

1 Molecular basis for the ATPase-powered substrate translocation by the Lon AAA+ 2 protease

3 Kaiming Zhang^{a,1}, Shanshan Li^{a,1}, Kan-Yen Hsieh^b, Shih-Chieh Su^b, Grigore D. Pintilie^a, Wah
4 Chiu^{a,c,2}, and Chung-I Chang^{b,d,2}

5

⁶ ^aDepartment of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA
⁷ 94305, USA

⁸ ^bInstitute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan

⁹ ^cCryoEM and Bioimaging Division, Stanford Synchrotron Radiation Lightsource, SLAC
¹⁰ National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

11 ^dInstitute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei
12 10617, Taiwan

¹⁴¹These authors contributed equally to this work.

15

¹⁴ These authors contributed equally to this work.

15 ²To whom correspondence may be addressed. Email: wahc@stanford.edu or
16 chungi@gate.sinica.edu.tw.

17

18

19 **Abstract**

20 The Lon AAA+ (adenosine triphosphatases associated with diverse cellular activities) protease
21 (LonA) converts ATP-fuelled conformational changes into sufficient mechanical force to drive
22 translocation of the substrate into a hexameric proteolytic chamber. To understand the structural
23 basis for the substrate translocation process, we have determined the cryo-electron microscopy
24 (cryo-EM) structure of *Meiothermus taiwanensis* LonA (MtaLonA) at 3.6 Å resolution in a
25 substrate-engaged state. Substrate interactions are mediated by the dual pore-loops of the
26 ATPase domains, organized in spiral staircase arrangement from four consecutive protomers in
27 different ATP-binding and hydrolysis states; a closed AAA+ ring is nevertheless maintained by
28 two disengaged ADP-bound protomers transiting between the lowest and highest position. The
29 structure reveals a processive rotary translocation mechanism mediated by LonA-specific
30 nucleotide-dependent allosteric coordination among the ATPase domains, which is induced by
31 substrate binding.

32

33 **Introduction**

34 The Lon AAA+ protease (LonA) is an ATP-dependent protease conserved in prokaryotes and
35 eukaryotic organelles. LonA assembles as a homohexamer with each protomer containing an N-
36 terminal domain, a middle ATPase domain, and a C-terminal protease domain (Rotanova et al.
37 2006). In addition to LonA, other Lon-like proteases (LonB and LonC) with distinct ATPase
38 domains have been characterized in thermophilic archaeal and bacterial species (Liao et al. 2012;
39 Rotanova et al. 2004). LonA plays a major role in cellular protein homeostasis by degrading
40 damaged or misfolded abnormal proteins, which prevents these unwanted protein species from
41 forming toxic aggregates. LonA is also involved in the regulation of many biological processes
42 by degrading specific regulatory proteins (Gur 2013). Similar to the fused AAA+ and protease
43 domain organization of Lon, the membrane-anchored AAA+ proteases FtsH and related i/m-
44 AAA proteases are specialized in membrane protein quality control although their ATPase
45 domains belong to different clades of the AAA+ superfamily and the protease domains are non-
46 homologs (Puchades et al. 2020; Sauer and Baker 2011).

47 Previous results have revealed many functional and structural features of LonA. The
48 protease activity of LonA is dependent on the presence of Mg²⁺, which binds to the protease

49 domain and induces the formation of open active-site structure (Su et al. 2016). The Lon protease
50 domain with an open active-site conformation adopts a 6-fold symmetric hexameric ring (Botos
51 et al. 2004; Cha et al. 2010; Liao et al. 2013; Su et al. 2016). By contrast, LonA with an inactive
52 proteolytic active-site conformation exhibits an open-spiral hexameric structure (Botos et al.
53 2019; Duman and Löwe 2010). Therefore, the protease domain plays an important role in the
54 closed-ring assembly of LonA. While ATP is required for LonA to degrade protein substrates
55 efficiently, ADP is known to inhibit the protease activity of Lon. The crystal structure of the
56 ADP-bound LonA hexamer has revealed how ADP may inhibit LonA activity by inducing the
57 formation of a closed degradation chamber (Lin et al. 2016). A substrate-translocation model
58 was posited based on the ADP-bound structure by assuming a structural transition between the
59 nucleotide-free and ADP-bound states from two pairs of three non-neighboring protomers (Lin et
60 al. 2016). However, the simple one-step transition model is not supported by recent cryo-EM
61 structures of substrate-bound AAA+ proteins with the ATPase domains organized in spiral
62 staircase arrangement around a centrally positioned substrate polypeptide chain (Monroe et al.
63 2017; Yu et al. 2018; de la Peña et al. 2018; Ripstein et al. 2017; Ho et al. 2018; Gates et al.
64 2017; White et al. 2018; Han et al. 2017; Ripstein et al. 2020).

65 Here, we report cryo-EM structures of *Meiothermus taiwanensis* LonA (MtaLonA) in a
66 substrate-engaged state, determined at 3.6 Å resolution. Structural analysis suggests that both the
67 substrate and ATP play an important role to induce a spiral staircase arrangement of the ATPase
68 domains. Moreover, the structure reveals how binding of ATP and hydrolysis of ATP to ADP
69 induce distinct nucleotide-induced conformational states in the six ATPase domains to enable a
70 processive rotary translocation mechanism by LonA-specific allosteric coordination.

71

72 **Results**

73 **Specimen preparation of LonA with a protein substrate**

74 To capture MtaLonA in the substrate-engaged state, we assessed the degradation of Ig2 (25 kDa),
75 a model substrate used previously (Su et al. 2016), by wild-type MtaLonA using the slowly
76 hydrolyzable ATP analog, ATP- γ -S. At the optimal reaction temperature (55°C), MtaLonA is
77 able to degrade Ig2 with ATP- γ -S, albeit much slower compared to ATP (**Figure 1—figure**
78 **supplement 1**). The result suggests that Ig2 is productively translocated by MtaLonA utilizing
79 ATP- γ -S. Therefore, for cryo-EM imaging, we purified MtaLonA in complex with Ig2, ATP- γ -S,

80 and bortezomib, which inhibits Lon protease activity by covalently binding to the catalytic serine
81 in the protease domain, in order to trap MtaLonA in the process of translocating Ig2 without
82 undergoing subsequent substrate proteolysis (Liao et al. 2013; Su et al. 2016)(See Methods for
83 details).

84

85 **Cryo-EM structure of LonA engaged in translocating substrate**

86 The structure of the MtaLonA-Ig2-bortezomib-ATP- γ -S complex was determined to 3.6- \AA
87 resolution by cryo-EM (**Figure 1A**, **Figure 1—figure supplement 2, supplemental Table 1**
88 and **supplemental Video 1**). The six protease domains associate into a closed-ring structure with
89 C6 symmetry (**Figure 1B**). The six ATPase domains also form a closed ring (**Figure 1B**).
90 However, those from four consecutive protomers P1-P4 (designated in the PDB coordinate file
91 as chains A-D) organize into a spiral staircase arrangement, with protomers P1 and P4 occupying
92 the highest and the lowest positions, respectively (**Figure 1C**). These four protomers spiraling
93 around an extended 11-residue polypeptide chain, likely representing a segment of unfolded
94 substrate Ig2, of which the backbone is well resolved in the map. By contrast, the two relatively
95 mobile protomers P5 and P6 (corresponding to chains E and F, respectively, in the PDB file)
96 make no substrate contacts (**Figure 1D**). Notably, these disengaged protomers, referred
97 previously to as “seam” protomers, break the spiral arrangement by making a loose association
98 with each other, and with protomers P4 and P1, respectively, thereby maintaining a closed
99 AAA+ ring (**Figure 1A and 1D**). Although the full-length construct of wild-type MtaLonA
100 includes the N-terminal regions (residues 1-243) critical for substrate interaction, no density was
101 found for these regions in our structures, likely due to their flexible nature.

102 The sequence of Ig2 and the polarity of the bound polypeptide chain could not be
103 determined from the density map. A strand of 11 alanine residues was modeled, with the C-
104 terminus facing inside the chamber because Lon is known to recognize exposed C-terminal
105 degron from model substrates and kinetics study indicates that the order of substrate scissile-site
106 delivery occurs from the C- to N-terminal direction (Mikita et al. 2013; Gur and Sauer 2008).
107 Contacts to the substrate polypeptide chain are made by protomers P1-P4, mediated by residue
108 Tyr397 from pore-loop 1 and residue Trp431 from pore-loop 2; both have been shown to be
109 required for degrading Ig2 (Lin et al. 2016). The four pore-loop-1 Tyr397 residues contact Ig2 in
110 a right-handed spiral arrangement, with amino acid residues i, i+2, i+4, and i+6 of the substrate

111 (Figure 1D, supplemental Video 1). Contrary to the well-resolved pore loops of substrate-
112 engaged protomers P1-P4, those of the seam protomers P5 and P6 do not make contact with the
113 substrate and are less well-resolved in the map (Figure 1A and 1D).

114

115 ATPase sites around the substrate-engaged AAA+ ring

116 To understand how the staircase arrangement of the pore-loops 1 and 2 engaging the substrate
117 correlates with nucleotide binding and hydrolysis states in the protomers, we analyzed the cryo-
118 EM map of the ATPase site located in between the large AAA- α/β and the small AAA- α
119 domains. The resolution of the map is sufficient to identify the bound nucleotides in the ATPase
120 sites in protomers P1-P4 (Figure 2—supplement 1, Figure 2—supplement 2, and
121 supplemental Video 1). In protomer P1, the ATPase pocket is well ordered, with a bound ATP-
122 γ -S, whose γ -phosphate interacts with the arginine finger (Arg finger) Arg484 from the
123 clockwise neighboring protomer P2; the α - and β -phosphates are contacted by the sensor II,
124 Arg541, in the cis protomer (Figure 2A). Similarly, in protomers P2 and P3, ATP- γ -S is found in
125 the ATPase pocket with well-resolved density, with the γ -phosphate also contacted by the Arg
126 finger. However, the sensor II Arg541 engages the β - and γ -phosphates of the bound ATP- γ -S in
127 protomer P2 but solely with the γ -phosphate in protomer P3 (Figure 2B and 2C). As a result, the
128 Arg finger and sensor II residues appear to present the scissile $\text{P}\gamma\text{-O}\beta$ bond of ATP- γ -S in the
129 most suitable conformation for hydrolysis only in protomer P3. In contrast, the ATPase pocket of
130 protomer P4, which occupies the lowest step of the substrate-bound staircase, is ADP-bound and
131 more open than those of protomers P1-P3; the Arg finger from the protomer P5 is 15 Å away
132 from the β -phosphate and the adjacent sensor II residue contacting α -phosphate is flexible
133 (Figure 2D).

134 Interestingly, the AAA- α/β domain of the disengaged seam protomer P5 makes the least
135 inter-protomer interaction and is highly mobile as indicated in the resolution map (Figure 1—
136 figure supplement 2E) and Q score (Figure 2—supplement 2), which measures the local
137 resolution (Kucukelbir et al. 2014) and structure resolvability (Pintilie et al.), respectively. The
138 ATPase site has only broken density for the bound nucleotide and the Walker-A/B motifs
139 (Figure 2—supplement 1); the Arg finger from protomer P6 and the sensor II are also
140 unresolved. As mentioned above, the Arg finger R484 from protomer P5 is far from the bound

141 ADP in protomer P4; therefore, the protomer P5 ATPase site is likely bound to ADP also, but
142 not ATP- γ -S.

143 The seam protomer P6 also has a mobile AAA- α/β domain. The resolution of the map at the
144 ATPase pocket is nevertheless sufficient to reveal a bound ADP (**Figure 2—supplement 1**),
145 probably due to its ordered neighboring protomer P1. The side chains of the Arg finger from
146 protomer P1 and the sensor II residues, though located nearby, are not well resolved.

147

148 **Substrate-induced allosteric coordination**

149 In the substrate-engaged state, the spiral staircase arrangement of the AAA- α/β domains in the
150 closed AAA+ ring, which is covalently fused to the closed protease ring, is made possible by
151 several previously found LonA-specific structural features (Lin et al. 2016). They include
152 nucleotide-dependent rigid-body rotation of the AAA- α/β domain, which presents the dual pore-
153 loops, to adopt different positions with respect to the AAA- α domain. In addition, the flexible
154 protease-domain (PD) linker bridging the AAA- α and the protease domains accommodate further
155 rotational movement of the AAA- α domain (**Figure 3**).

156 Notably, the cis Arg finger Arg484 in the ATP- γ -S-bound protomers are positioned within
157 the hydrogen-bonding distance near the bound nucleotide in the ATPase pocket of the
158 counterclockwise neighboring protomer, making contact only with bound ATP- γ -S but not ADP
159 (**Figure 2**). Interestingly, Arg484 is contacted by Asp444 and Pro445 in the N-terminal base-
160 loop of the pre-sensor-1 β -hairpin (PS1 β H), a motif conserved in LonA, HslU, and Clp AAA+
161 proteases (Iyer et al. 2004; Erzberger and Berger 2006). In the substrate-engaged, spirally
162 arranged protomers P1-P3, the base-loop residues Asp444 and Glu446 form a trans-ATP-
163 interacting group together with Arg484 to bind ATP- γ -S (**Figure 3—supplement 1**). Taken
164 together, based on the structural results it is tempting to envisage that engaging the substrate
165 polypeptide chain appears to induce the formation of a spiral staircase arrangement of ATP-
166 bound protomers, enabling the interaction of the PS1 β H base-loop and the Arg-finger with the
167 ribose and the phosphate groups of ATP, respectively, and to facilitate ATP hydrolysis in the
168 ATPase site. Our structure may thus offer a straightforward explanation of how the presence of
169 protein or peptide substrates stimulates the ATPase activity of LonA, a hallmark feature also
170 shared by other AAA+ proteases (Cheng et al. 2012; Goldberg et al. 1994; Seol et al. 1997;
171 Waxman and Goldberg 1986; Yamada-Inagawa et al. 2003; Zhang and Wigley 2008).

172 **Discussion**

173 The main goal of the present work is to address the molecular basis for substrate translocation by
174 LonA. Our cryo-EM structure of Ig2-bound wild-type MtaLonA suggest a LonA-specific
175 processive rotary mechanism. An exposed substrate polypeptide chain containing the degron
176 may be engaged by at least two flexible adjoining AAA- α/β domains via their pore-loops I. If the
177 substrate-engaging protomer at the farthest counterclockwise position is ADP bound, its
178 substrate-engaged and ATP-bound AAA- α/β domain may further stabilize the counterclockwise
179 neighboring protomer in ATP-bound conformation; such allosteric inter-protomer interaction
180 may propagate until a spiral staircase arrangement of four substrate-engaged protomers is
181 reached, with bound ATP in the ATPase site between each “step” (**Figure 4**). As shown in our
182 schematic model, after ATP hydrolysis proceeds to the next counterclockwise ATPase site, the
183 ADP-bound protomer at the lowest step is disengaged from the substrate, becoming one of the
184 two mobile seam protomers, until it is recruited by an ATP-bound protomer, which is capable of
185 presenting the Arg finger and the PS1 β H base-loop, to promote nucleotide exchange and binding
186 with ATP. Of note, in coordinating the process of translocating substrate, every individual
187 protomer traverses multiple cycles of four substrate-gripping conformers in the nucleotide-
188 binding states ranging from ATP-bound to post-hydrolysis ADP-Pi states, plus two disengaged
189 ADP-bound seam states, in sequential order.

190 The above mechanism featuring “hand-over-hand” substrate translocation coupled to
191 counterclockwise sequential hydrolysis of ATP is therefore conserved in a variety of different
192 AAA+ proteins (Monroe et al. 2017; Yu et al. 2018; de la Peña et al. 2018; Ripstein et al. 2017;
193 Ho et al. 2018; Gates et al. 2017; White et al. 2018; Han et al. 2017; Ripstein et al. 2020). During
194 the preparation of this manuscript, a preprint reporting the structure of a substrate-bound Walker-
195 B mutant of LonA from *Yersinia pestis* (YpeLonA) also suggested a similar mechanism (Shin et
196 al.). However, these substrate-bound structures show several notable differences. Despite
197 containing four ATP-bound protomers in the staircase arrangement, YpeLonA engaged the
198 substrate via only the highest three spiraling pore-loop I residues; in addition, the structure did
199 not show direct interaction of the substrate with pore-loop 2. By contrast, MtaLonA binds to the
200 substrate through the pore-loops from all four staircase protomers, with the lowest protomer of
201 the staircase bound to ADP; such nucleotide arrangement in the substrate-engaging protomers
202 has also been observed in the structure of a DNA-engaged state of the CMG helicase (Eickhoff et

203 al. 2019). Interestingly, both of the two different nucleotide-binding states captured in the
204 YpeLonA and MtaLonA structures are distinct from those in other substrate-engaged AAA+
205 proteases (de la Peña et al. 2018; Dong et al. 2019; Puchades et al. 2017, 2019; Ripstein et al.
206 2020). It is likely that, although operated by a common mechanism, an AAA+ protease such as
207 LonA may respond to different substrates, carrying different degrons, by employing protomers
208 arranged spirally with different numbers of staircase steps to grip the substrate and to traverse
209 different nucleotide-binding states to coordinate ATP hydrolysis, thereby generating different
210 translocating forces. In this regard, future works on the analysis of the structures of an AAA+
211 protein with a series of substrates with different folding or stable states, and/or with different
212 predefined degrons, may yield further insights into the mechanism of action of these molecular
213 machines.

214

215 **Materials and methods**

216 **Protein expression and purification**

217 Cells were grown in LB medium at 37°C until the optical density reached 0.6 to 0.8. Isopropyl β -
218 d-thiogalactopyranoside (IPTG) to a final concentration of 1 mM was then added to the culture
219 and incubated for another 4 h at 25°C for full-length MtaLonA and 37°C for the substrate Ig2
220 (Lin et al. 2016; Su et al. 2016). Cells were harvested by centrifugation and suspended in lysis
221 buffer containing 50 mM Tris-HCl (pH 8.0) and 500 mM NaCl. Cell lysate was first ruptured by
222 a French press (Avestin) and centrifuge at 35,000 g. Supernatant was collected for 2.5 h binding
223 with Ni-nitrilotriacetic acid resins (Qiagen) at 4°C. Protein was further washed with a stepwise
224 imidazole gradient and eluted with 250 mM imidazole. After that, Ig2 was treated with TEV
225 protease overnight to remove the 6xHis tag. All proteins were dialyzed against different buffer
226 components to remove imidazole. MtaLonA was dialyzed against buffer containing 20 mM Tris-
227 HCl (pH 8.0), 100 mM NaCl and 2 mM DTT, while Ig2 was dialyzed against 25 mM Tris-HCl
228 (pH 8.0), 150 mM NaCl and 2 mM β -mercaptoethanol. The untagged Ig2 was further purified by
229 Ni-NTA and Superdex 200 (GE Healthcare) chromatography.

230 After purification, MtaLonA was first incubated with 10 mM MgCl₂ for 1 h and then
231 incubated with 1 mM bortezomib, 5 mM adenosine 5'-[γ -thio]-triphosphate (ATP- γ -S) and Ig2
232 (in 5-fold molar excess) overnight. The MtaLonA-Ig2-bortezomib-ATP- γ -S complex was then
233 loaded onto Superdex 200 (GE Healthcare) column pre-equilibrated with 20 mM Tris-HCl

234 (pH8.0), 100 mM NaCl, 10 mM MgCl₂ and 2 mM DTT to remove unbound compounds. The
235 protein complex was treated with additional 1 mM of ATP- γ -S before cryo-sample preparation.

236

237 **Cryo-EM data acquisition**

238 The samples were diluted at a final concentration of around 0.15 mg/mL for the substrate-
239 engaged MtaLonA. Three microliters of the sample was applied onto glow-discharged 200-mesh
240 R1.2/1.3 Quantifoil grids. The grids were blotted for 4 s and rapidly cryocooled in liquid ethane
241 using a Vitrobot Mark IV (Thermo Fisher Scientific) at 4°C and 100% humidity. The samples
242 were screened using a Talos Arctica cryo-electron microscope (Thermo Fisher Scientific)
243 operated at 200 kV. They were then imaged in a Titan Krios cryo-electron microscope (Thermo
244 Fisher Scientific) with GIF energy filter (Gatan) at a magnification of 215,000 \times (corresponding
245 to a calibrated sampling of 0.65 Å per pixel) for the substrate-engaged state. Micrographs were
246 recorded by EPU software (Thermo Fisher Scientific) with a Gatan K2 Summit direct electron
247 detector, where each image was composed of 30 individual frames with an exposure time of 6 s
248 and an exposure rate of 8.5 electrons per second per Å². A total of 1,800 movie stacks were
249 collected.

250

251 **Single-particle image processing and 3D reconstruction**

252 All micrographs were first imported into Relion (Scheres 2012) for image processing. The
253 motion-correction was performed using MotionCor2 (Zheng et al. 2017) and the contrast transfer
254 function (CTF) was determined using CTFFIND4 (Rohou and Grigorieff 2015). All particles
255 were autopicked using the NeuralNet option (threshold 1 = 0; threshold 2 = -5) in EMAN2 (Tang
256 et al. 2007), and further checked manually. Then, particle coordinates were imported to Relion,
257 where the poor 2D class averages were removed by several rounds of 2D classification. A total
258 of 102,419 particles were transferred to cryoSPARC (Punjani et al. 2017) for ab-initio map
259 generation. Then a good class with 58,276 particles was imported to Relion for 3D classification.
260 After removing bad classes, the final 3D refinement was performed using 23,487 particles, and a
261 3.6 Å map was obtained.

262

263

264

265 **Model building**

266 The crystal structure of a hexameric LonA protease (PDB ID: 4YPL) from our previous work
267 (Lin et al. 2016) was rigidly fitted into the cryo-EM map of substrate-engaged MtaLonA. As the
268 six protomers were conformationally different in the cryo-EM density, molecular dynamics
269 flexible fitting (MDFF) (Trabuco et al. 2008) was used. The MDFF was completed in three runs,
270 where each run included 10^4 minimization steps and 10^5 molecular dynamics steps. After no
271 noticeable deformation, the MDFF was stopped. The resultant models were refined using
272 phenix.real_space_refine (Liebschner et al. 2019). The type of the bound nucleotide, ADP or
273 ATP- γ -S, was determined by LigandFit in Phenix, with an overall correlation coefficient of the
274 ligand to the map over 0.7. Then phenix.real_space_refine and Coot (Emsley et al. 2010) were
275 applied for model optimization.

276 The final model was evaluated by MolProbity (Chen et al. 2010) and Q-scores (Pintilie et al.)
277 as previously stated (Zhang et al. 2019). Statistics of the map reconstruction and model building
278 are summarized in Table S1. The final structure model was analyzed with the PDBsum structure
279 bioinformatics software (Laskowski et al. 2018) to identify key residues that interact with bound
280 nucleotides. All figures were prepared using PyMol (Rigsby and Parker 2016) and Chimera
281 (Pettersen et al. 2004).

282

283 **Substrate degradation assay**

284 Ig2 (domains 5 and 6 of the gelation factor ABP-120 of *Dictyostelium discoideum* (Hsu et al.
285 2007)) was used as the substrate in this assay. Then 4 mM of the substrate protein was incubated
286 with 0.8 mM MtaLonA (hexamer) in the reaction buffer containing 50 mM Tri-HCl pH 8.0, 10
287 mM MgCl₂, 1 mM DTT, 5 mM ATP or ATP- γ -S at 55°C. At different time points, reaction
288 aliquots were stopped by adding 5X SDS-PAGE loading dye and heated at 95°C for 5 min. The
289 samples were then loaded onto a SurePAGE gel (4-20% Bis-Tris)(Genscript). Substrate protein
290 bands were detected by Coomassie Blue staining.

291

292 **Acknowledgments**

293 We thank Kuei-Hsiang Pan and Lu-Chu Ke for their help on protein preparation. This work was
294 supported by Academia Sinica and MOST grant 108-2320-B-001-011-MY3 (to C.I.C.) and the

295 National Institutes of Health grants (P41GM103832, R01GM079429, and S10OD021600 to
296 W.C.).

297

298 **Author contributions**

299 C.-I.C. and W.C. conceived the study; C.I.C. and K.Z. designed experiments; K.Z. solved the
300 structures; K.Z., S.L., and K.Y.H. performed experiments; K.Z., S.L., K.Y.H., G.D.P., W.C., and
301 C.I.C. analyzed data; and K.Z., S.L., K.Y.H., W.C., and C.I.C. wrote the manuscript.

302

303 **Data deposition**

304 Cryo-EM map of the substrate-engaged MtaLonA with its associated atomic model have been
305 deposited in the Electron Microscopy Data Bank and the Protein Data Bank under accession
306 code EMD-21870, and PDB ID code 6WQH.

307

308 **References**

309 Botos I, Lountos GT, Wu W, Cherry S, Ghirlando R, Kudzhaev AM, Rotanova TV, de Val N,
310 Tropea JE, Gustchina A, Wlodawer A. 2019. Cryo-EM structure of substrate-free *E. coli*
311 Lon protease provides insights into the dynamics of Lon machinery. *Current Research in*
312 *Structural Biology* **1**: 13–20. <http://dx.doi.org/10.1016/j.crstbi.2019.10.001>.

313 Botos I, Melnikov EE, Cherry S, Tropea JE, Khalatova AG, Rasulova F, Dauter Z, Maurizi MR,
314 Rotanova TV, Wlodawer A, Gustchuhina A. 2004. The Catalytic Domain of *Escherichia*
315 *coli* Lon Protease Has a Unique Fold and a Ser-Lys Dyad in the Active Site. *Journal of*
316 *Biological Chemistry* **279**: 8140–8148. <http://dx.doi.org/10.1074/jbc.m312243200>.

317 Cha S-S, An YJ, Lee CR, Lee HS, Kim Y-G, Kim SJ, Kwon KK, De Donatis GM, Lee J-H,
318 Maurizi MR, Kang SG. 2010. Crystal structure of Lon protease: molecular architecture of
319 gated entry to a sequestered degradation chamber. *EMBO J* **29**: 3520–3530.

320 Cheng I, Mikita N, Fishovitz J, Frase H, Wintrode P, Lee I. 2012. Identification of a region in the
321 N-terminus of *Escherichia coli* Lon that affects ATPase, substrate translocation and
322 proteolytic activity. *J Mol Biol* **418**: 208–225.

323 Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW,
324 Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for
325 macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr* **66**: 12–21.

326 de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A. 2018. Substrate-engaged 26
327 proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. *Science*
328 **362**. <http://dx.doi.org/10.1126/science.aav0725>.

329 Dong Y, Zhang S, Wu Z, Li X, Wang WL, Zhu Y, Stoilova-McPhie S, Lu Y, Finley D, Mao Y.
330 2019. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome.
331 *Nature* **565**: 49–55.

332 Duman RE, Löwe J. 2010. Crystal structures of *Bacillus subtilis* Lon protease. *J Mol Biol* **401**:
333 653–670.

334 Eickhoff P, Kose HB, Martino F, Petojevic T, Abid Ali F, Locke J, Tamberg N, Nans A, Berger
335 JM, Botchan MR, Yardimci H, Costa A. 2019. Molecular Basis for ATP-Hydrolysis-Driven
336 DNA Translocation by the CMG Helicase of the Eukaryotic Replisome. *Cell Rep* **28**: 2673–
337 2688.e8.

338 Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. *Acta
339 Crystallogr D Biol Crystallogr* **66**: 486–501.

340 Erzberger JP, Berger JM. 2006. Evolutionary relationships and structural mechanisms of AAA+
341 proteins. *Annu Rev Biophys Biomol Struct* **35**: 93–114.

342 Gates SN, Yokom AL, Lin J, Jackrel ME, Rizo AN, Kendersky NM, Buell CE, Sweeny EA,
343 Mack KL, Chuang E, Torrente MP, Su M, Shorter J, Southworth DR. 2017. Ratchet-like
344 polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. *Science* **357**:
345 273–279.

346 Goldberg AL, Moerschell RP, Chung CH, Maurizi MR. 1994. ATP-dependent protease La (Lon)
347 from *Escherichia coli*. *Methods Enzymol* **244**: 350–375.

348 Gur E. 2013. The Lon AAA+ protease. *Subcell Biochem* **66**: 35–51.

349 Gur E, Sauer RT. 2008. Recognition of misfolded proteins by Lon, a AAA protease. *Genes &
350 Development* **22**: 2267–2277. <http://dx.doi.org/10.1101/gad.1670908>.

351 Han H, Monroe N, Sundquist WI, Shen PS, Hill CP. 2017. The AAA ATPase Vps4 binds
352 ESCRT-III substrates through a repeating array of dipeptide-binding pockets. *eLife* **6**.
353 <http://dx.doi.org/10.7554/eLife.31324>.

354 Ho C-M, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, Zhou ZH. 2018. Malaria parasite
355 translocon structure and mechanism of effector export. *Nature* **561**: 70–75.

356 Hsu S-TD, Fucini P, Cabrita LD, Launay H, Dobson CM, Christodoulou J. 2007. Structure and
357 dynamics of a ribosome-bound nascent chain by NMR spectroscopy. *Proc Natl Acad Sci U
358 S A* **104**: 16516–16521.

359 Iyer LM, Leipe DD, Koonin EV, Aravind L. 2004. Evolutionary history and higher order
360 classification of AAA+ ATPases. *J Struct Biol* **146**: 11–31.

361 Kucukelbir A, Sigworth FJ, Tagare HD. 2014. Quantifying the local resolution of cryo-EM
362 density maps. *Nat Methods* **11**: 63–65.

363 Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. 2018. PDBsum: Structural
364 summaries of PDB entries. *Protein Sci* **27**: 129–134.

365 Liao J-H, Ihara K, Kuo C-I, Huang K-F, Wakatsuki S, Wu S-H, Chang C-I. 2013. Structures of
366 an ATP-independent Lon-like protease and its complexes with covalent inhibitors. *Acta
367 Crystallogr D Biol Crystallogr* **69**: 1395–1402.

368 Liao J-H, Kuo C-I, Huang Y-Y, Lin Y-C, Lin Y-C, Yang C-Y, Wu W-L, Chang W-H, Liaw Y-
369 C, Lin L-H, Chang C-I, Wu S-H. 2012. A Lon-like protease with no ATP-powered
370 unfolding activity. *PLoS One* **7**: e40226.

371 Liebschner D, Afonine PV, Baker ML, Bunkóczki G, Chen VB, Croll TI, Hintze B, Hung LW,
372 Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson
373 JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev
374 AG, Videau LL, Williams CJ, Adams PD. 2019. Macromolecular structure determination
375 using X-rays, neutrons and electrons: recent developments in Phenix. *Acta Crystallogr D
376 Struct Biol* **75**: 861–877.

377 Lin C-C, Su S-C, Su M-Y, Liang P-H, Feng C-C, Wu S-H, Chang C-I. 2016. Structural Insights
378 into the Allosteric Operation of the Lon AAA+ Protease. *Structure* **24**: 667–675.

379 Mikita N, Cheng I, Fishovitz J, Huang J, Lee I. 2013. Processive degradation of unstructured
380 protein by Escherichia coli Lon occurs via the slow, sequential delivery of multiple scissile
381 sites followed by rapid and synchronized peptide bond cleavage events. *Biochemistry* **52**:
382 5629–5644.

383 Monroe N, Han H, Shen PS, Sundquist WI, Hill CP. 2017. Structural basis of protein
384 translocation by the Vps4-Vta1 AAA ATPase. *Elife* **6**.
385 <http://dx.doi.org/10.7554/eLife.24487>.

386 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004.
387 UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput
388 Chem* **25**: 1605–1612.

389 Pintilie G, Zhang K, Su Z, Li S, Schmid MF, Chiu W. 2020. Measurement of Atom
390 Resolvability in CryoEM Maps with Q-scores. *Nat Methods* **17**, 328–334.
391 <https://doi.org/10.1038/s41592-020-0731-1>.

392 Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. 2019. Unique Structural
393 Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for
394 Activity in Health and Disease. *Mol Cell* **75**: 1073–1085.e6.

395 Puchades C, Rampello AJ, Shin M, Giuliano CJ, Wiseman RL, Glynn SE, Lander GC. 2017.
396 Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into
397 substrate processing. *Science* **358**. <http://dx.doi.org/10.1126/science.aoa0464>.

398 Puchades C, Sandate CR, Lander GC. 2020. The molecular principles governing the activity and
399 functional diversity of AAA+ proteins. *Nat Rev Mol Cell Biol* **21**: 43–58.

400 Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. 2017. cryoSPARC: algorithms for rapid
401 unsupervised cryo-EM structure determination. *Nat Methods* **14**: 290–296.

402 Rigsby RE, Parker AB. 2016. Using the PyMOL application to reinforce visual understanding of
403 protein structure. *Biochem Mol Biol Educ* **44**: 433–437.

404 Ripstein ZA, Huang R, Augustyniak R, Kay LE, Rubinstein JL. 2017. Structure of a AAA+
405 unfoldase in the process of unfolding substrate. *eLife* **6**.
406 <http://dx.doi.org/10.7554/eLife.25754>.

407 Ripstein ZA, Vahidi S, Houry WA, Rubinstein JL, Kay LE. 2020. A processive rotary
408 mechanism couples substrate unfolding and proteolysis in the ClpXP degradation
409 machinery. *eLife* **9**. <http://dx.doi.org/10.7554/eLife.52158>.

410 Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from electron
411 micrographs. *J Struct Biol* **192**: 216–221.

412 Rotanova TV, Botos I, Melnikov EE, Rasulova F, Gustchina A, Maurizi MR, Wlodawer A.
413 2006. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned
414 from investigations of isolated domains. *Protein Sci* **15**: 1815–1828.

415 Rotanova TV, Melnikov EE, Khalatova AG, Makhovskaya OV, Botos I, Wlodawer A, Gustchina
416 A. 2004. Classification of ATP-dependent proteases Lon and comparison of the active sites
417 of their proteolytic domains. *Eur J Biochem* **271**: 4865–4871.

418 Sauer RT, Baker TA. 2011. AAA+ proteases: ATP-fueled machines of protein destruction. *Annu
419 Rev Biochem* **80**: 587–612.

420 Scheres SHW. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure
421 determination. *J Struct Biol* **180**: 519–530.

422 Seol JH, Yoo SJ, Shin DH, Shim YK, Kang MS, Goldberg AL, Chung CH. 1997. The heat-
423 shock protein HsIVU from *Escherichia coli* is a protein-activated ATPase as well as an
424 ATP-dependent proteinase. *Eur J Biochem* **247**: 1143–1150.

425 Shin M, Asmita A, Puchades C, Adjei E, Luke Wiseman R, Wali Karzai A, Lander GC. 2019.
426 Distinct Structural Features of the Lon Protease Drive Conserved Hand-over-Hand
427 Substrate Translocation. <http://dx.doi.org/10.1101/617159>.

428 Su S-C, Lin C-C, Tai H-C, Chang M-Y, Ho M-R, Babu CS, Liao J-H, Wu S-H, Chang Y-C, Lim
429 C, Chang C-I. 2016. Structural Basis for the Magnesium-Dependent Activation and
430 Hexamerization of the Lon AAA+ Protease. *Structure* **24**: 676–686.

431 Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Lutcke SJ. 2007. EMAN2: an
432 extensible image processing suite for electron microscopy. *J Struct Biol* **157**: 38–46.

433 Trabuco LG, Villa E, Mitra K, Frank J, Schulten K. 2008. Flexible fitting of atomic structures
434 into electron microscopy maps using molecular dynamics. *Structure* **16**: 673–683.

435 Vieux EF, Wohlever ML, Chen JZ, Sauer RT, Baker TA. 2013. Distinct quaternary structures of
436 the AAA+ Lon protease control substrate degradation. *Proc Natl Acad Sci U S A* **110**:
437 E2002–8.

438 Waxman L, Goldberg AL. 1986. Selectivity of intracellular proteolysis: protein substrates
439 activate the ATP-dependent protease (La). *Science* **232**: 500–503.

440 White KI, Zhao M, Choi UB, Pfuetzner RA, Brunger AT. 2018. Structural principles of SNARE
441 complex recognition by the AAA+ protein NSF. *Elife* **7**.
442 <http://dx.doi.org/10.7554/eLife.38888>.

443 Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. 2003. Conserved pore residues
444 in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis.
445 *J Biol Chem* **278**: 50182–50187.

446 Yu H, Lupoli TJ, Kovach A, Meng X, Zhao G, Nathan CF, Li H. 2018. ATP hydrolysis-coupled
447 peptide translocation mechanism of *Mycobacterium tuberculosis* ClpB. *Proceedings of the*
448 *National Academy of Sciences* **115**: E9560–E9569.
449 <http://dx.doi.org/10.1073/pnas.1810648115>.

450 Zhang K, Li S, Kappel K, Pintilie G, Su Z, Mou T-C, Schmid MF, Das R, Chiu W. 2019. Cryo-
451 EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. *Nat Commun* **10**:
452 5511.

453 Zhang X, Wigley DB. 2008. The “glutamate switch” provides a link between ATPase activity
454 and ligand binding in AAA+ proteins. *Nat Struct Mol Biol* **15**: 1223–1227.

455 Zheng SQ, Palovcak E, Armache J-P, Verba KA, Cheng Y, Agard DA. 2017. MotionCor2:
456 anisotropic correction of beam-induced motion for improved cryo-electron microscopy. *Nat*
457 *Methods* **14**: 331–332.

458

459

460

461

462

463

464

465

466

467

468

469 **Figures**

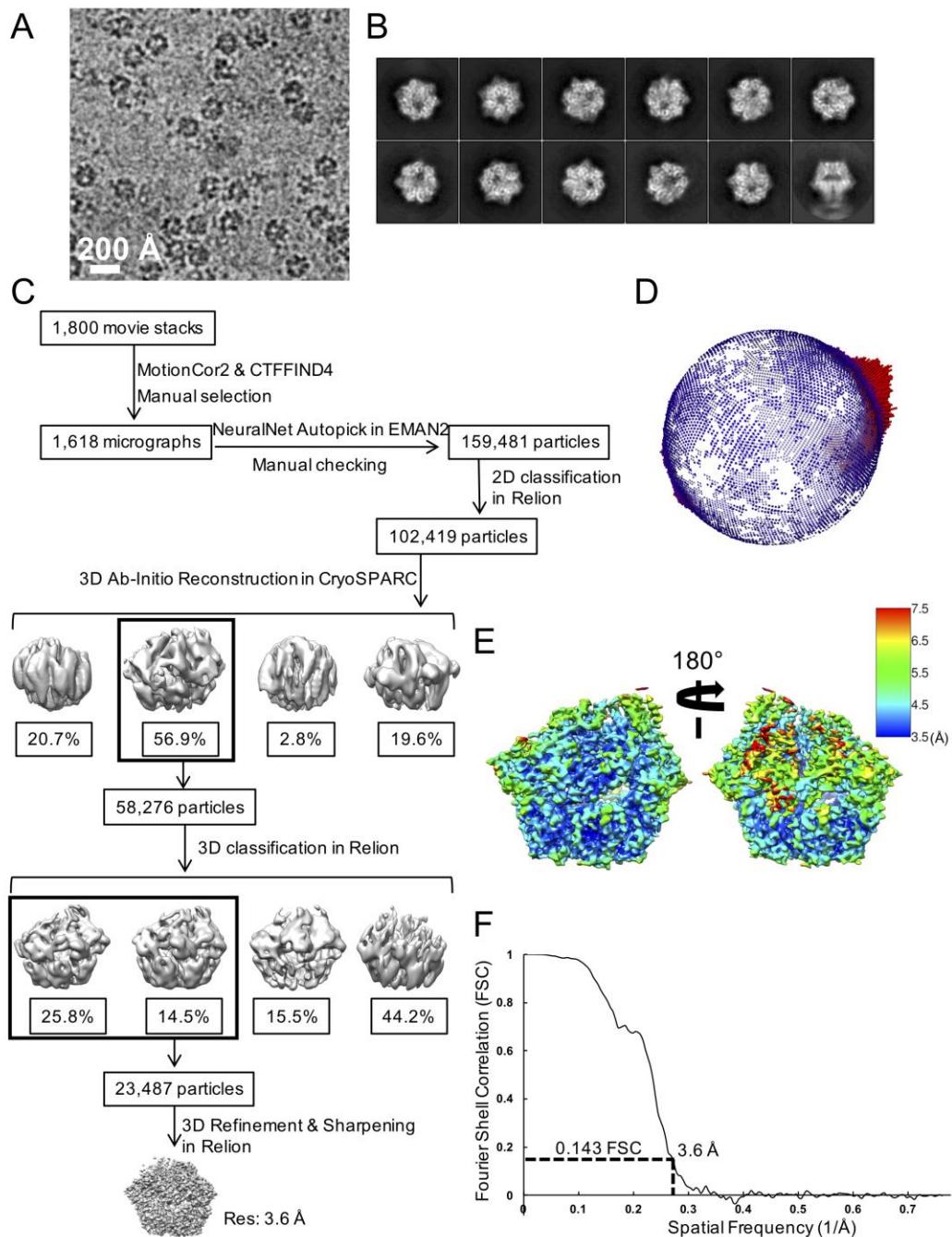


470

471 **Figure 1.** Overall structure of the substrate-bound MtaLonA complex. **(A)** The 3.6-Å cryo-EM
472 map (left and middle) and model (right) of MtaLonA bound to the substrate Ig2 (magenta). The
473 three structural domains are indicated on the right. **(B)** The rings of protease domains (res. 590-
474 780; left) and ATPase domains (res. 307-583; right) in a top view. **(C)** Individual protomers
475 (protomers P1-P6), which were aligned using the protease domain as the reference. **(D)** Pore-
476 loop 1 (PL1) and 2 (PL2) residues from the protomers P1-P4 interacting with Ig2 (magenta
477 density) are indicated. N' and C' denote N- and C-terminal ends, respectively.

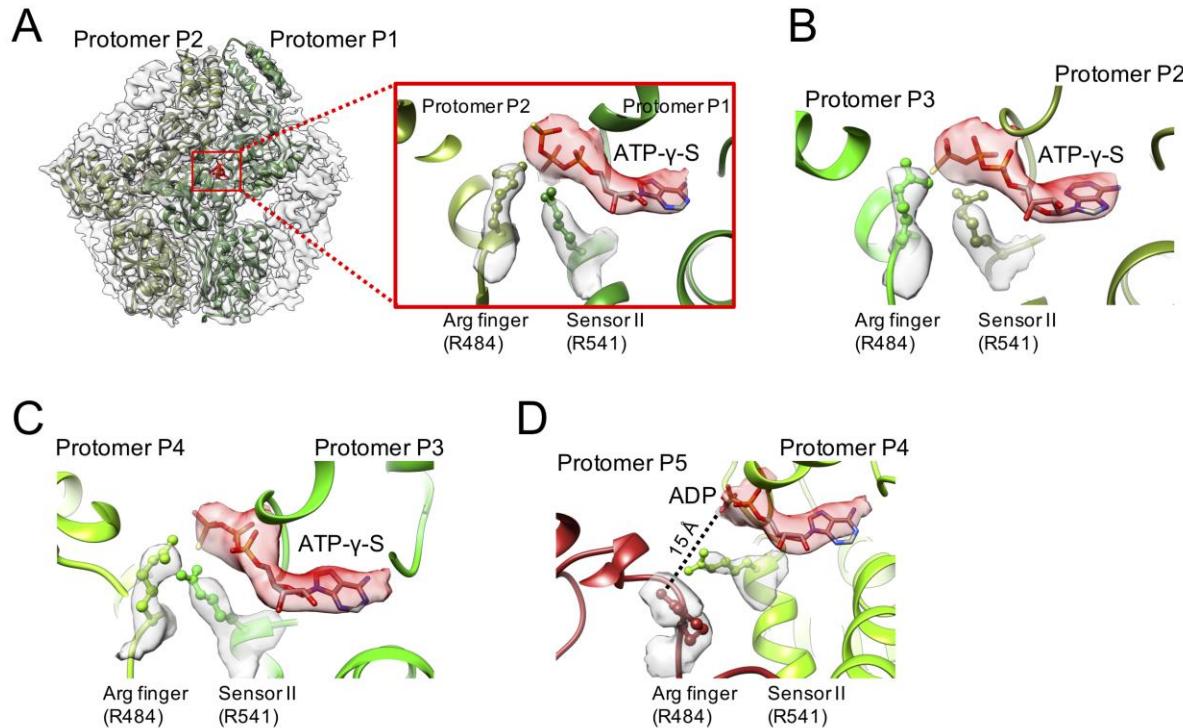
478

479


481 **Figure 1—figure supplement 1.** Substrate degradation assay. The substrate protein (Ig2) was
482 degraded by wild-type MtaLonA in the presence of ATP (left) or ATP- γ -S (right).

483

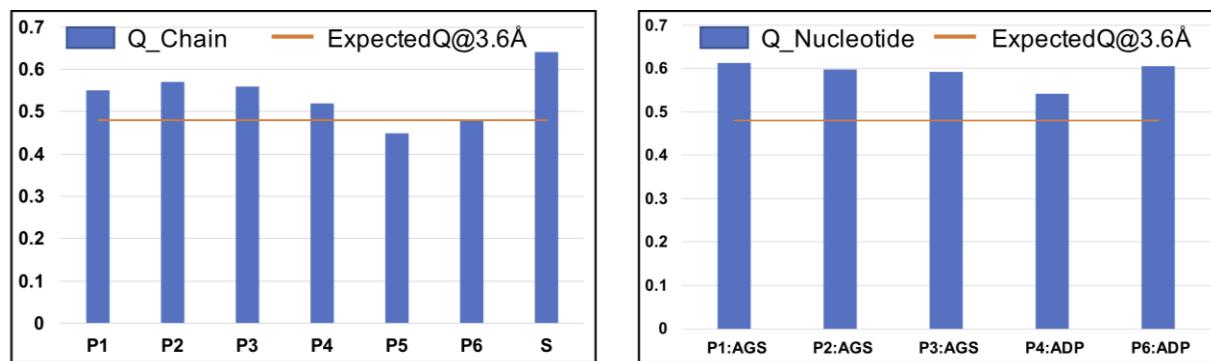
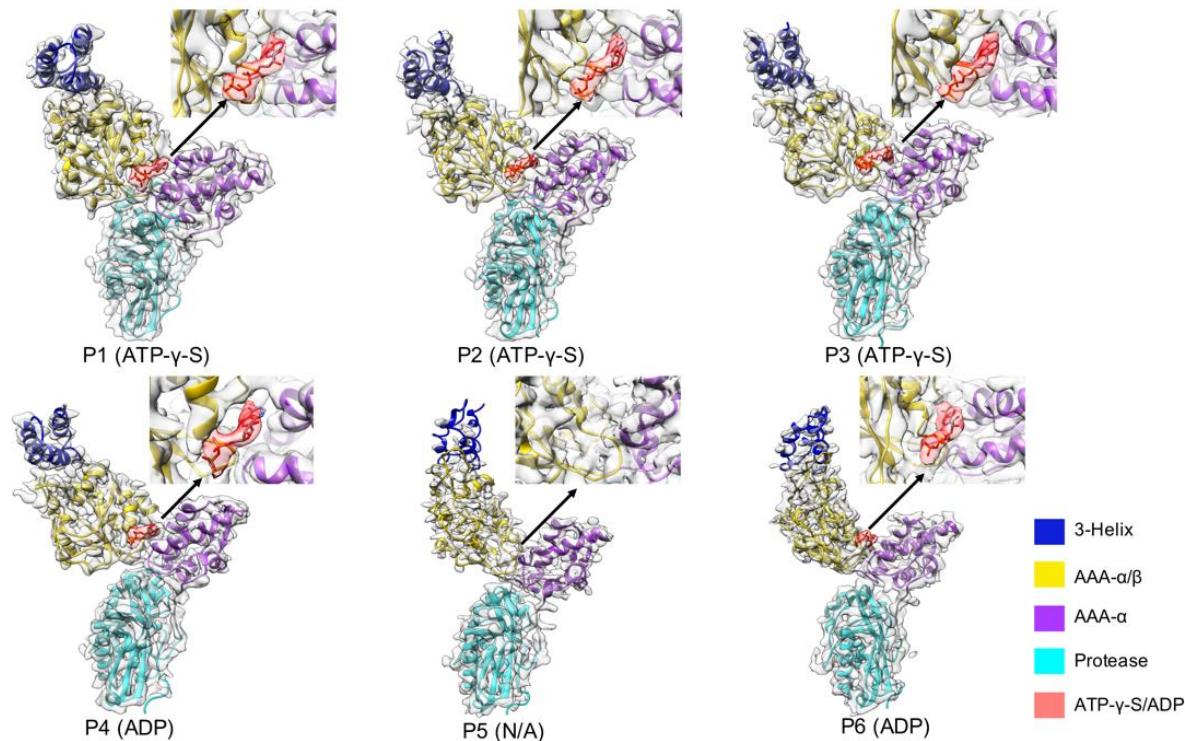
484


485

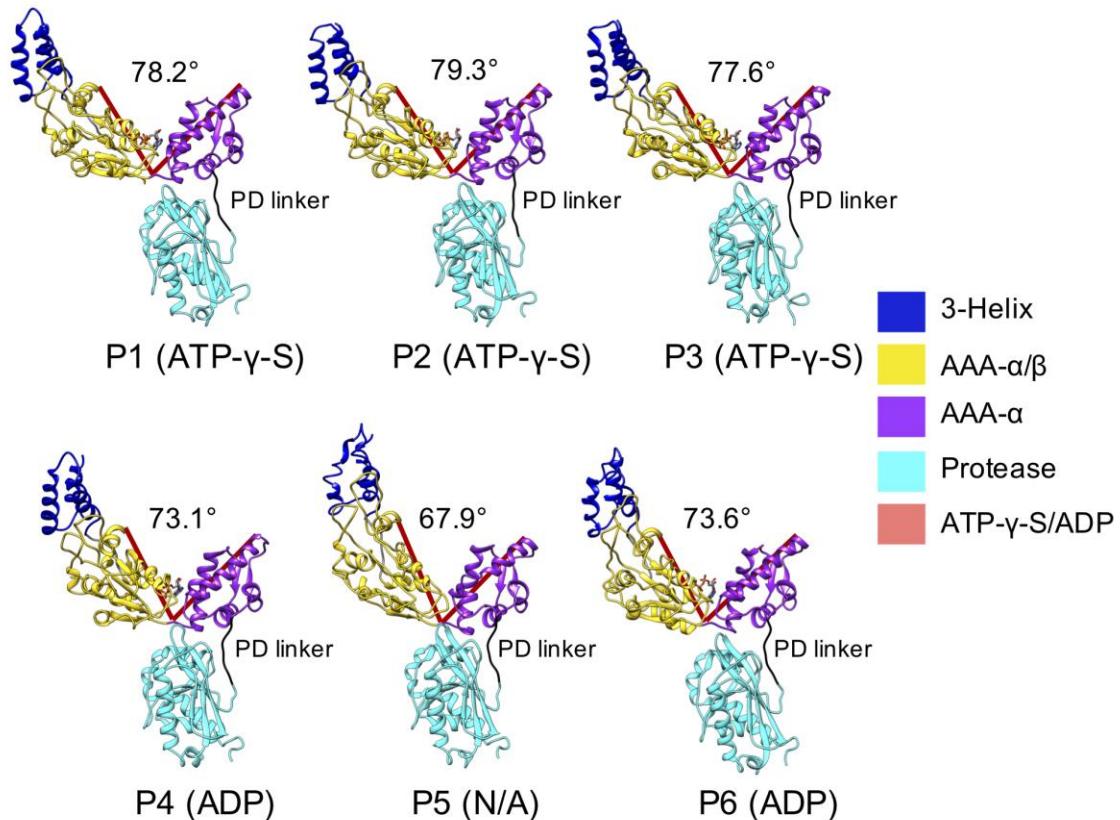
486

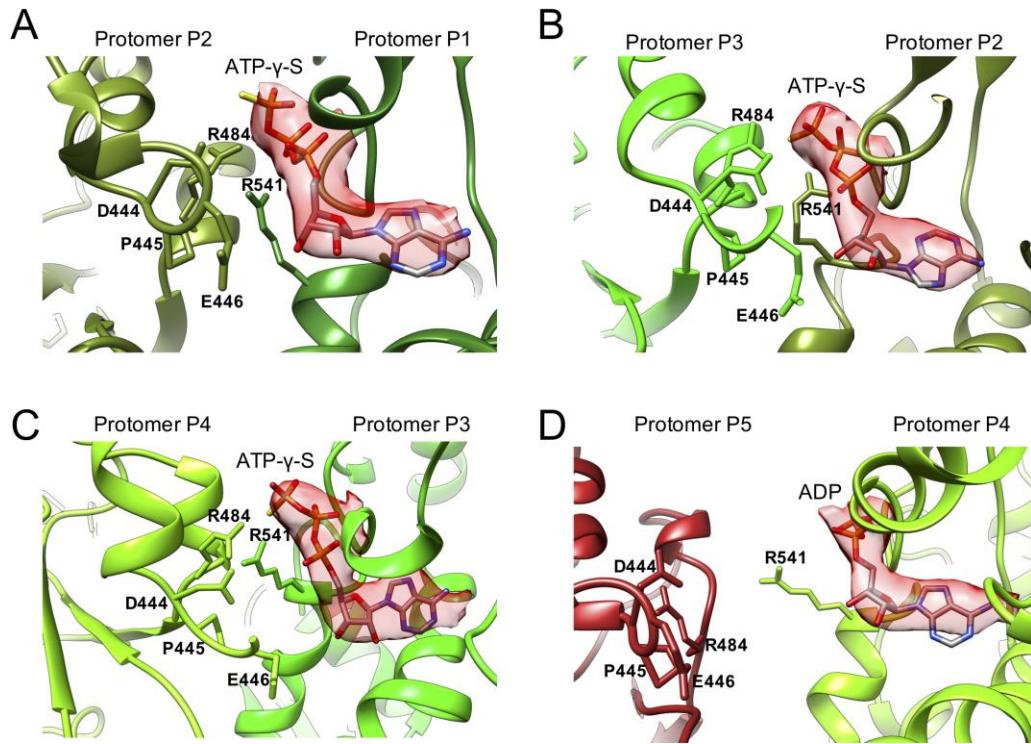
487

488 **Figure 1—figure supplement 2.** Single-particle cryo-EM analysis of the substrate-engaged
489 MtaLonA. (A) Representative motion-corrected cryo-EM micrograph. (B) Reference-free 2D
490 class averages. (C) Workflow of cryo-EM data processing. (D) Euler angle distribution of all
491 particles used for calculating the final 3D reconstruction. (E) Resolution map for the final 3D
492 reconstruction. (F) Gold standard FSC plot for the final 3D reconstruction.



493

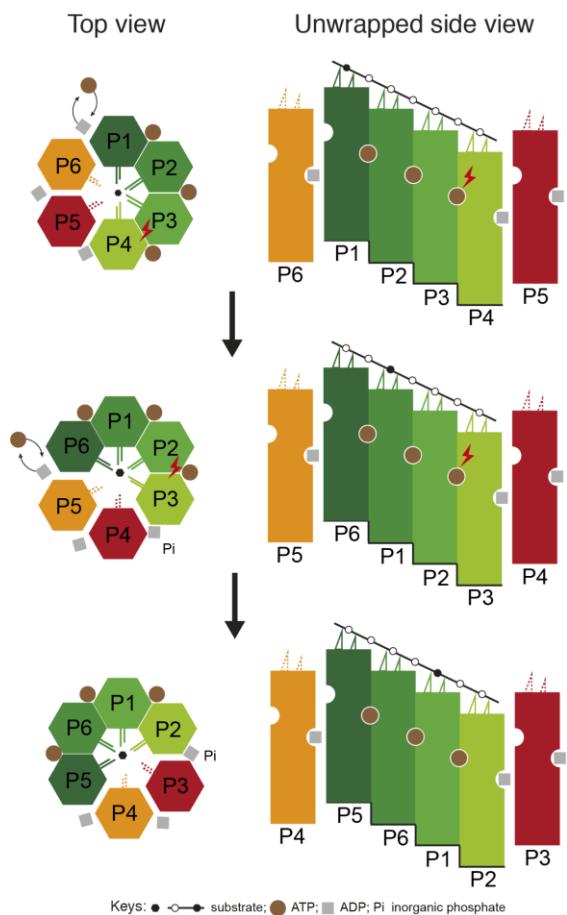
494 **Figure 2.** ATPase sites surrounding the substrate-engaged AAA+ ring. **(A)** The arginine finger
495 and sensor II residues interacting with the ATP- γ -S bound to protomer P1. **(B)** The arginine
496 finger and sensor II residues interacting with the ATP- γ -S bound to protomer P2. **(C)** The
497 arginine finger and sensor II residues interacting with the ATP- γ -S bound to protomer P3. **(D)**
498 The arginine finger and sensor II residues do not interact with ADP bound to protomer P4. The
499 bound nucleotide is shown in red density with the fitted model.


500


501

502

510 **Figure 2—supplement 2.** Resolvability of the cryo-EM structure of MtaLonA complexes
511 calculated by Q-score. Q-score for each chain and nucleotide in model and map; the orange line
512 represents the expected Q-score at respective resolution based on the correlation between Q-
513 scores and map resolution of proteins. The higher Q-score indicates better resolvability. S refers
514 to the substrate Ig2.



523

524 **Figure 3—supplement 1.** Conformation of the PS1 β H base-loop (Asp444, Pro445, Glu446) and
525 Arg-finger (Arg484) in the nucleotide-binding pocket between the neighboring protomers
526 The bound nucleotide is shown in red density with the model fitted in.

527

543 **Supplemental Table 1. Cryo-EM data collection, processing, and model validation**

544

Substrate-engaged MtaLonA	
Data collection and processing	
Microscope	Titan Krios
Voltage (kV)	300
Camera	Gatan K2 Summit
Pixel size (Å)	0.65
Total Dose (e-/Å ²)	51
Exposure time (s)	6
Number of frames per exposure	30
Defocus range (μm)	-0.6 - -2.6
Number of micrographs	1,800
Number of initial particles	159,481
Number of particles for 3D analyses	102,419
Symmetry	C1
Number of final particles	23,487
Resolution (0.143 FSC, Å)	3.6
Atomic model refinement	
Software	phenix.real_space_refine
Clash score	21.78
MolProbity score	2.32
Poor rotamers	0.51%
Favored rotamers	92.35%
Ramachandran outliers	0.22%
Ramachandran favored	91.81%
Bad bonds	0.03%
Bad angles	0.04%

545

546 **Supplemental Video 1.** The cryo-EM map of the substrate-bound MtaLonA complex with the
547 model fitted in. Four Tyr397 residues from the pore-loop 1 of protomers P1-P4 contact the
548 substrate (Ig2) in a right-handed spiral arrangement. The nucleotides in the ATPase domain in
549 protomers P6, P1, P2, P3, and P4 are shown in an amplified view sequentially.