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Abstract

Background: Principal component analysis (PCA) is a commonly used tool in genetics to
capture and visualize population structure. Due to technological advances in sequencing, such
as the widely used non-invasive prenatal test, massive datasets of ultra-low coverage sequenc-
ing are being generated. These datasets are characterized by having a large amount of missing
genotype information. We present EMU, a method for inferring population structure in the
presence of rampant non-random missingness.

Results: We show through simulations that several commonly used PCA methods can not
handle missing data arisen from various sources, which leads to biased results as individuals are
projected into the PC space based on their amount of missingness. In terms of accuracy, EMU
outperforms an existing method that also accommodates missingness while being competitively
fast. We further tested EMU on around 100K individuals of the Phase 1 dataset of the Chinese
Millionome Project, that were shallowly sequenced to around 0.08x. From this data we are able
to capture the population structure of the Han Chinese and to reproduce previous analysis in
a matter of CPU hours instead of CPU years.

Conclusions: EMU’s capability to accurately infer population structure in the presence of
missingness will be of increasing importance with the rising number of large-scale genetic
datasets. EMU is written in Python and is freely available at https://github.com/Rosemeis/
emu/|

1 Introduction

The advent of whole-genome sequencing technologies has brought the opportunity of generating
large amount of genomic data at low cost [25]. Large-scale sequencing studies are therefore becoming
more prevalent [6] [7, 10} T3], [21] as they help researchers understand genetic variation in populations

on a much broader scale than previously possible using genotyping arrays. A cost-effective strategy
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with the ever-increasing demand for larger sample sizes seems to advocate for the use of medium or
low coverage sequencing [26], [20]. Larger sample sizes sequenced at lower depths will generally lead
to better population-scale estimates of genetic variation compared to sequencing at higher depths at
the cost of limited sample sizes [11]. With this appealing trade-off, a genomic study [21] was recently
conducted on ultra-low coverage sequencing data of 141K Chinese pregnant women as part of the
Chinese Millionome Project. The participants in the study underwent a non-invasive prenatal test
(NIPT) which is common for testing fetal chromosomal abnormalities by shallowly sequencing the
cell-free DNA from the maternal plasma. The study provided insight into the genetic structure and
history of the Chinese population as well as performing genome-wide association studies (GWAS)
with principal components as covariates. The study had an average depth of < 0.1X, which allowed
for the much larger sample size compared to other sequencing projects.

These large-scale sequencing studies will usually consist of individuals from diverse ancestries
and may include cryptic structure not accounted for. Population structure plays a major role
in population genetics for understanding population demography [27], as well as in association
studies where it acts as a confounding factor and must be accounted for [22] [29]. One approach for
inferring population structure is based on the use of principal component analysis (PCA). PCA has
the appealing feature of projecting individuals onto inferred axes of genetic variation that capture
population structure in a continuous fashion. The standard way to infer population structure using
PCA has been to construct a genetic relationship matrix (GRM) and perform eigendecomposition
on this matrix to infer the axes of genetic variation [27]. However as the sample size in large-
scale studies is constantly increasing, faster and more scalable methods based on various low-rank
approximations [I9] [I4] have been developed to only infer the top axes of genetic variation almost
directly from the genotype matrix [23 12, [I]. The problem for the majority of these methods is
that they cannot handle missing data in an appropriate manner.

Common approaches for dealing with missingness when inferring population structure are either
to thin the dataset by removing sites or individuals with missingness rates above a certain threshold
or to simply ignore the presence of missingness by using the mean genotype value [27, [12] 1], also

called mean imputation. The problem with the first approach is that one would lose information
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that could potentially be crucial in downstream analyses, and especially when merging datasets of
different sources. The problem with second approach is that the inferred axes will correlate with
the amount of missingness and thus no longer only represent population structure. This is due to
missingness being modelled as the average across the entire dataset.

We therefore propose a new method that is specially designed to deal with large-scale genetic
datasets with very high levels of missingness using a novel accelerated approach. EMU (EM-PCA for
Ultra-low Coverage Sequencing Data) is an accelerated expectation-maximization (EM) algorithm
for PCA to model the missingness in an iterative fashion. The concept of an iterative PCA for
imputing missing values is not novel and has been formally described [I7, [I6]. A similar method
[23] has also been developed for low coverage sequencing data on the basis of genotype likelihoods
which however is not optimal for ultra-low coverage sequencing data, where individuals almost never
have more than one read at a locus. We apply and show that our method displays high accuracy,
robustness and scalability on both simulated and real data with very high missingness, where we
apply it to around 100K non-invasive prenatal test data [2I]. In relation to missingness patterns,
we also demonstrate that EMU is robust to having different SNP ascertainment schemes in a dataset
as would be a result of merging different data types. Additionally, we compare our method in terms
of accuracy, computational speed and memory usage against other popular choices of methods for

inferring population structure on the basis of PCA.

2 Material and Methods

We will now describe our method EMU for inferring population structure in ultra-low coverage
sequencing data. As we assume to be working on datasets with extensive amount of missingness
for ultra-low coverage sequencing data (< 0.1X), we use a single-read sampling approach to best
describe our data in a similar fashion to [21]. This means that we expect on average < 0.1 sequencing
reads to map to a given position in the covered genome on average.

We therefore define a data matrix D with its entries representing the output of a single-read

sampling approach for observed sequencing reads in n individuals and m variable sites. Thus for
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i=1,...,nand j =1,...,m, d;; can take values from {0,1, -9} where 0 and 1 are the sampling
of the major and minor allele, respectively, while —9 refers to missing data for the given individual
¢ in the given site 7. We thereby assume that all sites are diallelic and that both major and minor
alleles are known and we ignore sequencing errors. The sampling of an allele can therefore be seen
as a Bernoulli process. EMU is also capable of working with diploid genotype data, where d;; can
take values from {0,0.5,1, —9} such that heterozygous genotype information is kept, but here we

describe it for pseudo-haploid data (single-read sampling).

2.1 Population allele frequencies

The allele frequency across all samples in the dataset fj is estimated as follows for a single site j by

counting the observed number of minor alleles. We denote this as the population allele frequency:

i > iy Mdiy = 1]
T i Idy = 0]+ Iy = 1)

(1)

with I[X] being the indicator function. I.e. the allele frequencies are calculated such that individuals
with missing information are not counted for the given site. For diploid genotype data, we also

count the heterozygous individuals (d;; = 0.5) in both numerator and denominator.

2.2 Individual allele frequencies

Pritchard et al. [30] introduced the concept of individual allele frequencies in STRUCTURE for geno-
type data. Under the assumption of a fixed number of ancestral populations, admixture proportions
Q and ancestral allele frequencies F' are inferred that when multiplied represent individual allele
frequencies, IT = QFT. More recently Hao et al. [I5] constructed a similar approach for genotype
data, instead based on PCA, where the top principal components are used to reconstruct the geno-
type matrix, and the individual allele frequencies can be derived from a low-rank approximation.
Several methods have applied this idea [23, 5], 24]. In this study, we present an iterative variant for
pseudo-haploid data that accounts for missingness.

For individual ¢ at site j the individual allele frequency m;; can be seen as the underlying pa-
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rameter in the binomial sampling process of genotype g;;, conditioned on the population structure.

2.3 Iterative PCA

EMU is based on the iterative PCA algorithm of [I7] (EM-PCA) which deals with finding a low-
rank approximation of D iteratively, where missing values are imputed by reconstruction from the
estimated low-rank approximation of the previous iteration. This iterative procedure corresponds
to an EM algorithm and it is equivalent to finding the matrix of individual allele frequencies that

minimize the expression [16]

2
in[co (- . 2

min [ (0 -m, @

Here C is a weight matrix with entries such that ¢;; = 0 if d;; = —9 and ¢;; = 1 otherwise for
t=1,...,nand j =1,...,m, while ® represents element-wise multiplication. Thus, only entries

with information are evaluated. However, note that IT will be estimated from the full dataset.
The iterative procedure and its updating scheme to estimate the individual allele frequencies are
described in Algorithm 1, where missing values are initialized as the population allele frequencies

f and K dimensions are used in the low-rank approximation.

Algorithm 1: EM-PCA in EMU
Input: D, C, f
1. Initialize centered E matrix, fori=1,...,nand j=1,...,m:
(a) Set ey; =di; — fj, ifecij=1,
(b) Set e;; =0, if ¢;; =0.
2. Perform SVD on centered matrix: E = WSU”
3. Estimate individual allele frequencies: IT = W 1.k)S[1:K] U[Tl: K] T f,
where f is added row-wise, and each entry in ITI is mapped to domain [0, 1].

4. Update centered E matrix, fori=1,...,nand j=1,...,m:
(a) Set eij = dij — f;, ifey =1,
(b) Set e;; = 7t — fj, if ¢ij = 0.
5. Repeat step 2, 3 and 4 until convergence.
Output: IT
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We define convergence as when the root-mean-square deviation (RMSD) of Uy, k) between two

successive iterations of the iterative procedure is less than some small value e = 5 x 1077

1 K 2
RMSD (U0 U =\ g 20 (wdd — i) G
j=1k=1

After obtaining the final set of individual allele frequencies that minimizes Equation [2] from
our EM-PCA algorithm, we can infer the population structure from a standardized matrix such

that the variable sites are weighted by their population allele frequencies, f [27]. Thus, define the

standardized matrix X with entries:

€44
Tij = ———, (4)
fi(L=f5)
fori=1,...,nand j =1,...,m with e;; being defined as step 4 in the final iteration of Algorithm

1. Performing SVD on the standardized matrix will infer and map individuals onto axes of genetic

variation that represents population structure (principal components):

X =vxpPT. (5)

Here V will represent the principal components capturing population structure, which are iden-
tical to the principal components inferred when performing full eigendecomposition on the genetic

relationship matrix [27], ©].

2.4 Accelerated EM

As the number of missing values in our data matrix will increase the difficulty of our minimization
problem (Equation , the parameter space of our algorithm will also increase and it may lead
to slow convergence. To speed up the convergence of the EM algorithm, we have implemented
an accelerated variant of the iterative update based on the SQUAREM acceleration schemes [32],
where we are using SqS3 to update the factor matrices (W and U, with W = WS) independently.

It works by taking two steps using the standard EM algorithm to find an optimal larger step in the
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parameter space based on a combination between the previous and new estimates (step 2, 3 and 4

in Algorithm 1).

2.5 Implementation

EMU has been implemented in Python using Numpy [31] data structures and Cython [2] for paralleliza-
tion and to speed up computational bottlenecks. We are using a truncated SVD implementation
of the scikit-learn library [28] that uses a randomized PCA procedure [14] to only compute the
K largest eigenvectors of a given matrix. We have also extended our method to work on diploid
genotypes such that the information of heterozygous sites are retained.

The code is freely available at https://github.com/Rosemeis/emu/ and works using both
Python 2.7 and 3.7.

The computational complexity for one iteration in our EM-PCA algorithm will be O(nm) for
low-rank approximations using the truncated SVD procedure, and the number of iterations will
depend on the amount of missingness and number of samples and variable sites in the dataset. In
total, our algorithm will have a memory requirement of O(nm) bytes. However in modern large-
scale datasets, the constant to this bound will be important for actual applications. A more detailed
description of the memory usage is described in the supplementary material. The algorithm is linear
in both the number of samples and the number of sites for both computational speed and memory
usage.

We have also implemented an alternative variant of the iterative update in our algorithm that
is much more memory efficient by slightly sacrificing computational speed. This variant uses ~20x
less memory than the previously described procedure by using a lazy evaluation approach for E in
custom matrix multiplications, based on the same randomized SVD procedure, such that only the
low-rank factor matrices of E are considered. A description of this variant can also be found in the

supplementary material and we will regard to this variant as EMU-mem in the main results.
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2.6 Simulation of single-read data matrix

We have simulated genotype data to test the capabilities of our method. The simulations are
based on allele frequencies from three Chinese populations (Han, Uygur and Dai) generated from
genotyped individuals [I8] of the Human Genome Diversity Project [3]. These populations were
selected to make the scenario somewhat similar to the real data used in this study with assumed low
Fsp distances between populations. We simulate individuals under a Binomial model, such that a
sampled genotype g;; can take values of 0, 1, and 2, representing the minor allele count for individual
i at site j. We then transform the simulated genotype matrix into a single-read sampling matrix
(pseudo-haploid) using the following scheme for individual i at site j. A homozygous genotype
(gi; € {0,2}) is directly converted to either 0 or 1, respectively, while a heterozygous genotype
(g9i5 = 1) is simply converted to either 0 or 1 with equal probability in the single-read sampling
matrix. To test and showcase our method in various cases of extreme missingness, we have simulated
three different scenarios of missingness as well as five additional scenarios, related to emulating
different SNP ascertainment schemes. In all simulated scenarios, the number of variable sites is
~350K after filtering out rare variants based on a minor allele frequency threshold (5%). To simplify
the different scenarios for the reader, we have provided a graphical overview of the simulation

procedures in the supplementary material (Figure .

2.6.1 Missingness rate scenarios

The three scenarios for different degrees of missingness have been simulated with a total of 900
individuals (250 from each distinct population and 150 being admixed) and a total of 9000 individ-
uals (2500 from each distinct population and 1500 being admixed) to evaluate the effect of sample
size.

In Scenario 1, we have simulated individuals with a randomly assigned missingness rate from
5 —50%. This means that an individual 7 with a missingness rate of 50% for example would have a
probability of 0.5 to keep the sampled allele at a given site j (d;; € {0,1}) and a probability of 0.5
to remove the sampled information (d;; = —9).

For Scenario 2, we have made the missingness rate gradient more extreme such that the simulated
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individuals are randomly assigned a missingness rate between 90 — 99%. We have also used this
scenario to perform computational tests regarding speed, memory and accuracy for much larger
sample sizes later on.

And last in Scenario 3, we have simulated half of the individuals from the three distinct popula-
tion with a missingness rate sampled from A(0.95,0.001) (&~ 95%). The other half and all admixed

individuals have been simulated with a missingness rate sampled from A(0.5,0.01) (= 50%).

2.6.2 SNP ascertainment scheme scenarios

For the five scenarios emulating different SNP ascertainment schemes, we have simulated 750 indi-
viduals with 250 from each population such that admixed individuals have not been included.

In Scenario 4, we have simulated a scenario that tries to emulate the merging of a SNP array
dataset with a whole-genome sequencing (WGS) dataset. Therefore, we have simulated half of the
individuals in each of the three different populations to only retain information of very common
variants (MAF > 0.25) and set other variants as missing, while the other halves of the three
populations have information from all simulated variants.

For Scenario 5, we have simulated half of the individuals in one of the three different populations
(Han) to only retain information in approximately a third of the variants (~130K), while the
other half of the population retain information in the other two-thirds of the variants (~233K).
However, there is a small overlap of 13K between the two subsets. Thus, we create a scenario where
one population mostly has to rely on the other two populations to estimate within-population
correlations between its two halves. The other two populations (Uygur and Dai) are simulated with
full information. The case is similar for Scenario 6, but here two populations (Han and Uygur)
have been simulated such that half of their individuals has information in approximately a third
of the variants while the other half has information in the other two-thirds of the variants with a
slight overlap. The Dai population is simulated with full information.

Scenario 7 and 8 are almost identical to Scenario 5 and 6, however now there is no overlap
between the halves of a population. This means that the correlation within a population between

its two halves must solely rely on the correlation with the other populations.
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The last four scenarios (5, 6, 7 and 8) tries to emulate cases where either different datasets of
different SNP arrays have been merged, which may be almost or entirely non-overlapping, or when

dealing with ultra-low coverage sequencing data.

2.7 Phase 1 of the Chinese Millionome Project

The Chinese Millinome Project aims at analyzing millions of Chinese sequencing genomes to un-
derstand the genetic diversity of the Chinese population and to promote the precision medicine
initiatives in China (https://db.cngb.org/cmdb/). In the Phase 1 study [21], Liu et al. analysed
the low coverage genomes of about 141K female participants that were recruited via the NIPT
test during pregnancy. The individuals were sequenced at ultra-low depth with 5-10 million using
either 35bp or 49bp single end reads, corresponding to an average sequencing depth of 0.08X. We
restricted or analysis to sites that are known to be common (MAF > 0.05) both in our project and
in the East Asian populations of the 1000 Genomes Project East Asian population and that had a
sequencing depth > 0.1X. We additionally kept individuals sequenced with 35bp reads and removed
individuals with sequencing error rate greater than 0.00325[21],. This resulted in pseudo-haploid

genotype matrix of 97K individuals and 440K sites.

3 Results

For the simulated datasets, we test and compare EMU against other commonly used methods for
inferring population structure using PCA. These include PLINK (version 2.0) [], smartpca and
FastPCA [I2] from the EIGENSOFT package (version 7.2.1) [27], FlashPCA (version 2.0) [I]. PLINK
and smartpca estimate the GRM and perform full eigendecomposition on this, while FastPCA and
FlashPCA use low-rank approximation approaches on the standardized data matrix. From these
methods, PLINK is the only other method besides EMU that accounts for missingness in the dataset,
while the rest perform mean imputation. We also tested multidimensional scaling (MDS) from IBS
distances and SNPRelate [33] for all simulated scenarios, however we did not include them in the

main results. Their results are shown in Figure and
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To assess the performance of our method in the various simulated scenarios, we perform Pro-
crustes analyses [8]. We infer population structure from the full genotype datasets, from which the
single-read sampling matrices have been generated from, to serve as ground-truth in comparisons
with all the tested methods. A Procrustes analysis will then find scaling and rotation components
to best represent the inferred principal components of a tested method in comparison with the

ground-truth and the RMSD is reported.

3.1 Simulation

In the following results, we have tested eight different scenarios of missingness. The first three
scenarios are related to individuals having different missingness rates, while the last five scenarios

are related to the merging of different datasets and using different SNP ascertainment schemes.

3.1.1 Missingness rate scenarios

There are two cases for each of the three scenario (A and B) and these distinguish the sample size of
the simulated dataset. Case A has 900 individuals with 250 individuals sampled from each distinct
population and 150 admixed individuals, while case B has 9000 individuals with 2500 individuals
sampled from each distinct population and 1500 admixed. We only display the results of case A in
the main results while the results of case B are displayed in the supplementary material.

The results of Scenario 1, where the missingness rate is between 5 — 50% for all individuals,
are shown in Figure (1] and It can be seen that the three methods, which are not accounting
for missingness in the dataset (smartpca, FastPCA and FlashPCA), are struggling to separate the
individuals from the three populations into distinct clusters in the presence of missingness and they
produce almost identical results where the individuals with more missingness is closer to the origin
[Sfl In contrast, both EMU and PLINK are able to infer the population structure accurately as also
verified in the Procrustes analyses shown in Table[I]

For Scenario 2, the interval of the missingness rate was increased to 90—99% in order to simulate
a more extreme scenario as also seen in the Chinese Millionome Project. The results are displayed

in Figure [2 and [S3] for 900 and 9000 individuals, respectively, and the 900 individuals colored by

11
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Method 1A 1B 2A 2B 3A 3B
EMU 0.000644 0.000190 0.00390 0.00101 0.00197 0.000556
PLINK 0.000650 0.000192 0.00567 0.00110 0.00262 0.000622

FlashPCA  0.00897 0.00266 0.0299 0.00681 0.0292 0.00904
smartpca  0.00897 0.00266 0.0299 0.00681 0.0292 0.00904
FastPCA 0.00897 0.00266 0.0420 0.00684 0.0292 0.00904

Table 1: Procrustes analyses of the methods in the first three simulated scenarios. Measured by RMSD
between the PCs inferred from the full dataset (ground-truth) and the transformed PCs inferred from the
different tested methods. Scenarios of case A and case B had sample sizes of 900 and 9000, respectively.

their missingness rate in Figure[S6] Again, EMU and PLINK are once again able to infer the simulated
population structure but EMU is able to recover a slightly more accurate PCA plot as shown in Table
It can also be seen that the estimates of PLINK for the individuals of the three populations are
slightly more noisy than the estimates of EMU, and that these individuals generally have a higher
missingness rate. Here FastPCA is not able to infer any meaningful structure in the dataset, while
smartpca and FlashPCA finds some overall pattern but it is heavily biased by the missingness in
the dataset.

In Scenario 3, the individuals sampled from the three population were simulated with two
different settings of missingness and the results are displayed in Figure [3] [S4] and [S7} EMU and
PLINK are capturing the population structure but PLINK still has more noisy estimates for the
individuals of the three distinct populations. Due to the smaller variance in the missingness rate
intervals, smartpca, FastPCA and FlashPCA are capturing the population structure accurately of
the individuals simulated under one missingness setting. However, the individuals simulated under
the other missingness setting now clusters together, which in particular illustrates the problem of

not accounting for missingness as these clusters may be interpreted as separate populations.

3.1.2 SNP Ascertainment scheme scenarios

For the SNP ascertainment scenarios, we simulate 750 individuals from the three populations with
250 from each, thus excluding admixed individuals. We note that PLINK could not be run for
Scenario 7 and 8 as it relies on pairwise estimates across all samples and can not run if there is no

overlap in variants between a single pair of individuals. This would be a potential problem in its
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Figure 1: PCA plots of tested methods for Scenario 1A displaying the top two axes of genetic variation
for 900 individuals. Black dots represent two-way admixed individuals. The top left plot shows the PCA
performed on the full dataset, such that it acts as ground-truth. Individuals were simulated with low to
moderate missingness rates between 5 — 50%.
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Figure 2: PCA plots of tested methods for Scenario 2A displaying the top two axes of genetic variation
for 900 individuals. Black dots represent two-way admixed individuals. The top left plot shows the PCA
performed on the full dataset, such that it acts as ground-truth. Individuals were simulated with extreme
missingness rates between 90 — 99%.
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Figure 3: PCA plots of tested methods for Scenario 3A displaying the top two axes of genetic variation
for 900 individuals. Black dots represent two-way admixed individuals. The top left plot shows the PCA

performed on the full dataset, such that it acts as ground-truth. Individuals were simulated with missingness
rates sampled as either ~ 50% or =~ 95%.
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usage for ultra-low coverage sequencing data.

For Scenario 4, we are emulating the merging of whole-genome sequencing data and SNP array
data by having half of the individuals in each of the three populations only have information in
variants with a MAF > 0.25. The results are visualized in Figure Once again the methods
performing mean imputation are biased by the different missingness rate, which is now created by
having different SNP ascertainment schemes instead of being random, while EMU and PLINK are able
to infer correct population structure. As the simulated missingness is non-random, we also see that
a method like MDS is failing at capturing population structure (Figure .

In Scenario 5, half of the Han population is simulated such that it only had a small overlap
with the other half (13K), while the two other populations are simulated with full information.
The results are shown in Figure [STI] All methods performing mean imputation interpret the two
halves of the Han population as two separate populations, while EMU and PLINK still infer correct
population structure.

Scenario 6 are similar to Scenario 5, but now two of the populations are simulated with two
different halves (Han and Uygur). The results are visualized in Figure Even with almost no
overlap between the halves within two of the populations, EMU and PLINK are able to infer correct
population structure. Of course, it is seen that mean imputation methods are biased once again
and they show the four halves as different clusters.

The last two SNP ascertainment scheme scenarios are almost simulated identically as 5 and 6
but with no overlaps in the subsets of a population. We see almost the exact same results as for
the previous two scenarios except that PLINK could not be run, and EMU is now failing to converge
in the last scenario as there is no solution for the iterative procedure. The results are visualized in

Figure and for Scenario 7 and 8, respectively.

3.2 Computational tests

We have tested runtimes and memory usage of EMU for different simulated sample sizes and compared
it to the other tested methods. The different datasets were simulated under the same settings as

Scenario 2 with individual missingness rates between 90 —99%. The different sample sizes simulated
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were 900, 9000, 18000, 36000, 54000 and 90000. smartpca could not be run for sample sizes > 36000.
All datasets have ~350K variable sites after filtering out rare variants with a threshold of 5%.

All analyses were performed server-side using 64 threads (2.10 GHz; Intel Xeon Gold 6152), and
the results of the computational tests are summarized in Figure It is clear that the methods
based on low-rank approximation (EMU, FastPCA and FlashPCA) are faster than the methods that
construct the GRM followed by eigendecomposition. However, the implementation in PLINK does
keep up with the low-rank approximation approaches to a certain extent but its approach would
become unfeasible for large sample sizes. To demonstrate this, we also performed curve fitting of
the runtimes for EMU and PLINK for comparison with more extreme sample sizes. The curves are
shown in Figure [S9] Here we can derive from extrapolation that it would take PLINK ~98 days to
infer population structure for 1 million individuals, while it would only take ~4.1 hours for EMU.
This is due to PLINK having to construct the GRM (O(mn?)) and additionally having to perform
eigendecomposition on it.

It is noteworthy that the number of iterations performed in EMU decrease when the sample
size is increased (see Figure . This is due to having more individuals contributing to the axes
of genetic variation, such that the eigenspectrum of the top principal components representing
population structure is increased and random fluctuations are proportionally decreased. Thus, it

becomes easier for EMU to impute the missing values in a more well-defined PC space.

3.3 Analysis on the 96,800 ultra low-pass genomes

We apply EMU and PLINK to analyse 96880 NIPT ultra-low pass genomes [2I]. The participants
came from 31 provinces throughout mainland China. After performing site filtering based on read
length, sequencing error rate, minor allele frequency (< 0.05) and missingness rate (< 0.1), we
obtain a genotype matrix consisting of 96,880 individuals and 440,183 sites. Again, both EMU and
PLINK are run server-side with 64 threads under the same configurations as in the simulations. We
use 3 eigenvectors to estimate individual allele frequencies in EMU. The inferred population structure
of EMU and PLINK are visualized in Figure [5| and respectively. Runtime information of both

methods is displayed in Table [2] where EMU is shown to be ~6.4x faster than PLINK. However due to

17


https://doi.org/10.1101/2020.04.29.067496
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.29.067496; this version posted April 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Runtime (64 threads) Memory usage

o 3 4
S 1 m EmU © 7 m Emu o

B EMU-mem B EMU-mem

O PLINK @ PLINK

B FlashPCA B FlashPCA
s | B smartpca B smartpca
) B FastPCA o W FastPCA

o

time (mins)
200
|
<
memory (GB)

i S
/"/V/ /

P il Y G — o4
o /Q/Q R R . o - ﬁ—ﬁ“a % X
T T T T T T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Number of individuals Number of individuals

Figure 4: Computational t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>