the effects of loss of *hiw*, Western blotting was
2 performed on CNS lysates from trans-heterozygous [TM1]::HA / [TM2]::V5 larvae that
3 were generated through global iso-Tagging. We found that loss of *hiw* led to increased
4 expression of both Dscam[TM1] and [TM2] in the CNS (Figure 7A). Next, we compared
5 Wnd's effect on the expression of Dscam[TM1] and [TM2]. As global overexpression of
6 Wnd caused larval lethality, we co-expressed Wnd and R recombinase (for iso-Tagging
7 of endogenous Dscam[TM1] and [TM2]) in a subset of CNS neurons with GAL4⁴⁻⁷⁷ (Kim
8 et al., 2013). Interestingly, Wnd overexpression only increased the level of Dscam[TM2]
9 (Figure 7B), but not that of [TM1], suggesting that unlike Hiw, Wnd preferentially
10 regulates the expression of Dscam[TM2]. This finding from biochemical studies was
11 confirmed in C4da neurons by immunostaining of the endogenous Dscam[TM2] tagged
12 through iso-Tagging. Immunostaining of Dscam[TM2]::V5^{iso-Tagging} showed that
13 endogenous Dscam[TM2] was undetectable in C4da axon terminals in 3rd-instar larvae,
14 but detectable at this developmental stage when Wnd was overexpressed in these
15 neurons (Figure 7C).

16 Next, we investigated the mechanism underlying the differential effect of Wnd on
17 Dscam[TM1] and [TM2]. Firstly, we determine whether Wnd is capable of increasing
18 Dscam[TM1] expression in a cell type without the dendrite-axon compartmentalization.
19 We overexpressed Dscam isoforms with endogenous 5' and 3' UTR in S2 cells, and
20 found that Wnd similarly promoted [TM1] and [TM2] expression (Figure 7D-E). This
21 result suggest that Dscam[TM1] and [TM2] are molecularly indistinguishable for the
22 Wnd regulation. Secondly, we identified the distribution of Wnd in neurons, and found
23 that Wnd was enriched in axons but not dendrites. A GFP-tagged kinase-dead version
24 of Wnd (GFP-Wnd^{KD})(Xiong et al., 2010) was expressed in C4da neurons; substantial
25 signals were detected in axon terminals but not in dendrites (Figure 7F). These data
26 suggest that axonal localization of Wnd compartmentalizes the Wnd-Dscam[TM2]
27 signaling.

1 **DISCUSSION**

2

3 In this study, we developed *isoTarget* to generate splicing isoform-specific loss-of-
4 function mutants and conditional tagging in specific neurons. As a proof of concept, we
5 applied *isoTarget* to investigate two mutually exclusive isoforms of Dscam, which differ
6 in their transmembrane and juxtamembrane domains, for their subcellular localization,
7 regulation of expression, function in dendrite/axon development, and subcellular
8 signaling. These findings highlight the versatility of *isoTarget* and the importance of
9 studying splicing isoform at endogenous levels *in vivo*. In addition, they establish the
10 causality between the subcellular localization and cellular function of splicing isoforms,
11 demonstrating the critical role of subcellular localization in expanding the functional
12 diversity of splicing isoforms.

13 Our study demonstrate that Dscam isoforms use two different modes to achieve
14 distinct compartment-specific functions *in vivo* (Figure 7G). While the dendrite-specific
15 localization restrains Dscam[TM1] from functioning in axons, axonal enrichment of
16 functional partners forms a subcellular signaling pathway involving the ubiquitously
17 distributed Dscam[TM2].

18

19 **Subcellular localization defines the cellular functions of alternative splicing**
20 **isoforms that have the same biochemical functions**

21 Alternative isoforms often differ in their protein structures and thus the biochemical
22 properties (Kelemen et al., 2013). Recent studies suggest the importance of subcellular
23 localization in defining the cellular functions of alternative splicing isoforms. For
24 example, in cultured neurons, the RBFOX1 gene generates a nuclear variant (by
25 excluding exon 19) that regulates RNA splicing and a cytoplasmic variant (by including
26 exon 19) that stabilizes mRNAs (Lee et al., 2016). However, whether subcellular
27 localization is the only reason why the nuclear and cytoplasmic variants differ in their
28 cellular functions remains to be determined, as it is possible that the two isoforms have
29 distinct biochemical functions. More broadly, a challenging question in the field is
30 whether the difference in subcellular localization determines the compartmentalized
31 functions for the isoform (i.e., the issue of causality), especially at the endogenous

1 levels *in vivo*. By applying *isoTarget* in *Drosophila* sensory system, we establish the
2 causality between the subcellular localization and cellular functions of the Dscam
3 isoforms. Our findings highlight the critical role of subcellular localization in expanding
4 the functional diversity of isoforms.

5 Even if they are localized in different subcellular compartments, splicing isoforms
6 with the same biochemical function might not exhibit distinct cellular functions because
7 their downstream partners might spread throughout the cell (e.g., via trans-
8 compartmental communication (Terenzio et al., 2017)). In order to achieve cellular
9 functions specific to a compartment, one solution is to localize the functional partners
10 shared by the isoforms to specific subcellular compartments. Indeed, we found that
11 compartmental enrichment of interactors leads to isoform-specific signaling. The
12 Dscam[TM1] and [TM2] do not differ in their biochemical interactions with Wnd and
13 Dock (Figure 6H, 7C-D). Yet, the axonal enrichment of Wnd and Dock forms a
14 compartmentalized Wnd-Dscam[TM2]-Dock signaling cascade *in vivo*, despite that
15 Dscam[TM2] is present in both dendrites and axons (Figure 4C, E, H, K). These findings
16 suggest that, for splicing isoforms with the same biochemical functions, specific cellular
17 functions can be achieved by the compartment-specific colocalization of the isoforms
18 and their functional partners (Figure 7G).

19 Sphingolipids are essential for trafficking of dendritic and axonal cell adhesion
20 molecules, including Dscam (Goyal et al., 2019). Loss of SPT, a key enzyme in
21 sphingolipid biosynthesis, reduces the membrane localization of Dscam[TM1] and [TM2]
22 in subsets of mushroom body neurons, resulting in [TM1] aggregates in the soma and
23 [TM2] aggregates in the axons. *isoTarget* would be instrumental for testing the function
24 of sphingolipids in the trafficking of endogenous Dscam isoform in select neuron
25 populations. Moreover, the *isoTarget*-based approaches described in our paper allowed
26 us to address whether subcellular localization is the cause of the isoform-specific
27 function. These approaches can also be used to determine the causality between
28 alterations in subcellular localization (e.g., those caused by trafficking defects) and
29 changes in cellular functions.

30

31 **Advantages of *isoTarget***

1 The studies reported in this paper demonstrate several advantages of *isoTarget* over
2 traditional techniques.

3 First, it can be used to generate classic genetic mutants for analyzing the
4 functions of specific splicing isoforms. RNA interference has been adopted to
5 investigate Dscam isoform functions in CNS neurons (Shi et al., 2007). However, we
6 found that this method is not applicable for studying Dscam in larval PNS neurons (data
7 not shown). This is likely because endogenous Dscam primarily functions at early
8 developmental stages and a late efficacy of RNAi precluded the discovery of Dscam
9 functions in these neurons. By contrast, *isoTarget* can be used to create a loss-of-
10 function mutant a specific isoform without affecting other isoforms, allowing us to
11 investigate the functions of Dscam isoforms in larval PNS neurons.

12 Second, *isoTarget* enables the identification of isoform-specific localization at the
13 subcellular level in neurons of interest *in vivo*, which is otherwise challenging due to the
14 difficulty in discerning immunofluorescent signals in subcellular compartments among a
15 number of neurons expressing the same protein in the vicinity. In addition, this method
16 expresses tagged proteins at more physiological levels than transgenes. Prior studies
17 on Dscam have relied on transgenes to investigate the functions and subcellular
18 localizations of Dscam[TM1] and [TM2] (Goyal et al., 2019; Kim et al., 2013; Soba et al.,
19 2007; Wang et al., 2004; Yang et al., 2008; Zhan et al., 2004), but transgenic proteins
20 are often ectopically localized. For example, whereas the endogenous Dscam[TM1] is
21 absent in axons (Figures 4D and S5B), overexpressing [TM1] leads to its axonal
22 localization (Figures 5A-G). In fact, tagging endogenous Dscam[TM1] and [TM2] with
23 *isoTarget* led to the observation of consistent patterns of subcellular localization in
24 different types of neurons (Figure 4), which reconciles the cell-type discrepancies
25 observed previously with transgenes.

26 Third, *isoTarget* allows studying isoform-specific compartmentalized signaling.
27 Using *isoTarget*, we identified a Wnd-Dscam[TM2]-Dock signaling pathway enriched at
28 the presynaptic terminals of C4da neurons. Complementing the *in vivo* studies with
29 *isoTarget*, we performed biochemical studies in S2 cells and found that Dscam[TM1]
30 and [TM2] did not differ in their biochemical interactions with Wnd and Dock (Figures
31 6H, 7C-D). Consistent with this, forced localization of ectopic Dscam[TM1] in axons also

1 increased axonal growth *in vivo* (Figures 5A-G) through the same downstream effector
2 Dock used by Dscam[TM2] (Figures 6I-L). In this series of studies, *isoTarget* was
3 essential for establishing the cellular functions and biochemical interactions *in vivo*.
4

5 **Limitations**

6 There are three limitations of the *isoTarget* technique. First, for the successful
7 application of *isoTarget*, the isoform inserted with iso-KO cassette is expected to lose its
8 function. This is not necessarily always the case, especially when the targeted exon
9 encodes a fragment located at the C-terminus of the protein. This problem is common in
10 isoform studies by genetic modifications, including Cre-LoxP and isoEXPRESS (Gu et
11 al., 2019). Developing isoform-specific nanobody might be a way to solve this problem
12 (Roth et al., 2019). Second, we discovered that the original translational stop cassette
13 may cause off-target effects (Figures S3A-C and F), and that such effects depend on
14 the length of the cassette. Thus, the expression of isoforms other than the targeted one
15 should always be examined by techniques such as RT-qPCR. Finally, successful uses
16 of *isoTarget* require that the epitope tagging preserves the function of the splicing
17 isoform. Structural information would be helpful in choosing the proper inserting site. For
18 example, inserting the *isoTarget* cassette into the loop region of a polypeptide is likely to
19 increase the chance of success.
20

21 In summary, we have developed *isoTarget* as a versatile genetic tool that is
22 compatible with a variety of techniques for analyzing isoform-specific properties and
23 uncovering the mechanisms underlying isoform diversity at multiple levels *in vivo*. We
24 anticipate this methodology be useful for isoform studies in various cell types and
25 organisms.

1 **ACKNOWLEDGEMENT**

2 We thank Drs. Kenneth Kwan, Ken Inoki, Yukiko Yamashita, Dawen Cai for helpful
3 discussions, Dr. Jung Hwan Kim for teaching H.L. and for critical suggestions on
4 *isoTarget* validation. We also thank Drs. Tzumin Lee, Larry Zipursky, Yi Chen, Jack
5 Dixon, Catherine Collins, Ryan Insolera, Scott Barolo, and David Lorberbaum for
6 sharing reagents. We thank Drs. Catherine Collins, Laura Smithson, and Elizabeth
7 Cebul for their critiques on an earlier version of the manuscript. This work was
8 supported by grants from NIH (R01 MH092147 and R01 NS095525 to BY) and Protein
9 Folding Disease Initiative of the University of Michigan to B.Y. M.W.Z. was supported by
10 the NIH Cellular and Molecular Biology Training Grant T32-GM007315.

11

12 **AUTHOR CONTRIBUTIONS**

13 H.L. and B.Y. conceived the project and designed the experiments. H.L. designed,
14 generated and validated *isoTarget* flies, examined the functions, endogenous
15 expression and signaling cascade of Dscam isoforms. S.P., R.L. and M.W.Z. performed
16 MARCM on C4da neurons and assisted in quantification of global iso-KO. W.Z.
17 examined isoform functions in C3da neurons. Y. H. assisted in generating *isoTarget*
18 flies. L.Y. assisted in experiments of endogenous isoform expression. B.Y. supervised
19 the project. H.L. and B.Y. wrote the paper.

20

21 **DECLARATION OF INTERESTS**

22 The authors declare no competing interests.

1 **EXPERIMENTAL PROCEDURES**

2

3 ***Drosophila* strains**

4 The following published fly strains were used: *ppk*-Gal4 (chromosome III) (Kuo et al.,
5 2005); GMR83B04-GAL4 (Pfeiffer et al., 2011); UAS-Dscam[TM2]::GFP (3.36.25,
6 chromosome III and X), UAS-Dscam[TM1]::GFP (3.36.25, chromosome X), *DscamP*-
7 *Dscam*[TM1]::GFP (3.36.25) (Wang et al., 2004), *DscamP*-*Dscam*[TM2]::GFP (3.36.25)
8 (Wang et al., 2004); OK107-Gal4 (Connolly et al., 1996); *Dscam*¹⁸ (Wang et al., 2002);
9 *hiw*^{ΔN} (Wu et al., 2005); *wnd*¹, *wnd*³, and UAS-Wnd (Collins et al., 2006); *dock*⁴⁷³² and
10 *dock*^{C506} (Garrity et al., 1996); *nos*-Gal4 (Van Doren et al., 1998); 20xUAS-R
11 recombinase (Nern et al., 2011).

12

13 **Generation of DNA constructs**

14 The design of *isoTarget* system is described in Figure S1A. The translational stop
15 cassette was amplified by PCR from non-catalytic region of lacZ with frame shift to
16 introduce multiple premature termination codons. The loxP-dsRed-loxP sequence is
17 described in Gratz et al., (2014) (Gratz et al., 2014). The pBluescript donor plasmid,
18 which contains *isoTarget* KI cassettes (GS linker-RSRT-*tstop*-loxP-dsRed-loxP-RSRT-
19 epitope-G3 linker) and Dscam isoform homologous sequences with mutated PAM, was
20 generated with the In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.). The pCFD3-
21 dU63gRNA plasmid, which produces gRNA in fly embryos, is described in Ran et al.,
22 (Ran et al., 2013). The pUAST-*Dscam5'UTR*-*Dscam*[TM1]::GFP-*Dscam3'UTR*
23 (4.3-6.36-9.25) plasmid was made by modifying pUAST-*Dscam5'UTR*-
24 *Dscam*[TM2]::GFP-*Dscam3'UTR* (4.3-6.36-9.25)(Kim et al., 2013). Specifically, the
25 fragment containing *Dscam5'UTR* and exons 1-16 and that containing exons 18-24 plus
26 *Dscam3'UTR* were amplified from pUAST-*Dscam5'UTR*-*Dscam*[TM2]::GFP-
27 *Dscam3'UTR* by PCR. The fragments, together with PCR products of *Dscam* exon 17.1,
28 were fused with the pUASTattB vector (linearized by EcoRV) by In-Fusion HD Cloning
29 (Clontech Laboratories, Inc.).

30

31 **Sequences of *isoTarget* cassettes**

1 *tlstop* (in-frame stop codons that we introduced are underlined):
2 TAACGTAAGCTAGCTAGACCGGTCCCAACTTAATCGCCTGCAGCACATCCCCCTT
3 TCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATGCCCTCCAAACAGTT
4 GCGCAGCCTGAATGGCGAATGGCGCTTGCCTGGTTCCGGCACCAAGCGGT
5 GCCGGAAAGCTGGCTGGAGTGCATCTCCTGAGGCCGATACTGTCGTCGTCCCC
6 TCAAACCTGGCAGATGCACGGTTACGATGCGCCCACATCTACACCAACGTAACCTATCC
7 CATTACGGTCAATCCGCCGTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGC
8 TCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCACGCGTA
9
10 Short *tlstop* (in-frame stop codons that we introduced are underlined):
11 TAACGTAAGCTAGCTAGACCGGTTCCCACGGAGAATCCGACGGGTTGTTACTCG
12 CTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCACGCGTA
13
14 GS-linker: GGTGGCGGCCGAAGCGGAGGTGGAGGCTCC
15 RSRT: CTTGATGAAAGAATAACGTATTCTTCATCAAG
16 loxP: ATAACTTCGTATAATGTATGCTATACGAAGTTAT
17
18 dsRed box (consisting of 3XP3 enhancer/HSP70 promoter (Gratz et al., 2014), the
19 cDNA encoding the dsRed fluorescent protein and SV40 3' UTR)
20 CGTACGGGATCTAATTCAATTAGAGACTAATTCAATTAGAGCTAATTCAATTAGGAT
21 CCAAGCTTATCGATTCGAACCCCTCGACCGCCGGAGTATAAATAGAGGCGCTCGT
22 CTACGGAGCGACAATTCAATTCAAACAAGCAAAGTGAACACGTCGCTAAGCGAAAG
23 CTAAGCAAATAACAAGCGCAGCTGAACAAGCTAAACAATCGGCTCGAAGCCGGT
24 CGCCACCATGGCCTCCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTG
25 CGCATGGAGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGA
26 GGGCCGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCG
27 GCCCCCTGCCCTCGCCTGGACATCCTGTCCCCCCAGTTCCAGTACGGCTCCAA
28 GGTGTACGTGAAGCACCCCGCCGACATCCCCGACTACAAGAAGCTGTCCTCCCC
29 GAGGGCTTCAAGTGGAGCGCGTGATGAACTTCGAGGACGGCGCGTGGTGACC
30 GTGACCCAGGACTCCTCCCTcCAGGACGGCTCCTCATCTACAAGGTGAAGTTCAT
31 CGGCGTGAACTCCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACTATGGGCTG

1 GGAGGCgTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAAGGGCGAGAT
2 CCACAAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGTC
3 CATCTACATGGCCAAGAAGCCCGTGCAGCTGCCCGGCTACTACTACGTGGACTCC
4 AAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAGCAGTACGAGC
5 GCGCCGAGGGCCGCCACCACCTGTTCTGTAGGGCCGCGACTCTAGATCATAAT
6 CAGCCATACCACATTTGTAGAGGTTTACTTGCTTTAAAAAACCTCCCACACCTCCC
7 CCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTAACTTGTTATTGCAGC
8 TTATAATGGTTACAAATAAGCAATAGCATCACAAATTCACAAATAAAGCATTTTTT
9 TCACTGCATTCTAGTTGGTTGTCCAAACTCATCAATGTATCTAACCGGT
10
11 V5: GGCAAGCCCATCCAAACCCACTGCTCGGCCTGGATAGCACC
12 HA: TACCCATACGATGTTCCAGATTACGCT
13 G3 linker (Gratz et al., 2014): GGTGGCGGC
14

15 **Generation of *isoTarget* flies**

16 The donor plasmid (750 ng/μl) and gRNA plasmid (250 ng/μl) were co-injected into fly
17 embryos to generate mosaic G0 flies, which were crossed to *white*^{-/-} flies to get G1
18 heterozygous knock-in flies that express the selection marker dsRed in their eyes. G1
19 flies with red fluorescence in their eyes were crossed to Cre-expressing flies (BL1092)
20 to generate iso-KO flies. To generate global iso-Tagging flies, iso-KO flies were mated
21 with the germline driver *nos*-Gal4 (BL4442) and 20x UAS-R recombinase (BL55795).
22 According to our experiences, around 20% of fertile mosaic G0 flies were able to
23 generate G1 knock-in flies with fluorescent red eyes. The G1 knock-in flies constitute 1-
24 30% of total G1 flies, depending on individual lines. To generate cell-type-specific iso-
25 Tagging, iso-KO flies were mated with cell-type-specific Gal4 drivers, such as *ppk*-Gal4,
26 and 20x UAS-R recombinase.

27

28 **S2 cell culture and transfection**

29 S2 cells were maintained in *Drosophila* Schneider's medium supplemented with 10%
30 fetal bovine serum at 25°C in a humidified chamber. Plasmids were transfected into

1 cultured S2 cells with polyethylenimine (PEI) (Ehrhardt et al., 2006). Cells were
2 harvested for Western blotting 2 days after transfection.

3

4 **Co-immunoprecipitation and Western blotting**

5 To perform co-immunoprecipitation with neural tissues, the CNS of 3rd-instar larvae
6 (~120 per experimental condition) were dissected out and placed in ice-cold PBS
7 containing 2 mM sodium vanadate. After a pulse of centrifugation, larval CNS were
8 isolated and then lysed on ice with the lysis buffer (50 mM Tris-HCl/pH 7.4, 150 mM
9 NaCl, 2 mM sodium vanadate, 10 mM sodium fluoride, 1% Triton X-100, 10% glycerol,
10 10 mM imidazole and 0.5 mM phenylmethylsulfonyl fluoride). Lysates were centrifuged
11 at 15,000 g for 20 min at 4°C. The resulting supernatants were either saved as inputs or
12 incubated with magnetic beads conjugated with appropriate antibodies for 4 hours at
13 4°C. After washing once with the lysis buffer, twice with lysis buffer containing 0.1%
14 deoxycholate, and 3 times with lysis buffer lacking Triton X-100, the immunoprecipitates
15 and total lysates were resolved on 7.5% SDS-PAGE gels followed by Western blotting
16 as previously described (Kim et al., 2013). Protein samples were transferred to
17 nitrocellulose membranes and detected by chemiluminescence (Catalog# 32106, Pierce
18 ECL Western Blotting Substrate) with either a BIO-RAD ChemiDoc Touch Imaging
19 system or a Kodak X-OMAT 2000 film processor.

20 The procedure of co-immunoprecipitation with lysates from S2 cells was similar
21 except that cultured S2 cells were re-suspended in ice-cold PBS before lysis.

22

23 **Imaging and image analysis**

24 Larvae immunostaining was described previously (Ye et al., 2011). Confocal imaging
25 was done with a Leica SP5 confocal system with 20x or 63x glycerol immersion lenses.
26 To minimize the variation, we only imaged neuronal dendrites and presynaptic terminals
27 of C3da or C4da neurons in abdominal segments 4, 5, and 6. Images were collected
28 with z stacks of 1-μm-step size for dendrites and 0.3-μm-step size for axons. The
29 resulting three-dimensional images were projected into two-dimensional images by
30 maximum projection. The same imaging setting was applied throughout the imaging
31 process.

1 The Neurolucida software was used to quantify dendritic morphology and axon
2 terminal growth. For dendrites, the overlap of sister branches is counted as a cross. For
3 quantifying axon terminals of single C4 da neuron, branches shorter than 5 μ m were
4 excluded from the analysis. For quantifying the number of longitudinal axonal branches
5 visible between abdominal segment 4-6 (i.e., the connectives) of C4 da neurons, only
6 complete connectives spanning neighboring segments were quantified. Fasciculated
7 connectives are counted as two.

8 To eliminate experimenter's bias, these experiments were carried out in double-
9 blind fashion. The images acquired by the primary experimenter were coded and
10 randomized by another lab member. After the primary experimenter quantified the data,
11 the data were decoded for statistical analysis.

12

13 **Reverse-transcription real-Time PCR**

14 The procedure was as described before (Kim et al., 2013). Briefly, mRNA was extracted
15 from around 20 3rd-instar larval CNS with a standard Trizol method (Invitrogen). cDNA
16 was synthesized with Invitrogen SuperScript III First-Strand Synthesis SuperMix
17 (Invitrogen). 10 ng cDNA was used as the template for each real-time PCR reaction by
18 SYBR Green mix (Thermo Scientific) with the Applied Biosystems 7300. To normalize
19 *Dscam* transcripts to those of reference genes, we calculated ΔCt (*Dscam*) = Ct
20 (*Dscam*) – Ct (reference gene). Statistical analysis was performed to compare ΔCt
21 (*Dscam*)(wild-type) and ΔCt (*Dscam*)(mutant) to determine whether there is the
22 expression of test gene is different between wild-type and mutants (Yuan et al., 2006).
23 Relative mRNA levels is calculated as: $2^{-\Delta\Delta Ct}$, where $\Delta\Delta Ct$ (*Dscam*) = ΔCt
24 (*Dscam*)(mutant) - ΔCt (*Dscam*)(wild-type). We used *elav* as the reference gene and
25 *Chmp1* as the internal control. Following primers were used: *Chmp1*: 5'-
26 AAAGGCCAAGAAGGCGATT-3' and 5'-GGGCACTCATCCTGAGGTAGTT-3'; *elav*:
27 5'-CTGCCAAAGACGATGACC-3' and 5'-TAAAGCCTACTCCTTCGTC-3';
28 *Dscam*[TM1]: 5'- CGTTACCGGAGGCCTATCG-3' and 5'- ATCGTCTTGTTGGTGA
29 TTGCC-3'; *Dscam*[TM2]: 5'- CGTTACCGGAGGCACCATT-3' and 5'- ACTACATCG
30 TAGTACACATCCTT-3'.

31

1 **Statistical Analysis**

2 Data are presented as mean \pm SEM. Comparisons of mean differences between groups
3 were performed by One-way ANOVA followed by Student's *t*-test. $P < 0.05$ was
4 considered to be statistically significant. For all quantification, *: $p < 0.05$; **: $p < 0.01$;
5 ***: $p < 0.001$; ns: not significant ($p > 0.05$).

1 REFERENCES

2 Anastassiou, D., Liu, H., and Varadan, V. (2006). Variable window binding for mutually
3 exclusive alternative splicing. *Genome biology* 7, R2.

4 Baralle, F.E., and Giudice, J. (2017). Alternative splicing as a regulator of development
5 and tissue identity. *Nat Rev Mol Cell Bio* 18, 437-451.

6 Chen, Y., Akin, O., Nern, A., Tsui, C.Y., Pecot, M.Y., and Zipursky, S.L. (2014). Cell-
7 type-specific labeling of synapses in vivo through synaptic tagging with recombination.
8 *Neuron* 81, 280-293.

9 Collins, C.A., Wairkar, Y.P., Johnson, S.L., and DiAntonio, A. (2006). Highwire restrains
10 synaptic growth by attenuating a MAP kinase signal. *Neuron* 51, 57-69.

11 Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., and
12 O'Kane, C.J. (1996). Associative learning disrupted by impaired Gs signaling in
13 Drosophila mushroom bodies. *Science* (New York, NY) 274, 2104-2107.

14 Desai, C.J., Garrity, P.A., Keshishian, H., Zipursky, S.L., and Zinn, K. (1999). The
15 Drosophila SH2-SH3 adapter protein Dock is expressed in embryonic axons and
16 facilitates synapse formation by the RP3 motoneuron. *Development* 126, 1527-1535.

17 Ehrhardt, C., Schmolke, M., Matzke, A., Knoblauch, A., Will, C., Wixler, V., and Ludwig,
18 S. (2006). Polyethylenimine, a cost-effective transfection reagent. *Signal Transduction*
19 6, 179-184.

20 Fan, X.P., Labrador, J.P., Hing, H., and Bashaw, G.J. (2003). Slit stimulation recruits
21 Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon
22 repulsion at the CNS midline. *Neuron* 40, 113-127.

23 Garrity, P.A., Rao, Y., Salecker, I., McGlade, J., Pawson, T., and Zipursky, S.L. (1996).
24 Drosophila photoreceptor axon guidance and targeting requires the dreadlocks
25 SH2/SH3 adapter protein. *Cell* 85, 639-650.

26 Goyal, G., Zheng, J., Adam, E., Steffes, G., Jain, M., Klavins, K., and Hummel, T.
27 (2019). Sphingolipid-dependent Dscam sorting regulates axon segregation. *Nature
28 communications* 10, 813.

29 Gratz, S.J., Ukkenn, F.P., Rubinstein, C.D., Thiede, G., Donohue, L.K., Cummings, A.M.,
30 and O'Connor-Giles, K.M. (2014). Highly specific and efficient CRISPR/Cas9-catalyzed
31 homology-directed repair in Drosophila. *Genetics* 196, 961-971.

32 Grueber, W.B., and Jan, Y.N. (2004). Dendritic development: lessons from Drosophila
33 and related branches. *Current opinion in neurobiology* 14, 74-82.

34 Grueber, W.B., Ye, B., Yang, C.H., Younger, S., Borden, K., Jan, L.Y., and Jan, Y.N.
35 (2007). Projections of Drosophila multidendritic neurons in the central nervous system:
36 links with peripheral dendrite morphology. *Development* 134, 55-64.

37 Gu, P., Gong, J., Shang, Y., Wang, F., Ruppell, K.T., Ma, Z., Sheehan, A.E., Freeman,
38 M.R., and Xiang, Y. (2019). Polymodal Nociception in Drosophila Requires Alternative
39 Splicing of TrpA1. *Curr Biol* 29, 3961-3973 e3966.

1 Hing, H., Xiao, J., Harden, N., Lim, L., and Zipursky, S.L. (1999). Pak functions
2 downstream of Dock to regulate photoreceptor axon guidance in *Drosophila*. *Cell* 97,
3 853-863.

4 Hughes, M.E., Bortnick, R., Tsubouchi, A., Baumer, P., Kondo, M., Uemura, T., and
5 Schmucker, D. (2007). Homophilic Dscam interactions control complex dendrite
6 morphogenesis. *Neuron* 54, 417-427.

7 Jan, Y.N., and Jan, L.Y. (2010). Branching out: mechanisms of dendritic arborization.
8 *Nat Rev Neurosci* 11, 316-328.

9 Kamiyama, D., McGorty, R., Kamiyama, R., Kim, M.D., Chiba, A., and Huang, B.
10 (2015). Specification of Dendritogenesis Site in *Drosophila* aCC Motoneuron by
11 Membrane Enrichment of Pak1 through Dscam1. *Developmental cell* 35, 93-106.

12 Kelemen, O., Convertini, P., Zhang, Z., Wen, Y., Shen, M., Falaleeva, M., and Stamm,
13 S. (2013). Function of alternative splicing. *Gene* 514, 1-30.

14 Kim, J.H., Wang, X., Coolon, R., and Ye, B. (2013). Dscam expression levels determine
15 presynaptic arbor sizes in *Drosophila* sensory neurons. *Neuron* 78, 827-838.

16 Kuo, C.T., Jan, L.Y., and Jan, Y.N. (2005). Dendrite-specific remodeling of *Drosophila*
17 sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone
18 signaling. *Proceedings of the National Academy of Sciences of the United States of
19 America* 102, 15230-15235.

20 Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E.J., Manning, R.W., Yu, S.H., Mulder,
21 K.L., and Westphal, H. (1992). Targeted oncogene activation by site-specific
22 recombination in transgenic mice. *Proceedings of the National Academy of Sciences of
23 the United States of America* 89, 6232-6236.

24 Lee, J.A., Damianov, A., Lin, C.H., Fontes, M., Parikshak, N.N., Anderson, E.S.,
25 Geschwind, D.H., Black, D.L., and Martin, K.C. (2016). Cytoplasmic Rbfox1 Regulates
26 the Expression of Synaptic and Autism-Related Genes. *Neuron* 89, 113-128.

27 Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of
28 gene function in neuronal morphogenesis. *Neuron* 22, 451-461.

29 Lee, Y., and Rio, D.C. (2015). Mechanisms and Regulation of Alternative Pre-mRNA
30 Splicing. *Annual review of biochemistry* 84, 291-323.

31 Lerch, J.K., Kuo, F., Motti, D., Morris, R., Bixby, J.L., and Lemmon, V.P. (2012). Isoform
32 Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-
33 Seq. *Plos One* 7.

34 Liu, G., Li, W., Wang, L., Kar, A., Guan, K.L., Rao, Y., and Wu, J.Y. (2009). DSCAM
35 functions as a netrin receptor in commissural axon pathfinding. *Proceedings of the
36 National Academy of Sciences of the United States of America* 106, 2951-2956.

37 Matthews, B.J., Kim, M.E., Flanagan, J.J., Hattori, D., Clemens, J.C., Zipursky, S.L.,
38 and Grueter, W.B. (2007). Dendrite Self-Avoidance Is Controlled by Dscam. *Cell* 129,
39 593-604.

1 Moriya, H. (2015). Quantitative nature of overexpression experiments. *Molecular biology*
2 of the cell 26, 3932-3939.

3 Nern, A., Pfeiffer, B.D., Svoboda, K., and Rubin, G.M. (2011). Multiple new site-specific
4 recombinases for use in manipulating animal genomes. *Proceedings of the National*
5 *Academy of Sciences of the United States of America* 108, 14198-14203.

6 Pfeiffer, B.D., Jenett, A., Hammonds, A.S., Ngo, T.T., Misra, S., Murphy, C., Scully, A.,
7 Carlson, J.W., Wan, K.H., Laverty, T.R., *et al.* (2011). GAL4 Driver Collection of Rubin
8 Laboratory at Janelia Farm.

9 Prelich, G. (2012). Gene overexpression: uses, mechanisms, and interpretation.
10 *Genetics* 190, 841-854.

11 Purohit, A.A., Li, W., Qu, C., Dwyer, T., Shao, Q., Guan, K.L., and Liu, G. (2012). Down
12 Syndrome Cell Adhesion Molecule (DSCAM) Associates with Uncoordinated-5C
13 (UNC5C) in Netrin-1-mediated Growth Cone Collapse. *J Biol Chem* 287, 27126-27138.

14 Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013).
15 Genome engineering using the CRISPR-Cas9 system. *Nat Protoc* 8, 2281-2308.

16 Roth, S., Fulcher, L.J., and Sapkota, G.P. (2019). Advances in targeted degradation of
17 endogenous proteins. *Cell Mol Life Sci* 76, 2761-2777.

18 Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E.,
19 and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting
20 extraordinary molecular diversity. *Cell* 101, 671-684.

21 Scotti, M.M., and Swanson, M.S. (2016). RNA mis-splicing in disease. *Nature reviews*
22 *Genetics* 17, 19-32.

23 Shi, L., Yu, H.-H., Yang, J.S., and Lee, T. (2007). Specific Drosophila Dscam
24 Juxtamembrane Variants Control Dendritic Elaboration and Axonal Arborization. *J*
25 *Neurosci* 27, 6723-6728.

26 Soba, P., Zhu, S., Emoto, K., Younger, S., Yang, S.J., Yu, H.H., Lee, T., Jan, L.Y., and
27 Jan, Y.N. (2007). Drosophila sensory neurons require Dscam for dendritic self-
28 avoidance and proper dendritic field organization. *Neuron* 54, 403-416.

29 Sterne, G.R., Kim, J.H., and Ye, B. (2015). Dysregulated Dscam levels act through
30 Abelson tyrosine kinase to enlarge presynaptic arbors. *eLife* 4, e05196.

31 Terenzio, M., Schiavo, G., and Fainzilber, M. (2017). Compartmentalized Signaling in
32 Neurons: From Cell Biology to Neuroscience. *Neuron* 96, 667-679.

33 Van Doren, M., Williamson, A.L., and Lehmann, R. (1998). Regulation of zygotic gene
34 expression in Drosophila primordial germ cells. *Curr Biol* 8, 243-246.

35 Wang, J., Ma, X.J., Yang, J.S., Zheng, X.Y., Zugates, C.T., Lee, C.H.J., and Lee, T.
36 (2004). Transmembrane/juxtamembrane domain-dependent Dscam distribution and
37 function during mushroom body neuronal morphogenesis. *Neuron* 43, 663-672.

1 Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H.J., and Lee, T.M. (2002). *Drosophila*
2 *Dscam* is required for divergent segregation of sister branches and suppresses ectopic
3 bifurcation of axons. *Neuron* 33, 559-571.

4 Wu, C.L., Waikar, Y.P., Collins, C.A., and DiAntonio, A. (2005). Highwire function at the
5 *Drosophila* neuromuscular junction: Spatial, structural, and temporal requirements.
6 *Journal of Neuroscience* 25, 9557-9566.

7 Xiong, X., Wang, X., Ewanek, R., Bhat, P., Diantonio, A., and Collins, C.A. (2010).
8 Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal
9 injury. *The Journal of cell biology* 191, 211-223.

10 Yang, J.S.J., Bai, J.M., and Lee, T.M. (2008). Dynein-Dynactin Complex Is Essential for
11 Dendritic Restriction of TM1-Containing *Drosophila* *Dscam*. *Plos One* 3.

12 Yap, K., and Makeyev, E.V. (2016). Functional impact of splice isoform diversity in
13 individual cells. *Biochem Soc Trans* 44, 1079-1085.

14 Ye, B., Kim, J.H., Yang, L., McLachlan, I., Younger, S., Jan, L.Y., and Jan, Y.N. (2011).
15 Differential regulation of dendritic and axonal development by the novel kruppel-like
16 factor *dar1*. *J Neurosci* 31, 3309-3319.

17 Ye, B., Zhang, Y., Song, W., Younger, S.H., Jan, L.Y., and Jan, Y.N. (2007). Growing
18 dendrites and axons differ in their reliance on the secretory pathway. *Cell* 130, 717-729.

19 Yuan, J.S., Reed, A., Chen, F., and Stewart, C.N., Jr. (2006). Statistical analysis of real-
20 time PCR data. *BMC Bioinformatics* 7, 85.

21 Zhan, X.L., Clemens, J.C., Neves, G., Hattori, D., Flanagan, J.J., Hummel, T.,
22 Vasconcelos, M.L., Chess, A., and Zipursky, S.L. (2004). Analysis of *Dscam* diversity in
23 regulating axon guidance in *Drosophila* mushroom bodies. *Neuron* 43, 673-686.

1 **FIGURE LEGENDS**

2

3 **Figure 1. Design of *isoTarget* and its application to studying the functional**
4 **diversity of splicing isoforms.**

5 (A) Introducing translational stops into alternative exons allows isoform-specific
6 manipulations of the gene. Inserting the commonly used transcriptional stop cassette
7 into alternative exon leads to the transcriptional termination of all isoforms downstream
8 of the targeted exon (left branch). In order to truncate the targeted isoform, but not the
9 transcription or translation of the other isoforms (right branch), we engineered a
10 *translational stop (t/stop)* cassette by introducing multiple stop codons into the DNA
11 sequence encoding a non-catalytic region of β-Gal (bottom left).

12 (B) Combining *t/stop* with other genetic methods for multi-purpose studies of the
13 targeted splicing isoform. The *isoTarget* cassette, which consists of an RSRT site, a
14 translational stop (*t/stop*), another RSRT site, and an epitope tag, is inserted into the
15 targeted isoform exon by CRISPR/Cas9-mediated genome editing. The insertion
16 generates a loss-of-function allele of either the targeted isoform or the entire gene,
17 depending on the length of the *t/stop* cassette (see Figure S3F). Single cells that are
18 homozygous for the targeted allele can be produced by genetic mosaic techniques,
19 such as MARCM. The endogenous isoforms can be visualized in specific neurons by
20 selective expression of R recombinase to remove the RSRT-*t/stop*-RSRT cassette.
21 Expression of R recombinase in female germline cells leads to tagging of the isoform in
22 all cells that express this isoform in the progeny (“global iso-tagging”). Expression of R
23 recombinase in specific cell types or single cells leads to tagging of the isoform in those
24 cells. In the iso-Tagged flies, upstream regulators and downstream effectors of specific
25 isoforms can be identified through genetic, cell biological, and biochemical analyses.

26

27 **Figure 2. *IsoTarget* uncovers a specific role for the *Dscam[TM2]* isoform in axon**
28 **terminal growth.**

29 (A-C) Compared with WT (A), global *Dscam[TM2]^{iso-KO}* (B), but not *Dscam[TM1]^{iso-KO}*
30 (C), impairs axon terminal growth in C4da neurons. The C4da-specific driver *ppk*-Gal4
31 was used to label all C4da axon terminals in the CNS. Shown are representative

1 images of abdominal segment 4 to 6 (A4-A6). The large red arrowheads point to the
2 sites where longitudinal axon tracts are broken, and the small arrowheads point to
3 where the tracts are thinned.
4 (**D-G**) *Dscam[TM2]*, but not *[TM1]*, is required for the growth of axon terminals in single
5 C4da neurons. The MARCM technique was used to generate single GFP-labeled C4da
6 neurons that were homozygous of the indicated alleles. *Dscam[TM1]*^{iso-KO} has no effect
7 on axon terminal growth (**D & E**), while *Dscam[TM2]*^{iso-KO} reduced the length of axon
8 terminals to the same level as the loss of both isoforms (**F & G**).
9 (**H**) Quantification of the number of axon connectives (i.e., the longitudinal branches)
10 from A4 to A6. Unless specified otherwise, mean \pm SEM is shown in all figures, and the
11 statistical tests are one-way ANOVA followed by Student's t test. *: p < 0.05; **: p <
12 0.01; ***: p < 0.001; ns: not significant (p > 0.05).
13 (**I**) Quantification of presynaptic terminal length in the C4da neuron ddaC.
14 (**J-M**) *Dscam[TM2]*, but not *[TM1]*, is required for the growth of axon terminals in C3da
15 neurons. The longitudinal axon tracts of C3da neurons in the CNS remain intact in
16 *Dscam[TM1]*^{iso-KO} (**J & K**), but are disrupted in *Dscam[TM2]*^{iso-KO} (**L**) or in mutants
17 lacking both isoforms (**M**). The large red arrow heads point to the sites where
18 longitudinal axon tracts are broken. The small red arrowheads point to the sites where
19 longitudinal axon tracts are thinned.

20
21 **Figure 3. IsoTarget uncovers redundant functions for Dscam[TM1] and [TM2] in**
22 **dendrite self-avoidance.**

23 (**A-D**) Dscam[TM1] and [TM2] function redundantly in mediating dendritic self-avoidance
24 in C3da neuron. In 3rd instar larvae, C3da dendrites rarely fasciculate or intersect with
25 each other in wild-type (WT) (**A**), while loss of both *Dscam[TM1]* and *[TM2]* isoforms
26 (*Dscam[TM1/2]*^{iso-KO}) significantly impairs self-avoidance (**B**). Loss of either
27 *Dscam[TM1]* (**C**) or *[TM2]* (**D**) does not affect dendritic self-avoidance. The red arrows
28 point to dendritic crossing sites.

29 (**E**) Quantification of dendritic branch crossings in the C3da neuron ddaF.

30 (**F-I**) Dscam[TM1] and [TM2] function redundantly in mediating dendritic self-avoidance
31 in C4da neurons. The MARCM technique was used. Small red arrows point to crossings

1 of fine dendritic branches, and large red arrows point to crossings of major dendritic
2 branches, which is only observed when both isoforms are lost.

3 (J) Quantification of dendritic branch crosses in the C4da neuron ddaC.

4

5 **Figure 4. Using *isoTarget* to identify the subcellular localizations of endogenous**
6 **Dscam isoforms.**

7 (A-C) Both Dscam[TM1] and [TM2] are localized in the dendrites of larval PNS neurons.
8 At early 2nd instar stage, compared with control (A), global iso-Tagging reveals the
9 localization of endogenous [TM1] and [TM2] in the dendrites of PNS da neurons, which
10 is double-labeled by the PNS neuron marker anti-HRP.

11 (D & E) iso-Tagging shows that endogenous Dscam[TM2], but not [TM1], is in the axon
12 terminals of C4da neurons in early 2nd instar larvae. The C4da-specific driver *ppk*-Gal4
13 was used to tag endogenous Dscam[TM1] or [TM2] by driving the expression of UAS-R-
14 recombinase and to label C4da axon terminals by driving the expression of UAS-
15 mCD8::RFP.

16 (F-H) Both Dscam[TM1] and [TM2] are localized in the dendrites of CNS neurons. Iso-
17 Tagging in mushroom body neurons shows that both endogenous [TM1] and [TM2] are
18 present in MB calyx, which is a cluster of dendrites in 3rd instar larvae. The MB driver
19 OK107-Gal4 was used to drive the expression of R recombinase for tagging
20 endogenous Dscam[TM1] or [TM2] and the expression of mCD8::RFP for labeling MB
21 morphology.

22 (I-K) Dscam[TM2], but not [TM1], is localized in MB axons. Compared to the WT
23 control, endogenous Dscam[TM2], but not [TM1], is detected in the axon peduncles of
24 MB in 3rd instar larvae.

25

26 **Figure 5. Dendrite-specific localization restrains endogenous Dscam[TM1] from**
27 **functioning in axons.**

28 (A) *Dscam[TM2]*^{iso-KO} dramatically impairs the axon terminal growth in C4da neurons.
29 The large red arrowheads point to the sites where longitudinal axon tracts are broken,
30 and the small arrowheads point to where the tracts are thinned.

1 (B) Overexpression of a Dscam[TM1] transgene with a single copy of *ppk*-Gal4 leads to
2 a low level of [TM1] in axon terminals and mitigates the axonal defect in [TM2] iso-KO.
3 (C) Overexpression of the Dscam[TM2]#1 transgene with a single copy of *ppk*-Gal4 also
4 mitigates the axonal defect in [TM2] iso-KO.
5 (D) When the Dscam[TM1] transgene is driven by 2 copies of *ppk*-Gal4, it leads to
6 higher levels of [TM1] in axon terminals than the overexpression driven by one copy of
7 *ppk*-Gal4 and rescue effects that are comparable with [TM2] overexpression.
8 (E) Overexpression of the Dscam[TM2]#2 transgene with a single copy of *ppk*-Gal4
9 leads to higher levels and rescue effects than that of [TM1] in C4da axon terminals.
10 (F) Quantification of the number of C4da axon connectives in segments A4-A6.
11 (G) Quantitation of transgenic Dscam::GFP levels in C4da axon terminals. The
12 experiments were done in *Dscam[TM2]^{iso-KO}* larvae. As shown in the schematic (top,
13 green drawings), UAS-Dscam::GFP transgenes were expressed in C4da neurons with
14 the *ppk*-Gal4 driver. VNCs (indicated by the dashed red box in the top panel), which
15 contained transgenic Dscam::GFP in C4da axon terminals, were dissected out from 3rd
16 instar larvae for Western blotting. The bottom panel shows the Western blots of
17 transgenic Dscam::GFP in the axon terminals of C4da neurons. The VNC lysates were
18 used for Western blotting with anti-GFP and anti-Elav antibodies. The relative
19 expression levels are GFP signals normalized by Elav signals. Each dot represents the
20 result from one independent experiment. Overexpression of a [TM1] transgene resulted
21 in a modest level of [TM1] in axon terminals, while two different [TM2] transgenes
22 caused higher levels of [TM2] in axon terminals. Two copies of *ppk*-Gal4 increased the
23 levels of [TM1] in axon terminals.
24 (H) The rescue of the axonal defect caused by loss of *Dscam* is proportional to the level
25 of transgenic Dscam in C4da axon terminals, regardless of the isoform. The relative
26 Dscam expression levels were determined by Western blotting of CNS lysates from
27 larvae overexpressing [TM1]::GFP or [TM2]::GFP by *ppk*-Gal4 and plotted against the
28 rescue effect of the transgene.
29
30 **Figure 6. Dscam[TM1] and [TM2] exhibit similar biochemical properties and**
31 **cellular functions when they are localized in the same subcellular compartment.**

1 (A & B) Dock preferentially interacts with endogenous Dscam[TM2] *in vivo*. (A) Brain
2 lysates of larvae with global iso-Tagging of [TM1]::HA or [TM2]::V5 were
3 immunoprecipitated by anti-HA or V5 beads, respectively, and immunoblotted with an
4 anti-Dscam antibody that recognizes both [TM1] and [TM2] and an anti-Dock antibody.
5 This experiment was repeated twice independently. (B) Brain lysates of larvae that
6 expressed [TM1]::GFP or [TM2]::GFP through the endogenous *Dscam* promoter were
7 immunoprecipitated by an anti-GFP antibody. The immunoprecipitates were
8 immunoblotted with anti-GFP and anti-Dock antibodies. This experiment was repeated
9 three times independently.

10 (C-F) Dscam[TM2] requires Dock to promote presynaptic terminal growth. Shown are
11 representative images of A4-A6. Overexpressing a Dscam[TM2]::GFP transgene
12 significantly promotes axonal growth in C4da neurons (C & D). While loss of *dock* does
13 not affect C4da axon terminals (E), it completely abolishes the overgrowth caused by
14 Dscam[TM2]::GFP overexpression (F).

15 (G) Quantification of the number of C4da axon connectives.

16 (H) Dock binds to [TM1] and [TM2] in similar affinity in cultured S2 cells. Lysates of S2
17 cells expressing mCD8::GFP, Dscam[TM1]::GFP or [TM2]::GFP were
18 immunoprecipitated with an anti-GFP antibody. Inputs and immunoprecipitates were
19 blotted by anti-GFP and anti-Dock antibodies. This experiment was repeated three
20 times independently.

21 (I-K) Transgenic Dscam[TM1] requires Dock to promote presynaptic terminal growth.
22 Compared to WT (I), overexpressing [TM1]::GFP transgene significantly promotes
23 axonal growth in C4da neurons (J), which is completely abolished by loss of *dock* (K).

24 (L) Quantification of the number of C4da axon connectives from A4-A6.

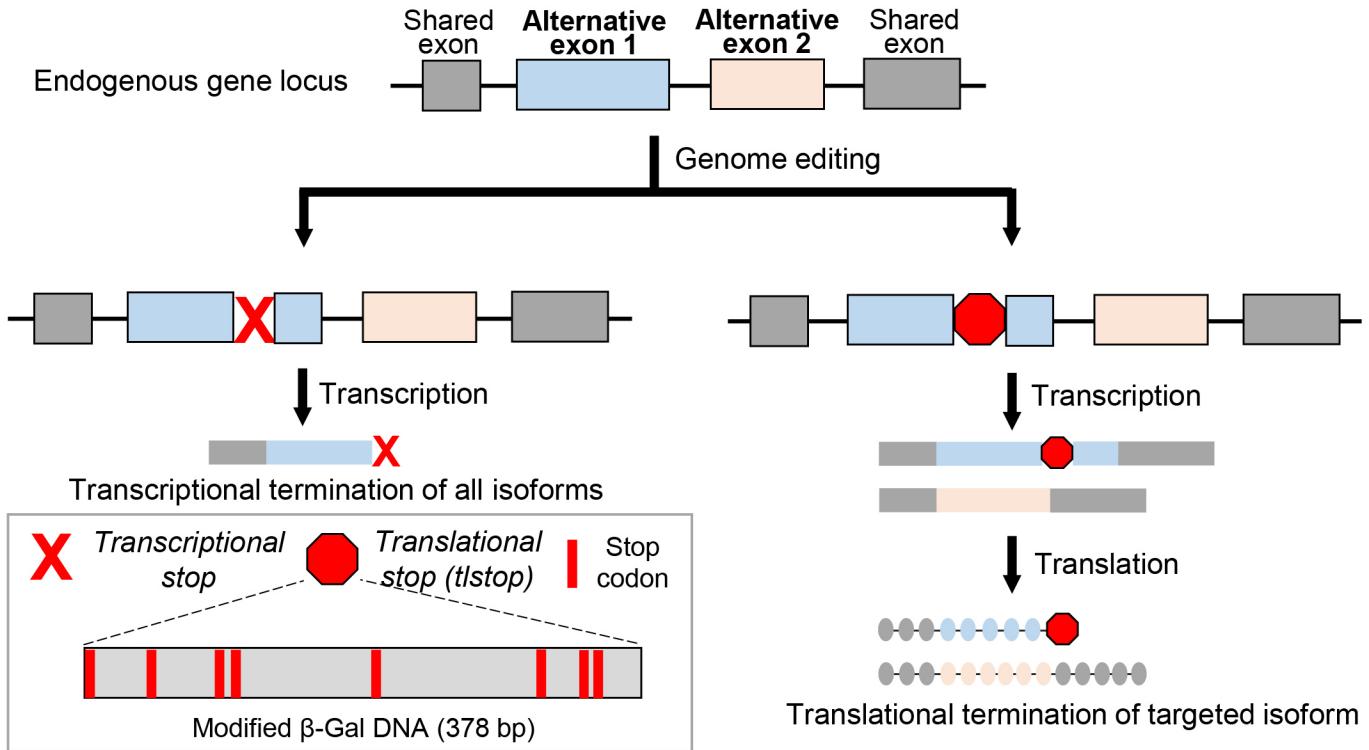
25

26 **Figure 7. Axonal enrichment of Wnd compartmentalizes Wnd-Dscam[TM2]**
27 **signaling.**

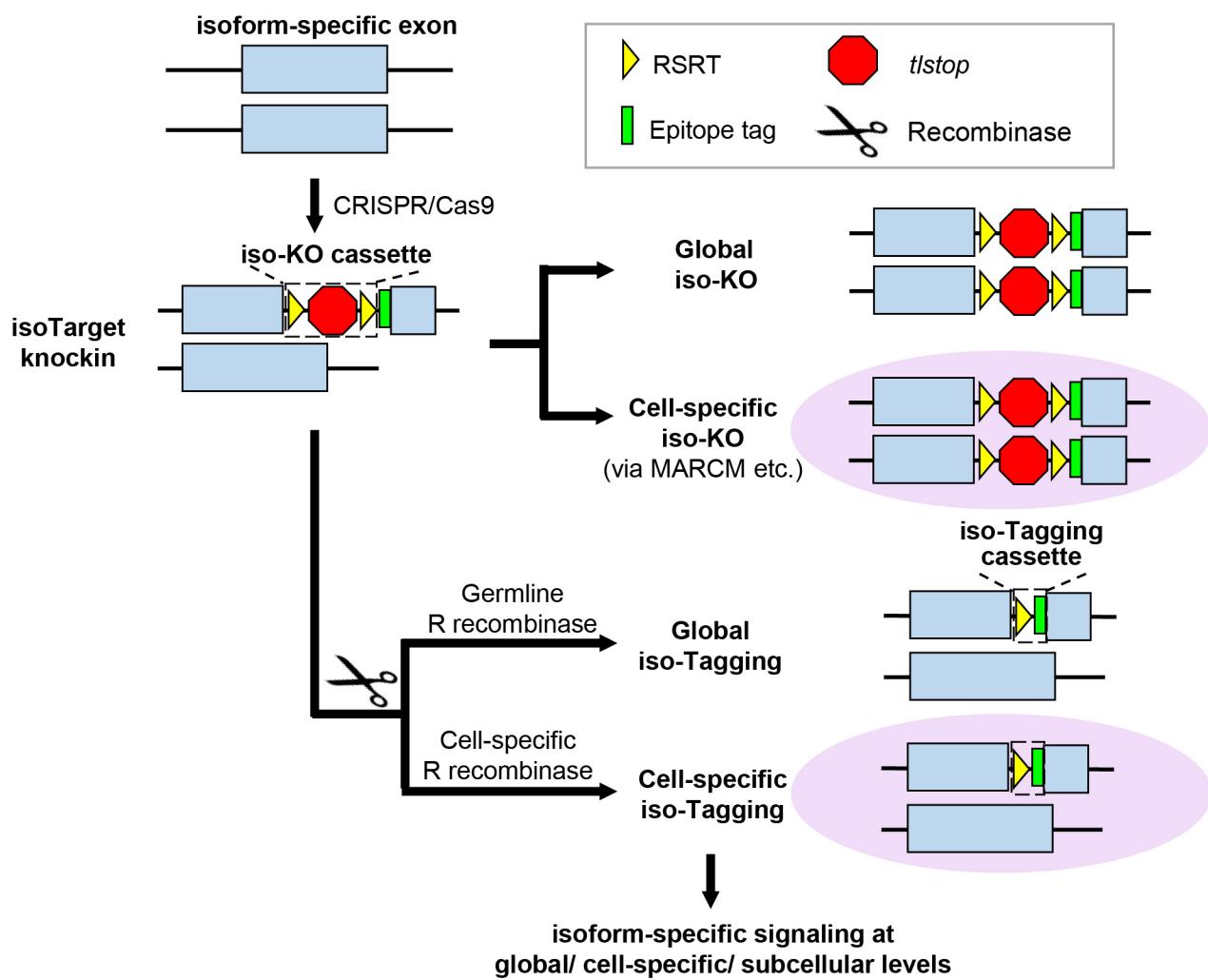
28 (A) *Hiw* suppresses the expression of both Dscam[TM1] and [TM2]. In the brains of 3rd
29 instar larvae that were trans-heterozygotes of global iso-Tagging of [TM1]::HA and
30 [TM2]::V5, loss of *hiw* (*hiw*^{ΔN}) elevated the levels of both endogenous [TM1] and [TM2].

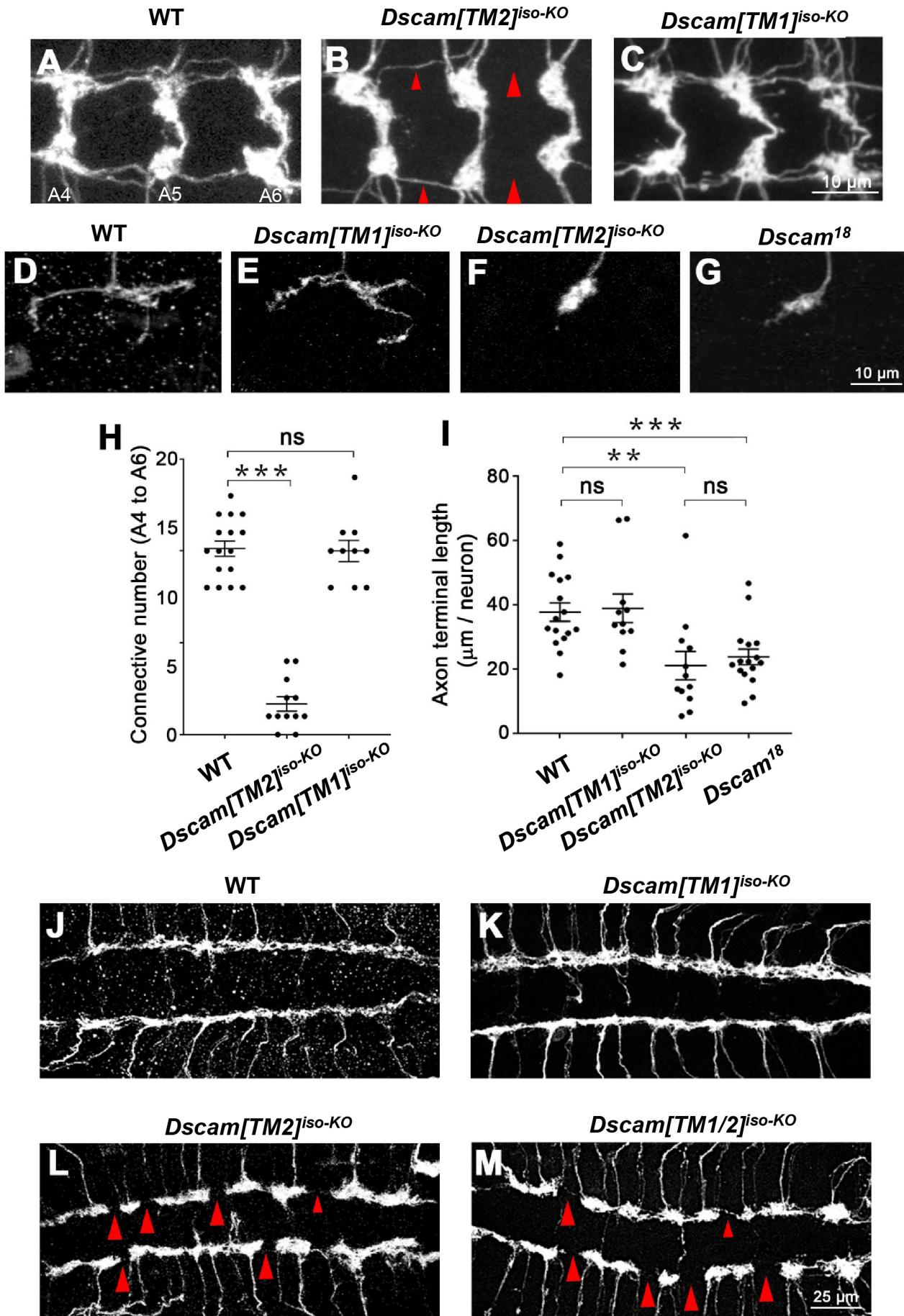
1 Left: Western blots; Right: quantification of Western blots. Each dot represents the
2 result from one independent experiment.

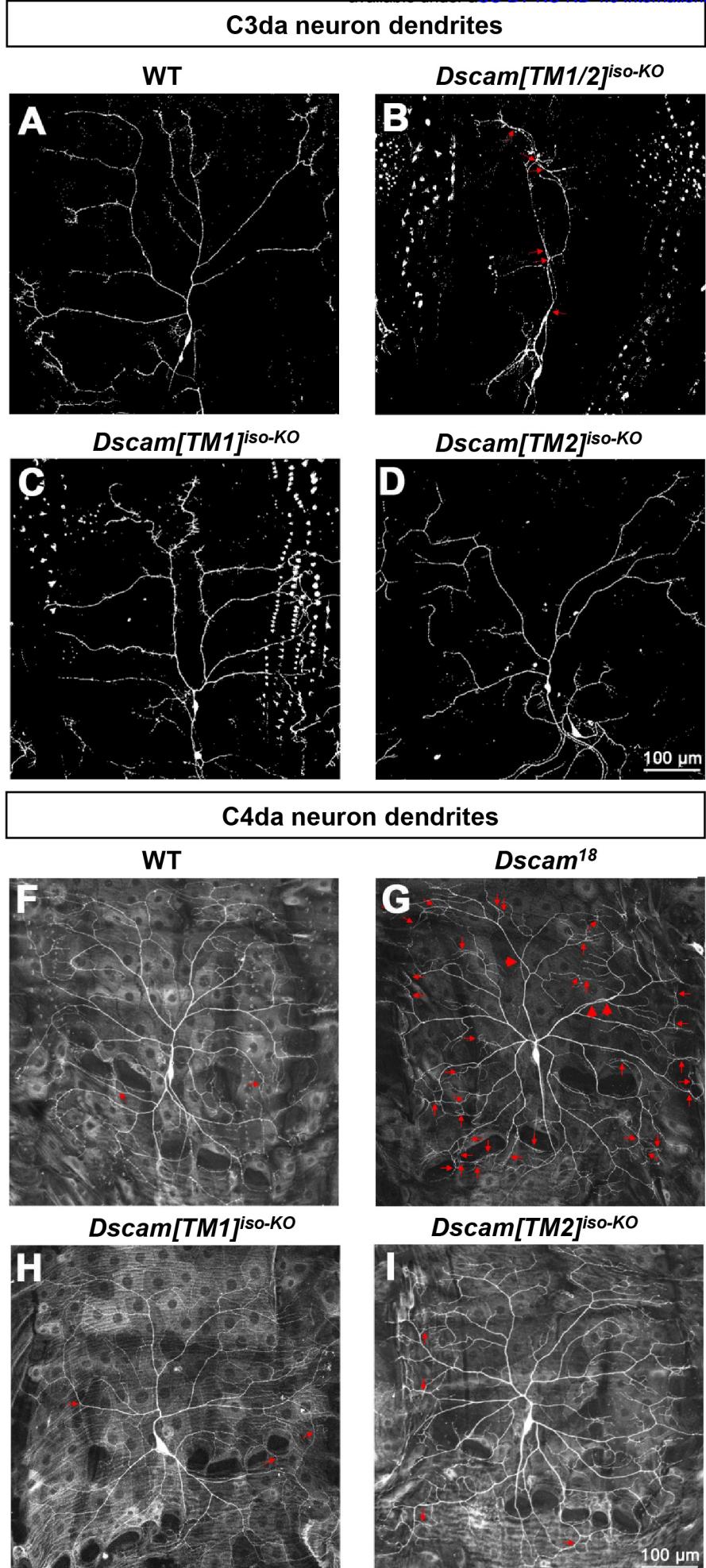
3 **(B)** Overexpression of Wnd increases the levels of Dscam[TM2], but not that of [TM1].
4 Top: The Gal4⁴⁻⁷⁷, which is expressed in a small set of PNS neurons and a number of
5 CNS neurons, was used to drive the expression of R recombinase for iso-Tagging and
6 the overexpression of Wnd. Compared with a kinase-dead Wnd transgene (Wnd^{KD}),
7 overexpressing Wnd does not affect endogenous Dscam[TM1] levels (left), but
8 significantly increases Dscam[TM2] levels (right) in 3rd-instar larval brains. Bottom:
9 quantification of Western blots. Each dot represents the result from one independent
10 experiment.


11 **(C)** Overexpression of Wnd increases endogenous Dscam[TM2] levels in the
12 presynaptic terminals of C4da neurons. At the 3rd instar larval stage, Dscam[TM2]::V5^{iso-}
13 Tagging is no longer detectable in C4da axon terminals. Overexpression of Wnd elevates
14 the level of Dscam[TM2]::V5^{iso-Tagging} in these terminals.

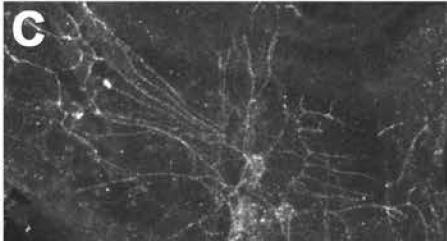
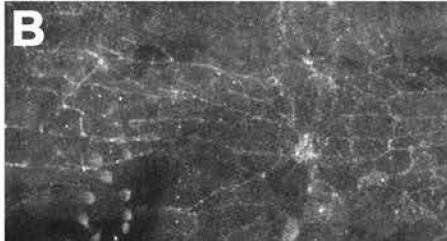
15 **(D, E)** Wnd similarly promotes [TM1] and [TM2] expression in cultured S2 cells. S2 cells
16 are transfected with plasmids expressing Wnd and [TM1]::GFP or [TM2]::GFP with
17 endogenous *Dscam* 5' and 3' UTR. Lysates of S2 cells were blotted by anti-GFP and
18 anti-tubulin antibodies. Each dot represents the result from one independent experiment.


19 **(F)** Wnd is enriched in axons. GFP-tagged kinase-dead Wnd (GFP::Wnd^{KD}) was
20 expressed in C4da neurons by *ppk*-Gal4. mCD8::RFP was used to label the neurons.
21 While GFP::Wnd^{KD} signal is enriched in axon terminals, little is observed in dendrites.
22 Yellow arrows point to major dendritic branches.

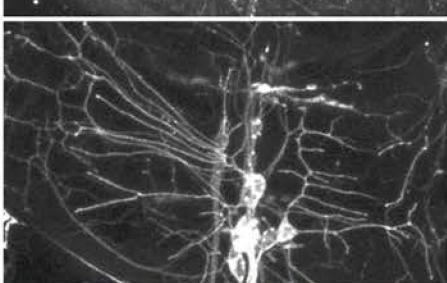
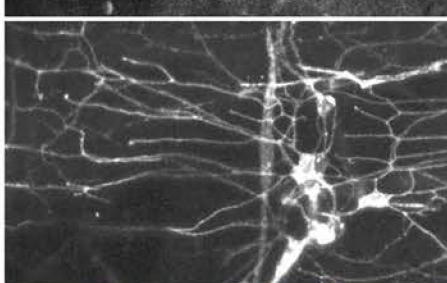
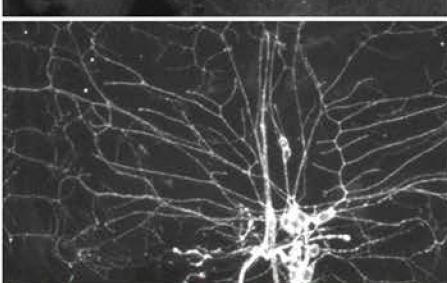

23 **(G)** Subcellular localization expands the functional diversity of splicing isoforms via two
24 different modes. In Mode 1, the localization of an isoform in a particular subcellular
25 location (e.g., Dscam[TM1] in dendrites) restrains this isoform from functioning in other
26 compartments. In Mode 2, the enrichment of the functional partners (e.g., Wnd and
27 Dock) for a ubiquitously localized isoform (e.g., Dscam[TM2]) leads to isoform-specific
28 subcellular signaling and functions.


A

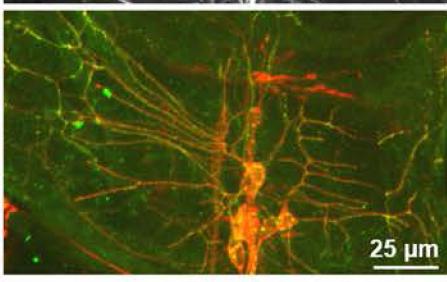
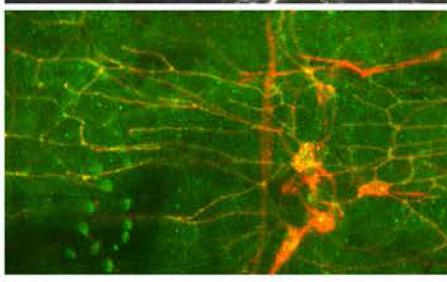
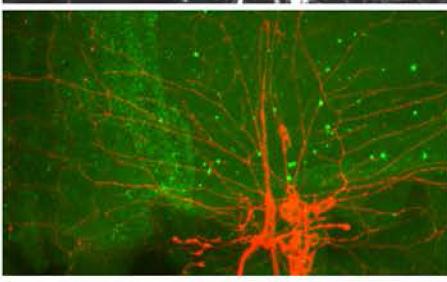
B



Global iso-Tagging

WT

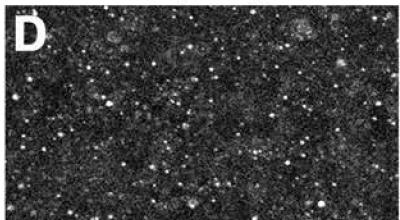



Dscam[TM1]::HA

Dscam[TM2]::V5

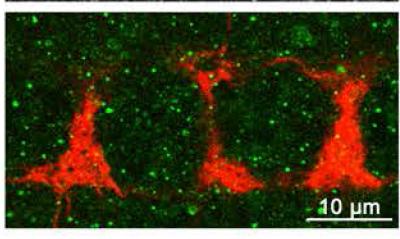



HA or V5

HRP

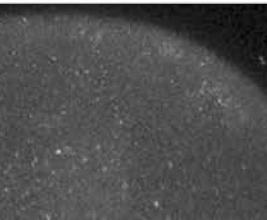
Merge

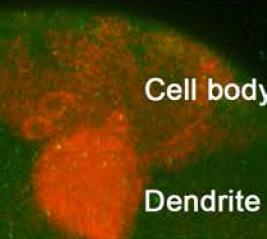


25 μ m

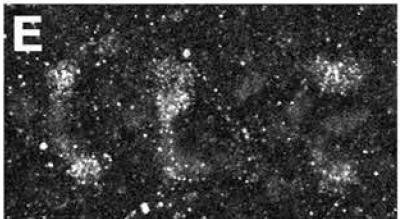

iso-Tagging in C4da neurons

Dscam[TM1]::HA

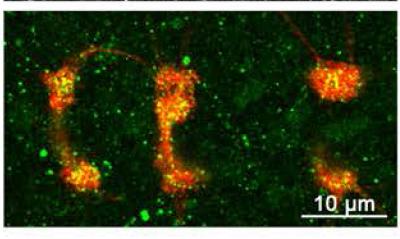

HA


RFP / HA

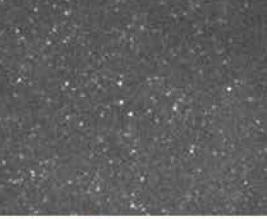
HA or V5

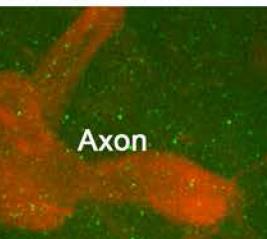


Merge

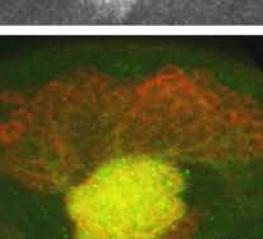
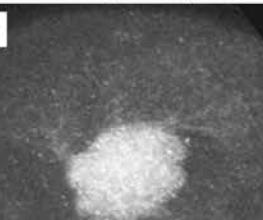


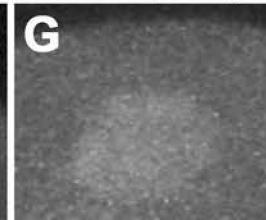
Dscam[TM2]::V5

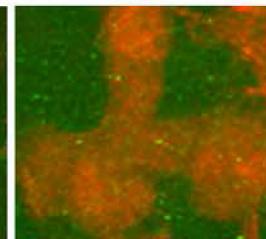

V5


RFP / V5

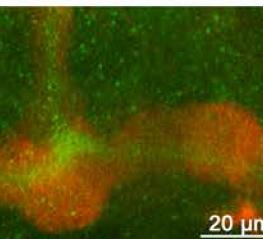
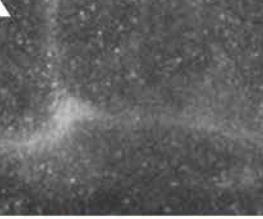
HA or V5

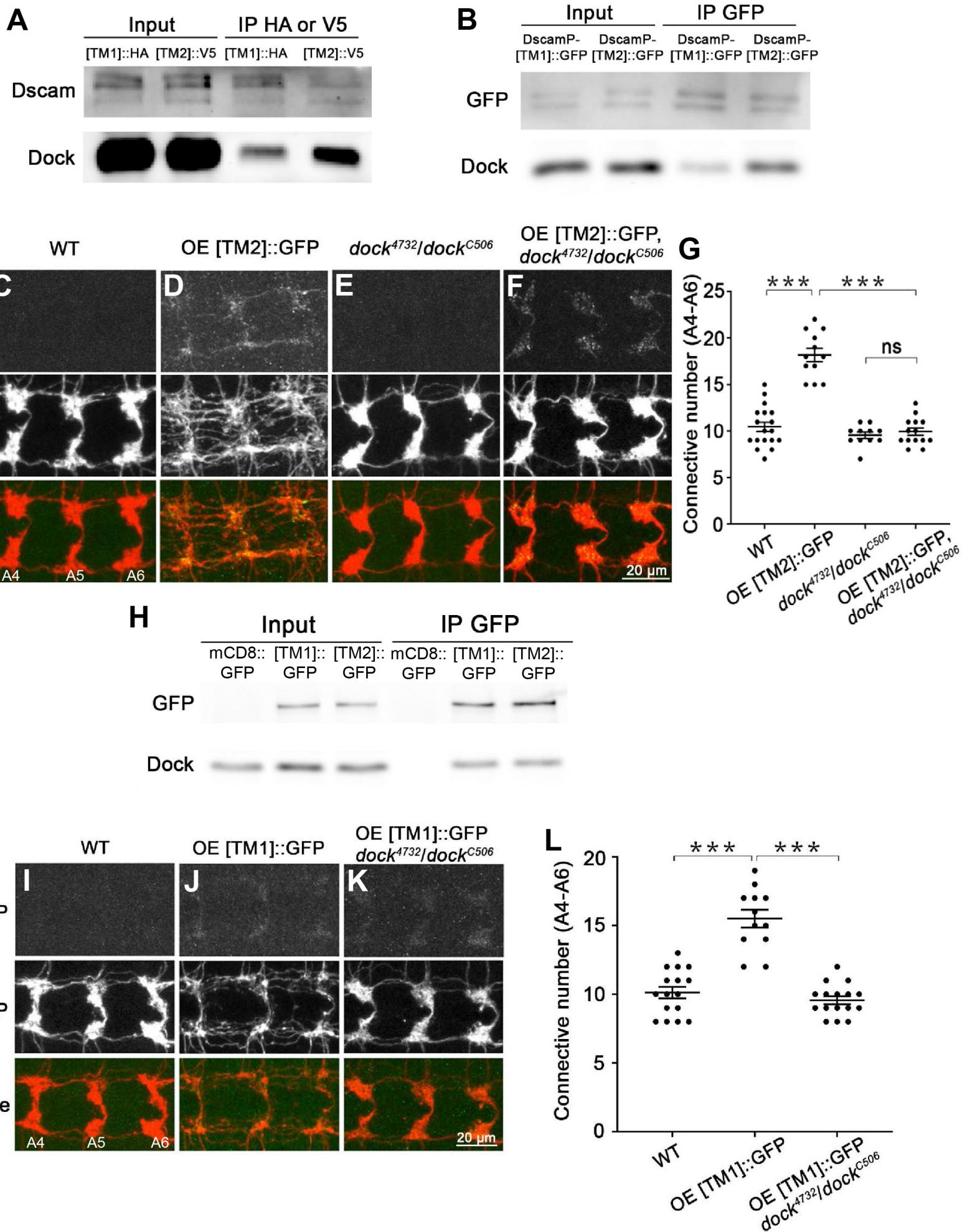

Merge


Dscam[TM1]::HA

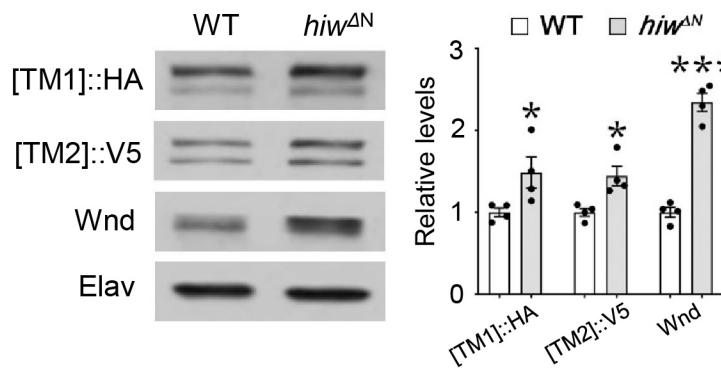
Dscam[TM2]::V5



HA or V5

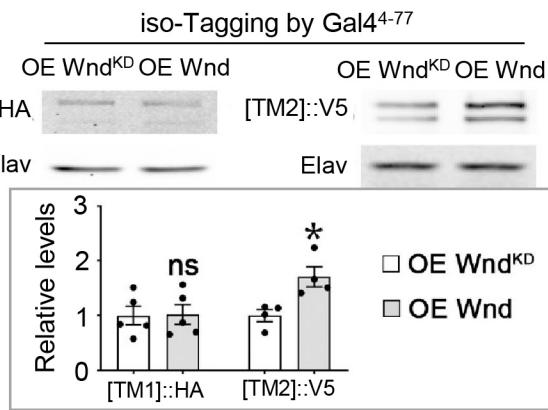

HA or V5

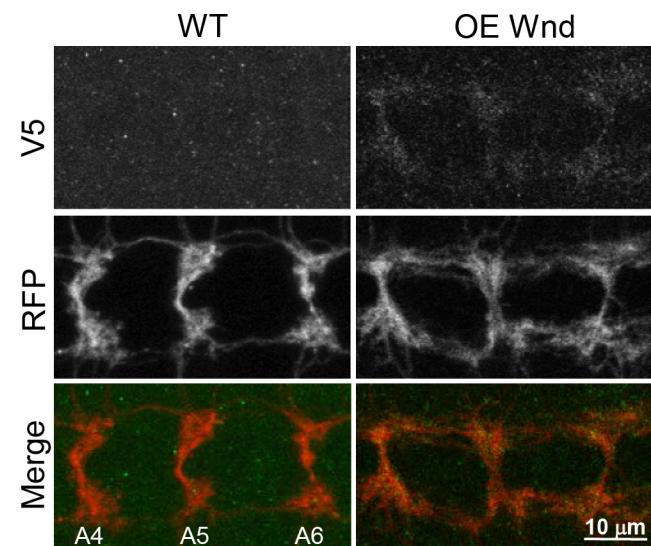


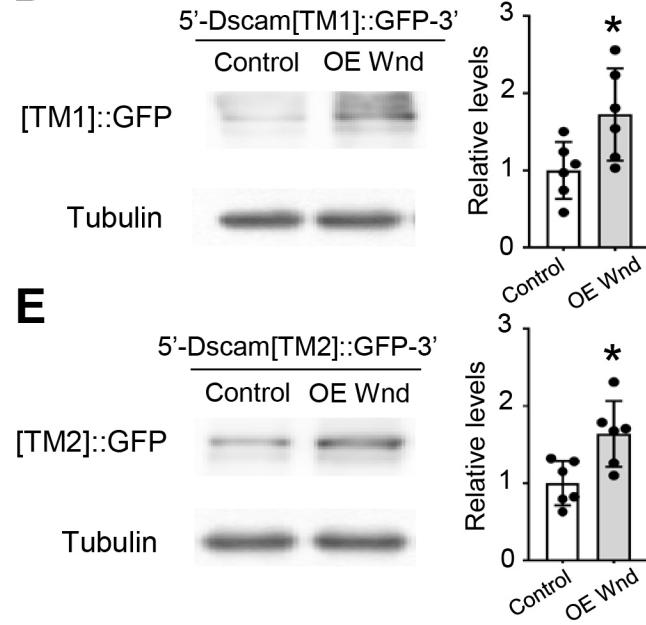
HA or V5

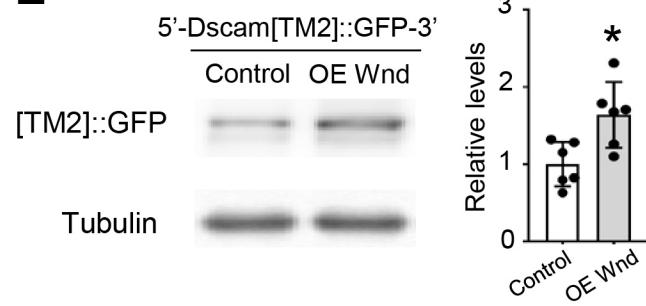


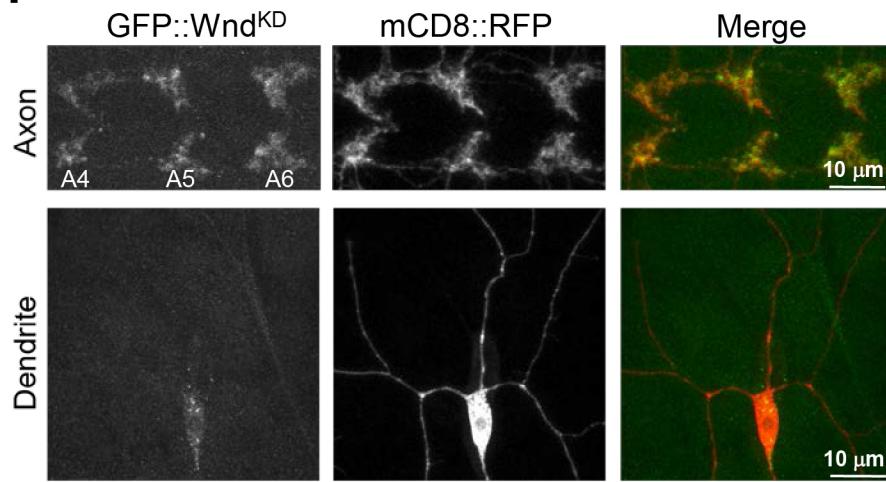
20 μ m



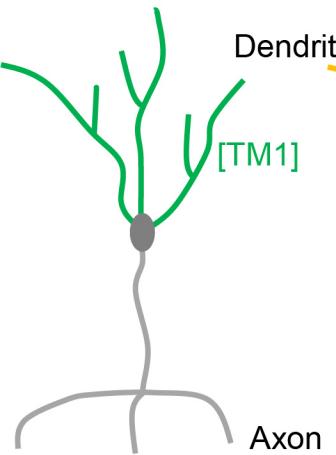

A


B


C [TM2]:::V5 iso-Tagging in C4da neurons


D

E



F

G Mode 1

Used by Dscam[TM1]

Mode 2

Used by Dscam[TM2]

