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ABSTRACT

Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis.
EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, post-transplant
lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells,
EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically
suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently
performed a human genome-wide CRISPR screen that identified the chromatin assembly factor
CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto
newly synthesized host DNA, though its roles in EBV genome chromatin assembly are
uncharacterized. Here, we identified that CAF1 depletion triggered lytic reactivation and
transforming virion secretion from Burkitt cells, despite strongly also inducing interferon

stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1, 3.3 and repressive

H3K9me3 and H3K27me3 marks at multiple viral genome lytic cycle regulatory elements.
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Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1
expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and
3.3 were loaded on the EBV genome by this timepoint. Knockout of CAF1 subunit CHAF1B
impaired establishment of latency in newly EBV-infected Burkitt cells. A non-redundant latency
maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader HIRA.
Since EBV latency also requires histone chaperones ATRX and DAXX, EBV coopts multiple host
histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic

approaches.

IMPORTANCE

Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt
lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and
in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, where
Iytic cycle factors are silenced. This property complicated EBV’s discovery and facilitates tumor
immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene
silencing. Here, we identify histone chaperones CAF1 and HIRA, which have key roles in host
DNA replication-dependent and replication independent pathways, respectively, are each
important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral
genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones
ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV
coopts multiple histone pathways to reprogram viral genomes and highlights targets for lytic

induction therapeutic strategies.
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tumor virus, gamma-herpesvirus.

The gamma-herpesvirus Epstein-Barr virus (EBV) persistently infects nearly 95% of adults
worldwide (1). EBV is the etiological agent of infectious mononucleosis and is also causally-
associated with multiple human cancers, including endemic Burkitt lymphoma (eBL), Hodgkin
lymphoma, post-transplant lymphoproliferative  disease, HIV-associated lymphomas,
nasopharyngeal carcinoma and gastric carcinoma (2). Tumor cells contain multiple copies of
chromatinized, non-integrated, double-stranded DNA EBV genomes, where incompletely defined
epigenetic pathways maintain a state of viral latency and in which most cells do not produce
infectious virus.

EBV initiates lifelong infection by translocating across the tonsillar epithelium to colonize the
B-cell compartment (3, 4). Virion deliver unchromatinized, encapsidated, linear EBV genomes to
newly infected cells, which traffic to the nucleus. Upon nuclear entry, incoming genomes are
circularized by host DNA ligases and chromatinized (1, 5, 6).

The EBV genome encodes nearly 80 proteins, most of which are highly immunogenic. To evade
immune detection, EBV switches between latent and lytic genome programs, a hallmark of
herpesvirus infection. Multiple layers of epigenetic regulation enable EBV to establish latency in
newly-infected B-cells, in which a small number of viral encoded proteins and viral non-coding
RNAs reprogram infected cell metabolism, growth and survival pathways (7-9). Within 3 days of
infection, quiescent B-cells are reprogramed to become rapidly growing lymphoblasts that divide

as frequently as every 8 hours (10-13).
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78 According to the germinal center model(3), EBV-infected B-cells navigate the B-cell
79  compartment to differentiate into memory cells, the reservoir for persistent EBV infection. To
80  accomplish this, a series of EBV latency programs are used, in which combinations of Epstein-
81  Barr nuclear antigens (EBNA), Latent Membrane Proteins (LMP) and ncRNA are expressed (1).
82  Memory cells exhibit the latency | program, in which Epstein-Barr nuclear antigen 1 (EBNA1) is
83  the only EBV-encoded protein expressed. EBNAL tethers the EBV genome to host chromosomes
84 and has key roles in propagation of viral genomes to daughter cells. EBNAL is poorly
85 immunogenic, facilitating immune escape of latency | cells.

86 Plasma cell differentiation is a trigger for EBV lytic reactivation. Induction of two viral
87  immediate early gene transcription factors, BZLF1 and BRLF1, induce nearly 30 early genes
88  important for production of lytic genomes (10, 14, 15). How these newly synthesized EBV
89  genomes evade chromatinization by host histone loaders, including the heterotrimeric Chromatin
90  Assembly Factor 1 (CAF1) complex that delivers newly synthesized H3/H4 dimers to host
91  replication forks, is only partially understood (16, 17). EBV late genes are subsequently induced
92  and include factors required for virion assembly and spread (10). Retrograde signals support
93  ongoing lytic replication through subversion of chromatin-based repressors (18).

94 Most eBL cells utilize the latency | program, likewise enabling evasion of adaptive anti-EBV
95  responses (19). Indeed, EBV was discovered as the first human tumor virus through eBL
96 etiological studies, where the initial report noted that nearly all tumor cells did not produce
97  infectious viral particles (20). With each S-phase, EBV genomes are copied once by host cell
98  machinery and are then partitioned to daughter cells (21). Histone octamers consisting of two
99  copies of histone 2A (H2A), H2B, H3 and H4 are loaded onto leading and lagging strands. CAF1

100 has key roles in loading histones onto newly replicated and damaged host DNA, whereas the
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histone chaperone HIRA is important for non-replicative histone loading onto host genomic sites
(16, 17). Likewise, the chaperones alpha thalassemia/mental retardation syndrome X-linked
chromatin remodeler (ATRX) and death domain-associated protein (DAXX) load histones onto
telomeric and repetitive DNA. EBV tegument protein BNLF1 downmodulates ATRX/DAXX
activity in newly infected cells (22), but ATRX/DAXX subsequently acquire important roles in
the suppression of EBV lytic reactivation in latently infected cells (23).

Here, we characterize histone chaperone CAF1, HIRA, ATRX and DAXX roles in Burkitt EBV
latency. We provide evidence that type | and Il EBV strains co-opt each of these histone loaders
to maintain latency via non-redundant roles. EBV upregulated each of the three CAF1 subunits in
newly infected primary human B-cells, and CAF1 was found to have key roles in establishment of
latency in a Burkitt EBV infection model. Chromatin immunoprecipitation assays support key
CAF1 roles in deposition of repressive histone marks on EBV genome lytic control elements.

These data further support key chromatin roles in regulation of the EBV lytic switch.

RESULTS

The Histone Loader CAF1 is important for Burkitt lymphoma EBV latency
maintenance. To gain insights into host factors important for the maintenance of EBV latency,
we recently performed a human genome wide CRISPR screen (24). Briefly, Cas9+ EBV+
Burkitt P3HR-1 cells were transduced with the Avana single guide RNA (sgRNA) library, which
contains four independent sgRNAs against nearly all human genes. Cells with de-repressed
plasma membrane (PM) expression of the EBV late lytic antigen gp350, indicative of latency
reversal, were sorted at Days 6 and 9 post-transduction. sgrRNAs significantly enriched in the

sorted versus input cell population were identified. The STARS algorithm identified 85
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statistically significant hits at a p<0.05 and fold change > 1.5 cutoff (Fig. 1A)(24, 25).
Unexpectedly, genes encoding two subunits of the histone loader CAF1 complex were amongst
top screen hits (Fig. 1A-C).

The heterotrimeric CAF1 complex, comprised of CHAF1A, CHAF1B and RBBP4 subunits,
delivers histone H3/H4 dimers to the replication fork during cell cycle S-phase, typically
together with histone chaperone ASFla (17, 26) (Fig. 1D). CAF1 has well-established roles in
maintenance of heterochromatin and cell identity, but its function in regulating EBV latency has
not yet been investigated. Therefore, it was notable that multiple sgRNAs targeting CHAF1B and
RBBP4 were enriched amongst gp350+ sorted cells at Days 6 and 9 post-Avana library
transduction (Figs. 1B-C). A sgRNA targeting CHAF1A was also enriched in gp350+ cells at the
Day 6 timepoint (Fig. S1A). The identification of multiple sgRNAs targeting CAF1 subunits
suggested an important CAF1 role in maintenance of EBV latency. Notably, Burkitt lymphoma
are the fastest growing human tumor, and newly synthesized EBV genomes must be
reprogrammed to maintain latency | with each cell cycle.

To validate screen hit CAF1 roles in the maintenance of BL EBV latency, control or
independent CHAF1B targeting SgRNAs were expressed in P3HR-1, Akata and MUTU | Cas9+
tumor-derived endemic Burkitt lymphoma cell lines. In each of these, CHAF1B depletion
induced immediate early BZLF1 and early BMRF1 expression (Fig. 1E). CHAF1B depletion
significantly induced all seven EBV lytic transcripts measured by qRT-PCR (Fig. S1B). Since
Akata and MUTU | harbor type | EBV, whereas P3HR-1 carries type Il EBV, these data suggest
a conserved CAFL1 roles in maintenance of EBV latency. Likewise, CHAF1B depletion induced

gp350 plasma membrane expression on most Akata cells examined by flow cytometry (Fig. 1F-
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G), suggesting that Burkitt cell CAF1 loss triggers a full EBV lytic cycle. CHAF1B depletion
also induced gp350 expression on MUTU | cells (Fig. S1C-D).

We next validated on-target CRISPR effects through a cDNA rescue approach. A point
mutation was engineered into the CHAF1B cDNA proto-spacer adjacent motif (PAM) site
targeted by sgRNA #1 to abrogate Cas9 editing. Akata cells with stable control GFP vs V5-
epitope tagged CHAF1B rescue cDNA (CHAF1BR) were established. Effects of control vs
CHAF1B targeting sgRNA were tested. Interestingly, depletion of endogenous CHAF1B de-
repressed BZLF1, BMRF1 and gp350 in control cells, but failed to do so in cells with CHAF1BR
rescue CDNA expression (Figs. 1H-J). Similar cDNA rescue results on BZLF1 and BMRF1
expression were evident in MUTU | cells (Fig. S1E). These results suggest that CHAF1B is
necessary for EBV latency in Burkitt cells, perhaps in loading histone H3/H4 onto newly
synthesized episomes.

CHAF1B Perturbation Induces EBV Genome Lytic Replication and IFN Stimulated
Genes. EBV lytic replication is controlled on many levels and partial lytic cycle induction is
often observed. Therefore, we next examined whether CAF1 perturbation was sufficient to
induce a productive lytic replication cycle. RNAseq was performed on Akata cells at Day 6 post-
SgRNA expression, and demonstrated significant induction of EBV 77 lytic cycle genes (Fig.
2A). Consistent with induction of a full lytic cycle, CHAF1B depletion induced intracellular
EBV genome amplification, albeit to a level less than observed with Akata immunoglobulin (1g)
crosslinking. Likewise, CHAF1B sgRNAs induced secretion of DNAse-resistant EBV genomes,
demonstrating encapsidation (Fig. 2B). Similar results were observed in MUTU | and P3HR-1
cells, suggesting conserved CAF1 roles in type | and Il EBV latency regulation (Fig. S2A-B). In

support of on-target CRISPR effects, expression of the PAM site mutant CHAF1B cDNA rescue
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169  construct prevented EBV genome copy number increase with editing of endogenous CHAF1B
170  (Fig. S2C). Furthermore, addition of supernatant from CHAF1B depleted, but not control Akata
171  cells, stimulated human B-cell aggregation and growth transformation (Fig. 2C).

172 RNAseq analysis also demonstrated robust up-regulation of EBV latency Il transcripts in
173 response to CHAF1B depletion. EBNAL, 2, 3A, 3B, 3C, LMP1, LMP2A and LMP2B were each
174  significantly up-regulated (Fig. S3A and Table S1). While these transcripts are upregulated by
175  EBV lytic reactivation (27), the magnitude of mMRNA upregulation suggests that CAF1 may also
176  have important roles in chromatin-based silencing of the latency Il program.

177 To test whether CAF1 perturbation and 1g-crosslinking synergistically induce lytic

178  replication, control versus CHAF1B sgRNAs were expressed in Cas9+ Akata cells in the absence
179  or presence of algG. Interestingly, Ig-crosslinking induced higher levels of PM gp350 and

180 intracellular/extracellular EBV genome copy numbers in cells depleted for CHAF1B than in

181  control cells (Fig. 2D-E and S2D). Similar results were obtained with IgM cross-linking in

182  MUTU I cells (Fig. S2E-F). These results suggest that CAF1 not only maintains EBV latency in
183  unstimulated cells, but also limits the extent of lytic reactivation in upon B-cell receptor

184  activation.

185 We next examined changes in host mMRNAs following CHAF1B depletion. Interestingly,

186  multiple interferon stimulated genes (ISGs) were amongst the most highly CHAF1B sgRNA
187  induced host genes, including IFIT1, IFIT3, IFI44, IF144L, IRF7 and STAT1, and GO analysis
188 identified Type I interferon-mediated signaling pathway as the most highly upregulated pathway
189  (Fig. 2F-G, S3B). By contrast, mRNAs encoding histones and histone-related genes were

190  amongst the most strongly downmodulated by CHAF1B depletion (Fig. 2F-G, S3C), perhaps as

191  aresult of a negative feedback in response to diminished CAF1 activity. CHAF1B-mediated
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upregulation of IRF7 and IFIT1 was validated at the protein level (Fig. 2H). Interestingly, 1SG
upregulation was not observed at the mRNA or protein level in Akata cells upon
immunoglobulin-crosslinking induced EBV lytic reactivation (28-30). These results suggest that
that EBV lytic replication itself does not underlie this host response, at least when triggered by
Ig-crosslinking.

Depletion of CAF1 Subunits CHAF1A and RBBP4 triggers EBV lytic replication.
CHAF1B assembles together with CHAF1B and RBBP4 subunits with 1:1:1 stoichiometry (31).
CHAF1A targets CAFL1 to the replication fork through interaction with proliferating cell nuclear
antigen (PCNA), associates with histone deacetylases, and has roles in DNA repair and in
heterochromatin maintenance (17, 32). While RBBP4 has been implicated in CAF1 activity (33),
it also has additional epigenetic roles, including within the NURD transcriptional repressor
complex(34).

To investigate whether the CAF1 subunits CHAF1A and RBBP4 were similarly important for
the maintenance of Burkitt EBV latency I, we tested the effects of the top two Avana library
SgRNASs targeting the genes encoding each. Depletion of RBBP4 or CHAF1A by either sgRNA
induced all seven EBV lytic genes surveyed by qPCR (Fig. S4A-B) and induced BZLF1,
BMRF1 and gp350 at the protein level (Fig. 3A-F). RBBP4 or CHAF1A depletion likewise de-
repressed EBV lytic gene expression in P3HR-1 and MUTU | (Fig. S4C-D). To determine
effects of RBBP4 or CHAF1A depletion on EBV genome amplification, viral load analysis was
performed. RBBP4 and CHAF1A sgRNAs significantly increased intracellular and DNAse-
treated extracellular EBV genome copy numbers in three Burkitt cell lines (Fig. 3G-H, S4E-F).

Taken together, these results suggest that all three CAF1 subunits are critical for EBV latency in
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214 Burkitt lymphoma cells, perhaps acting to re-program newly synthesized EBV episomes with
215 each cell cycle.

216 Roles of EBV-induced CAF1 in establishment of B-cell latency. Since CAF1 has key

217  histone deposition roles in the contexts of DNA replication or repair, we asked whether CAF1
218  subunits are expressed in resting or in newly-infected primary human B-cells. Using data from
219  recently published RNAseq and proteomic maps of EBV-mediated primary B-cell growth

220  transformation (35, 36), we noticed that there was little expression of CHAF1A or CHAF1B in
221  the resting B-cells, but that each are upregulated by 2 days post-infection (Fig. 4A, S5A).

222 RBBP4 appears to have a higher basal level, perhaps reflective of its additional epigenetic roles
223 beyond CAF1, but is also EBV-upregulated (Fig. S5A). Immunoblot analysis demonstrated

224 strong CHAF1B upregulation between 2 and 4 days post-infection (Fig. 4B), at which point
225 newly infected cells begin to rapidly proliferate as they transition from the EBV pre-latency
226 program to latency Ilb (12, 37). Published LCL Chip-seq data (38-41) showed Epstein-Barr
227  nuclear antigens 2, LP, 3A, 3C and LMP1-activated NF-kB subunit occupancy at or near the
228  CHAF1A, CHAF1B and RBBP4 promoters (Fig. 4C, S5B-C). MY C occupancy was also notable
229  atthe CHAF1A and RBBP4 promoters in Burkitt-like P493 B-cells (42). We therefore speculate
230  that these EBNAS, which are expressed in the EBV pre-latency and latency Ilb programs, have
231  important roles in EBV-mediated CAF1 upregulation in newly infected primary B-cells.

232 We next tested CAF1’s roles in the establishment of EBV latency. Since it is not currently
233 possibly to do CRISPR editing in resting primary B-cells, we instead used an EBV-negative
234 (EBV-) subclone of Akata Burkitt cells, which were established during serial passage of the
235 original EBV+ Akata tumor cells (43). It has previously been shown that latency | is established

236 upon re-infection of these cells by EBV in vitro (44). However, since EBV- Akata cells are
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237  difficult to infect with purified EBV, we developed a co-culture system to increase infection

238  efficiency (Fig 4D). EBV- Akata were co-cultured with EBV+ 293 producer cells, which carry a
239  recombinant EBV bacterial artificial chromosome (BAC) system that includes a GFP marker
240  (45). Lytic replication was induced in a monolayer of adherent 293-EBV+ cells by transfection
241 of genes encoding BZLF1 and BALF4. Induced 293 cells were then co-cultured with Akata

242 EBV- cells 24 hours post-transfection. EBV infection frequency was monitored by FACS 48
243 hours later, using GFP as a readout, and PM gp350 positivity was used as a marker for cells with
244 lytic replication.

245 Using this co-culture system, ~3.5% of control Akata cells were infected, as judged by

246 expression of the GFP marker, and 0.47% of cells were positive for the gp350 lytic antigen. By
247  comparison, ~6% of CHAF1B depleted cells were infected and 1.63% had gp350 PM expression
248  (Fig. 4E). Most gp350 expression was suppressed by addition of acyclovir to the co-culture

249  system, suggesting it was expressed as a late lytic gene rather than delivered by incoming or

250  attached EBV (Fig. 4E). Further suggesting an important CAF1 role in establishment of latency
251 in Akata cells, BZFL1 was more highly expressed in CHAF1B-depleted than control cells. As
252 expected, expression of this immediate early gene was not blocked by acyclovir (Fig. 4F). These
253  data are consistent with a model in which CAF1 has key roles in reprogramming the epigenetic
254  state of newly infected B-cells. However, it is possible that CAF1 plays an earlier role in this
255 rapidly growing Akata system than in primary B-cells, where the first mitosis occurs 72 hours
256  post-infection.

257

258 The Histone Chaperone HIRA exerts non-redundant Burkitt cell maintenance of EBV

259  Latency roles. The histone loader Histone Regulatory Homologue A (HIRA) interacts with ASF1la
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260  and preferentially loads histone H3.3/H4 complexes onto DNA in a replication-independent
261  manner throughout the cell cycle, for example at areas of active transcription (17, 46). HIRA
262 regulates the alpha-herpesvirus herpes simplex virus and the beta-herpesvirus cytomegalovirus
263  latency (47-50). HIRA is also implicated in maintenance of HIV latency (51), but to our knowledge
264 has not been investigated in the regulation of gamma-herpesvirus latency.

265 To explore potential HIRA roles in the maintenance of EBV latency, we tested effects of HIRA
266  depletion in P3HR-1, Akata and MUTU | cells. In each of these BL, CRISPR HIRA editing by
267  either of two Avana sgRNAs rapidly upregulated BZLF1 and BMRF1 in Akata, P3HR-1 and
268  MUTU I cells (Fig. 5A). HIRA depletion also upregulated PM gp350 abundance, albeit to a lesser
269  extent than observed with CAF1 perturbation, perhaps explaining why our CRISPR screen was
270 more sensitive to CAF1 perturbation (Fig. 5B-C). HIRA sgRNAs increased expression of all seven
271  EBV lytic mRNAs quantified by gPCR (Fig. S6A) as well as EBV genome copy humber (Fig. 5D).
272 Supernatants from HIRA-depleted cells induced primary human B-cell clumping, though clusters
273 were generally smaller than observed with CHAF1B KO, likely reflecting lower titer of secreted
274  EBV (Fig. 5D). Taken together, these results indicated that HIRA and CHAF1B have non-
275  redundant roles in the maintenance of Burkitt EBV latency, as depletion of either triggers lytic
276  reactivation.

277 In contrast to CHAF1A and CHAF1B, HIRA mRNA and protein abundance was not
278  significantly changed by primary human B-cell EBV infection, perhaps suggesting that HIRA is
279  well positioned to regulate incoming EBV genomes (Fig. 5F and S6B). We therefore tested
280  whether HIRA also had a role in latency establishment in newly-infected Akata cells. HIRA
281  sgRNA expression increased the percentage of gp350+ cells amongst newly infected GFP+ Akata

282  (Fig. 5G-H), albeit less robustly than CHAF1B sgRNA. Addition of acyclovir strongly reduced
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283  the percentage of gp350+ cells, suggesting that lytic replication drove its expression in the context
284  of HIRA depletion. Thus, our results are consistent with a model in which HIRA and CAF1 have
285 non-redundant roles in regulation of EBV latency in Burkitt cells.

286 The histone H3.3 loaders ATRX and DAXX have roles in telomeres and have been implicated
287 in maintenance of Burkitt B-cell EBV latency. ShRNA targeting of either ATRX or DAXX
288 induces lytic antigen expression (23). Consistent with these RNAI results, we found that CRISPR
289  targeting of either ATRX or DAXX induced BZLF1 and BMRF1 expression on the mRNA and
290  protein levels, but more weakly induced plasma membrane gp350 expression (Fig. S7). Whereas
291  sgRNAs targeting DAXX induced ~2.5 fold increases in EBV copy number, ATRX sgRNAs failed
292  to do so (Fig. S7). Collectively, these data indicate that multiple histone loaders have non-
293  redundant roles in maintenance of EBV latency.

294

295 Loss of CHAF1B reduces the occupancy of H3.1 and H3.3 at EBV lytic genes’ promoters.
296  CAF1 preferentially loads H3.1/H4 histone tetramers onto newly synthesized or damaged host
297  DNA, though whether it is important for H3.1 loading onto latent EBV genomes remains unknown.
298  Inaddition, little is presently known about whether histone H3.1 versus 3.3 occupancy at key EBV
299  genomic sites in latency. We therefore used chromatin immunoprecipitation (ChIP) for
300  endogenous histone 3.1 and gPCR to investigate effects of CHAF1B depletion on histone 3.1
301  occupancy at key EBV genomic sites. For cross-comparison, ChIP for histone 3.3 was also
302  performed in parallel on the same samples.

303 CHAF1B depletion significantly decreased histone 3.1 (H3.1) occupancy at the immediate
304  early BZLF1 promoter, and at the late gene BLLF1 (encodes gp350) promoter. Likewise,

305  sgCHAF1B expression decreased H3.1 occupancy at both origins of lytic replication (oriLyt L and
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306  R), which are EBV genomic enhancers with key roles in lytic gene induction and in lytic DNA
307  replication(52-54) (Fig. 6A). Similar results were obtained in acyclovir-treated cells, suggesting
308 that production of unchromatinized lytic genomes did not falsely lower the ChIP-gPCR result (Fig.
309  S8). This data suggests that latent EBV genomes may be broadly occupied by H3.1-containing
310 nucleosomes, most likely loaded in a DNA replication dependent manner in S-phase (17, 55).
311  Furthermore, CHAF1B depletion reduced H3.3 levels at BZLF1, BLLF1 and oriLyt sites,
312 suggesting that CAF1 also directly or indirectly controls H3.3 loading onto latent EBV genomes.
313 With regards to the latter possibility, RNAseq analysis demonstrated that SgCHAF1B expression
314  diminished the expression of histone and histone-like genes, and ATRX transcript by ~30%, but
315 modestly increased DAXX and HIRA mRNA levels (Table S1). We also note that upon lytic
316  induction by CHAF1B depletion, EBV early gene product BNLF1 is expressed and targets ATRX
317  and DAXX to PML bodies, which may serve to diminish H3.3 loading at these EBV genomic sites
318 (22, 23, 56). Although CHAF1B depletion diminished expression of multiple histone and histone-
319  related genes (Fig. 2F-G and S3A), sgCHAF1B expression did not reduce the steady state H3.1 or
320  H3.3 levels in EBV+ Akata cells, as judged by immunoblot analysis (Fig. 6B).

321 To enable additional cross-comparison of CHAF1B perturbation effects on EBV genomic H3.1
322 and H3.3 occupancy using a single monoclonal antibody, we established EBV+ Akata cells with
323  stable HA-epitope tagged H3.1 or H3.3 expression (49). ChIP was then performed using
324 monoclonal anti-HA antibody in cells expressing sgControl vs sgCHAF1B. Consistent with
325  observations using antibodies against endogenous H3.1 and H.3, CHAF1B depletion similarly
326 reduced HA-3.1 and HA-3.3 signals at BZLF1, BLLF1, and oriLyt sites (Fig. 6C). These results
327  further suggest that the EBV genome is occupied by H3.1- and H3.3-containing nucleosomes in

328  latency I.
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329 To gain insights into histone H3 isoform loading onto EBV genomes in newly infected primary
330 human B-cells, ChIP-qPCR analyses were performed at 2, 4 and 7 days post EBV-infection.
331  CD19+ B-cells were purified by negative selection and infected with B95.8 EBV at a MOI of 0.2.
332 By Day 2, where infected cells have undergone remodeling but have not yet divided and where
333 most cells should contain only 1-2 EBV genomes (57), H3.1 and H3.3 loading were already
334 significantly increased. This result suggests that both H3 isoforms are loaded onto incoming EBV
335 genomes, potentially by multiple histone loaders. Notably, the EBV tegument protein BNLF1
336  targets ATRX and DAXX for sequestration in PML bodies at this timepoint (23), suggesting that
337  HIRA and newly induced CAF1 may be responsible. H3.1 and H3.3 levels remained stable at Day
338 4 post-infection, a timepoint at which cells have entered Burkitt-like hyperproliferation and divide
339  every 8-12 hours (11-13). Interestingly, after the period of Burkitt-like hyper-proliferation that
340  extends roughly from days 3-7 post-infection, H3.1 and H3.3 levels nearly doubled, even when
341  controlling for increases in EBV genome copy number over this interval. This result suggests that
342 each type of histone 3.3 is loaded by host machinery onto newly synthesized episomes, despite
343  short cell cycle times (Fig. 6D).

344 CAF1 is important for deposition of repressive H3K9me3 and H3K27me3
345  heterochromatin marks. CAF1 has important roles in host genome heterochromatin organization
346  (58-60), in part through cross-talk with deposition of repressive histone 3 lysine 9 and 27 trimethyl
347  marks (H3K9me3 and H3K27me3). For instance, in cell fate determination, depletion of CHAF1A
348  reduced H3K27me3 levels at promoters of many genes associated with pluripotency (58).
349  Deposition of H3K9me3 and H3K27me3 marks onto the EBV genome are important for silencing
350  of the lytic and latency Il programs (61-66). However, roles its potential roles in regulation of

351  repressive EBV genome repressive H3 marks has not been investigated.
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352 CRISPR knockout was used to test the effects of CHAF1B depletion on H3K9me3 and
353  H3k27me3 marks at four EBV genome lytic cycle sites known to carry these repressive marks in
354  latent B-cell lines. Following expression of control vs CHAF1B sgRNAs in EBV+ Akata cells,
355 ChIP was performed with control IgG or with antibodies against H3K9me3 or H3K27me3. gPCR
356  analysis demonstrated that CHAF1B depletion significantly reduced H3K9me3 occupancy by two
357  to three-fold at the BZLF1 and BLLF1 promoters and at both oriLyt regions (Fig. 7A). Likewise,
358  sgCHAF1B expression diminished repressive H3K27me3 marks at the sites to a similar extent
359  (Fig. 7B). These results are consistent with a model in which CAF1 histone H3/4 loading onto
360  newly replicated or perhaps DNA damaged EBV episomes is important for the subsequent
361  propagation of repressive H3K9 and H3K27 trimethel heterochromatic marks (Fig. 8).

362

363  DISCUSSION

364 EBV coopts host epigenetic pathways to regulate viral genome programs. Incoming EBV
365 genomes are organized into nucleosomes, which must then be maintained or remodeled on newly
366  synthesized, damaged or transcribed regions of EBV genomes. Burkitt lymphoma are amongst the
367  fastest growing human tumor cells, and newly EBV-infected B-cells undergo Burkitt-like
368  hyperproliferation between days 3-7 post-infection in cell culture (11-13). Host machinery must
369  therefore propagate chromatin-encoded epigenetic information with each cell cycle, which begins
370  with histone loading. The results presented here suggest that EBV coopts the CAF1 complex to
371  establish and maintain latency, reminiscent of its use by host pathways that regulate embryonic
372 development and cell fate.

373 Histone H3 was loaded onto EBV genomes by 48 hours post primary B-cell infection, by which

374 time CAF1 expression was upregulated (35, 36, 67, 68). These observations raise the question of
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375  whether CAF1 participates in chromatin assembly on incoming viral genomes. While CRISPR
376  technical limitations currently prevent us from asking this question in resting primary B-cells, our
377  Akata cell system suggested that CAF1 may play a key role in latency establishment. However, in
378  contrast to newly infected primary cells, Akata are rapidly dividing, and our experiments did not
379  differentiate between disruption of latency establishment versus reactivation after the first cell
380  cycle, perhaps related to defects in DNA replication-coupled histone loading. It is plausible that
381  other histone chaperones, in particular HIRA, may play key roles in H3/H4 loading onto incoming
382  EBV genomes prior to mitosis in newly infected cells. CAF1 may then carry out DNA replication
383  dependent roles, beginning with entry of the newly infected cell into S-phase approximately 72
384  hours post-infection (11-13), and HIRA plays ongoing roles that remain to be defined. Notably,
385  the EBV tegument protein BNLF1 subverts DAXX/ATRX-mediated H3.3 loading on viral
386  chromatin for the first several days post-infection (22, 23) (Fig. 8), but subsequently also become
387  necessary for maintenance of EBV latency, suggesting a complex interplay between multiple
388  histone chaperones.

389 Histones 3.1 and 3.3 are loaded onto the beta-herpesvirus cytomegalovirus genomes (50), and
390 intriguingly, their deposition did not require transcription or replication of the viral genome. This
391  finding raises the possibility that conserved mechanisms may load histones onto herpesvirus
392 genomes more broadly. Histone 3.1 and 3.3 loading regulate key aspects of herpes simplex gene
393  regulation (49, 69, 70).

394 The histone chaperone ASF1 transports H3/H4 complexes to the nucleus for deposition onto
395  DNA by CAF1 or HIRA (71). While ASF1a preferentially associates with HIRA and ASF1b with
396  CAF1, they can function redundantly when co-expressed. Depletion of both ASF1A and ASF1B

397  isrequired to arrest human cell DNA replication (72). Since EBV B-cell infection upregulates both
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398  ASFlaand ASF1b transcripts (36), and since ASF1a/b are highly co-expressed in Burkitt cells(73),
399  we speculate that this redundancy precluded either ASF paralogue from scoring in our latency
400  reversal CRISPR screen (24).

401 Further studies are required to identify how HIRA, ATRX and DAXX maintain latency I, but
402 permit EBNAL and EBV non-coding RNA expression. It also remains possible that they indirectly
403  control EBV genome expression through effects host transcription factor expression, which then
404  secondarily regulate the EBV genome. Further underscoring the intricate relationship between
405  EBV and histone biology, EBNA3C downregulates the histone H2A variant H2AX shortly after
406  primary B-cell infection at the mRNA and protein levels (74).

407 MY C suppresses EBV reactivation by preventing DNA looping of oriLYT and terminal repeat
408  regions to the BZLF1 promoter (24). The results presented here raise the question of whether
409  histone loading by CAF1 or HIRA may act together with MYC to prevent long-range EBV
410  genomic DNA interactions that promote lytic reactivation, perhaps at the level of CTCF, cohesion
411  or other DNA looping factors. Perturbation of histone loading may alternatively be sufficient to
412 de-repress BZLF1. Indeed, micrococcal nuclease digestion experiments demonstrated that
413 immediate early BZLF1 and BRLF1 promoters are nucleosomal (75). Yet, open chromatin at
414  BZLF1 and BRLF1 is not sufficient for lytic reactivation (65). Furthermore, CHAF1B de-
415 repression strongly de-repressed latency |11 gene expression, suggesting a broader role in silencing
416  of EBV antigens.

417 We recently identified that the facilitated chromatin transcription (FACT) histone loading
418  complex is critical for EBV Burkitt latency (24). FACT remodels histones at sites of active
419  transcription to enable RNA polymerase processivity (76, 77). Further underscoring diverse

420  histone chaperone roles in maintenance of EBV latency, FACT was found to regulate EBV latency
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421  through effects on MYC expression, consistent with its role in driving glioblastoma oncogenic N-
422 MYC expression (78). However, we observed only modest reduction in MYC mRNA expression
423 upon CHAF1B knockdown (Table 1), suggesting an alternative mechanism for its EBV latency
424 maintenance role.

425 A longstanding question has remained how lytic EBV genomes destined for packaging into
426  viral particles evade histone loading, since histones are not detectable in purified EBV viral
427  particles (79). EBV lytic replication is initiated in early S-phase, taking place in nuclear factories
428  that are devoid of histones or host DNA. CAF1 is recruited to host DNA replication forks through
429  association with the DNA clamp PCNA. While PCNA can be detected in EBV amplification
430  factories, it does not localize to sites of viral DNA synthesis (16). Abundances of CHAF1A,
431 CHAF1B, ASFla and ASF1b decline in lytic replication in Burkitt/epithelial cell somatic hybrid
432 D98/HR1 cells, whereas HIRA and DAXX levels were stable.

433 DNA methylation is important for suppression of latency Ill, raising the question of how
434  CHAF1B depletion de-repressed latency 1l genes (Figure S3A). While we note that latency |11
435  transcripts are induced in Burkitt cell EBV lytic reactivation (27), we speculate that CAF1
436  depletion may perturb maintenance of EBV genomic DNA methylation through effects on cross-
437  talk between histone and DNA methylation pathways. ChlP-seq approaches demonstrated
438  H3K9me3 and H3K27me3 repressive marks at key lytic and latency gene sites (61, 80, 81).
439  Furthermore, we recently found domains of the enzyme UHRF1 that read H3K9me2/me3, the H3
440  N-terminus and hemi-methylated DNA are essential for EBV latency | (73). We therefore
441  speculate that CHAF1B depletion may perturb UHRFL1 recruitment and thereby disrupt DNA

442 methylation.
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443 CHAF1B depletion induced a strong interferon induced signature, which we and other have not
444 observed in Burkitt cell lytic reactivation triggered by immunoglobulin cross-linking or by
445  conditional BZLF1 alleles. Therefore, we hypothesize that DNA sensing pathways may be
446  activated by CHAF1B depletion, for example in response to exposure of viral or host non-
447  chromatinized DNA. Alternatively, latency Il triggers interferon induced genes, and a de-
448  repressed EBV transcript may be responsible for this phenotype (35, 36, 82). It is also worth noting
449  that CHAF1B depletion resulted in downregulation of numerous histone and histone-like genes,
450  which we speculate may result from a negative feedback loop that responds to loss of this important
451  histone chaperone complex.

452 EBV exclusively establishes infection in normal, differentiated epithelial cells (83-86).
453  Epithelial cell replication plays important roles in EBV shedding into saliva (87), and uncontrolled
454 lytic EBV replication can cause oral hairy leukoplakia in heavily immunosuppressed people. It
455 will be of significant interest to determine how CAF1, HIRA, ATRX and DAXX roles may be
456  distinct in epithelial cells to support escape from EBV latency.

457 Current Burkitt lymphoma therapies cause major side effects and increase the risk of secondary
458  malignancies. eBL management is further complicated by the risk of giving high-intensity
459  chemotherapy in resource-limited settings. Consequently, there is significant interest in developing
460  safer therapeutic regimen, including EBV lytic reactivation strategies (88). Reversal of EBV
461  Burkitt latency could selectively sensitize tumor cells to T-cell responses and to the antiviral drug
462  ganciclovir (89).

463

464

465
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466

467

468

469

470  Figure Legends

471  Figure 1. CHAF1B depletion triggers EBV lytic gene expression in Burkitt cells.

472 (A) Volcano plots of CRISPR screen(24) -Log10 (p-value) and Log2 (fold-change of gp350+ vs
473 input library sgRNA abundance) on Day 6 post Avana library transducton. CAF1 subunits.

474 (B, C) Top: Distribution of Log2 (fold-change gp350+ versus input library sgRNA abundance) at
475  Day 6 (B) or Day 9 (C) post sgRNA expression. Bottom: Log2 fold change for the four CHAF1B
476 (B) or RBBP4 (C) targeting sgRNAs (red lines), overlaid on gray gradient depicting overall
477  sgRNA distributions at CRISPR screen Days 6 versus 9. Average values from two screen
478  biological replicates are shown.

479 (D) Model of DNA replication-dependent histone H3 and H4 loading by CAF1 and ASF1. Also
480  shown are the CAF1 binding partner PCNA clamp and a histone chaperone loading histones
481  H2A/H2B onto DNA.

482  (E) Immunoblot analysis of whole cell lysates (WCL) from P3HR-1, Akata and MUTU | Burkitt
483  cells expressing control or CHAF1B sgRNA:s.

484  (F) FACS analysis of plasma membrane (PM) gp350 expression in Akata cells expressing control
485  or CHAF1B sgRNAs.

486  (G) Mean = standard deviation (SD) PM gp350 mean fluorescence intensities (MFI) from n=3

487  replicates, as in (F). **** p < 0.0001.
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488  (H) Immunoblot analysis of WCL from Akata cells expressing GFP or V5-epitope tagged
489  CHAF1B rescue cDNA (CHAF1BR) and the indicated sgRNAS.

490 (1) FACS analysis of PM gp350 expression in Akata cells that stably express GFP or CHAF1BR
491  and the indicated sgRNAs.

492 (J) Mean £ SD PM gp350 MFI values from n=3 replicates, as in (I). Cells expressed GFP where
493 not indicated to express CHAF1BR, and cells expressed sgControl where not indicated to express
494  sgCHAF1B. ** p < 0.01, ns, not significant.

495  Blots in E and H are representative of n=3 replicates.

496

497  Figure 2. CHAF1B depletion triggers Burkitt cell EBV lytic reactivation and interferon stimulated
498  gene expression.

499  (A) Volcano plot comparing RNAseq -Log10 (p-value) versus Log2 (fold-change sgCHAF1B vs
500  sgControl mMRNA abundance) from n=3 replicates. Significantly changed EBV lytic gene values
501  are shown in red, host genes are shown in gray.

502  (B) gPCR analysis of EBV intracellular or DNase-treated extracellular genome copy number from
503  Akata cells expressing control or CHAF1B sgRNAs. Total genomic DNA was extracted at Day 6
504  post lentivirus transduction or 48h post stimulation by anti-1gG (10pg/ml). Mean + SD values from
505  n=3 biologically independent replicates are shown. *p<0.05, **p<0.01, ****p<0.0001.

506  (C) Phase microscopy images of human primary B cells at Day 7 or 21 post-inoculation with cell
507  culture supernatant from Akata cells expressing control or CHAF1B sgRNAs. White scale
508  bar=100pm.

509 (D) Representative FACS plots of PM gp350 expression in Akata cells expressing control or

510  CHAF1B sgRNAs and in the absence or presence of algG (10ug/ml) for 48 hours.
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511  (E) Mean = SD PM gp350 MFI values from n=3 replicates of Akata with indicated sgRNAs and
512  algG stimulation, as in (D). **** p <0.0001.

513  (F) Volcano plot comparing RNAseq -Log10 (p-value) versus Log?2 (fold-change sgCHAF1B vs
514  sgControl mMRNA abundance) from n=3 replicates. Purple circles indicate selected interferon (IFN)
515  stimulated genes and blue circles indicate histone related genes.

516  (G) Enrichr pathway analysis of gene sets significantly upregulated (purple bars) or downregulated
517  (blue bars) by CHAF1B sgRNA expression. Shown are the -Log10 (p-values) from Enrich analysis
518  of triplicate RNAseq datasets, using Fisher exact test. See also Table S1.

519  (H) Immunoblot analysis of WCL from Akata or P3HR-1 cells expressing control or CHAF1B
520  sgRNAs, for the IFN stimulated genes IFIT1 and IRF7, CHAF1B or GAPDH, as indicated.

521  Blots in H are representative of n=2 replicates.

522

523  Figure 3. CAF1 subunits RBBP4 and CHAF1A are necessary for Burkitt cell EBV latency.

524 (A) Immunoblot analysis of WCL from Akata cells expressing control or RBBP4 sgRNAs.

525  (B) FACS analysis of PM gp350 expression in Akata cells expressing control or RBBP4 sgRNAs.
526  (C) Mean £ SD PM gp350 MFI values from n=3 replicates of Akata with the indicated sgRNAs,
527  asin (B). **** p <0.0001.

528 (D) Immunoblot analysis of WCL from Akata expressing control or CHAF1A sgRNAs.

529  (E) FACS analysis of PM gp350 expression in Akata cells expressing control or CHAF1A sgRNAs.
530  (F) Mean = SD PM gp350 MFI values from n=3 replicates of Akata with indicated sgRNAs, as in
531  (E). **** p < 0.0001.

532 (G and H) gPCR analysis of EBV intracellular or DNAse-treated extracellular genome copy

533  number from Akata expressing control, RBBP4 (G) or CHAF1A (H) sgRNAs. Total genomic
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534  DNA was extracted at Day 6 post lentivirus transduction. Mean + SD values from n=3 replicates
535 are shown. ****p<0.0001.

536 Blots in A and D are representative of n=3 replicates.

537

538  Figure 4. CAF1 complex restricts lytic cycle after EBV infection in primary human B cells
539  (A) CHAF1B, CHAF1A and RBBP4 relative protein abundances detected by tandem-mass-tag-
540  based proteomic analysis of primary human B-cells at rest and at nine time points after EBV B95.8
541 infection at a multiplicity of infection of 0.1proteomic analysis at rest and at nine time points after
542  EBV B95.8 strain infection of primary human peripheral blood B-cells at a multiplicity of infection
543  of 0.1. Data represent the average +/- SEM for n=3 independent replicates(35). For each protein,
544  the maximum level detected across the time course was set to a value of 1.

545  (B) Immunoblot analysis of WCL from primary B cells infected with B95.8 EBV at Days 0, 2, 4,
546 7,10 and 14 post-infection.

547  (C) GM12878 ChlP-seq signals of EBV-encoded EBNA2, EBNA-LP, EBNA3A, EBNA3C,
548  LMP1 activated RelA, RelB, cRel, p50, p52 NF-kB subunits or c-Myc at the CHAF1B locus. Track
549  heights are indicated in the upper left.

550 (D) Schematic diagram of cell co-culture system for newly-infected Burkitt cell EBV latency
551  establishment. Transfection of BZLF1 and BALF1 expression vectors triggers lytic reactivation in
552  EBV+ 293 cells with a recombinant viral genome that harbors a GFP marker. EBV-uninfected
553  (EBV-) Akata cells are then co-cultured with induced 293 cells, in the absence or presence of
554 acyclovir. 48 hours later, cells are analyzed by FACS for expression of GFP and the late lytic

555  antigen gp350, which is expressed in cells that fail to establish latency.
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556  (E) Control or CHAF1B KO Akata EBV- cells were co-cultured with HEK-293 2-8-15 cells
557  harboring GFP-EBV. Cells were mock treated or treated with 50ug/ml of acyclovir. Cells were
558  then subjected to GFP and PM gp350 FACS. FSC and SSC parameters were used to gate out the
559  contaminated HEK293 cells from Akata EBV negative cells. GFP vs gp350 dot plots from a
560  representative replicate were shown.

561  (F) Top: Mean £ SD PM gp350 MFI values from n=3 replicates of co-cultured Akata EBV- cells
562  with the indicated experimental conditions, as in (D). **** p < 0.0001. Bottom: Immunoblot
563  analysis of WCL from Akata EBV- cells co-cultured 293 cells under the indicated experimental
564  conditions.

565

566  Figure 5. Histone 3.3 chaperone HIRA restricts Burkitt EBV lytic reactivation.

567  (A) Immunoblot analysis of WCL from P3HR-1, Akata EBV+ or MUTU | BL cells expressing
568  control or HIRA sgRNAs.

569  (B) FACS analysis of PM gp350 expression in Akata EBV positive cells expressing control or
570  HIRA sgRNA:s.

571  (C) Mean £ SD PM gp350 MFI values from n=3 replicates of Akata with indicated sgRNAS, as in
572 (B). **** p < 0.0001.

573 (D) gPCR analysis of EBV intracellular or DNAse-resistant extracellular genome copy number
574  from Akata EBV+ cells expressing control or HIRA sgRNAs. Total genomic DNA was extracted
575 at Day 6 post lentivirus transduction. Mean £SD values from n=3 replicates are shown.
576  ****n<0.0001,

577  (E) Phase microscopy images of human primary B cells at Day 7 or 10 post-inoculation with cell

578  culture supernatant from Akata cells expressing control or HIRA sgRNAs. White scale bar=100um.
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579  (F) HIRA relative protein abundances detected by tandem-mass-tag-based proteomic analysis of
580  primary human B-cells at rest and at nine time points after EBV B95.8 infection at a multiplicity
581  of infection of 0.1. Data represent the average +/- SEM for n=3 independent replicates(35). For
582  each protein, the maximum level detected across the time course was set to a value of 1.

583  (G) Control or HIRA KO Akata EBV- cells were co-cultured with HEK-293 2-8-15 cells
584  harboring recombinant EBV encoding a GFP marker. Cells were mock-treated or treated with
585  50ug/ml of acyclovir. Cells were then subjected to FACS for GFP or PM gp350. GFP vs gp350
586  dot plots from a representative replicate were shown.

587  (H) Mean + SD PM gp350 MFI values from n=3 replicates Akata EBV- cells of co-cultured with
588 293 cells under the indicated experimental conditions. **** p < 0.0001.

589

590  Figure 6. CHAF1B depletion reduces histone H3.1 and H3.3 occupancy at key EBV lytic
591  cycle regulatory elements.

592  (A) ChIP was performed using antibodies against endogenous H3.1 or H3.3 on chromatin from
593  Akata EBV+ cells expressing control or CHAF1B sgRNAs, followed by gPCR with primers
594  specific for the BZLF1 or BLLF1 promoters, oriLyt R or oriLyt L. Mean £ SEM are shown for n=3
595  biologically independent replicates. p-values were calculated by two-way ANOVA with Sidak's
596  multiple comparisons test.

597  (B) Immunoblot analysis of WCL from EBV+ Akata, BL cells expressing control or independent
598 CHAF1B.

599  (C) ChIP for HA-epitope tagged H3.1 or H3.3 using anti-HA antibody and chromatin from Akata
600 EBV+ cells stably expressing HA-H3.1 or HA-H3.3 and the indicated sgRNAs. gPCR was then

601  performed with primers specific for the BZLF1 or BLLF1 promoters, oriLyt R or oriLyt L. Mean
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602  + SEM are shown for n=3 biologically independent replicates are shown. p-Values were calculated
603 by two-way ANOVA with Sidak’'s multiple comparisons test.

604 (D) ChIP for endogenous H3.1 or H3.3 was performed using antibodies targeting H3.1 or H3.3
605  on chromatin from human primary B cells infected with B95.8 EBV at 2, 4 and 7 days post
606 infection, followed by gPCR with primers specific for the BZLF1 promoter. Input DNA for each
607  time point was normalized for intracellular EBV genome copy number. Mean + SEM are shown
608  for n=3 biologically independent replicates are shown. p-Values were calculated by two-way
609  ANOVA with Sidak's multiple comparisons test.

610

611  Figure 7. CHAF1b is important for H3K9me3 and H3k27me3 repressive marks at EBV
612  genome lytic cycle regulatory sites.

613  (A) ChIP for H3K9me3 was performed on chromatin from Akata EBV+ cells expressing control
614  or CHAF1B sgRNAs, followed by gPCR with primers specific for the BZLF1 or BLLF1 promoters,
615  oriLyt R or oriLyt L. Mean £ SEM are shown for n=3 biologically independent replicates are
616  shown. p-Values were calculated by two-way ANOVA with Sidak's multiple comparisons test.
617  (B) ChIP for H3K27me3 was performed on chromatin from Akata EBV+ cells expressing control
618  or CHAF1B sgRNAs, followed by gPCR with primers specific for the BZLF1 or BLLF1 promoters,
619  oriLyt R or oriLyt L. Mean £ SEM are shown for n=3 biologically independent replicates are
620  shown. p-Values were calculated by two-way ANOVA with Sidak's multiple comparisons test.
621

622  Figure 8. Schematic of histone loader roles in EBV genome regulation. Top, CAF1 and HIRA
623  load histones H3/H4 onto incoming EBV genomes, together with ASF1. H2A/H2B are loaded

624  onto the EBV genome by distinct histone chaperone and assemble into histone octamers. EBV
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625  BNRF1 subverts ATRX/DAXX in newly infected cells. DNA methyltransferases and histone
626  H3K9 and H3K27 methyltransferases add repressive marks that suppress lytic cycle and latency
627 11l genes. Bottom, CAF1 and HIRA roles in maintenance of latency I. EBV genomes are replicated
628 by host machinery in early S-phase, and newly synthesized genomes must be reprogrammed to
629 latency I. CAF1, HIRA and ATRX/DAXX have non-redundant roles in maintenance of latency I.
630  Cross-talk with DNA methylation machinery is important for propagation of CpG methylation
631  marks that maintain latency I.

632

633

634  Supplemental Figure Legends

635  Figure S1. CHAF1B depletion triggers EBV lytic antigens expression in Burkitt cells

636  (A) Top: Distribution of Log2 fold-change (LFC) values of sgRNAs in gp350+ sorted versus input
637 library cells for all Avana library guides at screen Day 6. Bottom: LFC for the four CHAF1A
638  targeting SYRNASs (red lines), overlaid on gray gradient depicting the overall sgRNA distribution,
639  at CRISPR screen Days 6 versus 9. Average values from two screen biological replicates are shown.
640  (B) gRT-PCR analysis of selected viral immediate early, early, and late genes in Akata EBV+ cells
641  expressing control or independent CHAF1B sgRNA. Mean + SD values from N=3 replicates, ****
642 p<0.0001

643  (C) FACS analysis of PM gp350 expression in MUTU 1 cells expressing control or independent
644  CHAF1B sgRNAs.

645 (D) Mean + SD PM gp350 MFI values from n=3 replicates of Akata with indicated sgRNAS, as in

646  (C). **** p < 0.0001.
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647  (E) Immunoblot analysis of WCL from MUTU I cells stably expressing GFP or V5 epitope tagged-
648 CHAF1B cDNAs and control or CHAF1B sgRNA, as indicated. Blot is representative of n=3
649  replicates.

650

651

652  Figure S2. Depletion of CHAF1B induces lytic reactivation in multiple EBV+ Burkitt tumor
653  cell lines.

654 (A, B) gPCR analysis of EBV intracellular genome copy number from MUTU | (A) or P3HR-1
655  (B) cells expressing control or CHAF1B sgRNAs. Total genomic DNA was extracted at Day 6
656  post-lentivirus transduction. Mean +SD values from n=3 replicates are shown. ****p<0.0001.
657  (C) gPCR analysis of EBV intracellular or extracellular genome copy number from Akata EBV+
658  cells expressing GFP of V5-CHAF1BR cDNAs and the indicated sgRNAs. Cells expressed GFP
659  where not indicated to express CHAF1BR, and cells expressed sgControl where not indicated to
660  express sgCHAF1B. Total genomic DNA was extracted at Day 6 post lentivirus transduction.
661  Mean = SD values from n=3 replicates are shown. ****p<0.0001, *<0.05, ns=non-significant.
662 (D) gPCR analysis of EBV intracellular or extracellular genome copy number from Akata cells
663  expressing control or CHAF1B sgRNAs comparing alone or in combination with 10pg/ml of algG
664  for 48 hours. Mean £SD values from n=3 replicates are shown. ****p<0.0001.

665  (E) FACS analysis of PM gp350 expression in MUTU | cells expressing control or independent
666  CHAF1B sgRNAs, and mock-induced or induced with algM 10pg/ml.

667  (F) gPCR analysis of EBV intracellular or extracellular genome copy number from MUTU |

668  expressing control or CHAF1B sgRNAs alone or in combination with algM induction. KO cells
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were mock-treated or treated with 10ug/ml of algM for 48 hours. Mean +SD values from n=3

replicates are shown. ****p<0.0001.

Figure S3. RNAseq heatmap analyses of CHAF1 depletion effects on Akata EBV latency I,
interferon stimulated gene and histone gene expression.

(A) Heatmap representation of EBV latency 11l gene abundance in Akata EBV+ cells expressing
control or CHAF1B sgRNAs. Shown are data from n=3 biologically independent replicates.

(B) Heatmap representation of interferon stimulated genes whose expression was significantly
upregulated in sgCHAF1b versus sgControl expressing Akata EBV+ cells. Shown are data from
n=3 replicates.

(C) Heatmap representation of mMRNASs encoding histones whose expression was significantly
different in Akata EBV+ cells expressing sgCHAF1B vs sgControl. Shown are data from n=3

replicates. Histone H3 genes are labeled in red.

Figure S4. CHAF1A or RBBP4 depletion trigger Burkitt cell EBV lytic reactivation.

(A and B) gRT-PCR analysis of selected viral immediate early, early, and late genes from Akata
EBV+ cells expressing control or independent RBBP4 (A) or CHAF1A (B) sgRNAs. Mean £SD
values from n=3 replicates are shown. ****p<0.0001

(C and D) Immunoblot analysis of WCL from MUTU 1 or P3HR-1 cells expressing control or
independent RBBP4 (C) or CHAF1A (D) sgRNAs. Blots are representative of n=3 replicates.

(E) gPCR analysis of EBV intracellular or extracellular genome copy number from MUTU 1 cells
expressing control, CHAF1A or RBBP4 sgRNAs. Mean =SD values from n=3 replicates are

shown. ****p<0.0001, ***p<0.001.
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692  (F) qPCR analysis of EBV intracellular or extracellular genome copy number from P3HR-1 cells
693  expressing control, CHAF1A or RBBP4 sgRNAs. Mean £SD values from n=3 replicates are
694  shown. ****p<0.0001, ***p<0.001.

695

696  Figure S5. EBV induces CAF1 in newly infected primary human B-cells.

697  (A) Normalized CHAF1B, CHAF1A, or RBBP4 mRNA levels from primary human peripheral
698  blood B-cells at the indicated day post infection (DPI) by the EBV B95.8 strain (36). Shown are
699  the mean £ SEM values from n=3 of biologically independent RNAseq datasets. ****p<0.0001,
700 ***p<0.001, **p<0.01.

701 (B and C) LCL ChlIP-seq signals of EBNA2, EBNALP, EBNA3A, 3C, RelA, RelB, cRel, p50,
702  p52and MYC at the CHAF1A (B) or RBBP4 (C) loci. Track heights are indicated in the upper left,
703  and genomic positions indicated at top of each panel.

704

705  Figure S6 HIRA depletion triggers Burkitt cell EBV lytic reactivation.

706  (A) gRT-PCR analysis of selected viral immediate early, early, and late genes from Akata EBV+
707  cells expressing control or HIRA sgRNAs. Mean + SD shown from n=3 replicates, **** p<0.0001.
708  (B) Normalized HIRA mRNA levels in primary human peripheral blood B-cells at the indicated
709  day post infection (DPI) by EBV B95.8 (36). Shown are the mean + SD values from n=3 of
710  biologically independent RNAseq replicates. *, p<0.05. ns, non-significant.

711

712 Figure S7T DAXX and ATRX depletion triggers Burkitt EBV lytic reactivation.

713 (A) Immunoblot analysis of WCL from EBV+ Akata, MUTU | and P3HR-1 cells expressing

714 control or independent ATRX sgRNA:s.
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715 (B) Immunoblot analysis of cell extracts from EBV+ Akata, MUTU | and P3HR-1 cells expressing
716 control, or DAXX sgRNAs.

717  (C) FACS analysis of PM gp350 expression in Akata EBV positive cells expressing control, ATRX,
718  or DAXX sgRNAs.

719 (D) Mean £ SD PM gp350 MFI values from n=3 replicates of Akata EBV positive cells expressing
720 control, ATRX, or DAXX sgRNAs, as in (C). **** p < 0.0001.

721  (E and F) gRT-PCR analysis of selected viral immediate early, early, and late genes in Akata
722 EBV+ cells expressing control or independent ATRX(A) or DAXX (E) sgRNAs. Mean + SD from
723 n=3 replicates, **** p<0.0001.

724 (G) gPCR analysis of EBV intracellular genome copy number from Akata EBV+ cells expressing
725 control, ATRX or DAXX sgRNAs. Mean +SD values from n=3 replicates are shown.
726 ****p<0.0001, ns=non-significant.

727  (H) ATRX or DAXX relative protein abundances detected by tandem-mass-tag-based proteomic
728  analysis of primary human B-cells at rest and at nine time points after EBV B95.8 infection at a
729  multiplicity of infection of 0.1. Data represent the average +/- SEM for n=3 independent
730  replicates(35). For each protein, the maximum level detected across the time course was set to a
731  value of one.

732 Blotsin A, B are representative of n=3 replicates.

733  Figure S8. CHAF1B depletion reduces H3.1 loading at multiple EBV genomic lytic cycle
734 regulatory elements in presence of acyclovir.

735  (A) ChIP for H3.1 or H3.3 was performed using antibodies targeting endogenous H3.1 or H3.3 on
736 chromatin from Akata EBV+ cells expressing control or CHAF1B sgRNAs, treated with 100ug/ml

737  acyclovir. gPCR with primers specific for BZLF1 or BLLF1 promoters, oriLyt R or oriLyt L. Mean
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738 £ SEM are shown for n=3 biologically independent replicates are shown, ****p<0.0001, **
739  p<0.01. p-Values were calculated by two-way ANOVA with Sidak's multiple comparisons test.
740

741

742

743

744

745  Supplementary Tables

746 Table S1 Differentially expressed genes in EBV+ Akata cells expressing control or CHAF1B
747  sgRNAs and Enrichr analysis of selected genes (p<0.05, LFC>1 or <-1)

748  Table S2 List of antibodies, reagents, Kits, and oligoes used in this study.

749

750 MATERIALS AND METHODS

751 Cell lines and culture. Throughout the manuscript, all B-cell lines used stably expressed S.
752 pyogenes Cas9. The EBV+ Burkitt lymphoma cell lines P3HR-1, Akata, and MUTU | were used
753  inthe study. EBV-Akata cells are a derivative cell line of the original EBV+ Akata tumor cell line
754  that spontaneously lost EBV in culture. The EBV+ Burkitt lymphoma cell lines Akata EBV+,
755 MUTU I, P3HR-1 and EBV- Akata were maintained in RMPI 1640 (Gibco, Life Technologies)
756  supplemented with 10% fetal bovine serum (Gibco). 293T were grown in Dulbecco’s Modified
757  Eagle’s Medium (DMEM) with 10% fetal bovine serum (Gibco). Cell lines with stable expression
758  of Streptococcus pyogenes Cas9 gene were generated by lentiviral transduction, followed by
759  blasticidin selection at 5 pg/ml, as reported (90). For selection of transduced cells, puromycin was

760  added at the concentration of 3 pg/ml. Hygromycin was used at 200 pg/ml for the initial 4 days,
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761  and 100 pg/ml thereafter. Acyclovir was used at the concentration of 100 pg/ml in vitro. EBV
762  producer HEK-293 cells stably transformed by BART-repaired B95-8 based EBV BAC system
763  encoding GFP (45) were cultured in RPMI 1640 (Gibco, Life Technologies) supplemented with
764  10% fetal bovine serum (Gibco) and 1% penicillin, 50 pg/ml hygromycin. All cells used in this
765  study were cultured in a humidified incubator at 37°C with 5% CO2 and routinely tested and
766  certified as mycoplasma-free using the MycoAlert kit (Lonza). STR analysis (Idexx) was done to
767  verify identify of MUTU 1 cells.

768 Immunoblot analysis. Immunoblot analysis was performed as previously described (91). In
769  brief, WCL were separated by SDS-PAGE electrophoresis, transferred onto nitrocellulose
770  membranes, blocked with 5% milk in TBST buffer and then probed with primary antibodies at
771 4 °C overnight on a rocking platform, washed four times and then incubated with secondary
772 antibody (Cell Signaling Technology, cat#7074 and cat#7076) for 1 h at room temperature. Blots

773 were then developed by incubation with ECL chemiluminescence for 1 min (Millipore,

774 cat#WBLUFO0500) and images were captured by Licor Fc platform. All antibodies used in this
775  study were listed in supplementary Table S2.

776 Flow cytometry analysis. For live cells staining, 1x 10° of cells were washed twice with FACS
777  buffer (PBS, ImM EDTA, and 0.5% BSA), followed by primary antibodies incubation for 30 min
778  onice. Labeled cells were then washed three times with FACS buffer. Data were recorded with a
779  BD FACS Calibur and analyzed with Flowjo X software (Flowjo).

780 Quantification of EBV genome copy number

781  To measure EBV genome copy number, intracellular viral DNA and virion-associated DNA
782  present in cell culture supernatant were quantitated by gPCR analysis. For intracellular viral
783  DNA extraction, total DNA from 2x10° of Burkitt cells was extracted by the Blood & Cell

784  culture DNA mini kit (Qiagen #13362). For extracellular viral DNA extraction, 500 pl of culture
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785  supernatant was collected from the same experiment as intracellular DNA measurement, and was
786  treated with 20 ul RQ1 DNase (Promega) for 1 h at 37°C to degrade non-encapsidated EBV

787  genomes. 30 pul proteinase K (20 mg/ml, New England Biolabs, #P8107S) and 100 ul 10%

788  (wt/vol) SDS (Invitrogen, #155553-035) were then were added to the reaction mixtures, which
789  were incubated for 1 h at 65°C. DNA was purified by phenol-chloroform extraction followed by
790  isopropanol-sodium acetate precipitation and then resuspended in 50 ul nuclease-free water

791  (Thermo Fisher, #10977-023). Extracted DNA was further diluted to 10 ng/ul and subjected to
792  gPCR targeting of the EBV BALF5 gene. Standard curves were made by serial dilution of a

793  pHAGE-BALF5 miniprep DNA at 25 ng/uL. Viral DNA copy number was calculated by

794 inputting sample Ct values into the regression equation dictated by the standard curve.

795 cDNA rescue assay. V5-tagged CHAF1B cDNA with G360A PAM site mutation was

796  synthesized by Genescript (Piscataway, NJ), as described in the following table. CHAF1B sgl1
797  sequence is shown. PAM sequences are underlined. Mutation site is indicated in red. Rescue
798  cDNA was synthesized by GenScript (Piscataway, NJ) and cloned into pLX-TRC313 vector.
799  Cas9 expressing B cells with stable C-terminal V5 epitope-tagged CHAF1B cDNA expression

800  was established by lentiviral transduction and hygromycin selection.
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CHAF1B KO and Rescue

sgRNA 5’ - GCTGAACAAGGAGAACTGGA — 3’ (sense)

Genomic DNA 5’ — GCTGAACAAGGAGAACTGGACGGT- 3’ (#1)

Rescue cDNA 5’ - GCTGAACAAGGAGAACTGGACAGT-3" (#1)

Rescue cDNA GGAGGATCCACAGACTGGCGTCTGCCGGCGTGGACACCA

sequence surrounding | ATGTCAGGATCTGGAAGGTAGAAAAGGGACCAGATGGAA
the PAM site mutation | AAGCCATCGTGGAATTTTTGTCCAATCTTGCTCGTCATACC
(in bold and shaded) AAAGCCGTCAATGTTGTGCGTTTTTCTCCAACTGGGGAAA
TTTTAGCATCGGGAGGAGATGATGCTGTCATCCTATTGTG
GAAGGTGAATGATAACAAGGAGCCGGAGCAGATCGCTTT
TCAGGATGAGGACGAGGCCCAGCTGAACAAGGAGAACTG
GACAGTTGTGAAGACTCTGCGGGGCCACTTAGAAGATGT
GTATGATATTTGCTGGGCAACTGATGGGAATTTAATGGCT
TCTGCCTCTGTGGATAACACAGCCATCATATGGGATGTCA
GCAAAGGACAAAAGATATCAATTTTTAATGAACATAAAA
GTTATGTCCAAGGAGTAACCTGGGACCCTTTGGGTCAATA
TGTTGCTACTCTGAGCTGTGACAGGGTGCTGCGAGTATAC
AGTATACAGAAGAAGCGTGTGGCTTTCAATGTTTCGAAGA

TGCTGTCTGG
801
802
803 Chromatin Immunoprecipitation (ChIP) gPCR. Cells were crosslinked with formaldehyde

804  0.4% for 10 min at room temperature and the reaction was stopped by adding glycine (2.5M) to
805  final concentration 0.2M for 10 minutes at room temperature. The cells were washed three times
806  with PBS and then lysed by 1% SDS lysis buffer (50mM Tris pH8.1, 10mM EDTA, 1% SDS and
807  protease inhibitor) for 20min on ice. Lysate was sonicated 25 min (30 sec on / 30 sec off) in a
808  Diagenode water bath-sonicator and centrifuged at 13000 rpm for 10 min. The supernatant was
809  diluted 10 times in ChIP Dilution Buffer (SDS 0.01%, Triton X-100 1.1%, 1.2 mM EDTA pH 8§,
810  16.7 mM Tris-HCI pH 8.1, 167 mM NaCl and protease inhibitor) and pre-cleared for 1 hour,
811  rotating at 4°C with blocking beads. Soluble chromatin was diluted and incubated with 4ug anti-
812  HA polyclonal antibody (Abcam, #ab9110), anti-H3.1/H3.2 polyclonal antibody (Millipore,

813  #ABE154) or anti-H3.3 polyclonal antibody (Millipore, #09-838). Specific immunocomplexes
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814  were precipitated with protein A beads (Thermo fisher, #101041). The beads were washed, for 5
815  minutes, once in Low Salt Buffer (SDS 0.1%, Triton X-100 1%, 2 mM EDTA pH 8.1, 20 mM
816  Tris-HCI pH 8.1 and 150 mM NacCl), twice in High Salt Buffer (SDS 0.1%, Triton X-100 1%, 2
817 mM EDTA pH 8, 20 mM Tris-HCI pH 8.1 and 500 mM NacCl), once in LiCl Buffer (0.25 M LiCl,
818  NP-40 1%, Na Deoxycholate 1%, 1 mM EDTA pH 8.1 and 10 mM Tris-HCI pH 8.1) and twice in
819  TE buffer. After reverse cross-linking, DNA was purified by using QIAquick PCR purification Kit
820  (Qiagen, #28106). gPCR quantified the DNA from ChIP assay and normalized it to the percent of
821  input DNA. Primers for gPCR are listed in Supplementary Table S2.

822  RT-PCR analysis. Total RNA was harvested from cells using RNeasy Mini Kit (Qiagen, #27106).
823  Genomic DNA was removed by using the RNase-Free DNase Set (Qiagen, #79254). RNA was
824  reversed transcribed by iScriptTM Reverse Transcription Supermix (Bio-Rad, #1708841). gRT-
825  PCR was performed using Power SYBR Green PCR Mix (Applied Biosystems, #4367659) on a
826 CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad), and data were normalized to
827  internal control GAPDH. Relative expression was calculated using 2-AACt method. All samples
828  were run in technical triplicates and at least three independent experiments were performed. The
829  primer sequences were listed in Supplementary Table S2.

830  Primary Human B Cells Purification Discarded, de-identified leukocyte fractions left over
831  from platelet donations were obtained from the Brigham and Women’s Hospital blood bank.
832  Peripheral blood cells were collected from platelet donors, following institutional guidelines. Since
833  these were de-identified samples, the gender was unknown. Our studies on primary human blood
834  cells were approved by the Brigham & Women’s Hospital Institutional Review Board. Primary
835  human B cells were isolated by negative selection using RosetteSep Human B Cell Enrichment

836  and EasySep Human B cell enrichment kits (Stem Cell Technologies, #15064 and #19054),
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837  according to the manufacturers’ protocols. B cell purity was confirmed by plasma membrane
838  CD19 positivity through FACS. Cells were then cultured with RPMI 1640 with 10% FBS.

839  EBV Infection of Primary B-Cells

840  EBV B95-8 virus was produced from B95-8 cells with conditional ZTA expression. 4HT was used
841  ataconcentration of 1 uM to induce EBV lytic replication, removed 24 hours later, and cells were
842  resuspended in 4HT-free RPMI/10% FBS for 96 hours. Virus-containing supernatants were
843  collected and subject to filtration through a 0.45 um filter to remove producer cells. Titer was
844  determined experimentally by transformation assay as described previously (35). For analysis of
845  transforming EBV production in Burkitt knockout experiments, culture supernatants from Akata
846  EBV+ cells expressing control, CHAF1B or HIRA sgRNAs were harvested. Supernatants were
847  passed through a 0.80 pm filter to remove any producer cells and were then mixed with 1 million
848  purified CD19+ primary human B cells in 12 well plates. For determining histone H3.1 or H3.3
849  occupancy in newly infected primary cells, 6x1077 purified human B cells were infected with
850  B95.8 at a MOI of 0.2. Ten million cells were harvested at 2, 4, and 7 DPI. Viral episome number
851  ateach time point was quantitated by BALF5 gPCR. The recombinant vector pHAGE-BALF5 was
852  used to establish the standard curve for absolute quantification of EBV episome number. The H3
853  ChIP gPCR signals were normalized using EBV episome numbers at each time point, in order to
854 control for changes in EBV copy number in B-cells between DPI 2-7.

855  Co-cultivation of Akata EBV negative cells EBV HEK-293 producer cells. EBV producer
856  HEK-293 cells stably transformed by BART-repaired B95-8 based GFP-EBV BAC system (45).
857  EBV producer cells were seeded at a density of 0.3x10”6/ml in Corning® BioCoat™ Collagen I
858 6 Well Plate (cat#356400). After 24 hours, HEK-293 producer cells were co-transfected with

859  500ug of pCDNA-BALF4 and 500ug of pPCDNA-BZLF1 per well, as described previously(92).
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860  After incubating for additional 24h, 0.5x1076/ml of control or CHAF1B KO of Akata EBV- cells
861  resuspended in fresh media were added onto the HEK-293 cells gently. Co-cultured cells were
862  then mock-treated or treated with 100pg/ml Acyclovir (Cat#114798, Millipore). After additional
863 48 hours, Akata cells were resuspended carefully, without disturbing the 293 monolayer,
864  transferred into a new 6 well plate and further settled for another 24 hours for the removal of
865  potentially contaminating 293 cells. Akata cells were then subjected to the gp350 PM FACS. FSC
866  and SSC parameters were used to exclude any potentially contaminating 293 producer cells.

867  RNA sequencing (RNAseq) analysis. Total RNAs were isolated with RNeasy Mini kit using the
868  manufacturer’s protocol. An in-column DNA digestion step was included to remove residual
869  genomic DNA contamination. To construct indexed libraries, 1 ug of total RNA was used for
870  polyA mRNA-selection using NEBNext Poly(A) mRNA Magnetic Isolation Module (New
871  England Biolabs), followed by library construction via NEBNext Ultra RNA Library Prep Kit for
872  Illlumina (New England Biolabs). Each experimental treatment was performed in triplicate.
873  Libraries were multi-indexed, pooled and sequenced on an Illumina NextSeq 500 sequencer using
874  single-end 75 bp reads (lllunima).

875  For RNA-seq data analysis, paired-end reads were mapped to human (GENCODE v28) and the
876  Akata EBV genome. Transcripts were quantified using Salmon v0.8.2 (93) under quasi-mapping
877  and GC bias correction mode. Read count table of human and EBV genes was then normalized
878  across compared cell lines/conditions and differentially expressed genes were evaluated using

879  DESeq2 v1.18.1 (94) under default settings.

880  Volcano plots were built based on the log2 (foldchange) and -l1og10 (p-Value) with Graphpad
881  Prism7. Heatmaps were generated by feeding the Z-score values of selected EBV genes from

882  DESeq2 into Morpheus(https://software.broadinstitute.org/morpheus/). Enrichr was employed to
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883  perform gene list-based gene set enrichment analysis on selected gene subset(95). Consistent
884  enriched gene sets in Top 5 terms ranked by Enrichr adjusted p-value were visualized Graphpad

885  Prism 7.

886  Statistical analysis. Data are presented as mean + standard errors of the mean. Data were analyzed
887  using analysis of variance (ANOVA) with Sidak's multiple comparisons test or two-tailed paired
888  Student t test with Prism7 software. For all statistical tests, a cutoff of p < 0.05 was used to indicate
889  significance.
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