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Abstract

Understanding the neurophysiology underlying pain perception in infants is central to
improving early life pain management. In this multimodal MRI study, we use resting-state
functional and white matter diffusion MRI to investigate individual variability in infants’
noxious-evoked brain activity. In an 18-infant nociception-paradigm dataset, we show it is
possible to predict infants’ cerebral haemodynamic responses to experimental noxious
stimulation using their resting-state activity across nine networks from a separate stimulus-
free scan. In an independent 215-infant Developing Human Connectome Project dataset, we
use this resting-state-based prediction model to generate noxious responses. We identify a
significant correlation between these predicted noxious responses and infants’ white matter
mean diffusivity, and this relationship is subsequently confirmed within our nociception-
paradigm dataset. These findings reveal that a newborn infant’s pain-related brain activity is
tightly coupled to both their spontaneous resting-state activity and underlying white matter
microstructure. This work provides proof-of-concept that knowledge of an infant’s functional
and structural brain architecture could be used to predict pain responses, informing infant

pain management strategies and facilitating evidence-based personalisation of care.

Introduction

Newborn infants routinely undergo numerous painful procedures as part of standard clinical
care shortly after birth during their stay in hospital *. Their lack of verbal communication, brief
extra-uterine medical history, and ambiguity in the behavioural and physiological responses
that underpin infant pain scales 2, lead to a high degree of uncertainty in clinical decision-
making related to the treatment of infant pain. Understanding and anticipating an individual
infant’s response to nociceptive input would advance efforts of personalised pre-emptive
pain minimisation in this vulnerable population. In the experimental setting, a multitude of
complementary behavioural, physiological, and neural measures are used in an attempt to
guantify infant pain and pain sensitivity, with a high degree of individual variability observed
across all modalities 37°. In this study, we focus on newborn infants' cerebral haemodynamic
responses to experimental nociceptive input recorded using functional magnetic resonance
imaging (fMRI). We test whether infants’ response amplitudes can be predicted from their

resting-state brain activity and whether the amplitudes are associated with underlying white
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matter microstructure. The inherent limitation of small sample sizes in infant fMRI pain
studies is mitigated by identifying consistent findings in a large independent age-matched
sample from the Developing Human Connectome Project (dHCP) dataset

(http://www.developingconnectome.org).

A high degree of correspondence between resting-state and task-related brain activities has
been observed in adult fMRI studies 7. In adults, fMRI-recorded resting-state brain activity
has been observed to be a distinguishing feature of an individual's brain functionality °, and
has been used to predict individuals' task-related brain activity under both experimental 1°
and clinical conditions *. While analogous studies have not been conducted in the newborn
infant population, large-scale resting-state networks are detectable using fMRI from birth and
appear to correspond to adult canonical resting-state and task-response networks %13,
suggesting a similar correspondence could exist at this early stage of development. Using a
cohort of 18 healthy newborn infants, we replicate large-scale resting-state networks that
have previously been characterised in an independent age-matched subset of the dHCP
dataset 4. The amplitudes of spontaneous activity of these networks were then used to
predict the infants' cerebral haemodynamic response amplitudes in response to an

experimental nociceptive stimulus, in a cross-validated manner.

Previous studies in infants have demonstrated the sensitivity of infant noxious-evoked
cerebral activity to sleep state 1> and physiological stress €. To disambiguate temporally
stable trait effects, arguably of higher relevance for clinical pre-emptive decision making,
from temporally transient state effects, we assessed the correlation between infants’
nociceptive haemodynamic response amplitude and underlying white matter microstructure
using diffusion MRI (dMRI) data. These white matter microstructural features will reflect the
integrity of developing structural connectivity, which constrains infants' noxious-evoked
responses. Due to the dHCP dataset’s larger numbers, we used it to explored possible
structure-function relationships across multiple white matter tracts for three microstructural
parameters: mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK).
Predicted noxious-response amplitudes were generated from the dHCP infants’ resting-state
data using the resting-state-based prediction model trained in our 18-infant nociception-

paradigm dataset. Structure-function associations identified in the dHCP dataset were
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subsequently tested and validated in our nociception-paradigm dataset. Within the dHCP
dataset, we found robust statistically significant negative correlations between (predicted)
noxious-response amplitudes and the white matter MD of five bilateral tracts, suggesting
infants with larger responses had more structurally mature connectivity. This negative
correlation between (observed) noxious-response amplitudes and MD was directly confirmed
within the nociception-paradigm dataset. This structure-function relationship, consistently
identified in two independent datasets, suggests the infants’ haemodynamic responses are
dependent on specific white matter microstructural features, likely white matter myelination

or fibre packing density, and thus are temporally stable trait effects.

This work provides new insight into the neurophysiological basis for normative variability in
the cerebral response to nociceptive input in a group of healthy newborn infants. A
nociception-related neural structure-function relationship is revealed, and tight coupling
between an infant’s resting-state and noxious-response neural activities provides proof-of-
concept that an infant’s resting-state brain activity during periods which are free of
nociceptive input can be used to make accurate predictions about their brain response to

nociceptive stimuli.

Results

Infants displayed wide variability in haemodynamic response amplitude to nociceptive
input

We quantified the change in brain activity evoked by a mild experimental noxious stimulus to
the foot in 18 healthy newborn infants (Figure 1). The cerebral haemodynamic response to
the 128 mN pinprick was highly variable between infants, and included both negative (3 of 18
infants) and positive (15 of 18 infants) blood oxygen level dependent (BOLD) responses
(Figure 1 heat maps). Summarising each infant’s noxious-response map relative to the group
average response map, the relative response amplitudes ranged from -0.87 to 5.60 (Figure 1

scalar values).

In each infant, the noxious-evoked BOLD response was well fit by the infant double gamma

haemodynamic response function (HRF) for both non-negligible positive and negative
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response amplitudes (Supplementary Information: Noxious-response HRF fit assessment).
There were no obvious signs of gross artefactual errors, such as head motion-related spikes
or variable response latencies, suggesting that the HRF-estimated noxious-response
amplitudes reflect physiologically meaningful differences in the cerebral haemodynamic

response amplitude to the noxious input.

Nine resting-state networks were replicable across the nociception-paradigm and dHCP
datasets

In the same cohort of 18 infants, nine resting-state networks were robustly identified from
separate resting-state scans using probabilistic functional mode analysis /*8 (Figure 2). These
included three sensory and motor networks (two visual, two auditory, and two somatomotor
networks) and three cognitive networks (default mode, dorsal attention, and executive
control networks). To consider a network robust and suitable for inclusion in the subsequent
analysis, networks needed to be consistent across both the nociception-paradigm cohort of
18 infants (Figure 2 top row) and a large independent cohort of 242 age-matched infants that
were collected as part of the dHCP and analysed using the same analytical approach (Figure
2 bottom row). Matched networks were highly consistent between datasets with spatial
Pearson correlation coefficients between unthresholded maps ranging from 0.63 to 0.90

(mean = 0.78) (Figure 2 scalar values).

Resting-state network amplitudes predicted noxious-response amplitudes

Infants’ whole-brain noxious-response amplitudes (Figure 1 scalar values) were predicted
from their task-free resting-state network amplitudes with statistically significant prediction
accuracy (Figure 3 and Table 1 Resting state). The resting-state network amplitudes were
quantified using multiple regression of the nine dHCP networks (Figure 2) onto each infant’s
resting-state data, and each resulting network timeseries summarised as an amplitude using
the median absolute deviation, which ensures robustness to outliers. Using a support vector
regression (SVR) model, predictions were generated in a leave-one-out cross-validation (LOO-
CV) approach, including cross-validated confound regression for several confound variables.
Measures of prediction accuracy (Table 1) were tested for statistical significance using

permutation testing.
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Three resting-state imaging confounds, which included head motion and cerebrospinal fluid
(CSF) and white matter amplitudes, were additionally tested but were not predictive of the
infants’ noxious-response amplitudes (Figure 3 and Table 1 Confounds). Similarly, six non-
fMRI variables (henceforth named clinical variables), which included postmenstrual age
(PMA), gestational age (GA), postnatal age (PNA), birth weight, total brain volume (TBV), and
sex, were tested and were not predictive (Figure 3 and Table 1 Clinical variables). For both
the resting-state imaging confounds and the clinical variables, predictions were centred on
the LOO-CV training set mean noxious-response amplitudes (Figure 3 Confounds and Clinical
variables). The lack of association between the noxious-response amplitudes and the resting-
state imaging confounds suggested that the predictive capacity of the resting-state network
amplitudes was not mediated by undesirable features of resting-state data, but rather
appeared to be mediated by the correspondence between an individual infant’s resting-state
and noxious-evoked brain activities. These brain function similarities could not be explained

by the infant’s age, birth weight, brain volume, or sex.

Additionally, the number of resting-state network timeseries outliers (an indicator of resting-
state network timeseries quality) was assessed and found to be unrelated to infants’ noxious-
response amplitudes (Supplementary Information: Resting-state network timeseries outlier
assessment). Finally, univariate correlation analyses between noxious-response amplitudes
and all individual resting-state network amplitudes revealed that the relationship was limited
to positive correlations with specific sensory and motor networks, and thus unlikely driven by
potentially undesirable global signal properties (Supplementary Information: Common fMRI

global signal confound assessment).

Noxious-response amplitudes were associated with underlying white matter mean
diffusivity

The SVR prediction model was trained on all infants in the nociception-paradigm dataset
(n=18) to map from confound-adjusted resting-state network amplitudes to confound-
adjusted noxious-response amplitudes. Using this model, predicted noxious-response
amplitudes were generated for a 215-infant age-matched sample from the dHCP dataset
using an identical approach for extracting resting-state network amplitudes and imaging

confounds. The distribution of predicted noxious-response amplitudes in the dHCP dataset
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closely matched the distribution of the observed noxious-response amplitudes in the
nociception-paradigm dataset (Figure 4 grey and blue histograms). These predicted noxious-
response amplitudes were used for the structure-function analysis exploratory arm due to
the large sample size. Findings were subsequently confirmed in the smaller nociception-
paradigm dataset, which has true noxious-response amplitudes, constituting the structure-

function analysis confirmatory arm.

In the dHCP dataset, we performed an exploratory analysis to assess three dMRI
microstructural parameters (mean diffusivity, fractional anisotropy, and mean kurtosis)
across 16 bilateral white matter tracts. We found that the predicted noxious-response
amplitudes were statistically significantly negatively correlated with mean diffusivity (MD) in
five white matter tracts: anterior thalamic radiation (atr), corticospinal tract (cst), forceps
minor (fmi), superior thalamic radiation (str), and uncinate fasciculus (unc) (Figure 4 grey bar
plot and three maps; Supplementary Information: Univariate correlations between noxious-
response amplitudes and dMRI features; Supplementary Figure 7). The first principal
component of MD across these five tracts (MD PC1) accounted for 84.5% of the cross-infant
variance, and as expected, was negatively correlated (r = —0.25) with the predicted noxious-
response amplitudes (Figure 4 grey scatter plot). In summary, we used the large dHCP
exploratory dataset to identify a network of 5 white matter tracts that have specific
microstructural properties (characterised by their MD) that relate to the infants’ predicted

amplitudes of noxious-evoked brain activity.

To validate these exploratory findings, we tested whether the actual noxious-evoked brain
activity recorded in the infants in the nociception-paradigm dataset was also dependent on
the same structural brain properties. We found that for each of the 5 white matter tracts the
negative correlation coefficients between the MD of these tracts and the noxious-response
amplitudes were present (Figure 4 blue bar plot). Additionally, MD PC1 accounted for 88.28%
of the between-infant variance, and was statistically significantly negatively correlated with
infants’ noxious-response amplitudes: r = —0.45, p-value = 0.038 (Figure 4 blue scatter plot).
Thus, within our nociception-paradigm dataset, 20% (Pearson r?) of the between-infant
variation in noxious-response amplitudes could be explained by the mean diffusivity of these

five specific white matter tracts.
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Discussion

This study demonstrates that individual variability in newborn infant pain-related brain
activity is dependent on the structural and functional architectures of the brain. By applying
a mild experimental noxious stimulus to the infant’s foot, we quantified pain-related changes
in brain activity, which are known to be similarly evoked by a range of tissue-damaging
medical procedures, such as blood sampling, vaccinations, and cannulations 1920, The tightly-
controlled stimulus used in this study does not cause behavioural distress 3, but activates Ad-
15,21,22

fibres in the periphery and elicits noxious-evoked brain activity in the cerebral cortex

making it a useful experimental tool to better understand infant pain.

We took a multimodal MRI approach, using resting-state fMRI and white matter dMRI to
understand between-subject differences in the amplitude of an infant’s cerebral response to
a nociceptive input. We have shown that noxious-evoked brain activity is tightly coupled to
resting-state network activity, and that the strength of this coupling is sufficiently robust to
drive out-of-sample predictions. By observing a structure-function relationship between
noxious-response activity and white matter microstructure, replicable in two independent
datasets, we show that the infants’ observed noxious-response amplitudes also reflect
specific stable trait effects, such as white matter myelination and fibre packing density. The
ability to predict an infant’s trait cerebral haemodynamic response to nociceptive input from
their resting-state brain activity highlights the potential use of infant resting-state brain
activity to inform decision-making regarding pain management strategies for newborn

infants.

Interpreting the newborn infant cerebral haemodynamic response amplitude to nociceptive
input is challenging due to the lack of verbal report of the infants’ subjective experience. Here,
the flexibility of MRI has allowed the identification of several novel neural correlates of the
noxious-response amplitudes. In this study we observe a positive correlation between the
amplitude of the noxious-response and the amplitude of resting-state network activity in
sensory and motor networks in a group of healthy term-aged infants (Supplementary Figure

4). Given that the developmental trend from infancy to adulthood (observed using fMRI) is
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increasing haemodynamic response amplitude %3, this may suggest that the higher amplitude
responses seen in some infants may reflect their increased structural and functional brain
maturity. A number of published studies support this hypothesis. Using near-infrared
spectroscopy to measure haemodynamic responses to pain in the perinatal period, the
amplitude of these responses was also observed to progressively increase with age . And
studies using fMRI to observe the developmental progression of resting-state activity have
also found increased sensory and motor (and cognitive) network functional connectivity
strength and activity amplitude with increasing age ?#%°. While the structural correlates tested
in our nociception-paradigm infant dataset demonstrated statistically significant negative
correlation between noxious response amplitude and white matter MD, clear trends existed
for both MD and FA. In both the nociception-paradigm and dHCP datasets, infants with larger
noxious-response amplitudes (or for the dHCP data, larger predicted values) had smaller MD
and larger FA values throughout the brain (Supplementary Figure 7). White matter MD
decreases and FA increases throughout development into adulthood 2%, and similar to the
functional measures, these developmental trends are discernible within the perinatal period
27 The combination of negative MD and positive FA correlations suggest specific structural
maturational influences, such as increasing white matter myelination, or fibre packing

density, or both.

Taken together, the functional resting-state and structural white matter correlates suggest
the infant noxious-response amplitude is a reflection of brain maturity, with larger response
amplitudes indicating a more mature brain and negative and negligible response amplitudes
indicating a more immature brain. This neural maturity hypothesis is consistent with the
concept that infants’ noxious-response amplitudes are maturity dependent trait effects due
to their dependency on underlying microstructure. This also suggests a plausible explanation
as to why the infant’s resting-state activity can be used to predict the amplitude of the infants
noxious-evoked brain response: both the activity levels recorded at rest and in response to
stimulation are a function of each infant’s cerebral maturity and thus closely reflect each
other due to a common underlying cause. Assuming increasing age is a reasonable proxy for
increasing maturity, one can view an infant’s age as an imperfect indicator of the individual
infant’s neural maturational state. Nevertheless, it is clear that two perfectly age-matched

infants would not be expected to be perfectly matched for maturational state. The results of
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the current study suggest that a specific subset of MRI-measurable features allow us to detect
individual variability in the maturity of the structural and functional neural architecture of the
infant brain, which is not fully captured by alternative proxy indicators of neural maturity,
including age and brain volume (Supplementary Figure 6). How well this hypothesis
generalises to infants outside of the studied age-range or to non-healthy non-normative
populations, such as infants born very prematurely then studied at ages 36-42 weeks PMA,

would be a highly informative route of enquiry.

Further understanding of the biological interpretability of the noxious-response features will
be required to appreciate the neurophysiological basis for this observed individual variability.
The mild experimental stimulus used in this study likely evokes a multidimensional response
profile in the infant brain including sensory discriminative aspects such as sharpness localised
to the foot, cognitive aspects such as salience and attention, motor aspects such as post-
stimulus movement, and potentially emotional aspects such as mild negative emotional
valence. Disambiguating which aspect of the cerebral response is predictable from resting-
state activity will be a challenge due to the limited behavioural repertoire of infants. However,
it is possible to develop a principled approach for noxious-response feature extraction that
could decrease this ambiguity and improve biological interpretability. There are now several
candidate fMRI neural signatures for distinct components of adult pain and negative affect
that could be applied to infant noxious-response data 24732, and this is currently being actively
researched by our group. Additionally, the reported functional coupling between infant
resting-state and stimulus-response activities is currently limited to the nociceptive stimulus
modality employed in this study. In adults, this functional coupling has been demonstrated
for a wide range of tasks 71933, and we imagine a similar generalisability of resting-state
coupling to stimulus responses would be possible in newborn infants. While “task” fMRI
experimental designs are severely limited in newborn infants, previous studies using non-

35 and visual 3° stimuli have

nociceptive stimuli, such as non-noxious touch 34, auditory
demonstrated the feasibility of a multimodal experimental design to test this directly. Finally,
the functional coupling results may not generalise to premature infants younger than 35.9
weeks PMA, the youngest infant included in the present cohort. These younger infants will
have less mature structural and functional brain architectures and poorer neurovascular

coupling 3738, which would need to be considered when investigating functional coupling.

10
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A noteworthy feature of this study is the use of a larger publicly available multimodal dataset
to enhance the findings within our smaller specialised nociception-paradigm dataset. This
approach helps address three major challenges inherent to infant fMRI pain studies: limited
sample size, limited literature base, and temporal stability. While these issues are not unique
to infant fMRI pain studies, they are particularly challenging because of the combination of
population and paradigm. First, small sample sizes are known to result in highly variable and
unreliable accuracy in cross-validated prediction analyses 394, To validate the accuracy of our
small sample size prediction model, we applied it to a sample of the dHCP dataset. Using
predicted pinprick responses, we identified novel structure-function relationships that were
subsequently confirmed in our nociception-paradigm dataset, underscoring the accuracy and
meaningfulness of our prediction model’s outputs. Second, the limited literature base in
newborn infant fMRI is highly problematic if researchers wish to engage in non-exploratory
hypothesis-driven research. To date, there are only five newborn infant fMRI studies using
nociception paradigms 2414 two of which are technical papers looking at approaches to
fMRI data acquisition #* and analysis 1. To overcome the limited knowledge base in which we
can formulate well-defined hypotheses to understand the noxious-related structure-function
MRI associations in newborn infants, we used an exploratory-confirmatory analysis approach.
Exploratory analyses were performed across a wide range of white matter tracts and diffusion
parameters in the larger sample dHCP dataset in order to identify candidate associations,
which were subsequently directly tested and confirmed in the smaller sample nociception-
paradigm dataset. This two-armed approach allowed us to formulate data-driven hypotheses
that could subsequently be empirically confirmed without double-dipping. Third, directly
establishing the temporal stability of infants’ haemodynamic response amplitude to
nociceptive input would involve multiple within-subject recordings, which is often not a viable
approach. While there are studies in adults %% demonstrating the temporal stability of static
resting-state functional connectivity metrics (given reasonable data quality), analogous
studies in neonates do not exist. We tested for temporal stability of noxious-response
amplitudes through association with white matter microstructure, which is insensitive to
wakefulness and physiological stress states, but highly sensitive to the integrity of developing
structural connectivity, which constrains infants' noxious-evoked responses. Using the large

sample size dHCP dataset was, again, central to identifying the structure-function association
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in our nociception-paradigm dataset that accounted for 20% of the total cross-infant variance
in noxious-response amplitudes. We believe the close association with white matter
microstructure, coupled with the predictability from resting-state features, strongly suggests

the infants’ noxious-response amplitudes are stable trait features of the brain.

Using multimodal MRI analyses, we have established that individual variability in pain-related
brain activity in healthy peri-term-aged infants is tightly coupled to both the infants’
spontaneous resting-state activity and underlying white matter microstructure. Importantly,
the amplitude of an individual infant’s noxious-response brain activity can be predicted from
their spontaneous noxious-free resting-state brain activity. Even healthy newborn infants,
within the first few days of postnatal life, display a wide range of responses to nociceptive
input, likely a result of both genetic and environmental influences. This normative variability
may reflect differences in individual resilience and vulnerability to environmental insults, such
as clinical painful procedures that are frequently performed in hospitalised infants. The ability
to predict an infant’s responses to pain and nociceptive input may have the potential to
advance neonatal personalised pre-emptive pain management, and this study highlights the
importance of understanding resting-state brain activity in achieving this goal. A better
understanding of how individual differences in brain architecture influence pain processing is
of paramount importance if we are to identify infants at increased risk of long-term
alterations in brain structure and function and cognitive performance as a result of early life
pain exposure. Early life pain and stress have the potential to alter an infant’s developmental
trajectory and to influence their childhood well-being #¢#, but it may also increase the risk of
developing chronic diseases in later life 484, The development of brain-based correlates of
pain sensitivity could help identify vulnerable infants with the aim of tailoring pain relief

treatments in a more principled, personalised, and evidence-based manner.

Methods

Part 1: Relating noxious-response amplitude to resting-state activity

Subject information

12
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We recruited healthy neonates from the postnatal ward at the John Radcliffe Hospital (Oxford
University Hospital NHS Trust). Infants were considered healthy if they were inpatients on the
postnatal ward that never required admission to the neonatal unit, had no history of
congenital conditions or neurological problems, and were clinically stable at the time of study.
Written informed consent was obtained from parents prior to the study. Ethical approval was
obtained from an NHS Research Ethics Committee (National Research Ethics Service, REC
reference: 12/SC/0447), and research was conducted in accordance with standards set by
Good Clinical Practice guidelines and the Declaration of Helsinki. Demographic details of the
18-infant sample are displayed in Table 2. Definitions of the age and total brain volume

variables are detailed below (see Clinical variables).

Experimental setup and design

Neonates were transported to the Wellcome Centre for Integrative Neuroimaging (Oxford,
UK), then fed and swaddled prior to scanning. Infants were fitted with ear plugs, ear-muffs,
and ear-defenders, and placed on a vacuum-positioning mattress with additional soft padding
around the head to restrict motion. Heart rate and blood oxygen saturation were monitored
throughout scanning. An event-related experimental design was used for the nociception
paradigm 2. The mild non-skin-breaking nociceptive stimulus was a 128 mN sharp-touch
pinprick (PinPrick Stimulator, MRC Systems). Ten trials of the stimulus were delivered to the
dorsum of the left foot, each trial was 1 s, and the minimum inter-stimulus interval was 25 s.
This long inter-stimulus interval was used to minimise the influence of motion at the time of
stimulus delivery. The stimuli were applied when the infants were naturally still. For all other
scan types, infants lay passively in the scanner. No sedatives were used at any stage of this

study.

MRI data acquisition

All data were collected on a 3T Siemens Prisma with an adult 32 channel receive coil. The
structural data acquisition was: T2-weighted, TSE (factor 11), 150° flip angle, TE=89 ms, TR =
14,740 ms, parallel imaging GRAPPA 3, 192 x 192 in-plane matrix size, 126 slices, 1 mm
isotropic voxels, and 2 mins 13 s acquisition time. The fieldmap data acquisition was: gradient
echo, 2DFT readout, dual echo TE1/TE2 = 4.92/7.38 ms, TR = 550 ms, 46° flip angle, 90 x 90

in-plane matrix size, 56 slices, 2 mm isotropic voxels, and 1 min 40 s acquisition time. Both

13


https://doi.org/10.1101/2020.04.28.065730
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065730; this version posted April 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

the resting-state and noxious-response fMRI data acquisitions were: T2* BOLD-weighted,
gradient echo, EPI readout, 70° flip angle, TE = 50 ms %3, TR = 1,300 ms, multiband 4 >%°1, 90 x
90 in-plane matrix size, 56 slices, 2 mm isotropic voxels, AP phase encode direction, and a
single-band reference (SBref) image was acquired at the start. Resting-state acquisition time
was 10 mins 50 s (500 volumes), and noxious-response mean acquisition time was
approximately 6 min (approximately 277 volumes). The dMRI data acquisition was: T2
diffusion-weighted, spin echo, EPI readout, 90° flip angle, TE = 73 ms, TR = 2,900 ms,
multiband 3, 102 x 102 in-plane matrix size, 60 slices, 1.75 mm isotropic voxels, AP phase
encode direction, multishell (b = 500, 1000, 2000 s/mm?), a total of 140 directions uniformly
distributed over the whole sphere, and approximately 8 mins acquisition time. Phase-
reversed b0 images were collected to derived a spin-echo fieldmap for distortion correction

of the diffusion data.

MRI data preprocessing
All MRI data were preprocessed using analysis pipelines developed as part of the Developing

Human Connectome Project (dHCP) (http://www.developingconnectome.org). The T2

structural data were processed (brain extraction, bias field correction, and tissue
segmentation) using the MIRTK Draw-EM neonatal pipeline °2, the tool forming the basis of
the dHCP structural preprocessing pipeline 3. The GRE dual-echo fieldmap data were

processed using a modified version of fsl_prepare_fieldmap.

Both the noxious-response and resting-state fMRI data were preprocessed using an extended
version of the dHCP fMRI preprocessing pipeline 244!, The functional data were corrected for
motion and distortion using FSL’s EDDY °*°°, which included slice-to-volume motion
correction °® and susceptibility-by-movement distortion correction >’. Noxious-response fMRI
data were high-pass temporally filtered at 0.01 Hz, and resting-state fMRI data at 0.005 Hz.
Data were then denoised using FSL’s FIX °%>°, low-pass spatially filtered with a 3 mm FWHM
filter using FSL’s SUSAN °, and grand mean scaled to a global spatiotemporal median of
10,000. For spatial normalisation to standard space !, the data were first registered from
functional space to the infant’s T2 structural space, via the SBref, using 6 DoF rigid-body

alignment, refined using BBR ©2 with FSL’s FLIRT 8364 The registration from structural space to
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the 40-week template ©, via an age-matched standard template, was performed using ANTS’s

SyN 63,

The diffusion data were analysed using the dHCP dMRI preprocessing pipeline 27/, The blip-
up and blip-down b0 images were used to generate the fieldmap using FSL’s TOPUP ©7:%8, The
diffusion data were simultaneously corrected for motion, distortion, and eddy currents using
FSL’s EDDY, which included outlier detection and replacement ®° as well as the slice-to-volume
motion correction and susceptibility-by-movement distortion correction used in the fMRI
data correction. Spatial normalisation followed the same sequence of registrations as the

functional data.

Noxious-response amplitudes

For each infant, a noxious-response map was generated using standard subject-level
voxelwise GLM analysis in FSL’s FEAT 79, fitting the term-neonate double-gamma HRF 2341, A
group average t-statistic map was generated using the 18 infants’ noxious-response
regression parameter maps. Individual infants’ regression parameter maps were used as the
subject-level noxious-response maps; the group-average t-statistic map was used as the
group-level noxious-response map. To summarise an individual infant’s noxious-response
map to a single scalar measure of noxious-response amplitude, the group-level noxious-
response map was regressed onto the infant’s noxious-response map. Thus, an infant’s
noxious-response amplitude was defined as this spatial regression coefficient. Assessment of
the potential influence of HRF goodness-of-fit on noxious-response amplitudes is detailed in
Supplementary Information (Noxious-response HRF fit assessment and Supplementary Figure

1,3)

As detailed below, our prediction analyses examined associations between these noxious-
response amplitudes and three sets of predictors (resting-state network amplitudes, resting-
state imaging confounds, and clinical variables), and our structure-function analyses
examined associations between noxious-response amplitudes and a dMRI model parameter
(mean diffusivity). In all these analyses, the noxious-response amplitudes were adjusted for
a set of three noxious-response imaging confounds extracted from each infant’s noxious-

response fMRI data: mean head motion, stimulus-correlated head motion, and CSF signal
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amplitude. These three metrics were intended to capture cross-infant noxious-response
variability due to subject motion (mean and stimulus-correlated head motion) and cardiac
pulsatility (CSF amplitude). Mean head motion was defined as the mean framewise
displacement across the entire noxious-response fMRI scan session. Stimulus-correlated head
motion was estimated as a multiple correlation coefficient z-statistic (Fisher r-to-z
transformation) between the predicted BOLD response (stimulus application timeseries
convolved with the HRF) and the 24 head motion parameter timeseries (estimated by EDDY
during motion correction). CSF amplitude was estimated from each infant’s noxious-response
map as the mean regression coefficient within the CSF ROI. Details on the CSF ROI
construction are provided in Supplementary Information (CSF and white matter regions-of-

interest definition and Supplementary Figure 9).

Resting-state network amplitudes

To define a robust set of core resting-state networks in the infants’ resting-state fMRI data,
resting-state networks identified in the 18-infant nociception-paradigm dataset were
compared to those identified in a subset of the dHCP dataset, which had previously been
produced as part of the dHCP 4. A robust set of core resting-state networks was defined as
those replicated across datasets. Demonstrating replicability in the dHCP dataset confirmed
the set of core networks were robust and not unique to our nociception-paradigm dataset.
The dHCP data subset included 242 healthy term-aged infants: mean GA at birth = 38.6 weeks;
mean PMA at scan = 40.4 weeks; 112 females and 124 males. The resting-state network
analysis performed on the 18-infant nociception-paradigm dataset was closely matched to
that described for the dHCP dataset ?“. In brief, probabilistic functional mode (PFM) analysis
using FSL’s PROFUMO 78 was run on both datasets with a pre-specified dimensionality of
25, and using the infant double-gamma HRF 234! as the temporal prior. PROFUMO’s Bayesian
model complexity penalties can eliminate modes, thus returning a number of group-level
modes that can be less than the pre-specified dimensionality. This is noted, as the data-
determined dimensionality of the nociception-paradigm dataset was 11 despite a pre-
specified dimensionality of 25. Due to the larger sample size, the data-determined
dimensionality of the dHCP dataset was equal to the pre-specified dimensionality. The dHCP
resting-state network maps had greater SNR due to the significantly larger sample size. Thus,

the dHCP resting-state network maps forming the set of core resting-state networks were
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used as the template maps to extract resting-state network amplitudes from the resting-state

fMRI data.

These resting-state network template maps were spatially regressed onto each infant’s
resting-state functional data using multiple regression, resulting in network timeseries. While
the timeseries standard deviation is the typical amplitude metric used and is the default in
FSL’s FSLNets 7%, the standard deviation is sensitive to outliers, which in this context, typically
appear as head motion-related timeseries spikes. Resting-state network amplitudes were
thus quantified using the median absolute deviation (MAD), due to the MAD’s increased
robustness to outliers. This set of resting-state network amplitudes was directly tested for
association with noxious-response amplitudes after adjusting for resting-state imaging
confounds (defined below). Assessment of the potential influence of resting-state network
timeseries outliers on noxious-response amplitudes is detailed in Supplementary Information

(Resting-state network timeseries outlier assessment and Supplementary Figure 2,3).

Resting-state imaging confounds

A set of resting-state imaging confounds was directly tested for association with noxious-
response amplitudes and used for confound-adjusting the resting-state network amplitudes.
These confounds included three metrics extracted from each infant’s resting-state fMRI data:
mean head motion, CSF amplitude, and white matter amplitude. These three metrics were
intended to capture cross-infant resting-state variability due to subject motion (mean head
motion), cardiac pulsatility (CSF amplitude), and global signal (white matter amplitude).
Directly testing these resting-state imaging confounds assessed whether associations
between resting-state network amplitudes and noxious-response amplitudes could be
explained by undesirable artefactual features of the resting-state data. Mean head motion
was defined as the mean framewise displacement across the entire resting-state fMRI scan
session. Mean CSF and white matter timeseries were extracted from each infant’s resting-
state data, and the timeseries amplitudes were defined as the MAD of these timeseries.
Details on the CSF and white matter ROI construction are provided in Supplementary
Information (CSF and white matter regions-of-interest definition and Supplementary Figure

9).
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Clinical variables

A set of clinical variables was directly tested for association with noxious-response amplitudes
and included the six variables in Table 2: postmenstrual age (PMA), gestational age (GA),
postnatal age (PNA, also called chronological age), birth weight (BW), total brain volume
(TBV), and sex. The three age variables are defined according to the American Academy of
Paediatrics 72, and the TBV was calculated from the infants’ structural MRI data using the
tissue segmentation outputs of the structural preprocessing pipeline. Testing the clinical
variables assessed whether associations between resting-state network amplitudes and
noxious-response amplitudes could be explained by biologically interesting underlying

variables.

Predicting noxious-response amplitudes

For all prediction analyses, the responses to be predicted were the infants’ whole-brain
noxious-response amplitudes (Figure 1 scalar values). Three sets of predictors were tested for
predictive capacity: nine resting-state network amplitudes, six clinical variables, and three
resting-state imaging confounds. For all three sets of predictors, a support vector regression
(SVR) model with a linear kernel was used. Linear SVR was selected over a linear regression
via ordinary least squares, due to the SVR cost function’s greater robustness to outliers. Out-
of-sample predictions were generated using leave-one-out cross validation (LOO-CV). The
noxious-response amplitudes were confound-adjusted for the three noxious-response
imaging confounds (mean head motion, stimulus-correlated head motion, and CSF
amplitude). When generating predictions using the resting-state network amplitudes, this set
of predictors was confound-adjusted for the three resting-state imaging confounds (mean

head motion, CSF amplitude, and white matter amplitude).

The linear SVR model was fit in Python using scikit-learn packages ’3, with all steps performed
in a LOO-CV manner. Confound adjustment of the resting-state network amplitudes and
noxious-response amplitudes was performed using cross-validated confound regression,
implemented using the publicly available code by Lukas Snoek

(https://github.com/lukassnoek/MVCA), as described in the author’s article 4. Responses

were z-scaled using training set means and standard deviations. The scikit-learn SVR

parameters were: kernel = linear, loss function = epsilon insensitive, epsilon = 0.1,
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regularization = ridge, regularization strength = {0.001, 0.01, 0.1, 1}. Optimisation of the
regularization strength parameter was performed using an initial LOO-CV grid search over this
set of values. Regularisation tuning and SVR model training were optimised to minimise mean

squared error.

The prediction accuracy was assessed using three summary metrics: root mean squared error
(RMSE), sums-of-squares formulation of the coefficient of determination (R?), and
Spearman’s rank correlation coefficient (Rsp). The RMSE was selected as the primary metric
of prediction accuracy, as it directly quantifies the error (the difference between predicted
and actual observed values) and is in original units. The R? was also reported, as its value is
interpreted as the proportion of the total variation of the response (about its mean) that is
accounted for by the fitted model, and is thus an intuitive metric to assess success of the
predictions. The Rsp between predicted and observed noxious-response amplitudes was also
reported, as it may be valuable to know the model’s ability to correctly rank infants’ noxious-
response amplitudes, on a relative scale, from lowest to highest. To test the statistical
significance of the RMSE, R?, and Rs, measures using null hypothesis testing, one-tailed
significance tests were performed using permutation analysis, running 1,000 permutations
through the full prediction pipeline. Assessment of the potential influence of an fMRI global
signal confound (common to both resting-state and noxious-response data) on noxious-
response amplitudes is detailed in Supplementary Information (Common fMRI global signal

confound assessment and Supplementary Figure 4)

Part 2: Relating noxious-response amplitude to white matter microstructure

Structure-function analysis using an exploratory-confirmatory approach

The infants’ noxious-response amplitudes were assessed for structure-function associations
by analysing white matter microstructure to better understand the biological basis for
individual variability in noxious-response amplitude and to evaluate the temporal stability of
the observed responses. Due to the insensitivity of white matter microstructure to

wakefulness and emotional state, an observed structure-function relationship would suggest
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the infants’ noxious-response amplitudes were temporally stable trait effects. Temporal
stability was assessed using this structure-function approach rather than looking at stability
across multiple test occasions, as infants could only be tested on a single occasion. Due to the
lack of knowledge regarding the brain’s structural basis for noxious responses in healthy
newborn infants, an exploratory analysis was required. However, due to the small sample size
of the nociception-paradigm dataset (n=17 with dMRI data, Table 2), the appropriate
statistical multiple testing corrections to control the false positive rate would prohibit the
identification of a true positive. To overcome this issue, we adopted an exploratory-
confirmatory analysis approach. We used a large age-matched sample from the dHCP dataset
(n=215, sample defined below) for the exploratory arm, in which a wide range of white matter
tracts and dMRI model parameters were studied in order to identify candidate nociception-
relevant microstructural features. Structure-function relationships identified in this
exploratory arm facilitated the formulation of specific well-defined hypotheses. These were
subsequently tested in the nociception-paradigm dataset (n=17) for validation, which

constituted the confirmatory arm of the analysis.

Noxious-response amplitudes in the dHCP dataset

The dHCP fMRI data includes resting-state data only. To analyse nociception-relevant
structure-function relationships in this dataset, the dHCP resting-state data were mapped to
noxious-response amplitudes using the SVR prediction model described previously — see
Predicting noxious-response amplitudes above. This prediction model was trained on the
nociception-paradigm dataset (n=18) using the nine resting-state network amplitudes as
predictors (adjusted for resting-state imaging confounds) and the noxious-response
amplitudes as responses (adjusted for noxious-response imaging confounds). In a sample
from the dHCP dataset (defined below), the nine resting-state network amplitudes and three
resting-state imaging confounds were extracted in an identical manner to the analysis
performed in the nociception-paradigm dataset — see Resting-state network amplitudes and
Resting-state imaging confounds above. The resting-state network amplitudes were adjusted
for the resting-state imaging confounds, and the adjusted amplitudes were used to generate
predicted noxious-response amplitudes. Frequency distribution histograms of the predicted
noxious-response amplitudes from the dHCP dataset and the observed noxious-response

amplitudes from the nociception-paradigm dataset were qualitatively compared.
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Sample selection in the dHCP dataset

Infants in the dHCP dataset were included in our sample if they satisfied three quality control
(QC) criteria and two age criteria to ensure the sample data were of reasonable quality and
were age-matched to the prediction model training set. The three QC criteria were: (i) both
an infant’s fMRI and dMRI data had to pass basic dHCP QC pipelines 2#%®, (ii) both scan
sessions had to have completed fully (300 volumes for dMRI data; 2,300 volumes for fMRI
data) to remove inter-subject variability due to data quantity related to scan length (all infants
in the nociception-paradigm dataset satisfy this criterion), and (iii) the vertex of the cerebral
cortex had to remain within the scan field of view (FOV) for at least 95% of scan session (all
infants in the nociception-paradigm dataset satisfy this criterion). This last QC criterion
excluded infants in which primary somatosensory and motor brain regions, demonstrated in
the nociception-paradigm dataset to be of central importance to noxious stimulus processing
(Supplementary Figure 4), would have unreliable data. The two age criteria were: (i) infants
had to have both a gestational age and a postmenstrual age at time of scan between 3642
weeks, and (ii) infants had to have been scanned within the first 10 days of postnatal life.

These selection criteria resulted in a dHCP dataset sample size of n=215 infants.

White matter microstructural features

Analogous to the pre-existing dHCP resting-state network templates used for resting-state
network amplitude feature extraction (see Resting-state network amplitudes above), our 215-
infant dHCP sample was used to generate a set of 16 bilateral white matter tract regions-of-
interest (ROIs). These tracts were generated using the “baby autoPtx” approach established
as part of the dHCP dMRI preprocessing pipeline development 27, In brief, FSL’s probabilistic
multi-shell ball and zeppelins model 7> is fit as part of the dHCP dMRI preprocessing pipeline.
Probabilistic tractography using FSL’s PROBTRACKX 7®77 is run using pre-defined seed, target,
and exclusion masks. At the time of analysis, masks for 29 white matter tracts were available,
of which 13 were unilateral and three bilateral. To create bilateral white matter ROls
analogous to our bilateral resting-state networks, the unilateral tracts were fused, resulting
in a total of 16 bilateral tracts. In our 215-infant dHCP sample, the normalised probability
value results of each tract were group-averaged in standard space and thresholded at a

probability of 0.01. As part of the dHCP preprocessing pipeline, FSL’s DTIFIT is used to
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generate mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) parameter
maps for each infant. We thresholded each infant’s parameter maps to remove noisy voxels
with values falling outside the expected theoretical range, which can happen in practice due
to poor SNR or head motion: for MD, this included negative values; for FA, this included values
outside the interval [0,1]; for MK, this included values outside the interval [0,3]. The 16
bilateral white matter ROls were used to extract mean parameter values for each tract. These
48 values (16 tracts x 3 parameters) per subject constituted the white matter microstructural

features for our structure-function analyses.

Identifying a valid structure-function association

Using the 215-infant dHCP sample, univariate correlations between predicted noxious-
response amplitudes and each microstructural feature was assessed using permutation
testing with FSL’s PALM 7%, These correlations were adjusted for three dMRI imaging
confounds: mean head motion (estimated by EDDY during preprocessing), number of noisy
voxels falling outside the expected theoretical range (see White matter microstructural
features above), and TBV (see Clinical variables above). Our dMRI parameters-of-interest are
influenced by tissue density and partial voluming artefacts due to brain volume variance
across infants, so adjustment for TBV was included to mitigate these global confounds. There
is no need to adjust for fMRI imaging confounds, as the SVR prediction model maps to
confound-adjusted noxious-response amplitudes. Statistical significance was assessed using
two-tailed Pearson correlations with 10,000 permutations and FWER-corrected for multiple
testing across all 48 tests 7°. While the observed statistically significant negative correlations
with the MD of five tracts (Figure 4 and Supplementary Figure 7) are statistically valid due to
appropriate FWER-adjustment of false positive rate, these findings are tentative due to the
use of predicted noxious-response amplitudes. The dHCP dataset has no noxious-response
amplitude ground truth, so the results of this exploratory arm need confirmation in the
nociception-paradigm dataset, for which ground truth observed noxious-response

amplitudes exist.

In the confirmatory arm, the negative correlation between predicted noxious-response
amplitudes and MD identified in the dHCP dataset was assessed in the nociception-paradigm

dataset using two approaches. In both approaches, correlations were adjusted for both
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noxious-response imaging confounds (mean head motion, stimulus-correlated head motion,
and CSF amplitude) and dMRI imaging confounds (mean head motion, number of noisy
voxels, and TBV). First, the correlation polarities between observed noxious-response
amplitudes and MD of the five statistically significant tracts were qualitatively compared
across datasets. Thus, confirmatory arm question one was: “are the correlation coefficient
polarities (positive or negative) between noxious-response amplitudes and MD consistent
between datasets for these five tracts?” Second, in the dHCP dataset, principal component
analysis was run across the MD values of the five tracts of all 215 infants. The first principal
component (PC1) accounted for 84.5% of the total MD variance with a negative correlation
with predicted noxious-response amplitudes (r =—0.25). Due to the double-dipping circularity
of this analysis in the dHCP dataset ®, this negative correlation between MD PC1 and
predicted noxious-response amplitude will be biased toward high statistical significance.
However, the demonstration in the dHCP dataset that MD PC1 accounts for a major portion
of the variance in these tracts and has a statistically significant negative correlation with
predicted noxious-response amplitudes serves as a single straight-forward quantitative test
that can be directly confirmed (or not) in the nociception-paradigm dataset in an unbiased
and non-circular manner. Thus, confirmatory arm question two was: “is the statistically
significant negative correlation between noxious-response amplitudes and MD PC1 (across
these five tracts) consistent between datasets?”. Statistical significance was assessed in PALM

using a one-tailed Pearson correlation with 10,000 permutations.
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Figure 1: Newborn infants’ noxious-response amplitudes. A noxious-response BOLD activity
map is presented for each infant (n=18) and ordered according to the response amplitude
relative to the group average. The maps are general linear model regression parameter maps
i.e. effect size maps. The scalar value presented below each map is a summary measure that
represents the whole-brain noxious-response amplitude relative to the group average. It is
calculated by spatially regressing the group-average noxious-response map onto each
individual infant’s noxious-response map. Red-yellow indicates positive values and blue-cyan
indicates negative values. The anatomical reference (left) provides structural detail for
orientation. All noxious-response maps are displayed at this slice position.
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Figure 2: Nine resting-state networks repllcated across two independent datasets. Each

resting-state network map is a thresholded group-level probabilistic functional mode (PFM)
map identified in the locally collected 18-infant nociception-paradigm dataset (top row, Local)
and the 242-infant dHCP dataset (bottom row, dHCP). These PFM posterior probability maps
are thresholded to highlight qualitative correspondence. The scalar value shown between
matched maps is the spatial Pearson correlation coefficient between unthresholded maps
highlighting quantitative correspondence. Abbreviations: VNm = medial visual network; VNop
= occipital pole visual network; ANr = right auditory network; ANI = left auditory network;
SMN = somatomotor network; DMN = default mode network; DAN = dorsal attention
network; ECN = executive control network.
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Figure 3: Predicting noxious-response amplitudes from non-noxious data. For all plots, each
blue dot represents an out-of-sample cross-validated prediction for a single infant (n=18), and
the dashed grey line is the y=x line along which perfect predictions would lie. The x-axis is the
observed noxious-response amplitude (after cross-validated confound regression), and the y-
axis is the predicted noxious-response amplitude. Predictions were generated based on three
sets of predictors: (left) the resting-state network amplitudes; (middle) resting-state imaging
confounds, which included head motion, CSF amplitude, and white matter amplitude; and
(right) clinical variables, which included age (GA, PMA, and PNA), birth weight, TBV, and sex.
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Figure 4: The relationship between noxious-response amplitude and white matter mean
diffusivity. Top row: These three plots in grey (histogram, bar plot, scatter plot) are using the
215-infant dHCP dataset. Middle row: These three plots in blue are using the 17-infant
nociception-paradigm dataset. Bottom row: These three maps display the five bilateral white
matter tracts identified in the structure-function analysis exploratory arm (see
Supplementary Figure 7). The histograms display the frequency distributions of the noxious-
response amplitudes — predicted responses in dHCP dataset and observed responses in
nociception-paradigm dataset. The bar plots display the Pearson correlation coefficients
between noxious-response amplitudes and MD for the five white matter tracts. The scatter
plots display the negative correlation between noxious-response amplitudes (y-axis) and MD
PC 1. Abbreviations: atr = anterior thalamic radiation; cst = corticospinal tract; fmi = forceps
minor; str = superior thalamic radiation; unc = uncinate fasciculus.
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Tables

Table 1: Noxious-response amplitude prediction accuracies. Each row contains results for a
specific set of predictors. Each column contains prediction accuracy assessed using a specific
metric: RMSE = root mean squared error; R? = coefficient of determination (sums-of-squares
formulation); Rsp = Spearman’s rank correlation coefficient. P-values are presented in
parentheses. * = statistically significant.
RMSE R2 Rsp

Resting state 1.55* (0.004) 0.64* (0.004) 0.77* (0.003)

Confounds 2.46 (0.60) 0.081 (0.60) 0.14 (0.40)

Clinical variables 2.71(0.47) -0.12 (0.47) 0.0031 (0.51)
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Table 2: Demographic details of the 18-infant nociception-paradigm dataset. PMA =
postmenstrual age; GA = gestational age; PNA = postnatal age; BW = birth weight; TBV = total
brain volume; pu = mean; ¢ = standard deviation. * = excluded from dMRI analysis due to

incomplete dMRI data.

Infant PMA GA PNA BW TBV Sex
(weeks) (weeks) (days) (grams) (mm3)
40.6 40.3 2 3,880 283,685 M
37.4 37.1 2 4,570 276,222 M
35.9 35.3 4 1,910 212,410 F
4 EE 35.6 2 3,180 284,623 M
38.3 38 2 3,400 309,632 M
38 37.3 4 3,410 306,530 F
39.6 39.3 2 3,250 301,086 F
B 364 36 3 3,510 260,268  F
O 37.9 1 2,490 221,792 M
40.7 40.6 1 4,300 346,861 M
40.4 40.1 2 4,040 356,454 M
39.3 39 2 3,775 300,094 F
38.9 38.6 2 2,950 286,714  F
41.7 41.4 2 3,400 297,004 M
40.4 39 10 3,750 416,904  F
38.3 38 2 2,780 247,199 M
37.4 36.4 7 2,235 257,069 F
39 38.9 3,350 252271 M
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