

1 **Locating the sex determining region of linkage group 12 of guppy (*Poecilia reticulata*)**

2

3 Deborah Charlesworth, Roberta Bergero, Chay Graham ¹, Jim Gardner, Lengxob Yong ²

4

5 Institute of Evolutionary Biology, School of Biological Sciences,

6 University of Edinburgh, West Mains Road, EH9 3LF, U.K.

7

8 ¹University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd,
9 Cambridge CB2 1GA, UK

10

11 ²Centre for Ecology and Conservation, University of Exeter,

12

Penryn, Falmouth, Cornwall, TR10 9FE, UK.

13

14

15 **Word counts** (of version formatted for in Genetics style)

16 **Abstract:** 242

17

Introduction: 908

18

Methods: 759

19

Results: 2,360

20

Discussion and conclusions: 995

21

Total of main text: 5,022

22

23 **Tables and Figures**

24

Tables: 1 tables plus 10 Supplementary tables

25

Figures: 4 figures plus 4 Supplementary figures

26

27 **Keywords**

28

Duplication, linkage disequilibrium, genome assembly, partial sex linkage

29

30

31

32

33 **Abstract**

34 We describe new genetic mapping results from 6 full-sib families in the guppy (*Poecilia*
35 *reticulata*), two of which included recombinants between the X and Y chromosomes. These
36 recombinants confirm that the guppy sex-determining locus is in the region identified by all
37 previous studies, including a recent report suggesting a candidate sex-determining gene in
38 this fish, close to the pseudo-autosomal region (or PAR) at the chromosome terminus. Our
39 results suggest the presence of some errors in the current assembly of the guppy genome.
40 In males, crossing over occurs at a very high rate in the PAR, and our genetic map of the
41 region allows us to correct the marker order. We also identified two unplaced scaffolds
42 carrying genes that map to the PAR. Genetic mapping cannot be used to order markers in
43 the region where crossing over is infrequent. However, our recombinant male is informative
44 about the order, under the reasonable assumption that crossovers are infrequent. Our
45 mapping families and natural population samples also show that the recently proposed
46 candidate for this species' sex-determining gene is not completely sex-linked. We detect an
47 association between individuals' sex and an SNP in the sex-determining region, but not with
48 a marker 0.9 Mb away from it, suggesting that variants in this region may be in linkage
49 disequilibrium with the actual sex-determining factor, but that the factor itself has not yet
50 been identified. So far, no consistently male-specific variant has been identified in the guppy
51 sex-determining region.

52

53

54 **Introduction**

55 The sex chromosome pair of the guppy have been studied for many decades with the aim of
56 understanding the evolution of recombination suppression between Y and X chromosomes.
57 The earliest genetic studies in the guppy discovered sex linkage of male coloration traits that
58 are polymorphic in guppy natural populations (Winge 1922b; Winge 1922a), and numerous
59 such traits in natural and captive populations have been shown to be transmitted from
60 fathers to sons in this fish, with only a few coloration factors being autosomal (Haskins and
61 Haskins 1951; Haskins *et al.* 1961; Lindholm and Breden 2002). The number that show
62 complete or (more rarely) partial sex-linkage is disproportionately large, given that this fish
63 has 23 chromosome pairs (Nanda *et al.* 2014), and the sex chromosome pair represents
64 about 3.8% of the genome (Künstner *et al.* 2017), strongly suggesting that these factors are
65 sexually antagonistic. It has therefore been thought likely that they may have been involved
66 in selecting for suppressed recombination between the two members of this chromosome
67 pair.

68 Cytogenetic studies have shown that the XY pair are not strongly heteromorphic (Winge
69 1922b), though differences between the Y and X have been detected in some material
70 (Nanda *et al.* 2014). A sex-linked region that includes less than half of the sex chromosome
71 pair has been identified; the region shows heterochromatin, and is stained by male-specific
72 probes in FISH experiments , and the Y sometimes appears longer than the X (Nanda *et al.*
73 1990; Traut and Winking 2001; Lisachov *et al.* 2015). A study of crossover locations using
74 MLH1 focus detection on chromosomes in sperm cells (Lisachov *et al.* 2015) found
75 localization of crossovers at the termini most distant from the centromeres of the guppy XY
76 pair (and the same general pattern was seen for the autosomes). The chromosomes are
77 acrocentric, and the mean number of MLH1 foci in a testis cell was 23.2 ± 0.5 , representing
78 a single crossover on each chromosome on average (Lisachov *et al.* 2015). Genetic mapping
79 with molecular markers also suggested that crossovers on the sex chromosome pair in male
80 meiosis were commoner in the terminal region than in regions nearer the centromere
81 (Tripathi *et al.* 2009). However, the crossover events were not localized physically;
82 nevertheless, dividing the chromosome diagram shown in that paper into 6 intervals, 12
83 events in males occurred in the terminal interval, and only one in the adjacent interval,
84 versus all 15 events in females being assigned to the 4 more centromere-proximal intervals

85 (this is highly significant by a Fisher's Exact test, $P = 0.0001$). (Lisachov *et al.* 2015) also
86 observed a deficit of crossover events in male meiosis, in a terminal part of the XY pair that
87 could be just centromere-proximal to a male-specific heterochromatic region of LG12,
88 where male-specific probe sequences also hybridize (Nanda *et al.* 1990; Lisachov *et al.*
89 2015). It is therefore likely that this region carries the sex-determining locus (Figure 1).

90

91 Figure 1 about here

92 However, population genomic studies suggest that variants on chromosome 12 show weak
93 associations with the sex-determining region, although associations are detectable across
94 much, or even the whole, of the XY pair (Wright *et al.* 2017; Bergero *et al.* 2019), and there
95 is evidence for migration of sequences across a large centromere-proximal region between
96 the X and Y chromosomes, strongly suggesting that recombination occurs (Bergero *et al.*
97 2019); this could reflect rare crossover events in the region proximal to the terminal highly
98 recombining pseudo-autosomal region (or PAR) that was detected cytologically by (Nanda *et*
99 *al.* 1990; Lisachov *et al.* 2015), see Figure 1. Further family studies are therefore needed to
100 refine our understanding of the guppy sex-determining region. It is currently not clear
101 whether this fish has an extensive, multi-gene fully sex-linked region, or a small region,
102 potentially a single gene like the insertion of the maleness factor in the medaka, *Oryzias*
103 *latipes* (Kondo *et al.* 2009), or even a single SNP, as has been inferred in another fish, the
104 tiger pufferfish or Fugu, *Takifugu rubripes* (Kamiya *et al.* 2012).

105 It was recently reported that a candidate for the sex-determining region has been mapped
106 on linkage group 12 of the guppy (Dor *et al.* 2019). Genotypes of a microsatellite marker
107 named *gu1066* within the Stomatin-like 2 (*STOML2*) gene, were found to be associated with
108 the sexes of fish from two domesticated guppy strains, Red Blonde and Flame. This marker
109 is located at 25,311,467 bp in the published assembly of the guppy LG12 (Künstner *et al.*
110 2017), in the region where the cytogenetic results just outlined suggest the presence of the
111 sex-determining locus. These authors also identified a candidate for the guppy sex-
112 determining gene within a 0.9 Mbp region near this marker. Of 27 annotated genes in his
113 region, the *GADD45G-like* gene (at 24,968,682 bp in the LG12 assembly) was identified as a
114 good candidate for the guppy sex-determining gene, or at least for having with a role in

115 male fertility, although the sequence did not include any male-specific alleles and its
116 expression was not sex-biased (Dor *et al.* 2019).
117 Here, we show that the *gu1066* microsatellite does not have male-specific alleles in natural
118 populations of Trinidadian guppies, and that a polymorphic SNP (single nucleotide
119 polymorphism) in the candidate gene has no male-specific allele. We also describe new
120 mapping results using multiple microsatellite and SNP genetic markers that narrow down
121 the sex-determining locus to a similar region as that identified by all the previous studies
122 cited above, including Dor *et al.* (2019).

123

124 **Methods**

125 *Fish samples, DNA extraction*

126 Table S1 describes the 14 natural populations samples analysed here, and the sources of the
127 fish used for genetic mapping. These were sampled from natural populations in Trinidad in
128 February 2017, and most individuals were photographed as live specimens in the field
129 before being killed and preserved. Live fish from the same natural populations were also
130 transported to the United Kingdom, and maintained at the University of Exeter, Falmouth,
131 for genetic studies (see below).

132 Genomic DNA for microsatellite genotyping, genotyping of intron length variants, and for
133 high-throughput genotyping (see below), was extracted using the Echolution Tissue DNA Kit
134 (BioEcho, Germany). Microsatellite markers ascertained from the guppy complete genome
135 sequence assembly were genotyped as described previously (Bergero *et al.* 2019). The
136 primers are listed in Supplementary Table S2, along with the primers for the *gu1066*
137 microsatellite.

138

139 *Genetic mapping and high-throughput genotyping*

140 Because guppy females breed best when kept together with other individuals, some of the
141 “families” whose genotypes are reported here were generated from multiple parental
142 individuals, and the parents of five of the six full sibships described below were
143 distinguished using microsatellite markers. The QHPG5 family was generated from two

144 females housed with one male, and the PMLPB2 family from three females and two males;
145 only the LAH family involved a single male and single female.

146 Using sequences from the guppy female whole genome sequence assembly (Künstner *et al.*
147 2017), we identified genic sequences found in all 16 Trinidadian guppy individuals sampled
148 from a natural population (10 males and 6 females), and ascertained SNPs across LG12 from
149 our own resequencing of these individuals (Bergero *et al.* 2019). These SNPs were targetted
150 for high-throughput genotyping (SeqSNP) experiments with genomic DNA extracted as
151 described above. The experiments were carried out by LGC Genomics (LGC Genomics
152 GmbH, Ostendstraße 25, 12459 Berlin, Germany, www.lgcgroup.com/genomics). The
153 targetted SNPs were selected from within coding sequences, with the criterion that about
154 50 bp of sequence flanking each such SNP should also be coding sequence, in order to
155 maximise the chance that the sequence would amplify in diverse populations, and to
156 minimise the representation of SNPs in repetitive sequences. To further avoid repetitive
157 sequences, the SNPs were chosen to avoid ones whose frequencies in the ascertainment
158 sample were 0.5 in both sexes. The SNPs and their locations in the guppy genome assembly
159 are listed in a Supplementary Table S10, together with some features of the mapping
160 results. As expected, the primers worked well for most targeted sequences.

161 Genetic mapping was done as described previously, using microsatellites ascertained from
162 the guppy complete genome sequence assembly, as well as these SNPs. The set of SNPs
163 included one within the candidate gene, *GADD45G-like*, identified by (Dor *et al.* 2019); the
164 gene is also named LOC103474023, and starts at position 24,968,682 in the guppy LG12
165 assembly (Künstner *et al.* 2017).

166 *Analysis of F_{ST} values between the sexes from these populations*

167 The SNPs detected by the SeqSNP experiments were used to estimate F_{ST} values between
168 the sexes. The analysis included all sites with variants within each of the natural population
169 samples, which differed between the samples.

170

171 *Analyses to search for potentially sex-linked genes in guppy unplaced scaffolds*

172 In order to try and include the whole of the guppy sex chromosome, we also identified two
173 unplaced scaffolds, NW_007615023.1 and NW_007615031.1, that are located near one end

174 of the assembly of the *Xiphophorus maculatus* (platyfish) chromosome, Xm8, which is
175 homologous to the guppy LG12 (Amores *et al.* 2014). The platyfish is a close relative of the
176 guppy (Pollux *et al.* 2014), with a mean synonymous site divergence of around 10%; for
177 comparison, this is similar to the value for *Drosophila melanogaster* and *D. simulans*
178 (Tamura *et al.* 2004).

179 To search for such orthologues, we did BLAT searches using as query cDNA sequences of
180 genes on chromosome 8 of the platyfish (the homologue of the guppy sex chromosome
181 pair) against all cds found in the guppy (target), and the reciprocal BLAT search. This
182 identified two unplaced scaffolds included multiple genes (the complete results are shown
183 in the file “Copy of_Unlocalised_Contigs_UNLOCALISED_Scaffolds_LG12_P8_enriched”
184 deposited in Dryad). NW_007615031.1 is about 259 kb, and is assembled at ~ 5-8 kb from
185 the start of the Xm8 assembly (which corresponds with the non-centromere end of the
186 guppy LG12 assembly), and it includes at least 17 genes, and possibly as many as 34 genes.
187 NW_007615023.1 is a 146 kb scaffold that is assembled 1.4 -1.5 Mb from the Xm8 start, and
188 carries 5-12 genes. We identified and mapped microsatellites within these scaffolds.

189

190 **Results**

191 *No complete association with maleness for markers in the GADD45G-like gene region*
192 Table 1 shows the *gu1066* microsatellite genotypes in three natural high predation
193 populations of Trinidadian guppies. 16 individuals (32 alleles) of each sex were sampled
194 from each population, and a total of 29 different alleles were observed, of which 11 were
195 shared between two or more population samples (Tables S3 and S4). None of the alleles
196 showed any association with the sexes of the individuals, and no alleles, other than
197 occasional rare alleles (mostly singletons), were male-specific in any of the populations
198 sampled. No results consistent with complete Y-linkage were seen. For example, allele 264
199 was seen only in 4 males from the Guanapo population, and one male from the Yarra
200 population, but it is homozygous in one of the Guanapo males, showing that it can be
201 carried on the X as well as the Y chromosome. Because false-positive associations between
202 variants are most likely to be seen in small samples, our samples are sufficient to show that
203 these natural populations do not display any strong association of this region with the sex-
204 determining locus.

205 The polymorphic SNP in the candidate gene identified by Dor et al. (2019) is, however,
206 associated with maleness, although no allele is fully male-specific. We genotyped this SNP in
207 13 natural populations, and it was polymorphic in six of them. Table 1 shows the results
208 from these six populations pooled (the full details, including sample sizes are in Table S5). A
209 Fisher's exact test shows that, overall, males are heterozygous significantly more often than
210 females ($P = 0.0004$). However, only 17% of the males genotyped are heterozygotes (Table
211 1).

212

213 Table 1 about here

214

215 *Analysis of F_{ST} values between the sexes in the same natural population samples.*
216 14 of the natural populations shown in Figure S1 were genotyped for LG12 SNPs to test
217 whether the SNPs that showed fully sex-linked genotype configurations in a previous study
218 (Bergero et al. 2019) do indeed have variants completely linked to the sex-determining
219 locus. Figure 1 shows that, although associations are detected by our analysis, they are not
220 complete; some males are not heterozygous for the variants examined, or some females are
221 heterozygous. Similarly to our previous results using a captive population, F_{ST} values
222 between the sexes are often higher in the centromere-proximal region of the chromosome
223 (proximal to 5 Mb in the published female assembly), and, to a lesser extent, across the
224 region distal to 20 Mb, where the sex-determining locus is thought to be located (see Figure
225 1). However, as discussed below, genetic mapping and other results show that these signals
226 of associations with the sex-determining locus seen in the proximal region are not evidence
227 that the sex-determining locus is located in a proximal part of LG12.

228

229 Figure 2 about here

230

231 *Genetic mapping in families to detect the PAR boundary and X-Y recombination events*

232 Out of 721 individuals of known sex that we have genotyped for genetic mapping in twelve
233 *P. reticulata* families (Table S1), only two recombinants were detected, one male in family
234 QHPG5, and one female in family PMLPB2. The dams and sires of both families were

235 sampled alive from natural populations in Trinidad and the progeny were generated in the
236 United Kingdom (see Methods).

237 The PMLPB2 family (from the Petit Marianne river, in the Northern drainage of the Trinidad
238 Northern mountain range, see Willing *et al.* 2010), and the results of genotyping seven LG12
239 microsatellite markers are shown in Supplementary Table S6; out of 69 female and 68 male
240 progeny genotyped, the recombinant female (PMLPB2_f23r) carries the sire's Y-linked
241 alleles at the 4 more proximal LG12 markers, located from 1.2 to 11.7 Mb in the published
242 assembly, but his X-linked alleles at the 3 distal markers, including a marker at 21.3 Mb. This
243 establishes that the sex-determining locus cannot be proximal to 21.3 Mb.

244 The QHPG5 family dam and sire were sampled from a natural population in the Quare river,
245 in the Atlantic drainage (Willing *et al.* 2010), and the genetic mapping results are shown in
246 Supplementary Table S7. The QHPG5 parents and the small number of progeny (in total,
247 from two full sibships with different dams; sibship 1 included 13 progeny, and sibship 2 had
248 10 progeny). The genotypes of LG12 microsatellites yielded one recombinant male (male 7,
249 in sibship 2, labelled QHPG5m07r in Table S7) that inherited his father's X-linked markers for
250 markers spanning the centromere-proximal part of the chromosome, and his father's Y-
251 linked alleles for markers distal to about 21.2 Mb. To define the crossover breakpoint in
252 male 7, the fish in this sibship (and in the QHPG5 sibship 1) were also genotyped for SNPs
253 throughout LG12, using a high-throughput genotyping approach (see Methods).

254 Before describing these results, we discuss the PAR boundary, which must be proximal to
255 the sex-determining locus. The PAR boundary was defined in the QHPG5 family based on
256 the most distal gene showing complete co-segregation with sex among all the progeny other
257 than male 7 in both QHPG5 family sibships, an SNP at position 25,998,942 in the LG12
258 assembly, whose total size is estimated to be 26.44 Mb (Künstner *et al.* 2017). A slightly
259 more centromere-proximal boundary, 25,194,513 bp, is found in two other, larger families,
260 the LAH family previously described, from a high-predation site in the Aripo river, with 42
261 progeny (see Supplementary Table S1 and Bergero *et al.* 2019), and family ALP2B2, from a
262 low-predation site in the Petit Marianne river, with 136 progeny, see Supplementary Tables
263 S6, S7, S9 and S10).

264

265 Figure 3 about here

266

267 We next defined the proximal boundary of the crossover event in the QHPG5 family sibship
268 2, which includes the recombinant male 7. This sibship has the same male parent as sibship
269 1, but a different dam. Supplementary Figure S7 shows results for both types of markers in
270 both sibships. In sibship 1, 137 LG12 markers informative in male meiosis show complete
271 sex-linkage, while 10 markers from the terminal part of the assembly of this chromosome
272 are partially sex-linked and can definitively be assigned to the small pseudo-autosomal
273 region (or PAR), consistent with previously published results for this family and for seven
274 other guppy families studied (Bergero *et al.* 2019). Figure 4 shows results for both types of
275 markers in sibship 2, which yielded evidence confirming the crossover event suggested by
276 the microsatellite marker results described above. Despite sibship 2's small size, the
277 crossover is confirmed by twenty markers (16 SNPs and 4 microsatellites), although the data
278 also reveal likely assembly errors, which we discuss in the next section.

279 In sibship 2, 141 markers appear to be sex-linked, with all female progeny inheriting the
280 same paternal allele, which is therefore the sire's X-linked allele, and three males all
281 inheriting the other, Y-linked, paternal allele. However male number 7 is recombinant: he
282 inherited the paternal X-linked allele for the first 111 markers (with 12 exceptions, discussed
283 below), but the paternal Y-linked allele for 21 markers informative in male meiosis, 14 in
284 positions from 21,049,596 to 23,293,233, and seven from 24,829,827 to 25,998,942 bp
285 (after which the 10 terminal markers appear to be partially sex-linked, as in the other
286 families). The male-determining region must therefore be distal to position 21,049,596 in
287 the assembly, and centromere-proximal to the position of the first PAR marker. We next
288 discuss information from which we can infer the correct order of some of the markers, and
289 determine which PAR marker is the most proximal of those so far mapped.

290

291 *Detection and correction of assembly errors in LG12: the PAR*

292 Crossing-over occurs at a high rate in the physically small guppy PAR (Bergero *et al.* 2019),
293 allowing us to order the markers by genetic mapping of the region. We also mapped
294 microsatellites within two unplaced scaffolds that are located near one end of the assembly
295 of the homologous chromosome in the closely related fish, *X. maculatus* (see Methods),
296 revealing that they are part of the guppy PAR. The most proximal PAR marker so far

297 mapped is in the unplaced scaffold, NW_007615023.1, while the NW_007615031.1 scaffold
298 maps terminal to the microsatellite markers mapped previously (Bergero *et al.* 2019).
299 We were able to order the microsatellite PAR markers because some of them were mapped
300 in several different families, and showed consistent ordering that differed from the guppy
301 assembly, suggesting that this region includes several assembly errors (Figure 3). These
302 errors make it impossible to relate the genetic to the physical map, and therefore the figure
303 simply orders the markers according to their genetic map positions. Based on the total size
304 in the published assembly, plus the two unplaced scaffolds that we infer from the X.
305 *maculatus* assembly belong to the guppy PAR (which add about 405 kb), our results do not
306 change the conclusion that the guppy PAR is not larger than a couple of megabases, and
307 probably smaller (Bergero *et al.* 2019). Assuming that consistent high intronic high GC
308 content of a region reflects a high recombination rate that causes GC-biased gene
309 conversion (see accompanying manuscript), the uniformly high GC content (Supplementary
310 Figure S1) of the scaffold that our map (Figure 3) reveals to be terminal suggests that
311 recombination rates are uniformly high throughout the guppy PAR, rather than being
312 clustered into parts of the PAR with very high crossover rates.

313

314 Figure 4 about here

315

316 *Correction of assembly errors in the non-PAR part of LG12*

317 Genetic mapping cannot order markers in genome regions where crossovers do not occur,
318 or occur very rarely, as is the case in guppy male meiosis for the LG12 centromere-proximal
319 region of at least 24 Mb of that almost completely co-segregates with the sex-determining
320 locus; Supplementary Figure S2 shows the results for the families reported previously
(Bergero *et al.* 2019), plus some others newly mapped here, whose source populations are
322 listed in Supplementary Table S1. However, if crossovers are infrequent, then errors in the
323 ordering of markers can be detected in rare recombinant individuals, because co-
324 segregation of such markers with others can reveal their true physical locations. Our sibship
325 that includes the recombinant male suggests several discrepancies in the order of
326 sequences within the proximal region of at least 24 Mb of the guppy LG12 that largely co-
327 segregates with the sex-determining locus (see Supplementary Table S7).

328 The region just proximal to the PAR (Figure 3, Table 2 and Supplementary Figure S7),
329 includes two sets of markers in the recombinant male suggesting assembly errors. First, nine
330 SNP markers informative in the sire of this sibship with LG12 assembly positions between
331 24,166,053 and 24,508,654 bp (a span of 342,601 bp, including SNPs in four separate genes
332 mapped in this sibship) clearly appear to belong more proximally than the surrounding
333 markers, as their segregation patterns in the recombinant male are identical to those for 90
334 of the 93 more proximal informative markers (Discrepancy 1 in Table 2). The only exceptions
335 to this pattern are three SNPs at positions between 2,952,176 and 2,953,254 (Discrepancy 2
336 in Table 2), which were included in our genotyping experiment because their genotypes in a
337 set of 10 males and 6 females whose complete genomes we sequenced (see Methods)
338 suggested complete sex-linkage (Bergero *et al.* 2019). Their genotypes in the recombinant
339 male clearly indicate that they are located terminal to the recombination breakpoint that is
340 supported by the 20 markers (16 SNPs and 4 microsatellites mentioned above), where the
341 recombinant male inherited the dam's X-linked alleles. They cannot be located more
342 precisely, because markers in this region co-segregate in this small sibship.

343

344 Table 2 about here

345

346 To further understand the gene order differences between the high-throughput genetic
347 map results for the QHPG5 family and the guppy LG12 assembly, we searched in the
348 assembly of the homologous platyfish chromosome (chromosome 8) to find the positions of
349 the four genes with the 9 SNPs that constitute Discrepancy 1 in Table 2 and Figure 4. This
350 reveals that two of these are within a region that is assigned a more proximal location in the
351 platyfish assembly (near 15 Mp), near the breakpoint (at 15,847,876 bp) of a region whose
352 order in the genetic maps of all guppy families so far studied that have markers in the
353 relevant region is inverted relative to the published assembly (this includes a map of the
354 LAH family based on high-throughput genotyping, see Supplementary Figure S2). We
355 conclude that the genetic map arrangement based on the guppy QHPG5 family (with these
356 SNPs more proximal than in the guppy assembly) is probably correct, and that these genes
357 should be re-assigned to a more proximal location. The comparison with the platyfish
358 chromosome 8 assembly also indicates that a set of guppy genes that is assembled in

359 megabase 10-11 correspond to ones that are at the terminus of the platyfish chromosome.
360 The AC162 microsatellite marker was based on sequence in this region, but its genetic map
361 location is around 30 cM in female meiosis in the ALP2B2 family, consistent with a location
362 more distal than 11 Mb; this marker has so far been mapped only in this family.

363 Our families also support the suggestion in Table 2 that the markers in the LG12 region near
364 3 Mb labelled Discrepancy 2 are located more distally, as the segregation patterns of SNPs
365 that are heterozygous in female meiosis in the dams of three sibships match those of distal
366 markers in the families (SNPs with similar segregation patterns to those of these three SNPs
367 are all distal to position 20,516,823 bp in the LAH family, to 22,002,472 bp in two
368 informative ALP2-B2 family sibships, and to 21,344,716 bp in the QHPG5 family sibship 1).
369 The segregation pattern observed is illustrated in Table 3, together with our interpretation
370 that there is a duplication, which can explain why all males appear to be heterozygous.
371 Furthermore, the segregation patterns of these SNPs in female meiosis in three sibships
372 whose female parents are also heterozygous show that the variants genotyped are located
373 among markers that are close to the PAR boundary, very distant from their assembly
374 positions (Supplementary Tables S8 and S9, for the LAH family and the two informative
375 ALP2B2 sibships, respectively); the same can be seen in the smaller QHPG5 family sibship1
376 (Supplementary Table S7).

377

378 Table 3 about here

379

380 **Discussion and Conclusions**

381 We conclude from our analysis of genotypes in natural guppy populations that the genetic
382 associations detected (Dor *et al.* 2019) probably reflect linkage disequilibrium within a genome
383 region that recombines rarely with the sex-determining locus, similar to the evidence for
384 incomplete associations of variants with the sexes of individuals recently reported for many parts of
385 the guppy sex chromosome pair (Wright *et al.* 2017; Bergero *et al.* 2019). Dor *et al.* (2019)
386 concluded that the guppy sex-determining region is a region of 1.26 Mb that is duplicated between
387 LG 9 and 12 and includes 59 LG12 genes, 17 of which had multiple copies; 8 of these had copies on
388 LG 9 as well as 12, while 9 had multiple copies on LG12. The duplicated region occupies 0.43 Mb at

389 about 25 Mb on LG12, and 6 of the 11 genes in the region have multiple copies. We too found a
390 marker that had been assigned to LG9 (the microsatellite GT443) but behaves as fully sex-linked in
391 the male parent of one of our mapping families, LAH (Bergero *et al.* 2019). Its LG9 location is 8.0
392 Mb, not close to the LG9 region at 17 Mb identified by Dor *et al.* (2019). Thus the LG9 copy could
393 represent mis-annotation rather than the duplication Dor *et al.* (2019) identified.

394 Genes that have moved onto the guppy LG12 since the divergence of the guppy from the platyfish
395 should be found on a platyfish chromosome other than Xm8, the homologue of the guppy LG12.
396 We therefore examined genes on the platyfish chromosome homologous to the guppy LG9 (see
397 Methods). These genes are mostly carried on Xm 12, with a few on chromosome 11
398 (Supplementary Figure S3A). We inspected the plots for these chromosomes, to determine which
399 guppy chromosomes carry them, and whether some of them are LG12 genes in the guppy. Some
400 platyfish chromosome 11 genes are detected on guppy LG9, but most of them are on LG14
401 (Supplementary Figure S3C). Platypus chromosome 12 genes are therefore most relevant for asking
402 whether they form a duplicated region on guppy LG12. Genes on this platyfish chromosome are (as
403 expected) mostly on guppy LG9, with a few on LG25, but a cluster of them are indeed detected on
404 LG12 (Supplementary Figure S2). These genes could well be located in the terminal part of the
405 guppy LG12, which might correspond to the region identified by Dor *et al.* (2019). The gene order in
406 the centromere-proximal 20 Mb of the 26.4 Mb guppy LG12 is very similar to that in the
407 homologous platyfish chromosome (Xm8, see Supplementary Figure S4). The large inverted region
408 is an assembly error, as the guppy genetic map supports a gene order in agreement with the
409 platyfish assembly (Supplementary Figure S2). Therefore, the location for this set of genes must be
410 terminal to the repeat region just after 20 Mb that is prominently visible in Supplementary Figure
411 S4. The figure also shows that the LG12 assembly terminal to this region is either rearranged,
412 relative to the platyfish homologue, or, in parts, remains uncertain.

413 Dor *et al.* (2019) also suggested the “growth arrest and DNA damage inducible gamma-like”
414 (*GADD45G-like*) as a plausible “candidate gene for its role in male fertility”, despite finding “no sex
415 difference in either the genomic sequence or gene expression”. However, several of their
416 observations are difficult to reconcile with this conclusion. First, they state that “the male-specific
417 allele was identified in only 85% of males, but not in females”, and that family D suggested a
418 possible environmental effect of elevated temperature leading to sex reversal, or recombination
419 that produces inviable recombinant females. Furthermore, the *gu1066* marker identified 97

420 females as genetically XY, suggesting that sex reversals occur; when mated with normal XY males,
421 these should yield 25% females, but only 19% of the progeny had ovaries, and only four live
422 fingerlings were produced (by one sex reversed female), three XY and one XX.

423 Our results also do not support the conclusion that this is the guppy sex-determining gene, or
424 maleness factor, but only that an SNP in the gene has a variant in a few males from several natural
425 populations that is not seen among females. SNPs in this gene show sex-linkage in the QHPG5 and
426 ALP2B2 families, but none of the our LG9 markers that are informative in male meiosis does (data
427 not shown). These results do not definitively rule out the possibility that the LG12 *GADD45G-like*
428 gene is the guppy male-determining factor. The guppy might have a single SNP that determines
429 maleness, as has been inferred in fugu; within the gene with the mis-sense mutation that
430 apparently controls maleness in fugu (anti-Müllerian hormone receptor type II, or *Amhr2*), only 5
431 SNPs other than the mutation itself showed (incomplete) associations with individuals' sexes (all
432 within the surrounding region from 7.27 to < 10 kb, see Figure 2C of (Kamiya *et al.* 2012)).

433 Our new results do, however, support all previous results, including those of from the captive
434 material studied by Dor *et al.* (2019), suggesting that the guppy male-determining factor is located
435 within a region between about 21 and 25 Mb (in the current assembly). We describe the first
436 genetic data based on localising X-Y crossovers within families, and the two recombinant individuals
437 both indicate that the male-determining factor is located distal to 21 Mb, and our results also
438 define the PAR boundary, which our families indicate is at about 25 Mb (though assembly errors
439 make it difficult to define its boundary or size precisely). Given these problems, and the rarity of
440 recombinant progeny, it remains difficult to define the male-determining locus more accurately. If a
441 more reliable assembly can be generated by long-read sequencing, the rarity of recombination
442 events may still make it impossible to define the locus genetically, though this approach might
443 narrow the region down enough to suggest candidate genes for further testing. Unfortunately,
444 although the *GADD45G-like* gene appears a promising candidate, several observations make it
445 seem unlikely to be the true guppy sex-determining gene.

446

447 **Acknowledgements:** This project was supported by ERC grant number 695225 (GUPPYSEX).
448 We thank Bonnie Fraser (University of Exeter) for discussions about the large inversion on
449 the guppy LG12.

450

451 **References**

452 Amores, A., J. Catchen, I. Nanda, W. Warren, R. Walter *et al.*, 2014 A RAD-Tag genetic map
453 for the Platypfish (*Xiphophorus maculatus*) reveals mechanisms of karyotype
454 evolution among Teleost fish. *Genetics* 197: 625-641.

455 Bergero, R., J. Gardner, B. Bader, L. Yong and D. Charlesworth, 2019 Exaggerated
456 heterochiasmy in a fish with sex-linked male coloration polymorphisms. *Proceedings*
457 of the National Academy of Sciences of the United States of America 116: 6924-
458 6931.

459 Dor, L., A. Shirak, Y. Kohn, T. Gur, J. Welle *et al.*, 2019 Mapping of the sex determining
460 region on linkage group 12 of guppy (*Poecilia reticulata*). *G3 (Bethesda)* 9: 3867-
461 3875.

462 Haskins, C., and E. F. Haskins, 1951 The inheritance of certain color patterns in wild
463 populations of *Lebistes reticulatus* in Trinidad. *Evolution* 5: 216-225.

464 Haskins, C., E. F. Haskins, J. McLaughlin and R. E. Hewitt, 1961 Polymorphisms and
465 population structure in *Lebistes reticulatus*, an ecological study, pp. 320-395 in
466 *Vertebrate Speciation*, edited by W. F. Blair. University of Texas Press, Austin, TX.

467 Kamiya, T., W. Kai, S. Tasumi, A. Oka, T. Matsunaga *et al.*, 2012 A trans-species missense
468 SNP in amhr2 is associated with sex determination in the tiger pufferfish, *Takifugu*
469 *rubripes* (Fugu). *PLoS Genetics* 8: e1002798.

470 Kondo, M., I. Nanda, M. Schmid and M. Schartl, 2009 Sex determination and sex
471 chromosome evolution: insights from Medaka. *Sexual Development* 3: 88-98.

472 Künstner, A., M. Hoffmann, B. A. Fraser, V. A. Kottler, E. Sharma *et al.*, 2017 The genome of
473 the Trinidadian guppy, *Poecilia reticulata*, and variation in the Guanapo population.
474 *PLOS ONE* 11: e0169087.

475 Kurtz, S., A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway *et al.*, 2004 Versatile and open software
476 for comparing large genomes. *Genome Biology* 5: R12.

477 Lindholm, A., and F. Breden, 2002 Sex chromosomes and sexual selection in Poeciliid fishes.
478 *American Naturalist* 160: S214-S224.

479 Lisachov, A., K. Zadesenets, N. Rubtsov and P. Borodin, 2015 Sex chromosome synapsis and
480 recombination in male guppies. *Zebrafish* 12: 174-180.

481 Nanda, I., W. Feichtinger, M. Schmid, J. Schröder, H. Zischler *et al.*, 1990 Simple repetitive
482 sequences are associated with differentiation of the sex-chromosomes in the guppy
483 fish. *Journal of Molecular Evolution* 30: 456-462.

484 Nanda, I., S. Schories, N. Tripathi, C. Dreyer, T. Haaf *et al.*, 2014 Sex chromosome
485 polymorphism in guppies. *Chromosoma* 123: 373-383.

486 Pollux, B. J. A., R. W. Meredith, M. S. Springer, T. Garland and D. N. Reznick, 2014 The
487 evolution of the placenta drives a shift in sexual selection in livebearing fish. *Nature*
488 513: 233-236.

489 Tamura, M., S. Subramanian and S. Kumar, 2004 Temporal patterns of fruit fly (*Drosophila*)
490 evolution revealed by mutation clocks. *Molecular Biology and Evolution* 21: 36-44.

491 Traut, W., and H. Winking, 2001 Meiotic chromosomes and stages of sex chromosome
492 evolution in fish: zebrafish, platyfish and guppy. *Chromosome Research* 9: 659-672.

493 Tripathi, N., M. Hoffmann, D. Weigel and C. Dreyer, 2009 Linkage analysis reveals the
494 independent origin of Poeciliid sex chromosomes and a case of atypical sex
495 inheritance in the guppy (*Poecilia reticulata*). *Genetics* 182: 365-374.

496 Willing, E.-M., P. Bentzen, C. v. Oosterhout, M. Hoffmann, J. Cable *et al.*, 2010 Genome-wide
497 single nucleotide polymorphisms reveal population history and adaptive divergence
498 in wild guppies. *Molecular Ecology* 19: 968–984.

499 Winge, O., 1922a One-sided masculine and sex-linked inheritance in *Lebistes reticulatus*.
500 *Journal of Genetics* 12: 145-162.

501 Winge, O., 1922b A peculiar mode of inheritance and its cytological explanation. *Journal of*
502 *Genetics* 12: 137-144.

503 Wright, A., I. Darolti, N. Bloch, V. Oostra, B. Sandkam *et al.*, 2017 Convergent recombination
504 suppression suggests a role of sexual conflict in guppy sex chromosome formation
505 *Nature Communications* 8: 14251.

506

507

508 Table 1. Genotypes at the SNP in the candidate sex-determining gene in the two high-
 509 throughput genotyping experiments (the experiment number is indicated in column 1). The
 510 river from which each population sample was derived is given, and HP and LP denote high-
 511 and low-predation sites, respectively.

512

Experiment number	Population	Numbers of individuals			
		Males	Females	Heterozygous males	Heterozygous females
Guanapo LP					
1	(GLZ)	14	10		No variation
1	Marianne HP	17	7		No variation
1	Marianne LP	14	10		No variation
1	Yarra HP	14	10		No variation
1	Yarra LP	14	10		No variation
Aripo HP, AH					
2	Aripo LP, AL	14	10	1	10
2	QL	16	10	3	10
2	QH	16	10	1	10
2	TL	16	10	6	10
2	TH	16	10	1	10
2	PL	8	16		No variation
2	GLT	0	10		No variation
Totals across all populations with variants					
				Heterozygous	Homozygous
				s	
				15	75
				0	60

513

514

515 Table 2. Summary of genotypes in the QHPG5 sibship 2, which includes a recombinant male, for
516 markers that are informative in male meiosis. The two discrepancies are discussed in the text, and
517 the complete genotype information for these markers in both QHPG5 sibships is in Supplementary
518 Table S7. The table shows only markers that co-segregated with the phenotypic sex in all progeny
519 other than male 07, and in all other families where the genotypes were informative in male
520 meiosis. When the recombinant male inherited his sire's Y-linked allele, his genotype is listed as
521 male in the second column, and it is listed as female when he inherited his sire's X-linked allele.

522

Description of marker results	Genotype of male	Number of 07	Marker positions in guppy assembly (bp)
		of markers	
Centromere-proximal markers	Female	5	458,883 – 2,756,939
SNPs that map more distally (true location more terminal, Discrepancy 2)	Male	3	2,952,176 – 2,953,254
XY markers except in male 07	Female	75	All markers until 20,599,360
XY markers except in male 07	Male	10	21,049,596 – 23,293,233
Markers suggesting mis-assembly (true location more proximal, Discrepancy 1)	Female	9	24,166,053 – 24,508,654
XY markers in all progeny, including male 07	Male	6	24,829,827 to PAR boundary

523

524 Table 3. Example from the LAH family of segregation results found for all three SNPs named
525 “Discrepancy 2” (see text and Table 2). The LAH family sire is inferred to be heterozygous for
526 all three markers. The example shown is for the LG12 site at 2,953,218 bp. The same pattern
527 was observed whenever both the sire and dam had heterozygous genotypes

528

Dam genotype	Female progeny			Sire genotype	Male progeny		
	A/A	A/G	G/G		A/A	A/G	G/G
A/G				A/G			
Observed numbers	6	11	0		0	25	0
Interpretation							
X^A/X^G	X^A/X^A	X^A/X^G	X^G/X^G	$X^A/Y^G Y^A$	Not expected	$X^A/Y^G Y^A$	Not expected
						$X^G/Y^G Y^A$	

529

530 **Figure legends**

531

532 Figure 1. Diagram of the *P. reticulata* XY sex chromosome pair to show regions with different
533 crossover rates in males, based on cytogenetic data and population genomic results (see
534 Introduction). Much or all of the chromosome is present on both the X and Y, and coverage of
535 sequences is very similar in the two sexes (the Y is not degenerated and appears not to have lost
536 genes carried by the X, see (Bergero *et al.* 2019). The diagram shows the centromere at the left-
537 hand end (as in the genome assembly), and the pseudo-autosomal region (or PAR), where most
538 crossover events occur, at the right-hand end; the extent of any pericentromeric region with
539 extremely low crossing over in male meiosis is unknown, but it might extend across much of the XY
540 pair. The Results section below describes evidence that the male-determining locus (symbolized by
541 a blue vertical line) is just proximal to the PAR. It is possible that the male-determining region is
542 missing from the female assembly used in analyses of coverage, and therefore remained
543 undetected (since such male-specific sequences would not have mapped to the female reference
544 genome, including its unplaced scaffolds). It is also not known whether the male-determining
545 gene(s) lie within a completely non-recombining male-specific Y region (or MSY), as the presence of
546 male-specific heterochromatin suggests (see Introduction); if so, the region could also include other
547 genes, as in other species' MSY regions. It remains possible that there is just a very small maleness
548 factor, for example a single gene or SNP, as discussed in the Introduction section.

549

550 Figure 2. Differentiation between males and females sampled from natural populations from rivers
551 in the Northern range of Trinidad (Supplementary Table S1), based on high-throughput genotyping
552 results for LG12 SNPs.

553

554 Figure 3. Genetic map of the guppy PAR, based on male meiosis with multiple families with sires
555 from natural populations, in Trinidad (seven from high-predation sites and four from low-predation
556 sites, see Supplementary Table S1). The different colour dots indicate different families. Each
557 family's dam is from the same population as the sire. Only PAR markers are shown, and all more
558 proximal markers co-segregate with the progeny individuals' sexes (see Supplementary Figure S2),
559 apart from the single recombinant male in the QHPG5 family (see Figure 4 and the text), and a
560 single female in family PMLPB2 (see text). Note that the marker map order in male meiosis is

561 shown, not the positions of markers on the chromosome in megabases (because the errors in the
562 assembly of this region mean that the true positions are not known).

563

564 Figure 4. Summary of genotypes at non-PAR markers informative in male meiosis in sibship 2 from
565 the Quare QHPG5 family, in diagrammatic form, showing the two discrepancies between these
566 male genetic map results and the female genome assembly. More details of the same results are
567 given in Table 1. The left-hand part shows the 58 more centromere-proximal markers, and the
568 right-hand part shows the 58 more terminal markers, up to the inferred PAR boundary. The
569 recombinant male (male 07) is indicated at the top of the diagram in both parts, while the other
570 columns in both parts show genotypes at the 108 markers that, in the 9 other progeny, co-
571 segregate perfectly with the individuals' sexes in meiosis of the male parent (no recombinants were
572 found in the 13 sibship 1 progeny, which have the same sire, as shown in Supplementary Table S7).

573 **Supplementary files**

574

575 **Supplementary figures**

576 Figure S1. GC content of introns in two scaffolds that were unplaced in the published guppy
577 genome assembly, but which map to the PAR, as shown in Figure 2 of the main text.

578 Figure S2. Genetic maps of the guppy LG12 in female (left) and male (right) meiosis, in the
579 same families as shown in Figure 3 of the main text.

580 Figure S3. Comparison of the gene contents of guppy and platyfish chromosomes.

581

582 Figure S4. Comparison of the gene arrangements of the guppy LG12 and the homologous
583 chromosome of the platyfish, Xm8.

584

585

586 **Supplementary tables**

587 Table S1. Trinidadian guppy natural population samples studied, including live fish
588 transported to the United Kingdom, and maintained at the University of Exeter, Falmouth,
589 for genetic studies, together with the names of families used for genetic maps. High-
590 throughput experiment 1 included the LAH family. Where possible, both high and low
591 predation populations were sampled from each river; the Paria river has no high predation
592 sites.

593 Table S2. Primers for the guppy LG12 markers genotyped (mostly microsatellites), including
594 the gu1066 microsatellite and those identified from Xm8, NW_007615031.1 and
595 NW_007615023.1 (see main text).

596 Table S3. Summary of gu1066 genotypes in three natural populations. Blue indicates males
597 and red females.

598 Table S4. Table S4. Genotypes found in 32 alleles sampled from each of three high predation
599 populations (16 from each sex). Grey shading indicates alleles with > 3 copies in a
600 population sample, and bold font indicates alleles that were found in more than a single
601 population.

602 Table S5. Results of high-throughput genotyping for the SNP at site 24,969,110 in the
603 LOC103474023 gene identified by Dor et al. (2019) as a candidate for the guppy sex-
604 determining gene. HP indicates locations with high predation rates and LP indicates low
605 predation rate.

606 Table S6. Genotypes of seven LG12 microsatellite markers proximal to the pseudo-
607 autosomal region (PAR) in the PMLPB2 family, showing an X-Y crossover event in female
608 progeny PMLPB2_f23. For clarity, PAR markers are not shown. 137 progeny were
609 genotyped, excluding two contaminants whose genotypes do not correspond to any other
610 sires or dams. The dams and sires of the progeny were inferred from the genotypes, and are
611 shown in columns C and D. The positions in the guppy genome assembly are shown below
612 each marker name. The 68 male progeny (blue font in column A) all carry the variant that
613 can be inferred to be the sire's Y-linked allele, and 68 of the female progeny inherited their
614 sire's X-linked allele; two males and one female disagreed with their assigned sex for all
615 seven markers, and were probably labelled erroneously). Female f23, however, carries her

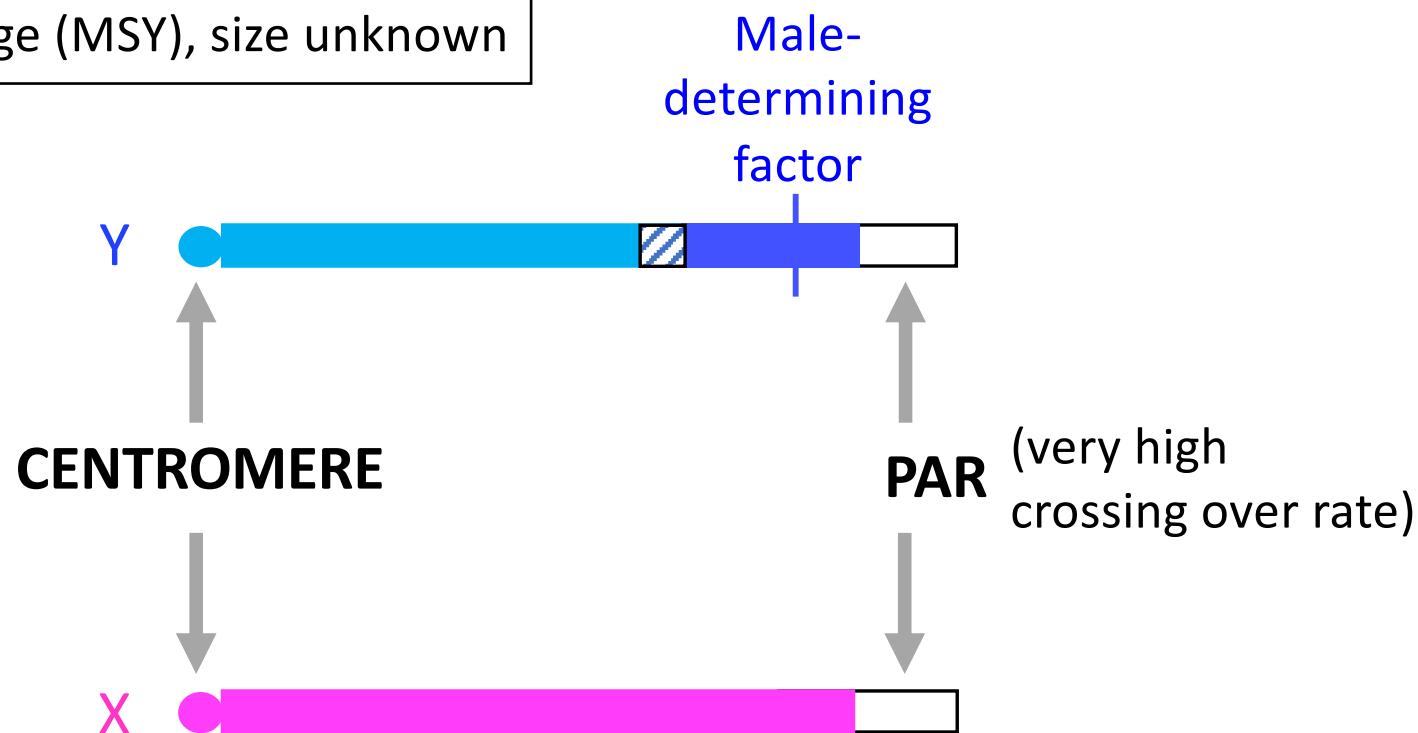
616 sires Y-linked alleles at the 4 markers from 1.2 to 11.7 Mb, and his X-linked alleles at the 3
617 distal markers, including the marker at 21.3 Mb.

618 Table S7. Genotypes of 264 LG12 markers in the QGPG5 family, which includes an X-Y
619 crossover event in male progeny QHPG5m07 (in sibship 2). Most of the markers are SNPs,
620 which were genotyped by high-throughput experiments (see main text), but 17
621 microsatellites were also genotyped. The two sibships had the same sire, but different
622 dams, and the progeny were assigned to their respective dams using the microsatellites.
623 Column B shows the positions in the published guppy genome assembly (with the
624 microsatellite names and positions in bold font). Column A notes several "landmarks",
625 including locations and sets of markers that are described in the main text. All 13 progeny in
626 sibship 1 show complete co-segregation in male meiosis of all informative markers in the
627 region centromere-proximal to the PAR boundary; marker genotypes are coloured in blue or
628 pink, to indicate whether they inherited the sire's Y- or X-linked alleles, respectively. Cells
629 coloured in grey indicate SNPs that are not informative in a sibship (markers that were
630 uninformative in both male and female meiosis in both sibships are not shown), and yellow
631 indicates discrepancies from Mendelian expectations, probably due to genotyping errors;
632 these are very infrequent. In sibship 2, one individual (indicated in yellow) carries the sire's
633 X-linked markers, and is therefore inferred to be a female, although it was recorded as a
634 male, but three males and five other females show complete co-segregation of all non-PAR
635 markers with sex. Male m07, however, is clearly recombinant: this male carries his sire's X-
636 linked alleles at most centromere-proximal markers, but Y-linked alleles at markers distal to
637 21.2 Mb, with few exceptions which are discussed in the main text (see Figure 3 for a
638 summary of this sibship's results for markers informative in male meiosis only).

639 Table S8. LAH family results from high-throughput genotyping. Colouring is the same as
640 described for Table S7. As there are only a single sire and single dam for this family, all SNPs
641 that are not informative have been omitted. The three SNPs that are boxed (at positions
642 2,952,176, 2,953,218, and 2,953,254) are discussed in the text under the term "Discrepancy
643 2", and the most proximal position that is consistent with their segregation patterns in
644 female meiosis is distal to 21 Mb in the assembly. For these three discrepant SNPs, the
645 segregation in male meiosis is not informative about their location, because there is a

646 duplication such that all male progeny of female heterozygotes appear to be heterozygous,
647 as explained in the main text.

648 Table S9. Segregation patterns in two ALP2B2 sibships in which the three boxed SNPs (at
649 positions 2,952,176, 2,953,218, and 2,953,254) named "Discrepancy 2" are heterozygous in
650 the dams. These are discussed in the text under the term "Discrepancy 2", and again the
651 most proximal position that is consistent with their segregation patterns in female meiosis is
652 distal. The colouring is the same as described for Table S7. The table shows that, while the
653 segregation patterns for most SNPs in female meiosis agree with those assembled in
654 physically nearby positions (for sibship 1, agreement is seen for all 30 SNPs proximal to the 3
655 discrepant ones, and for 7 more distal SNPs before the first detectable crossover), this is not
656 the case for these three SNPs. Instead, in both these sibships (totalling 33 female progeny
657 genotyped), their segregation patterns agree closely with those of SNPs at positions near 23
658 Mb. For these three discrepant SNPs, the segregation in male meiosis is not informative
659 about their location, because there is a duplication such that all male progeny of female
660 heterozygotes appear to be heterozygous, as explained in the main text.


661 Table S10. Genes on the guppy LG12 (the *Poecilia reticulata* sex chromosome, and their
662 locations in the published guppy genome assembly and in the assembly of the homologous
663 chromosome (Xm8) of the platyfish, *Xiphophorus maculatus*, together with some results
664 from genetic mapping using SNPs selected from across the guppy assembly. The
665 homologous genes in the two species were determined by NUCmer analysis (Kurtz et al.,
666 2004, <http://mummer.sourceforge.net>) using the platyfish chromosome 8 as the reference
667 and the guppy LG12 sequence as the query. The genes are shown in the order in the
668 published assembly for the guppy, with the guppy centromere end (determined from
669 genetic mapping in male meiosis) at the end with the lowest positions; note that the
670 homologous chromosome if the platyfish is assembled in the opposite order, and therefore
671 distances from the centromere end are shown (in column C), in addition to the assembly
672 positions. Breaks in the platyfish ordering are indicated by grey shading of the regions. 608
673 sequences with % identity < 85% were excluded. A few SNPs that were mapped in the
674 guppy, but where the locus was not identified in the platyfish, are indicated by turquoise
675 blue text in columns E and F. The large region in which the guppy order is inverted is boxed
676 (as explained in the text, genetic mapping in several families indicates that this is an error in

677 the guppy assembly, rather than a difference between the two species). The PAR is also
678 boxed (based on results in all families with map information), as is the region named
679 "Discrepancy 1" in the main text, and the corresponding positions in platyfish assembly are
680 shown in red, as are the informative guppy SNPs. The region in which the recombinant male
681 in the QHPG5 sibship carries paternal Y-linked variants is highlighted in blue in columns D
682 and E (in all other regions, including the "Discrepancy 1" region, this male carries maternal
683 LG12 alleles, as described in the text).

Figure 1

Key to Y-linked regions

- No crossovers
- Rare crossovers in males
- Region of complete sex linkage (MSY), size unknown

Figure 2

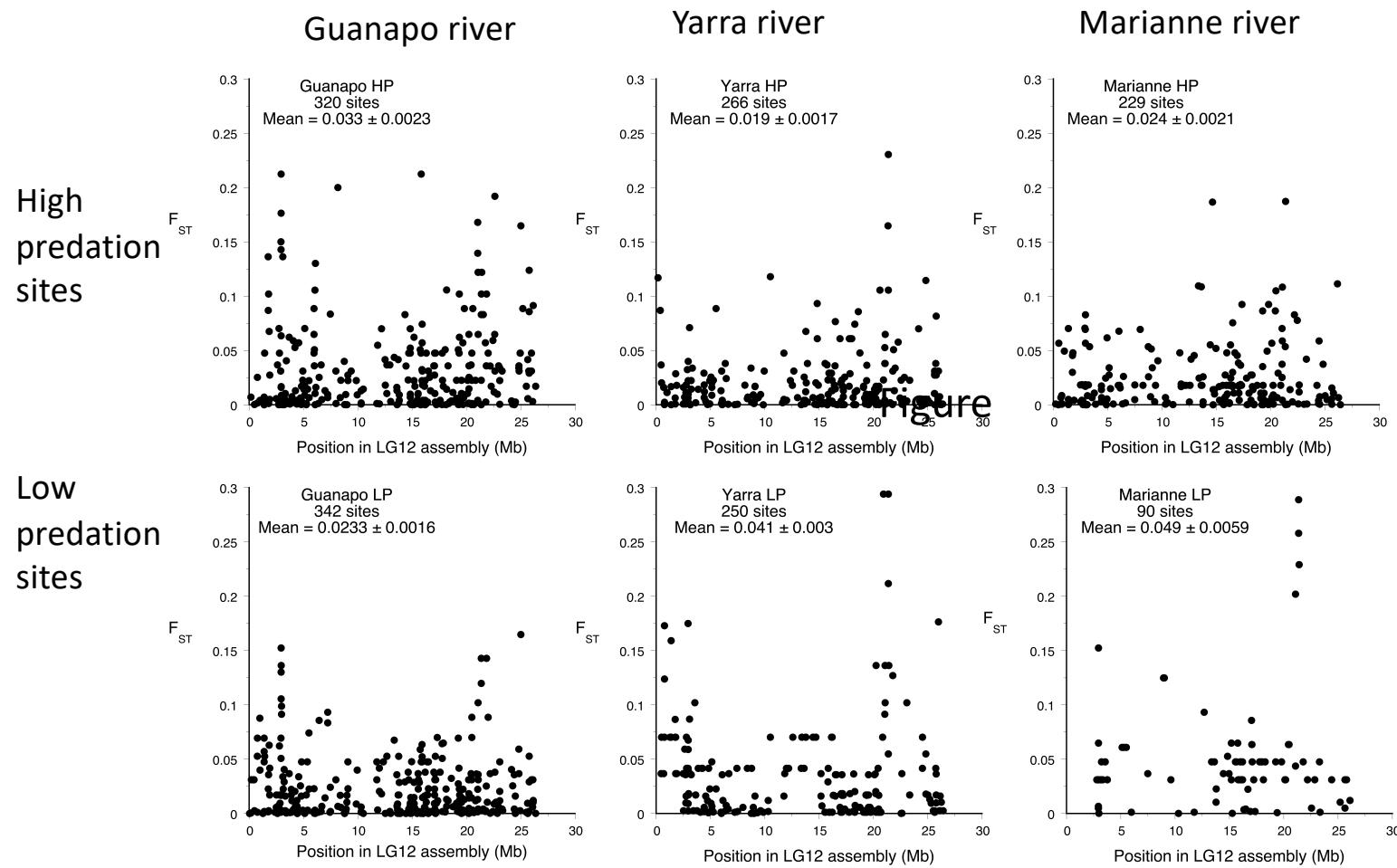


Figure 2,
continued

High
predation
sites

Low
predation
sites

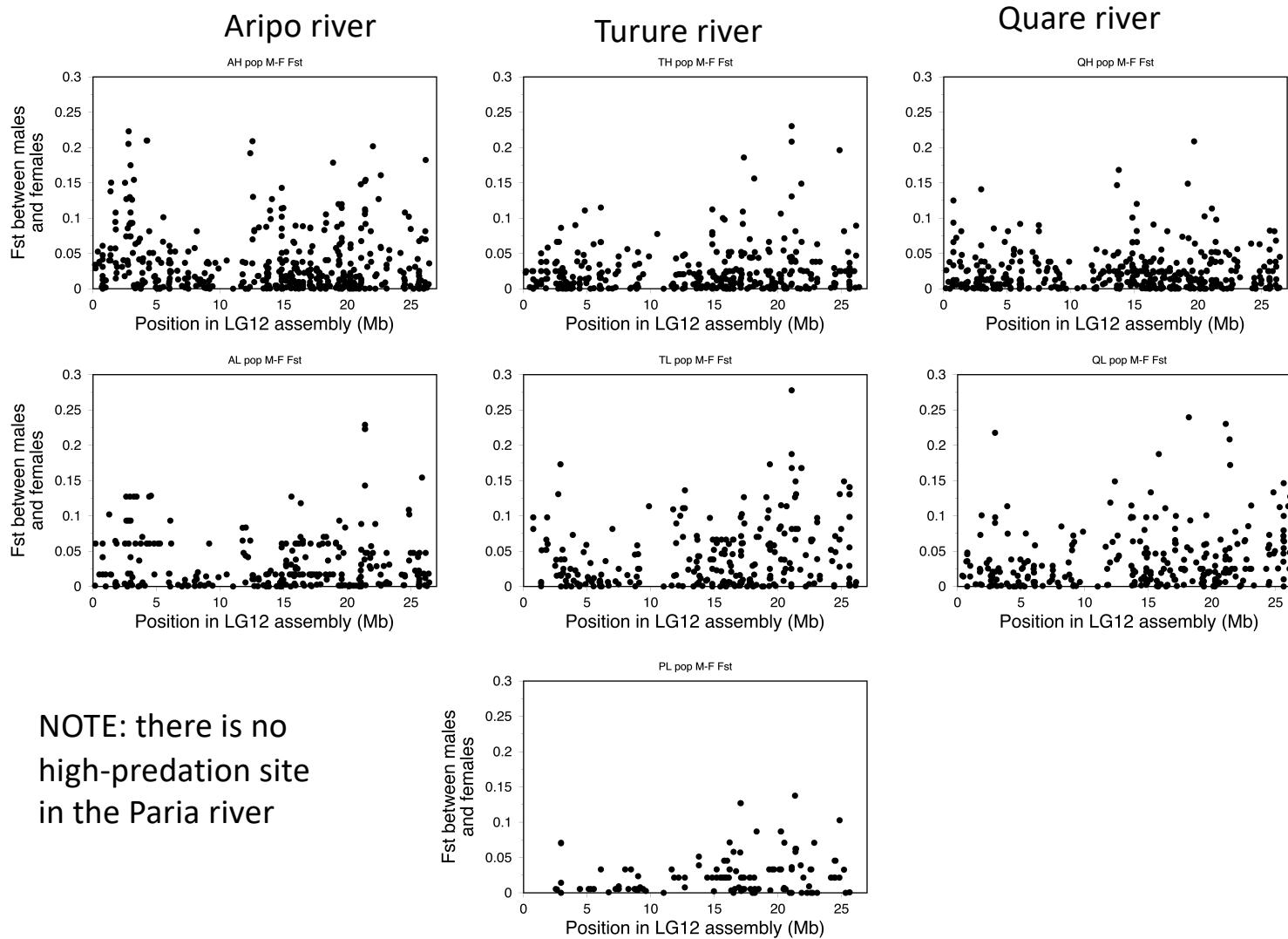


Figure 3

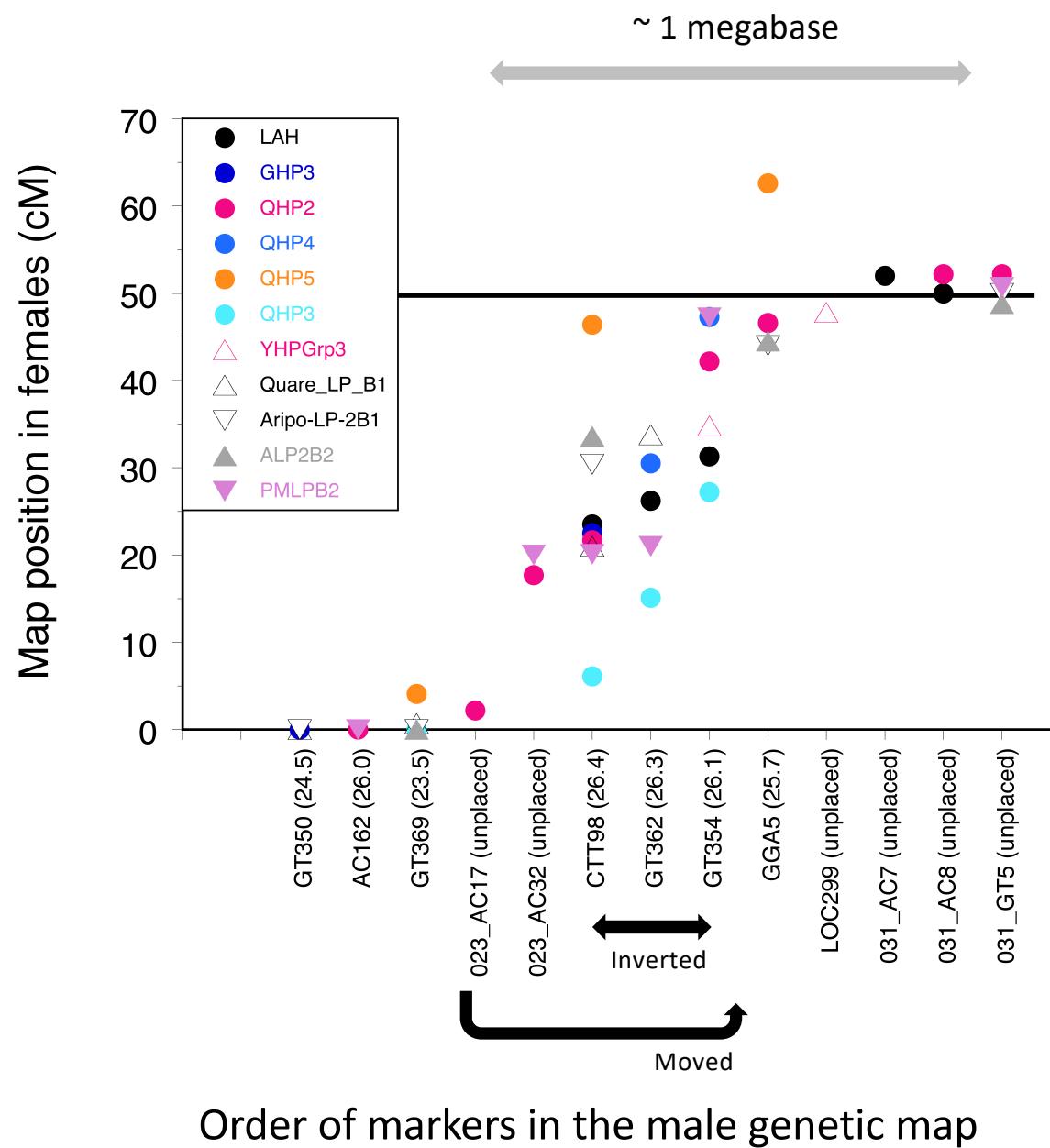
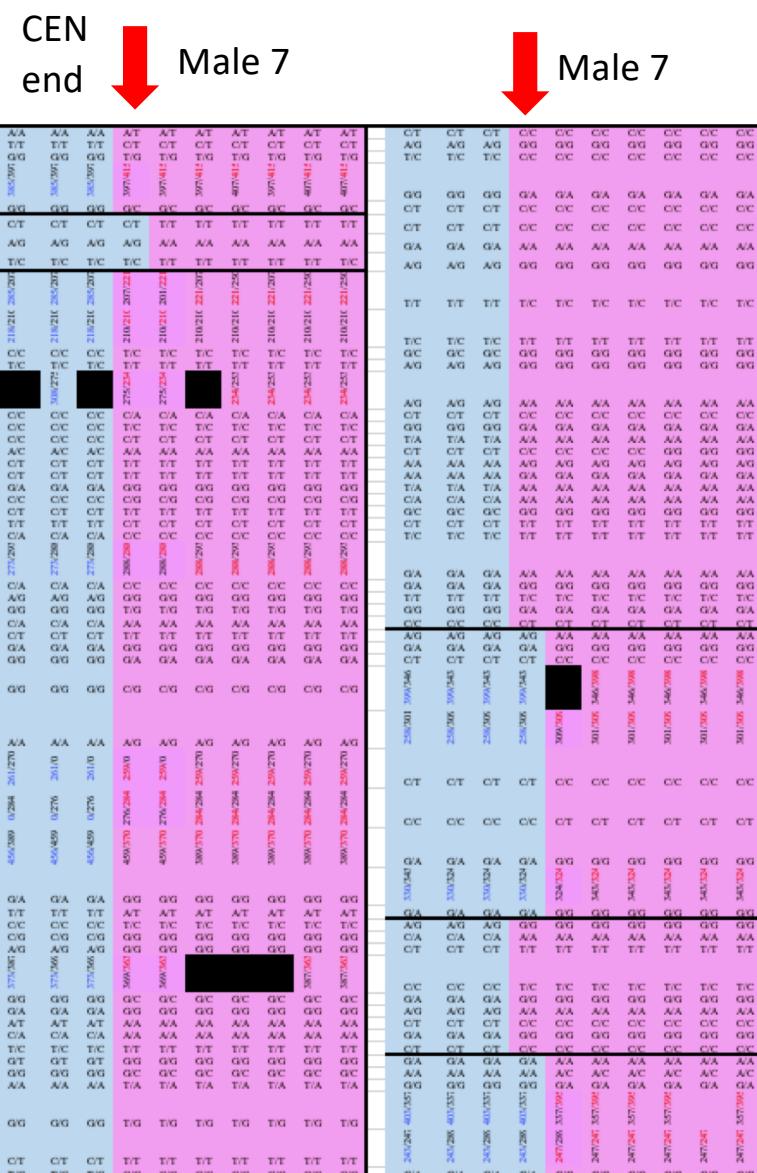



Figure 4

Discrepancy 2

Number of markers	Male 7 's genotype
5	Female
3	Male
75	Female

Number of markers	Male 7 's genotype
	Female
10 (discrepancy 1)	Male
9	Female
6	Male