

1 Using Expansion Microscopy to visualize and characterize 2 the morphology of mitochondrial cristae

3

4 Tobias C. Kunz^{1a}, Ralph Götz^{2a}, Shiqiang Gao³, Markus Sauer², Vera Kozjak-Pavlovic^{1,*}

5

6 ¹Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

7 ²Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg,

8 Germany

9 ³Department of Botany 1, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

10 ^aThese authors contributed equally to this work: Tobias C. Kunz and Ralph Götz

11 *Corresponding author: Vera Kozjak-Pavlovic, Chair of Microbiology, University of Würzburg, AM

12 Hubland, D-97074 Würzburg, Germany, E-mail: vera.kozjak@uni-wuerzburg.de

13

14 Keywords: Expansion microscopy, mitochondria, cristae

15 **Abstract**

16 Mitochondria are double membrane bound organelles indispensable for biological processes such as
17 apoptosis, cell signalling, and the production of many important metabolites, which includes ATP that
18 is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane
19 contains folds called cristae, which increase the membrane surface and thus the amount of membrane-
20 bound proteins necessary for the OXPHOS. These folds have been of great interest not only because
21 of their importance for energy conversion, but also because changes in morphology have been linked
22 to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to ageing and
23 infection. With a distance between opposing cristae membranes often below 100 nm, conventional
24 fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this
25 reason, various highly specialized super-resolution methods including *d*STORM, PALM, STED and SIM
26 have been applied for cristae visualisation.

27 Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on
28 conventional confocal microscopes by embedding the sample into a swellable hydrogel that is
29 isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional
30 confocal microscopes, which can be further increased to ~ 30 nm laterally using SIM. Here, we
31 demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein
32 GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial
33 membrane, can be used as a cristae marker. Applying ExM on mitochondria labelled with this construct
34 enables visualization of morphological changes of cristae and localization studies of mitochondrial
35 proteins relative to cristae without the need for specialized setups. For the first time we present the
36 combination of specific mitochondrial intermembrane space labelling and ExM as a tool for studying
37 internal structure of mitochondria.

38 **Introduction**

39 Super-resolution imaging has revolutionized fluorescence imaging by its capability to bypass the
40 resolution limit of optical microscopy as defined by Ernst Abbe¹. The most common methods,
41 stimulated emission depletion (STED) microscopy², photoactivated localization microscopy (PALM)³
42 and (*direct*) stochastic optical reconstruction microscopy (*d*)STORM⁴, were applied to countless
43 biological specimens and can provide new insights into cellular structures and tissue in 2D and 3D^{5,6}.

44 However, super-resolution techniques enabling a resolution < 100 nm require specialized setups and
45 expert knowledge to avoid artefacts⁷. Expansion microscopy (ExM)⁸ in contrast avoids this need by
46 physical expansion of the sample after embedding into a polyacrylamide gel. Various protocols have
47 been established using either a digestion or a denaturation step with numerous staining and linking
48 protocols^{9, 10, 11, 12, 13}. With an expansion of ~4-4.5 times, ExM empowers scientists to resolve structures
49 with a lateral resolution of ~60-70 nm on a confocal microscope and in combination with structured
50 illumination microscopy (SIM)¹⁴ of even ~30 nm approaching the resolution of other conventional
51 super-resolution methods¹⁵.

52 Many important biochemical processes take place in mitochondria, from the determination of cell fate
53 by apoptosis induction, the citric acid cycle and the production of metabolites to the energy conversion
54 *via* cell respiration. The latter is taking place at the mitochondrial inner membrane, which increases its
55 surface by folding into cristae. The inner mitochondrial membrane can therefore be divided into the
56 regions of the cristae membrane, which projects into the matrix, and the inner boundary membrane,
57 which is found opposite to the outer mitochondrial membrane. Two regions meet at the so-called
58 cristae junction¹⁶. Changes in morphology of cristae have been associated with ageing, numerous
59 diseases, such as cancer, diabetes, several neurodegenerative diseases or types of neuro- and
60 myopathies, and infection^{17, 18, 19, 20}. Thus, the possibility to investigate cristae morphology and the
61 localization of mitochondrial proteins is of broad interest. Up to now, most light microscopy
62 approaches have been performed using STED^{21, 22, 23} or Airyscan microscopy²⁴. Although very successful
63 in cristae visualization, the limitation is the restricted availability of super-resolution microscopes in
64 standard cell biology laboratories as tools for investigating the mitochondrial ultrastructure.

65 Here, we report that ExM offers the possibility to image mitochondrial cristae on a classical confocal
66 microscope and to localize mitochondrial proteins with an estimated lateral resolution of ~30 nm in
67 combination with SIM. We used green fluorescent protein (GFP)-labelled mitochondrial
68 intermembrane space, mitochondrial creatine kinase MtCK-GFP as a cristae marker, and antibodies
69 against mitochondrial matrix and cristae associated proteins. As an example of the applicability of this
70 technique, using the combined resolution power of ExM and SIM we demonstrate that the
71 mitochondrial transcription factor TFAM associates with cristae, and we observe changes in cristae

72 morphology after membrane potential dissipation by CCCP or knockdown of the member of the
73 mitochondrial intermembrane space bridging complex (MIB), Sam50.

74 **Material & Methods**

75 **Cell culture**

76 Human HeLa229 cells (ATCC CCL-2.1tm) and Sam50 knockdown cells *sam50kd-2²⁵* were cultured in
77 10% (v/v) heat inactivated FBS (Sigma-Aldrich, St. Louis, USA) RPMI1640 + GlutaMAXtm medium
78 (Gibco, Thermo Fisher Scientific, Massachusetts, USA). The cells were grown in a humidified
79 atmosphere containing 5% (v/v) CO₂ at 37 °C. For the induction of the shRNA-mediated knockdown of
80 Sam50 cells were treated with 1 µg/ml doxycycline for 72 h prior seeding.

81 **Transfection**

82 MtcK gene was amplified from HeLa cDNA and cloned into the pCDNA3 vector (Thermo Fisher
83 Scientific, Massachusetts, USA) where previously the GFP sequence was introduced, enabling C-
84 terminal fusion and tagging. HeLa cells were transfected using Viromer® RED (230155; Biozym,
85 Oldendorf, Germany) according to manufacturer's instructions.

86 **Antibody conjugation**

87 Following buffer exchange to 100 mM NaHCO₃ with 0.5 ml 7 kDa Spin Desalting Columns (Thermo
88 Fisher, 89882), the anti-TFAM (TA332462, rabbit; Origene, Rockville, USA) antibody was incubated in
89 5 molar excess of NHS- Alexa Fluor 546 (A20002; Thermo Fisher Scientific, Massachusetts, USA) for 3
90 h at RT. After conjugation, the unreacted dye was filtered from the antibody using 0.5 ml 7 kDa Spin
91 Desalting Columns and the buffer was exchanged to 0.02 % NaN₃ dissolved in PBS. The degree of
92 labeling (DOL) was determined by the absorption of the antibody-dye with a UV-vis spectrophotometer
93 (Jasco V-650). The labeled antibody was stored at 4 °C.

94 **Immunostaining**

95 24 h after transfection, the cells were washed with 1xPBS and fixed with 4% PFA for 30 min at RT.
96 Afterwards the cells were washed with 1xPBS, permeabilized for 15 min in 0.2% Triton-X100 and then
97 blocked for 1 h in 2% FCS. Upon blocking, the cells were incubated for 1 h in primary antibody in a
98 humidified chamber. We used the following primary antibodies: α-PRX3 (TA322472, rabbit; Origene,
99 Rockville, USA), α-Mitofilin (ab48139, rabbit; Abcam, Cambridge, UK) α-TFAM (TA332462, rabbit;
100 Origene, Rockville, USA) and α-GFP (ab1218, mouse; ; Abcam, Cambridge, UK). All primary antibodies
101 were used in a dilution of 1:100. After incubation with the primary antibody, the cells were incubated
102 with the secondary antibody, Alexa-488 (dilution 1:200, goat anti-mouse Alexa 488, Thermo Fisher
103 Scientific, Massachusetts, USA) and ATTO647N (dilution 1:200, goat anti-rabbit ATTO 647N, 610-156-
104 121S, Rockland Immunochemicals, Pottstown, USA). For 3 color images, the cells were then incubated

105 in anti TFAM-Alexa 546 antibody (TA332462 self-conjugated or sc-166965; Santa Cruz Biotechnology,
106 Dallas, USA).

107 **Expansion Microscopy**

108 Expansion Microscopy was performed as described previously^{9,26}. Stained samples were incubated for
109 10 min in 0.25% glutaraldehyde, washed and gelated with a monomer solution containing 8.625%
110 sodium acrylate (408220, Sigma-Aldrich, St. Louis, USA), 2.5% acrylamide (A9926, Sigma-Aldrich, St.
111 Louis, USA), 0.15% N,N'-methylenbisacrylamide (A9926, Sigma-Aldrich, St. Louis, USA), 2 M NaCl
112 (S5886, Sigma-Aldrich, St. Louis, USA), 1x PBS, 0.2% ammonium persulfate (APS, A3678; Sigma-Aldrich,
113 St. Louis, USA) and tetramethylethylenediamine (TEMED, T7024; Sigma-Aldrich, St. Louis, USA,). Note
114 that TEMED and KPS were added just prior to gelation and gelation was performed for 1 h at RT in
115 humidified gelation chambers. The gelated samples were digested in the appropriate proteinase-
116 containing buffer (50 mM Tris pH 8.0, 1 mM EDTA (ED2P, Sigma-Aldrich, St. Louis, USA), 0.5% Triton X-
117 100 (28314, Thermo Fisher Scientific, Massachusetts, USA) and 0.8 M guanidine HCl (50933, Sigma-
118 Aldrich, St. Louis, USA)) for 30 min and consequently expanded in ddH₂O. The expansion factor was
119 determined by the gel size prior and after expansion. Expanded gels were stored at 4 °C in ddH₂O until
120 use and immobilized on PDL coated imaging chambers (734-2055, Thermo Fischer Scientific,
121 Massachusetts, USA) for imaging.

122 **Microscopes**

123 Imaging of the unexpanded and expanded specimen was performed on a confocal system (Zeiss
124 LSM700 5 mW red laser (637 nm) and a 10 mW blue laser (488 nm)) and on a structured illumination
125 microscope (Zeiss Elyra S.1 SIM). In both cases a water objective (C-Apochromat, 63x 1.2 NA, Zeiss,
126 441777-9970) was used and images were processed with Imaris 8.4.1 and FIJI 1.51n²⁷.

127 *d*STORM imaging was carried out on a home-built setup using an inverted widefield microscope
128 (Olympus IX-71) equipped with an oil immersion objective (Olympus APON 60xO TIRF, NA 1.49) and an
129 excitation laser of the wavelength 639 nm (Genesis MX639-1000, Coherent). The excitation beam was
130 separated from the emitted fluorescence *via* a dichroic mirror (ZT405/514/635rpc, Chroma) and the
131 emission was additionally filtered by an emission filter (Brightline HC 679/41 (Semrock)) in front of the
132 EMCCD-camera (iXon Ultra 897, Andor). Prior to imaging, a switching buffer containing 100 mM β -
133 mercaptoethylamin pH 7.4 was added and 15 000 Frames at 50 Hz were recorded using laser densities
134 of ~ 7 kW/ μ m². The super resolved images were reconstructed using the software rapidSTORM 3.3²⁸.

135 **Results**

136 Our first goal was to find a marker protein localizing to mitochondrial cristae, which can be expressed
137 and correctly targeted when fused to a fluorescent protein without affecting mitochondrial function
138 or morphology. After testing several candidates, we chose the MtCK, an enzyme providing a temporal
139 and spatial energy buffer to maintain cellular energy homeostasis by creating phosphocreatine using
140 mitochondrial ATP²⁹. This protein localizes to mitochondrial intermembrane space, and after the
141 transfection of HeLa229 cells and expression of its carboxy-terminus GFP-labelled version MtCK-GFP,
142 we observed no effect on cell viability or mitochondrial length and distribution (not shown). The
143 transfected Hela229 cells expressing MtCK-GFP were decorated with anti-GFP antibody prior to
144 expansion, which we performed using the Chozinski protocol⁹ (Fig 1). Non-expanded and expanded
145 cells were imaged by confocal fluorescence microscope (Fig 1a, c) and SIM (Fig 1b, d) and compared
146 with dSTORM images of unexpanded cells (Fig S1). Confocal imaging of expanded samples (Fig 1c) was
147 comparable in resolution with the SIM of unexpanded cells (Fig 1b), whereas the combination of 4x
148 ExM and SIM provided the best resolution of internal mitochondrial structure (Fig 1d).
149 In addition to the GFP antibody labelling, MtCK-GFP-expressing cells were next decorated with
150 antibodies against several mitochondrial proteins before expansion and analysed by confocal
151 fluorescence microscope after 4x ExM (Fig 2). We chose peroxiredoxin 3 (PRX3), a mitochondrial
152 thioredoxin-dependent hydroperoxidase present in mitochondrial matrix³⁰, to assess the efficiency of
153 MtCK-GFP to depict cristae with its uniform distribution through the intermembrane space (Fig 2a).
154 This was indeed the case, since the signals for MtCK-GFP (green) and PRX3 (magenta) alternated and
155 did not overlap, showing that 4x ExM enables the differentiation between the cristae and the matrix
156 (Fig 2d). Next, we used the combined staining for GFP and Mic60/Mitofillin. The latter protein is one of
157 the central components of the inner membrane mitochondrial cristae organizing system (MICOS),
158 which together with the sorting and assembly machinery (SAM) in the outer mitochondrial membrane
159 forms the mitochondrial intermembrane space bridging complex (MIB), a large complex necessary for
160 the maintenance of mitochondrial cristae morphology, cristae junctions, inner membrane
161 architecture, and formation of contact sites between two mitochondrial membranes^{31,31, 32, 33}. As we
162 expected, we were able to localize Mic60/Mitofillin signals closer to the mitochondrial surface (Fig 2b)
163 and overlapping with the signals of MtCK-GFP (Fig 2e). Finally, we used ExM to determine the
164 localization of mitochondrial transcription factor A (TFAM) in relation to cristae. TFAM associates with
165 mitochondrial DNA (mtDNA) nucleoids in the matrix, but a connection exists between cristae
166 formation and mitochondrial nucleoid organisation³⁴. Contrary to PRX3, TFAM is heterogeneously
167 distributed in the matrix localized to punctate structures, which we observed overlapping with the
168 MtCK-GFP signal (Fig 2c, f). This indicates that TFAM and mitochondrial nucleoids are found in the
169 vicinity of cristae.

170 This finding was supported by SIM imaging of 4x expanded cells. The improved lateral resolution of
171 ~30 nm allowed us to visualize that most of the TFAM signal is found at the mitochondrial periphery,
172 colocalizing with the MtCK-GFP signal, which indicates a possible association of TFAM and mtDNA
173 nucleoids with cristae junction (Fig 3).

174 Next, we performed 3-colour confocal (Fig 4a-e) and SIM (Fig 4g-j) imaging of cristae, Mic60/Mitofillin
175 and TFAM in expanded samples to better compare mitochondrial proteins and their localizations. The
176 signals for all three proteins largely overlapped, but interestingly, the colocalization of Mic60/Mitofillin
177 and TFAM was somewhat stronger than observed for Mic60/Mitofillin and MtCK-GFP (Fig 4f, k). This
178 result confirms our previous observation that TFAM might localize in the vicinity of cristae junctions,
179 which are marked by the presence of Mic60/Mitofillin.

180 To demonstrate the usefulness of 4x ExM for determining the morphology of mitochondrial cristae,
181 we treated cells transfected with MtCK-GFP with 1 μ M CCCP, a strong uncoupling agent that can
182 abruptly depolarize the membrane potential³⁵. Cells incubated with CCCP exhibited a loss of cristae
183 morphology in a time dependent manner, which was successfully visualized using MtCK-GFP and ExM
184 (Fig 5a-d). Furthermore, we transfected HeLa cells where the knockdown of Sam50 could be induced
185 by doxycycline (Dox)-mediated shRNA expression (*sam50kd-2*) with MtCK-GFP. Sam50 is a component
186 of the SAM and MIB complex and, in addition to its function in the sorting of proteins with complicated
187 topology, such as β -barrel proteins³⁶, it is also important for the maintenance of cristae integrity. The
188 enlargement of mitochondria and loss of cristae structure, that has already been visualized by
189 transmission electron microscopy³¹, was also visible after ExM and analysis of the samples by confocal
190 microscopy (Fig 5e, f).

191 **Discussion**

192 In this study we could demonstrate the visualization of individual cristae on a conventional confocal
193 microscope by applying ExM. This approximately fourfold expansion resulting in a resolution of ~60
194 nm⁸ appears to be a promising tool for mitochondrial research, especially for cristae, folds of the inner
195 membrane, with a distance often below 100 nm³⁷. Imaging of cristae, however, has always been
196 challenging due to the limited resolution in light microscopy. Hence, first successful results could be
197 performed only with the advent of super resolution microscopy by applying SMLM³⁸, STED²³ or SIM³⁹
198 approaches. While SMLM and STED have the limitation of highly specialized setups and intensive
199 training, SIM has the drawback of an only to ~ 100 nm limited resolution. Recently, studies showed
200 great improvements in live-cell imaging using STED or Airyscan microscopy. These methods were used
201 in combination with fluorescent dyes or inner membrane markers for analysis of the mitochondrial
202 ultrastructure^{21, 22}, measurement of the membrane potential of individual cristae²⁴ or even cristae
203 dynamics⁴⁰. Although these live-cell imaging methods enabled following of cristae dynamics in real

204 time, they also exhibited very fast damaging of mitochondrial vitality and are also not suitable for
205 protein localization studies.

206 Contrary to those already established cristae marker COX8A²² or ATP5I⁴⁰, we assume that we do not
207 interfere with the naïve ATP production cycle using the mitochondrial creatine kinase MtCK as cristae
208 marker. Other fluorescent dyes like MitoPB Yellow²¹ or MitoTracker for labeling cristae were
209 unfortunately not compatible with ExM due to the lack of a primary amine, making MtCK a preferred
210 possibility to label cristae.

211 Our approach by fixing and expanding the sample offers the possibility of immunolabeling and thus
212 enables studies of protein localization relative to mitochondrial cristae with an estimated resolution
213 of 60 nm. By additionally applying SIM the resolution is improved to ~30 nm (Fig 3, 4g-j), approaching
214 super-resolution methods like dSTORM (Fig S1) and STED. Moreover, ExM also offers the possibility of
215 super-resolved imaging of 3 or even 4 colours of the whole cell, a severe obstacle in super-resolution
216 microscopy³².

217 In our study, we successfully demonstrated the close proximity to cristae of Mic60/Mitofilin, a protein
218 localized to cristae junction and essential for cristae formation^{32, 41}, and for the first time TFAM, a
219 mitochondrial transcription factor located in the mitochondrial matrix and associated with mtDNA
220 nucleoids. In comparison to the localization relative to cristae of TFAM and another mitochondrial
221 matrix protein PRX3 a clear difference can be observed. While TFAM co-localizes with cristae, PRX3
222 shows an alternating signal (Fig 2). 3-colour imaging (Fig 4) and ExM in combination with SIM (Fig 3,
223 4g-j) indicated the possible localization of TFAM to cristae junction, which would explain the observed
224 changes in mtDNA nucleoids upon Mic60/Mitofilin depletion³⁴, and would also be in agreement with
225 our unpublished data, which show a strong reduction in the quantities of mitochondrial genome
226 maintenance exonuclease 1 (MGME1/C20orf72) upon Mic60/Mitofilin knockdown. MGME1 is an exo-
227 /endonuclease involved in the maintenance of proper 7S DNA levels in mitochondria and mtDNA
228 repair^{42, 43}. It is therefore possible to imagine that the changes in mitochondrial morphology are sensed
229 and responded to through the positioning of nucleoids at cristae junction and the possible functional
230 connection of some of the mtDNA-associated proteins with the MICOS complex. However, more
231 evidence needs to be obtained to support this theory, for which ExM of mitochondria might prove to
232 be a useful tool.

233 Finally, we used ExM of mitochondria with MtCK-GFP labelled cristae to visualize the defects in cristae
234 morphology after treatment with CCCP (Fig 5), which dissipates membrane potential and leads to the
235 swelling of mitochondria and loss of cristae structure. With increasing length of incubation, we could
236 observe successfully the loss of cristae integrity, which is in accordance with previous studies. Using
237 our tool, we could also observe the loss of cristae after knockdown of Sam50 as reported before³¹

238 further demonstrating the usefulness of the MtCK-GFP as a marker for investigating cristae
239 morphology. The combination of cristae labelling and ExM we present here is therefore a useful and
240 relatively simple method for monitoring changes in cristae structure upon various stimuli, which could
241 include up- or downregulation of proteins, chemical treatment or infection. Also, this tool can be used
242 for determining submitochondrial localization of novel proteins in regard to cristae, enabling
243 simultaneous immunodecoration for multiple markers and requiring only the usage of widely available
244 fluorescent confocal microscopy.

245 **Acknowledgments**

246 We thank Thomas Rudel and Georg Nagel for scientific input and for critically reading the manuscript.

247 **Data Availability**

248 The raw data supporting the conclusions of this manuscript will be made available by the authors,
249 without undue reservation, to any qualified researcher.

250 **Author Contributions**

251 TK, RG, MS and VKP conceived the study, wrote the manuscript, and edited the manuscript. TK and RG
252 performed the experiments and analyzed the data. SG performed the cloning of the construct. VKP
253 and MS supervised the study.

254 **Funding**

255 This study was supported by GRK2157 to VKP. This publication was funded by the German Research
256 Foundation (DFG) and the University of Wuerzburg in the funding program Open Access Publishing.

257 **Conflict of Interest Statement**

258 The authors declare that the research was conducted in the absence of any commercial or financial
259 relationships that could be construed as a potential conflict of interest.

260 **References**

- 261 1. Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. *Arch
262 Mikrosk Anat* **9**, 413-468 (1873).
- 263 2. Hell, S.W. Far-field optical nanoscopy. *Science* **316**, 1153-1158 (2007).

265

266 3. Betzig, E. *et al.* Imaging intracellular fluorescent proteins at nanometer resolution. *Science*
267 **313**, 1642-1645 (2006).

268
269 4. Heilemann, M. *et al.* Subdiffraction-resolution fluorescence imaging with conventional
270 fluorescent probes. *Angew Chem Int Ed Engl* **47**, 6172-6176 (2008).

271
272 5. Michie, M.S. *et al.* Cyanine Conformational Restraint in the Far-Red Range. *J Am Chem Soc*
273 **139**, 12406-12409 (2017).

274
275 6. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic
276 cytoskeletal structure in axons. *Science* **339**, 452-456 (2013).

277
278 7. Burgert, A., Letschert, S., Doose, S. & Sauer, M. Artifacts in single-molecule localization
279 microscopy. *Histochem Cell Biol* **144**, 123-131 (2015).

280
281 8. Chen, F., Tillberg, P.W. & Boyden, E.S. Optical imaging. Expansion microscopy. *Science* **347**,
282 543-548 (2015).

283
284 9. Chozinski, T.J. *et al.* Expansion microscopy with conventional antibodies and fluorescent
285 proteins. *Nat methods* **13**, 485-488 (2016).

286
287 10. Tillberg, P.W. *et al.* Protein-retention expansion microscopy of cells and tissues labeled using
288 standard fluorescent proteins and antibodies. *Nat Biotechnol* **34**, 987-992 (2016).

289
290 11. Gambarotto, D. *et al.* Imaging cellular ultrastructures using expansion microscopy (U-ExM).
291 *Nat methods* **16**, 71-74 (2019).

292
293 12. Ku, T. *et al.* Multiplexed and scalable super-resolution imaging of three-dimensional protein
294 localization in size-adjustable tissues. *Nat Biotechnol* **34**, 973-981 (2016).

295
296 13. Götz, R. *et al.* Expansion Microscopy for Cell Biology Analysis in Fungi. *Front Microbiol* **11**, 574
297 (2020).

298
299 14. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured
300 illumination microscopy. *J Microsc* **198**, 82-87 (2000).

301
302 15. Wang, Y. *et al.* Combined expansion microscopy with structured illumination microscopy for
303 analyzing protein complexes. *Nat Protoc* **13**, 1869-1895 (2018).

304
305 16. Frey, T.G. & Mannella, C.A. The internal structure of mitochondria. *Trends Biochem Sci* **25**,
306 319-324 (2000).

307
308 17. Kondadi, A.K., Anand, R. & Reichert, A.S. Functional Interplay between Cristae Biogenesis,
309 Mitochondrial Dynamics and Mitochondrial DNA Integrity. *Int J Mol Sci* **20**, 4311 (2019).

310

311 18. Kozjak-Pavlovic, V. *et al.* Bacterial Porin Disrupts Mitochondrial Membrane Potential and
312 Sensitizes Host Cells to Apoptosis. *PLOS Pathog* **5**, e1000629 (2009).

313

314 19. Bohnert, M. *et al.* Central Role of Mic10 in the Mitochondrial Contact Site and Cristae
315 Organizing System. *Cell Metab* **21**, 747-755 (2015).

316

317 20. Cogliati, S., Enriquez, J.A. & Scorrano, L. Mitochondrial Cristae: Where Beauty Meets
318 Functionality. *Trends Biochem Sci* **41**, 261-273 (2016).

319

320 21. Wang, C. *et al.* A photostable fluorescent marker for the superresolution live imaging of the
321 dynamic structure of the mitochondrial cristae. *Proc Natl Acad Sci U S A* **116**, 15817 (2019).

322

323 22. Stephan, T., Roesch, A., Riedel, D. & Jakobs, S. Live-cell STED nanoscopy of mitochondrial
324 cristae. *Sci Rep* **9**, 12419 (2019).

325

326 23. Schmidt, R. *et al.* Mitochondrial Cristae Revealed with Focused Light. *Nano Lett* **9**, 2508-2510
327 (2009).

328

329 24. Wolf, D.M. *et al.* Individual cristae within the same mitochondrion display different
330 membrane potentials and are functionally independent. *EMBO J* **38**, e101056 (2019).

331

332 25. Kozjak-Pavlovic, V. *et al.* Conserved roles of Sam50 and metaxins in VDAC biogenesis. *EMBO
333 rep* **8**, 576-582 (2007).

334

335 26. Kunz, T.C., Gotz, R., Sauer, M. & Rudel, T. Detection of Chlamydia Developmental Forms and
336 Secreted Effectors by Expansion Microscopy. *Front Cell Infect Microbiol* **9**, 276 (2019).

337

338 27. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat methods* **9**,
339 676-682 (2012).

340

341 28. Wolter, S. *et al.* rapidSTORM: accurate, fast open-source software for localization
342 microscopy. *Nat methods* **9**, 1040-1041 (2012).

343

344 29. Schlattner, U., Tokarska-Schlattner, M. & Wallimann, T. Mitochondrial creatine kinase in
345 human health and disease. *BBA-Mol Basis Dis* **1762**, 164-180 (2006).

346

347 30. Donsante, A. Chapter 8 - Gene Therapy for Amyotrophic Lateral Sclerosis: Therapeutic
348 Transgenes. In: Boulis, N., O'Connor, D. & Donsante, A. (eds). *Molecular and Cellular
349 Therapies for Motor Neuron Diseases*. Academic Press, 2017, pp 167-205.

350

351 31. Ott, C., Dorsch, E., Fraunholz, M., Straub, S. & Kozjak-Pavlovic, V. Detailed Analysis of the
352 Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits. *PLOS ONE* **10**,
353 e0120213 (2015).

354

355 32. John, G.B. *et al.* The mitochondrial inner membrane protein mitoflin controls cristae

356 morphology. *Mol biol cell* **16**, 1543-1554 (2005).

357

358 33. Kozjak-Pavlovic, V. The MICOS complex of human mitochondria. *Cell Tiss Res* **367**, 83-93

359 (2017).

360

361 34. Li, H. *et al.* Mic60/Mitoflin determines MICOS assembly essential for mitochondrial dynamics

362 and mtDNA nucleoid organization. *Cell Death Diff* **23**, 380-392 (2016).

363

364 35. Park, J.W. *et al.* Effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP) on the

365 dimerization of lipoprotein lipase. *Biochim Biophys Acta* **1344**, 132-138 (1997).

366

367 36. Kozjak, V. *et al.* An essential role of Sam50 in the protein sorting and assembly machinery of

368 the mitochondrial outer membrane. *J Biol Chem* **278**, 48520-48523 (2003).

369

370 37. Jakobs, S. & Wurm, C.A. Super-resolution microscopy of mitochondria. *Curr Opin Chem Biol*

371 **20**, 9-15 (2014).

372

373 38. Shim, S.-H. *et al.* Super-resolution fluorescence imaging of organelles in live cells with

374 photoswitchable membrane probes. *Proc Natl Acad Sci U S A* **109**, 13978-13983 (2012).

375

376 39. Huang, X. *et al.* Fast, long-term, super-resolution imaging with Hessian structured

377 illumination microscopy. *Nat Biotechnol* **36**, 451-459 (2018).

378

379 40. Kondadi, A.K. *et al.* Cristae undergo continuous cycles of membrane remodelling in a MICOS-

380 dependent manner. *EMBO rep* **21**, e49776 (2020).

381

382 41. Hessenberger, M. *et al.* Regulated membrane remodeling by Mic60 controls formation of

383 mitochondrial crista junctions. *Nat Commun* **8**, 15258 (2017).

384

385 42. Kornblum, C. *et al.* Loss-of-function mutations in MGME1 impair mtDNA replication and

386 cause multisystemic mitochondrial disease. *Nat Genet* **45**, 214-219 (2013).

387

388 43. Szczesny, R.J. *et al.* Identification of a novel human mitochondrial endo-/exonuclease

389 Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. *Nucleic Acids Res* **41**,

390 3144-3161 (2013).

391

392

393 **Figures**

394 **Figure 1:** Comparison of (a) confocal, (b) SIM, (c) 4x ExM confocal (d) 4x ExM SIM images of HeLa229
395 cells, transfected for 24 hours with MtCK-GFP (green) and immunolabeled for GFP to visualize
396 mitochondrial cristae. Scale bars, (a,b) 0.5 μ m and (c, d) 2 μ m.

397 **Figure 2:** Confocal fluorescence images of 4x expanded HeLa229 cells transfected for 24 hours with
398 MtCK-GFP (green) to visualize cristae, immunolabeled for GFP and (a) TFAM, (b) PRX3 or (c)
399 Mic60/Mitofilin (shown in magenta). Plot profiling of the fluorescence of MtCK (black) relative to (d)
400 PRX3, (e) Mic60/Mitofilin and (f) TFAM (red). 4x ExM can resolve if mitochondrial proteins localize at
401 mitochondrial cristae as demonstrated for Mic60 and TFAM. Scale bars, 2 μ m.

402 **Figure 3:** 4x SIM-ExM to visualize the localization of TFAM relative to mitochondrial cristae. HeLa229
403 cells were transfected with MtCK-GFP for 24 hours, fixed, immunolabeled for GFP and TFAM and
404 expanded. (a) MtCK-GFP (green), (b) TFAM (magenta), (c) merge and (d) zoom indicated in (c). SIM
405 imaging further improves resolution and visualization of TFAM at cristae sites. Scale bars, 4 μ m upper
406 lane and 2 μ m lower lane.

407 **Figure 4:** 4x ExM of 3-color confocal (a-e) and SIM (g-j) images of the localization of mitochondrial
408 proteins relative to mitochondrial cristae. HeLa229 cells were transfected with MtCK-GFP for 24 hours,
409 fixed, immunolabeled for GFP, Mitofilin and TFAM and expanded. (a, g) Mitofilin (magenta) and TFAM
410 (green), (b, h) MtCK (cyan) and Mitofilin (magenta), (c, i) MtCK (cyan) and TFAM (green), (d, j) merge,
411 (e) zoom from (d) with line indicating plot profiling shown in (f). (k) plot profiling line shown in (j). Scale
412 bars, 5 μ m for confocal images, 2 μ m for SIM images.

413 **Figure 5:** Confocal images of 4x expanded HeLa229 cells (a-d), transfected with MtCK-GFP (green),
414 treated with 1 μ M CCCP for 10 (b), 15 (c) or 20 (d) minutes. (e,f) Sam50 knockdown cells (*sam50kd-2*)
415 were treated for 72 hours with 1 μ g/ml doxycycline to induce Sam50 knockdown, transfected with
416 MtCK-GFP (green) for 24 hours and analyzed by ExM on a confocal microscopy (f). The respective
417 control sample without induced Sam50 knockdown is shown in (e). Scale bars, 2 μ m.

Figure 1

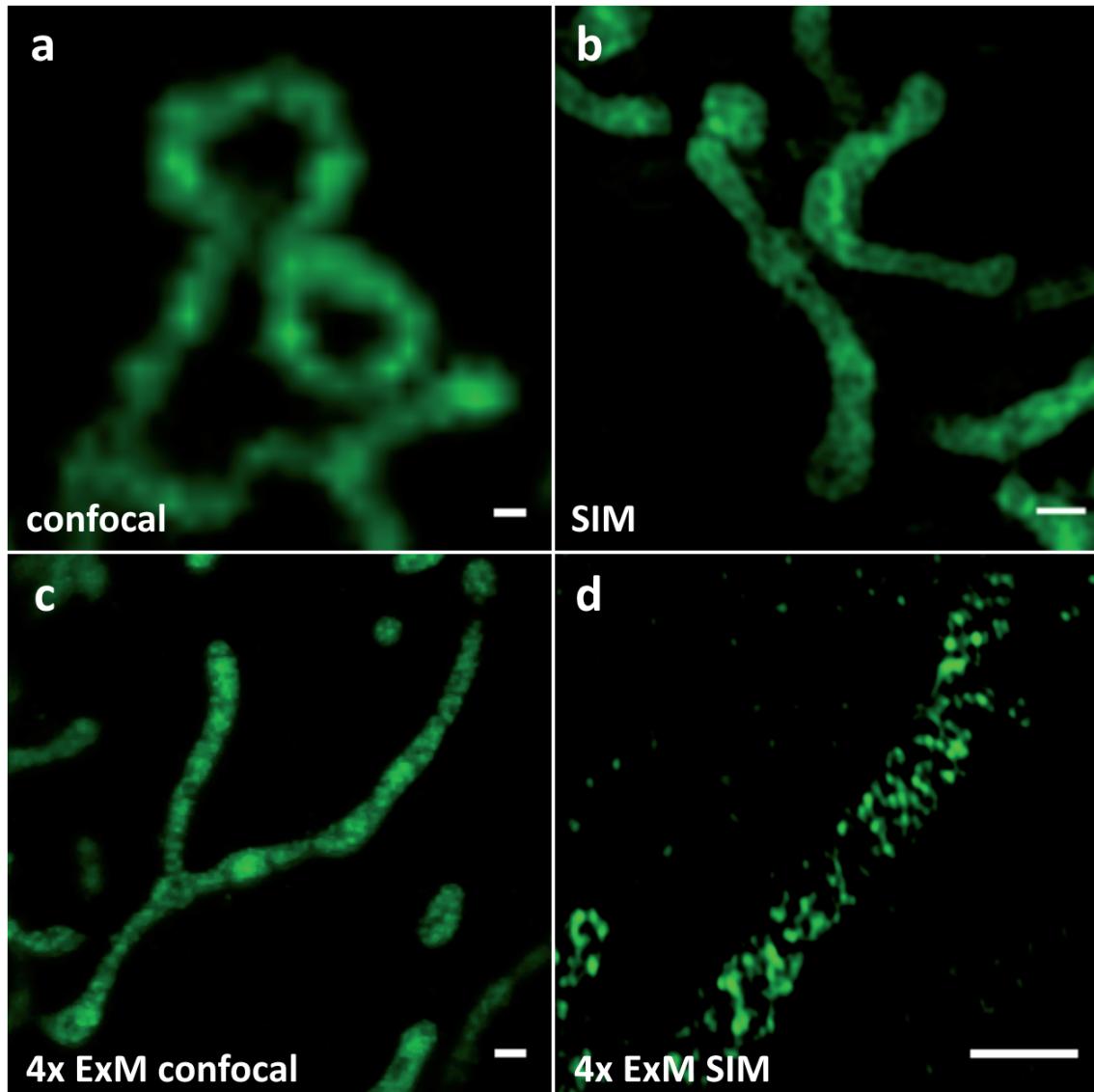


Figure 2

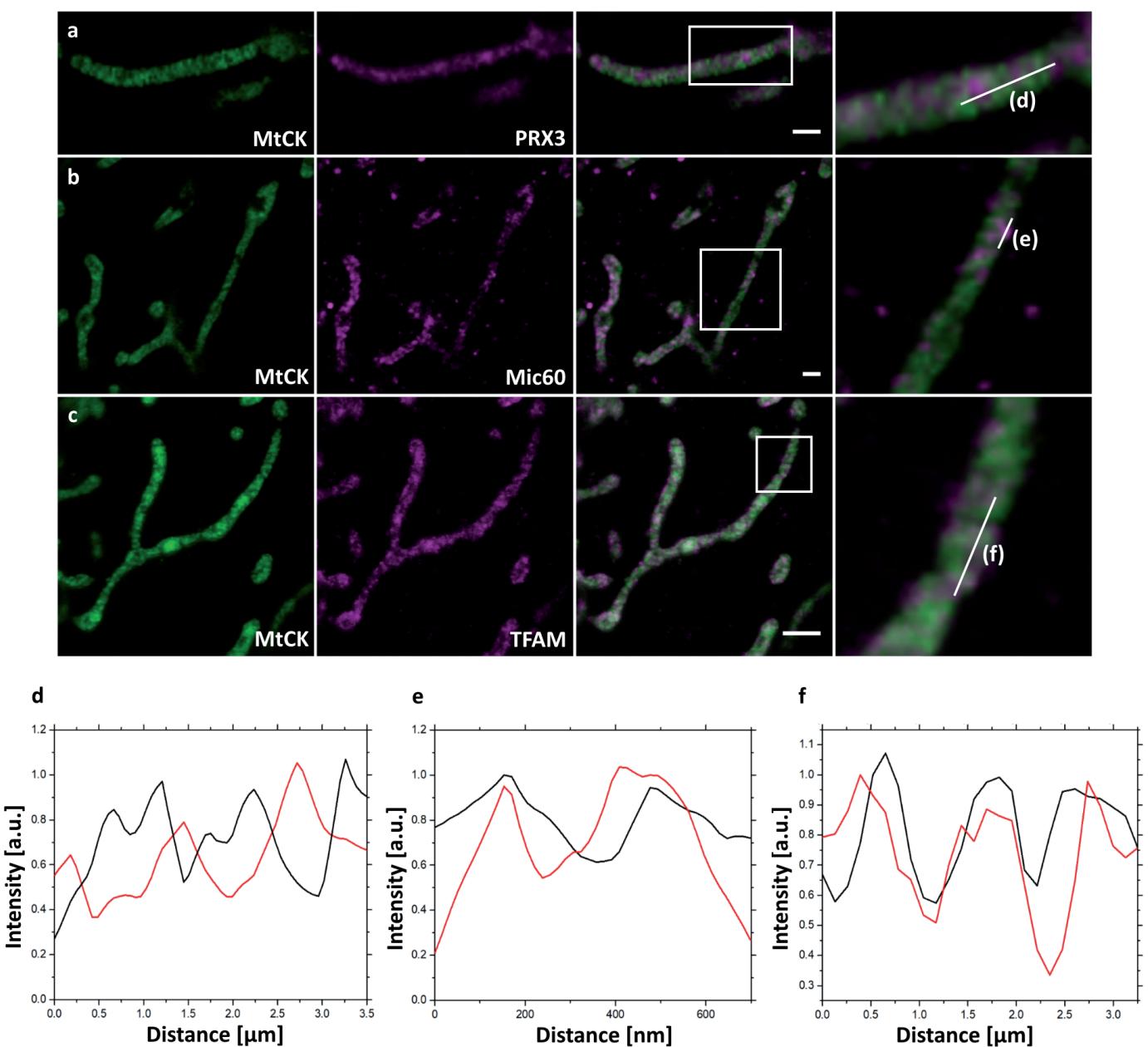


Figure 3

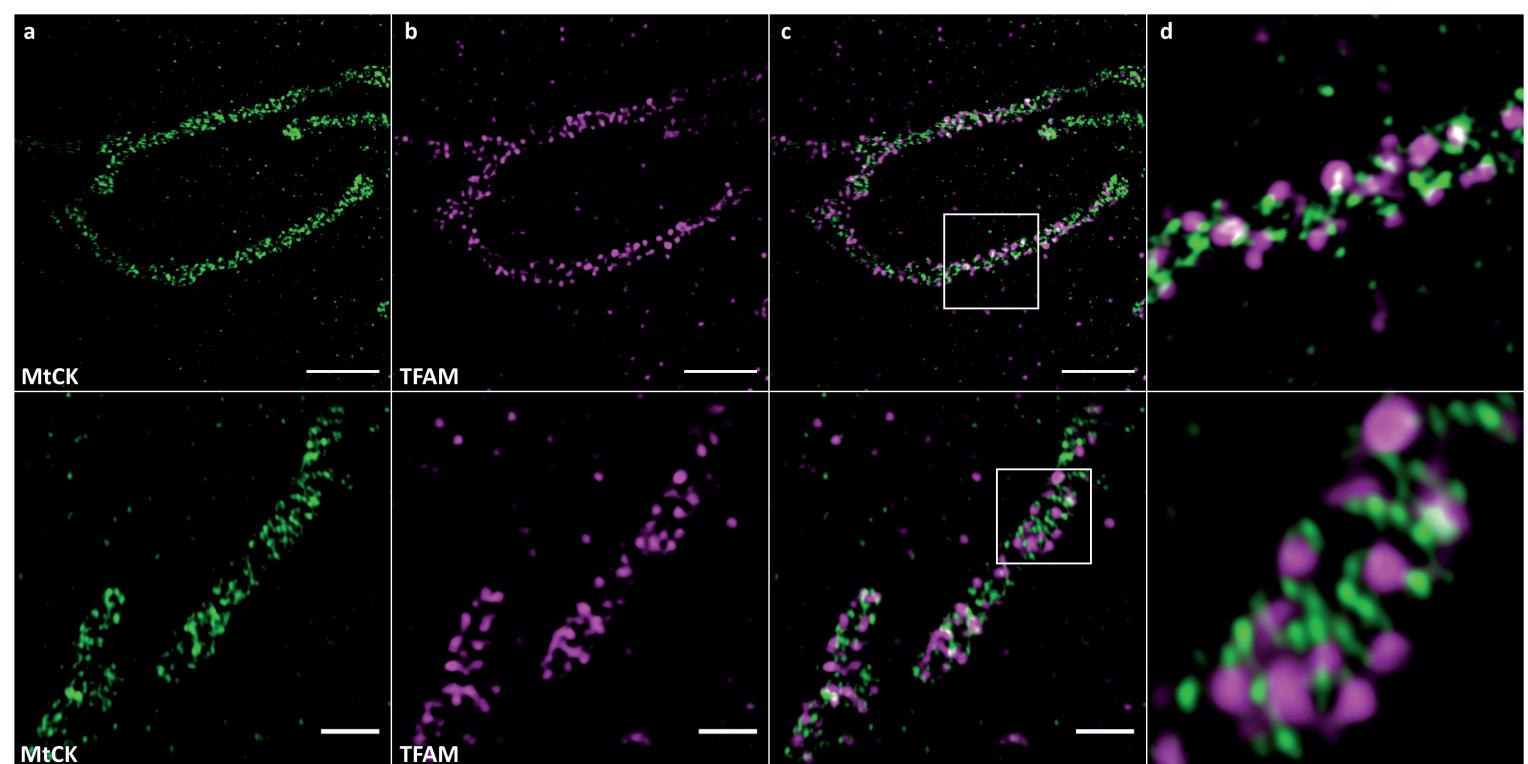


Figure 4

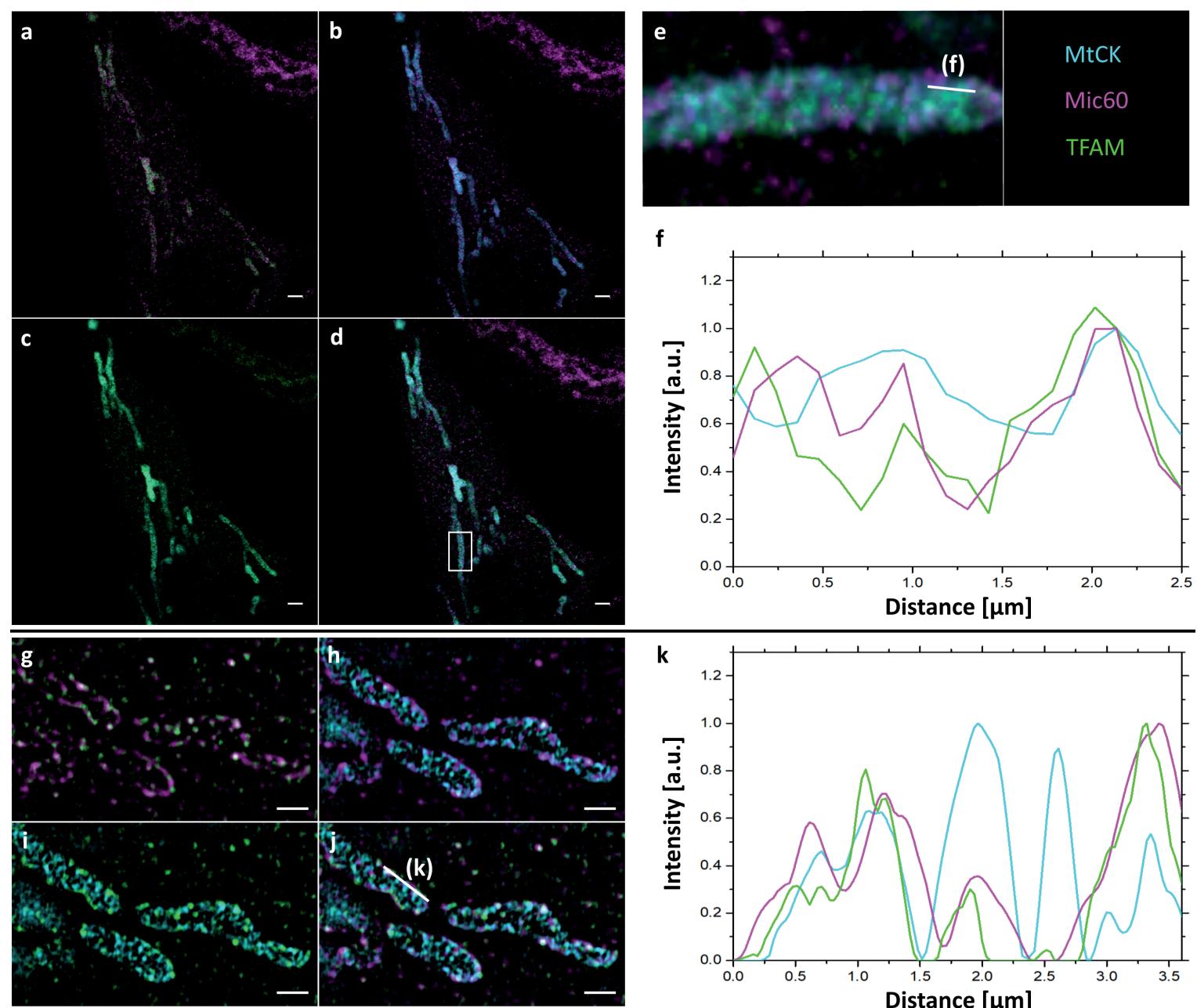
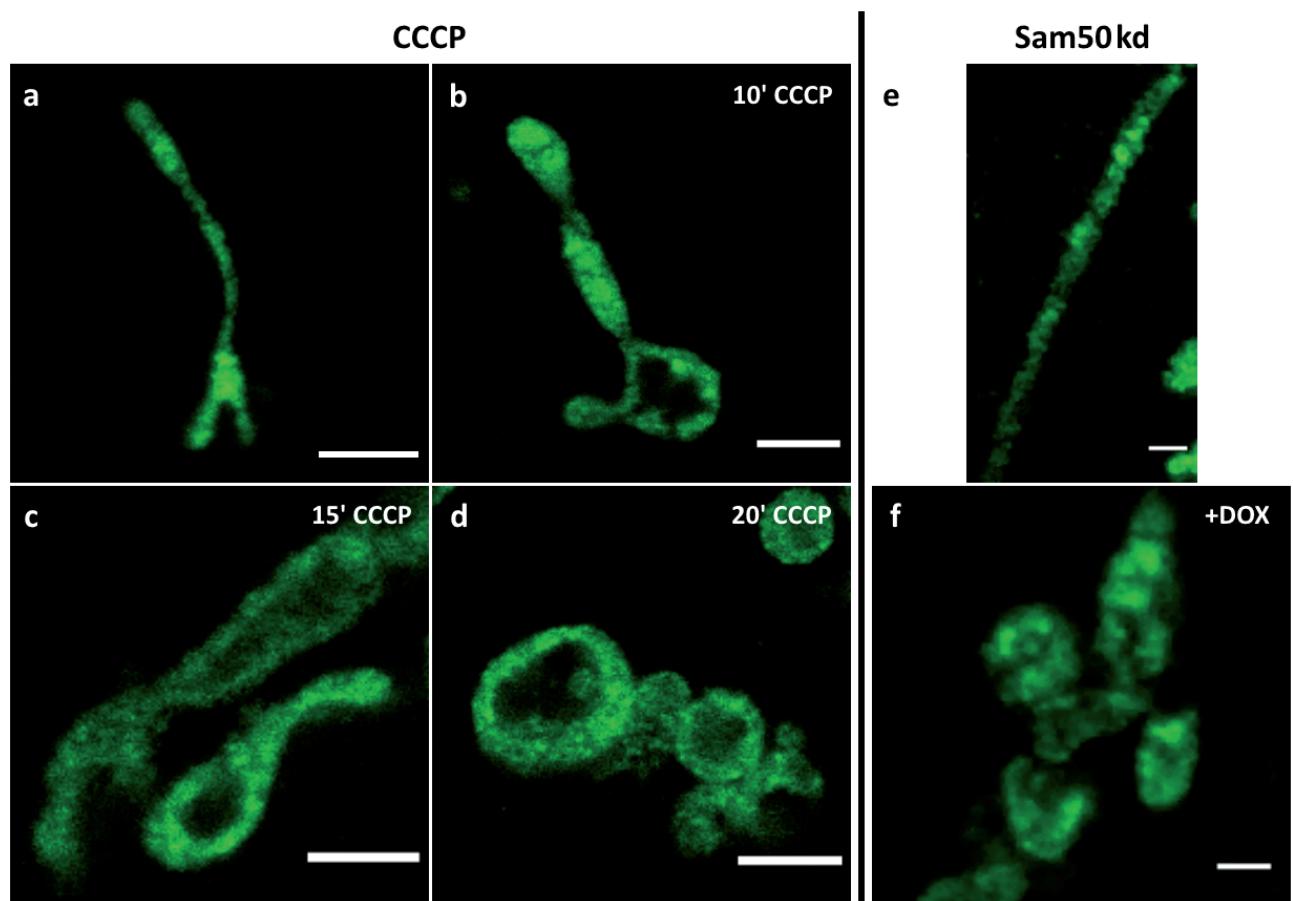



Figure 5

